JP2011199220A - Light emitting element driving device - Google Patents

Light emitting element driving device Download PDF

Info

Publication number
JP2011199220A
JP2011199220A JP2010067325A JP2010067325A JP2011199220A JP 2011199220 A JP2011199220 A JP 2011199220A JP 2010067325 A JP2010067325 A JP 2010067325A JP 2010067325 A JP2010067325 A JP 2010067325A JP 2011199220 A JP2011199220 A JP 2011199220A
Authority
JP
Japan
Prior art keywords
circuit
voltage
light emitting
emitting element
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010067325A
Other languages
Japanese (ja)
Inventor
Shinji Horii
新司 堀井
Hidenori Shioe
英紀 塩江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010067325A priority Critical patent/JP2011199220A/en
Publication of JP2011199220A publication Critical patent/JP2011199220A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Led Devices (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting element driving device that efficiently and stably supplies an anode voltage most suitable for prescribed luminance to a light emitting element.SOLUTION: The light emitting element driving device includes a light emitting element circuit 11 including one light emitting element or a plurality of light emitting elements connected in series, a power supply circuit 20, a constant current driving circuit 30, a constant current driving control circuit 40 which outputs a pulse-width modulated signal Spwm for turning on or off a constant current supplied to the light emitting element circuit 11 on the basis of logical data representing luminance of the light emitting elements, a constant current driving ON time detecting circuit 65 which detects an ON time of the pulse-width modulated signal, a clock signal output circuit 60, and a control voltage generating circuit 50 which generates a control voltage in synchronism with a clock signal CLK according to a terminal voltage Vcath of the constant current driving circuit 30 connected to a cathode end of the light emitting element circuit 11, cycles of the clock signal CLK being changed associatively with the ON time of the pulse-width modulated signal.

Description

本発明は、発光ダイオード(LED:Light Emiting Diode)等の発光素子の駆動装置に関し、例えば液晶パネルを背面から照明するバックライトやその他発光ダイオードを用いた表示装置に関する。   The present invention relates to a driving device for a light emitting element such as a light emitting diode (LED), for example, a backlight for illuminating a liquid crystal panel from the back and other display devices using the light emitting diode.

近年、液晶表示装置などに代表されるディスプレイの薄型化が進んできている。上記液晶表示装置においては、液晶パネル自体は発光せず、光源装置、いわゆるバックライトを必要とする。   In recent years, displays such as liquid crystal display devices have been made thinner. In the liquid crystal display device, the liquid crystal panel itself does not emit light, and a light source device, a so-called backlight is required.

これまで、液晶表示装置のバックライトとして多くは蛍光管を用いたCCFL(Cold Cathode Fluorescent Lamp)タイプが使用されてきた。しかし、環境的側面からは水銀を必要とするCCFLに比べ、水銀レスである発光ダイオードが望まれ、また、寿命や消費電力、薄膜化の観点からも発光ダイオードを用いたバックライトが切望されている。   Until now, a CCFL (Cold Cathode Fluorescent Lamp) type using a fluorescent tube has been used as a backlight of a liquid crystal display device. However, from the environmental point of view, light-emitting diodes that are mercury-free compared to CCFLs that require mercury are desired, and backlights that use light-emitting diodes are also anxious from the viewpoint of life, power consumption, and thinning. Yes.

また、発光ダイオードを用いたバックライトを用いるメリットとして、各発光ダイオードの輝度を個別に調整することが可能なことにより、いわゆるエリアアクティブ方式のバックライトが可能となることが挙げられる。   Further, as a merit of using a backlight using a light emitting diode, it is possible to adjust the luminance of each light emitting diode individually, so that a so-called area active type backlight can be realized.

エリアアクティブ方式は、液晶表示装置の表示画像に応じて、バックライトの光の強度を変化させるものであり、例えば黒色に近い画像を表示する箇所ではその領域のバックライトの光強度を低下させ、白色や明るい画像を表示する箇所では、その領域のバックライトの光強度を上げることで、高コントラストの画像表示が可能となる。   The area active method is to change the light intensity of the backlight according to the display image of the liquid crystal display device. For example, in a place where an image close to black is displayed, the light intensity of the backlight in the area is reduced. In a place where a white or bright image is displayed, a high-contrast image can be displayed by increasing the light intensity of the backlight in that region.

一方、発光ダイオードは、順方向電圧(以下、Vfと記す)の生産ばらつきや温度依存性が大きく、発光ダイオードのアノードに印加する電圧をVfの値に応じて変更させることが必要となる。このため、ある一定のアノード電圧を常に発光ダイオードのアノードに印加する構成では、当該アノード電圧は、生産上考慮されるべき最も高いVfをもつ発光ダイオードを想定して高めに設定される。このため、想定よりもVfが低い発光ダイオードが用いられると、無駄な電力消費の原因となり、発熱量の増加が顕著となる。温度によって変化するVfに応じたアノード電圧を出力できないと、輝度の低下や発熱量の増加につながる。   On the other hand, the light emitting diode has a large production variation and temperature dependency of the forward voltage (hereinafter referred to as Vf), and it is necessary to change the voltage applied to the anode of the light emitting diode according to the value of Vf. For this reason, in the configuration in which a certain anode voltage is always applied to the anode of the light emitting diode, the anode voltage is set higher assuming a light emitting diode having the highest Vf that should be considered in production. For this reason, if a light-emitting diode having a lower Vf than expected is used, it causes unnecessary power consumption and a significant increase in the amount of heat generated. Failure to output an anode voltage corresponding to Vf that varies with temperature leads to a decrease in luminance and an increase in heat generation.

上記問題の解決策として、特許文献1には、発光素子10のカソード端の電圧に応じた制御電圧(第1基準電圧:Vref1)を生成し、その電圧に応じたアノード電圧(Vout)を生成することで、発光素子のVfばらつきによる無駄な消費電力を抑え、消費電力の増大を避けることが可能な発光素子駆動装置70が開示されている。特許文献1に記載の発光素子駆動装置の回路構成図を図14に示す。   As a solution to the above problem, Patent Document 1 generates a control voltage (first reference voltage: Vref1) corresponding to the voltage at the cathode end of the light emitting element 10, and generates an anode voltage (Vout) corresponding to the voltage. Thus, there is disclosed a light emitting element driving device 70 that can suppress useless power consumption due to variations in Vf of light emitting elements and avoid an increase in power consumption. FIG. 14 shows a circuit configuration diagram of the light-emitting element driving device described in Patent Document 1.

尚、一般的なエリアアクティブ方式を用いた液晶表示装置のバックライトに図14の回路構成を採用する場合は、図15に示されるように、発光素子の点灯及び消灯信号は、液晶表示装置の画像処理回路に入力される映像信号に基づき、nビットの論理データとして定電流駆動制御回路74に入力され、パルス幅変調(PWM)信号Spwmに変換されて定電流回路72に入力される。尚、制御電圧生成回路(第1基準電圧発生回路73)は、一般的にはクロック信号CLKに同期して出力である制御電圧Vref1を変化させることから、図15にはクロック信号出力回路75を付加している。   Note that when the circuit configuration of FIG. 14 is adopted for the backlight of a liquid crystal display device using a general area active method, as shown in FIG. Based on the video signal input to the image processing circuit, it is input to the constant current drive control circuit 74 as n-bit logic data, converted into a pulse width modulation (PWM) signal Spwm, and input to the constant current circuit 72. Since the control voltage generation circuit (first reference voltage generation circuit 73) generally changes the control voltage Vref1, which is an output in synchronization with the clock signal CLK, the clock signal output circuit 75 is shown in FIG. It is added.

特開2008―283033公報JP 2008-283033 A

しかしながら、上記特許文献1に記載の発光素子駆動装置では、定電流回路に入力されるパルス幅変調信号のオン時間と、制御電圧の上昇及び下降の周期が互いに関連していないため、パルス幅変調信号のオン時間が短い場合、即ち発光素子の点灯時間が短い場合には、定電流駆動回路の端子電圧(発光素子のカソード端の電圧)に応じた制御電圧の上昇ができず、発光素子のアノードに電圧を供給する電源回路が発光素子に電流を流すために必要な電圧を出力できない場合があり、この結果発光素子の輝度が低下する。   However, in the light emitting element driving device described in Patent Document 1, since the ON time of the pulse width modulation signal input to the constant current circuit and the period of increase and decrease of the control voltage are not related to each other, When the ON time of the signal is short, that is, when the lighting time of the light emitting element is short, the control voltage cannot be increased according to the terminal voltage of the constant current driving circuit (the voltage at the cathode end of the light emitting element). A power supply circuit that supplies a voltage to the anode may not be able to output a voltage necessary for causing a current to flow through the light emitting element. As a result, the luminance of the light emitting element is lowered.

一方で、パルス幅変調信号のオン時間が長い場合、即ち発光素子の点灯時間が長い場合には、定電流駆動回路の端子の電圧(発光素子のカソード端の電圧)に応じた制御電圧の上昇、若しくは下降が頻繁に行われ、発光素子のアノードに電圧を供給する電源回路の出力が安定せず、この結果発光素子の輝度が安定しない可能性や消費電力増大の可能性等の弊害が発生する。   On the other hand, when the ON time of the pulse width modulation signal is long, that is, when the lighting time of the light emitting element is long, the control voltage rises according to the voltage of the terminal of the constant current driving circuit (the voltage at the cathode end of the light emitting element). The output of the power supply circuit that supplies voltage to the anode of the light emitting element is not stable, and as a result, the luminance of the light emitting element may be unstable and the power consumption may increase. To do.

更に、複数の並列に接続された発光素子が、複数の定電流駆動回路に接続され、夫々の発光素子が異なるパルス幅変調信号によりオン、オフ動作を行う場合には、当該発光素子の個々のVfに応じた制御電圧の出力が困難となり、夫々の発光素子のアノードに最適な電圧を供給する電源回路を構成することが困難である。   Further, when a plurality of light emitting elements connected in parallel are connected to a plurality of constant current drive circuits, and each light emitting element performs an on / off operation with different pulse width modulation signals, It becomes difficult to output a control voltage according to Vf, and it is difficult to configure a power supply circuit that supplies an optimum voltage to the anode of each light emitting element.

そこで、本発明の目的は、上述の従来技術にかかる問題点に鑑み、1つ、若しくは複数の直列に接続された発光素子に効率良く、所定の輝度が得られるように最適なアノード電圧が安定的に供給されることで、低消費電力が実現可能な発光素子駆動装置を提供することにある。   Accordingly, an object of the present invention is to stabilize the optimum anode voltage so that a predetermined luminance can be obtained efficiently with respect to one or a plurality of light emitting elements connected in series, in view of the above-described problems of the prior art. It is to provide a light emitting element driving device capable of realizing low power consumption.

上記課題を解決するための本発明に係る発光素子駆動装置は、一の発光素子、又は、複数の直列に接続された発光素子を備える発光素子回路と、前記発光素子回路の一方端と接続し、前記発光素子回路に前記発光素子の駆動に必要な電圧を供給する電源回路と、前記発光素子回路の他方端と接続し、前記発光素子回路に前記発光素子の駆動に必要な定電流を流す定電流駆動回路と、前記発光素子の輝度を示す論理データに基づき、前記定電流のオンとオフを切り替えるためのパルス幅変調信号を出力する定電流駆動制御回路と、前記論理データに基づき、前記パルス幅変調信号のオン時間を検出する定電流駆動オン時間検出回路と、クロック信号を生成するクロック信号出力回路と、前記発光素子回路の他方端と接続する前記定電流駆動回路の端子電圧に応じて、前記クロック信号に同期して制御電圧を生成する制御電圧生成回路を備え、前記電源回路により前記発光素子回路に供給される電圧は、前記定電流駆動回路の前記端子電圧が所定の第1電圧以上になるように、前記制御電圧により制御され、前記クロック信号の周期が、前記パルス幅変調信号のオン時間に連動して制御されることを第1の特徴とする。   In order to solve the above problems, a light emitting element driving device according to the present invention includes a light emitting element circuit including one light emitting element or a plurality of light emitting elements connected in series, and one end of the light emitting element circuit. A power supply circuit for supplying a voltage necessary for driving the light emitting element to the light emitting element circuit, and a constant current necessary for driving the light emitting element are connected to the other end of the light emitting element circuit. Based on the constant current drive circuit, the logical data indicating the brightness of the light emitting element, the constant current drive control circuit that outputs a pulse width modulation signal for switching on and off the constant current, and on the basis of the logical data, A constant current drive on time detection circuit for detecting an on time of a pulse width modulation signal, a clock signal output circuit for generating a clock signal, and the constant current drive circuit connected to the other end of the light emitting element circuit A control voltage generation circuit that generates a control voltage in synchronization with the clock signal according to a terminal voltage, and the voltage supplied to the light emitting element circuit by the power supply circuit is the terminal voltage of the constant current drive circuit. The first feature is that the control voltage is controlled so as to be equal to or higher than a predetermined first voltage, and the period of the clock signal is controlled in conjunction with the ON time of the pulse width modulation signal.

更に、本発明に係る発光素子駆動装置は、上記第1の特徴に加えて、前記クロック信号の周期は、前記パルス幅変調信号のオン時間よりも短くなるように制御されることを第2の特徴とする。   Furthermore, in addition to the first feature, the light emitting element driving device according to the present invention is configured such that the period of the clock signal is controlled to be shorter than the on-time of the pulse width modulation signal. Features.

ここで、発光素子回路において複数の発光素子が直列に接続されている場合、当該各発光素子のVfの合計を、発光素子回路全体のVfと定義する。   Here, when a plurality of light emitting elements are connected in series in the light emitting element circuit, the sum of Vf of the light emitting elements is defined as Vf of the entire light emitting element circuit.

上記本発明の発光素子駆動装置に依れば、発光素子の輝度を示す論理データに基づき、パルス幅変調信号のオン時間の変化に対して最適な制御電圧を出力することが可能となるため、電源回路は、発光素子回路のVfに応じて安定したアノード電圧を発光素子に供給することができ、低消費電力で輝度のちらつきのない発光素子の点灯が可能となる。   According to the light emitting element driving device of the present invention, it is possible to output an optimum control voltage with respect to a change in the on-time of the pulse width modulation signal based on the logical data indicating the luminance of the light emitting element. The power supply circuit can supply a stable anode voltage to the light emitting element in accordance with Vf of the light emitting element circuit, and can light up the light emitting element with low power consumption and no flickering of luminance.

更に、クロック信号の周期を、パルス幅変調信号のオン時間よりも短くすることで、発光素子の輝度を絞るために低オンデューティーで駆動させる場合、即ちパルス幅変調信号のオン時間が短い場合であっても、発光素子に定電流が流れている期間中に当該制御電圧の上昇もしくは下降が可能となり、定電流駆動回路の端子電圧に応じた制御電圧の出力ができる。これにより、電源回路は、発光素子回路のVfに応じたアノード電圧を発光素子に供給することができ、低オンデューティー時にも安定した発光素子の点灯、および入力されたパルス幅変調信号のデューティーに対して線形性を保った発光素子の点灯が可能となる。   Furthermore, when the period of the clock signal is made shorter than the ON time of the pulse width modulation signal, the light emitting element is driven at a low on-duty in order to reduce the luminance, that is, when the ON time of the pulse width modulation signal is short. Even in such a case, the control voltage can be increased or decreased during a period in which a constant current is flowing through the light emitting element, and a control voltage corresponding to the terminal voltage of the constant current driving circuit can be output. As a result, the power supply circuit can supply an anode voltage corresponding to Vf of the light emitting element circuit to the light emitting element, and can stably turn on the light emitting element even at a low on-duty and the duty of the input pulse width modulation signal. On the other hand, it is possible to turn on the light emitting element having linearity.

更に、本発明に係る発光素子駆動装置は、上記第1又は第2の特徴に加えて、前記定電流駆動回路は、増幅器と、出力端子が前記発光素子回路の他方端と接続し、制御端子が前記増幅器の出力端と接続する少なくとも一つの定電流駆動用トランジスタを備えることを第3の特徴とする。   Further, in the light emitting element driving device according to the present invention, in addition to the first or second feature, the constant current driving circuit includes an amplifier, an output terminal connected to the other end of the light emitting element circuit, and a control terminal. Has at least one constant current driving transistor connected to the output terminal of the amplifier.

更に、本発明に係る発光素子駆動装置は、上記第3の特徴に加えて、前記定電流駆動用トランジスタは、バイポーラトランジスタであり、前記定電流駆動回路の前記増幅器の出力端は、抵抗を介して前記バイポーラトランジスタのベース端子と接続することを第4の特徴とする。   Furthermore, in the light emitting element driving device according to the present invention, in addition to the third feature, the constant current driving transistor is a bipolar transistor, and an output terminal of the amplifier of the constant current driving circuit is connected via a resistor. The fourth feature is that it is connected to the base terminal of the bipolar transistor.

上記本発明の第3の特徴の発光素子駆動装置に依れば、定電流駆動回路は、少なくとも一つの定電流駆動用トランジスタと、当該定電流駆動用トランジスタを制御する増幅器を有することで、簡易な回路で定電流駆動が可能となる。   According to the light emitting element driving device of the third aspect of the present invention, the constant current driving circuit includes at least one constant current driving transistor and an amplifier that controls the constant current driving transistor, thereby simplifying the operation. A constant current drive is possible with a simple circuit.

特に、定電流駆動用トランジスタとしてバイポーラトランジスタを用い、当該バイポーラトランジスタのベース端子を抵抗を介して制御する増幅器を有することで、より安価な構成の発光素子駆動装置が実現できる。   In particular, by using a bipolar transistor as the constant current driving transistor and having an amplifier that controls the base terminal of the bipolar transistor via a resistor, a light emitting element driving device having a lower cost can be realized.

更に、本発明に係る発光素子駆動装置は、上記第1乃至第4の何れかの特徴に加えて、複数の前記発光素子回路が並列に配置され、夫々の前記発光素子回路の一方端が共通の前記電源回路と接続されていることを第5の特徴とする。   Further, in the light emitting element driving device according to the present invention, in addition to any of the first to fourth features, a plurality of the light emitting element circuits are arranged in parallel, and one end of each of the light emitting element circuits is common. The fifth feature is that the power supply circuit is connected.

更に、本発明に係る発光素子駆動装置は、上記第5の特徴に加えて、複数の前記定電流駆動回路を有し、並列に配置される前記発光素子回路の他方端は、夫々、別の前記定電流駆動回路と接続されていることを第6の特徴とする。   Furthermore, in addition to the fifth feature, the light emitting element driving device according to the present invention has a plurality of the constant current driving circuits, and the other ends of the light emitting element circuits arranged in parallel are different from each other. A sixth feature is that it is connected to the constant current drive circuit.

更に、本発明に係る発光素子駆動装置は、上記第6の特徴に加えて、前記複数の定電流駆動回路が流す定電流のオンとオフが、夫々別の前記パルス幅変調信号により各別に制御されることを第7の特徴とする。   Furthermore, in addition to the sixth feature, the light-emitting element driving device according to the present invention controls on and off of constant currents flowing through the plurality of constant current driving circuits, respectively, by separate pulse width modulation signals. This is a seventh feature.

上記本発明の第5の特徴の発光素子駆動装置に依れば、一の発光素子、又は、複数の直列に接続された発光素子を備える発光素子回路が、夫々複数、並列に配置されることで、より多くの発光素子の点灯制御が可能となり、より安価な発光素子駆動装置の提供が可能となる。   According to the light emitting element driving apparatus of the fifth feature of the present invention, a plurality of light emitting element circuits each including one light emitting element or a plurality of light emitting elements connected in series are arranged in parallel. Therefore, it becomes possible to control lighting of more light emitting elements and to provide a cheaper light emitting element driving device.

更に、上記本発明の第6の特徴の発光素子駆動装置に依れば、当該発光素子回路の夫々に別の定電流駆動回路が接続されることで、夫々の発光素子回路に対し個別に定電流を流すことが可能となり、発光素子回路内の発光素子の輝度や色度を調整することで、例えば、上述のエリアアクティブ制御を行うことが可能になる。   Furthermore, according to the light emitting element driving device of the sixth aspect of the present invention, separate constant current driving circuits are connected to the respective light emitting element circuits, so that each light emitting element circuit is individually set. It becomes possible to pass a current, and for example, the above-described area active control can be performed by adjusting the luminance and chromaticity of the light emitting element in the light emitting element circuit.

更に、上記本発明の第7の特徴の発光素子駆動装置に依れば、定電流駆動回路が流す定電流のオンとオフが各別に制御可能とすることで、夫々の発光素子回路内発光素子の輝度を自由に設定することが可能となり、例えばエリアアクティブ制御を行う液晶TVのバックライトシステムに最適な発光素子駆動装置を提供できる。   Furthermore, according to the light emitting element driving device of the seventh feature of the present invention, the constant current flowing through the constant current driving circuit can be individually controlled to be turned on and off. Can be freely set, and for example, a light-emitting element driving device optimal for a backlight system of a liquid crystal TV that performs area active control can be provided.

更に、本発明に係る発光素子駆動装置は、上記第1乃至第7の何れかの特徴に加えて、前記制御電圧生成回路は、前記定電流駆動回路の前記端子電圧と前記所定の第1電圧を比較する第1の電圧比較回路と、前記第1の電圧比較回路の出力に応じ、前記クロック信号に同期してカウント値を増減させるカウンタ回路と、前記カウンタ回路のカウント値をアナログ電圧に変換し、前記制御電圧を生成するD/A変換回路を備えることを第8の特徴とする。   Further, in the light emitting element driving device according to the present invention, in addition to any of the first to seventh features, the control voltage generating circuit includes the terminal voltage of the constant current driving circuit and the predetermined first voltage. A first voltage comparison circuit for comparing the counter, a counter circuit for increasing or decreasing a count value in synchronization with the clock signal according to an output of the first voltage comparison circuit, and converting the count value of the counter circuit to an analog voltage In addition, an eighth feature is that a D / A conversion circuit for generating the control voltage is provided.

上記本発明の第8の特徴の発光素子駆動装置に依れば、第1の電圧比較回路、カウンタ回路、及び、D/A変換回路からなる制御電圧生成回路を容易な回路構成で実現できる。   According to the light emitting element driving apparatus of the eighth feature of the present invention, the control voltage generation circuit including the first voltage comparison circuit, the counter circuit, and the D / A conversion circuit can be realized with an easy circuit configuration.

更に、本発明に係る発光素子駆動装置は、上記第8の特徴に加えて、前記第1の電圧比較回路は、複数の前記定電流駆動回路を有する場合、当該複数の定電流駆動回路の前記端子電圧のうち、最も低い前記端子電圧と前記所定の第1電圧との比較結果を前記カウンタ回路に出力することを第9の特徴とする。   Furthermore, in the light emitting element driving device according to the present invention, in addition to the eighth feature, when the first voltage comparison circuit includes a plurality of the constant current driving circuits, the light emitting element driving device includes the plurality of constant current driving circuits. A ninth feature is that a comparison result between the lowest terminal voltage of the terminal voltages and the predetermined first voltage is output to the counter circuit.

上記本発明の第9の特徴の発光素子駆動装置に依れば、第1の電圧比較回路は、複数の定電流駆動回路の端子電圧のうち最も低い電圧と第1電圧とを比較することで、複数の発光素子回路の中で、最もVfが高い発光素子回路に応じた制御電圧の出力が可能となり、多数の発光素子の制御を安価なシステムで提供することが可能となる。   According to the light emitting element driving apparatus of the ninth feature of the present invention, the first voltage comparison circuit compares the lowest voltage among the terminal voltages of the plurality of constant current driving circuits with the first voltage. In addition, among the plurality of light emitting element circuits, it is possible to output a control voltage corresponding to the light emitting element circuit having the highest Vf, and it is possible to provide control of a large number of light emitting elements with an inexpensive system.

更に、本発明に係る発光素子駆動装置は、上記第8の特徴に加えて、前記制御電圧生成回路は、前記定電流駆動回路の前記端子電圧と前記所定の第1電圧より高い所定の第2電圧を比較する第2の電圧比較回路を備え、前記カウンタ回路は、前記第1の電圧比較回路および前記第2の電圧比較回路の出力に応じて前記カウント値を増減させ、前記定電流駆動回路の前記端子電圧が前記所定の第1電圧より高く、前記所定の第2電圧より低い場合、前記カウント値を増減させないことを第10の特徴とする。   Further, in the light emitting element driving device according to the present invention, in addition to the eighth feature, the control voltage generating circuit includes a predetermined second voltage higher than the terminal voltage of the constant current driving circuit and the predetermined first voltage. A second voltage comparison circuit for comparing voltages, wherein the counter circuit increases or decreases the count value according to outputs of the first voltage comparison circuit and the second voltage comparison circuit, and the constant current drive circuit; A tenth feature is that the count value is not increased or decreased when the terminal voltage is higher than the predetermined first voltage and lower than the predetermined second voltage.

上記本発明の第10の特徴の発光素子駆動装置に依れば、制御電圧生成回路は、更に第2の電圧比較回路を備えることで、定電流駆動回路の端子電圧が第1電圧と第2電圧の間の電圧となるように制御することが可能となり、電源回路は、より安定したアノード電圧を発光素子に供給することができ、安定な発光素子の点灯が実現できる。   According to the light emitting element driving device of the tenth aspect of the present invention, the control voltage generation circuit further includes the second voltage comparison circuit, so that the terminal voltage of the constant current driving circuit is equal to the first voltage and the second voltage. The power supply circuit can be controlled so as to be a voltage between the voltages, and the power supply circuit can supply a more stable anode voltage to the light emitting element, thereby realizing stable lighting of the light emitting element.

更に、本発明に係る発光素子駆動装置は、上記第10の特徴に加えて、複数の前記定電流駆動回路を有し、前記第1の電圧比較回路は、当該複数の定電流駆動回路の前記端子電圧のうち、最も低い前記端子電圧と前記所定の第1電圧との比較結果を前記カウンタ回路に出力し、前記第2の電圧比較回路は、当該複数の定電流駆動回路の前記端子電圧のうち、最も低い前記端子電圧と前記所定の第2電圧との比較結果を前記カウンタ回路に出力することを第11の特徴とする。   Furthermore, in addition to the tenth feature, the light-emitting element driving device according to the present invention includes a plurality of the constant current driving circuits, and the first voltage comparison circuit includes the plurality of constant current driving circuits. A comparison result between the lowest terminal voltage of the terminal voltages and the predetermined first voltage is output to the counter circuit, and the second voltage comparison circuit outputs the terminal voltage of the plurality of constant current drive circuits. Of these, an eleventh feature is that a comparison result between the lowest terminal voltage and the predetermined second voltage is output to the counter circuit.

上記本発明の第11の特徴の発光素子駆動装置に依れば、第1の電圧比較回路は、複数の定電流駆動回路の端子電圧のうち最も低い電圧と第1電圧とを比較し、第2の電圧比較回路は、複数の定電流駆動回路の端子電圧のうち最も低い電圧と第2電圧とを比較することで、複数の発光素子回路の中で、最もVfが高い発光素子回路に応じた制御電圧の出力が可能となり、多数の発光素子の制御を安価なシステムで提供することが可能となる。   According to the light emitting element driving apparatus of the eleventh feature of the present invention, the first voltage comparison circuit compares the lowest voltage among the terminal voltages of the plurality of constant current driving circuits with the first voltage, The voltage comparison circuit of 2 corresponds to the light emitting element circuit having the highest Vf among the plurality of light emitting element circuits by comparing the lowest voltage of the terminal voltages of the plurality of constant current driving circuits with the second voltage. Thus, it is possible to output a control voltage, and it is possible to provide control of a large number of light emitting elements with an inexpensive system.

更に、本発明に係る発光素子駆動装置は、上記第3乃至第7の何れかの特徴に加えて、前記制御電圧生成回路は、前記定電流駆動回路の前記増幅器の出力端の電圧を所定の第3電圧と比較する第3の電圧比較回路と、前記第3の電圧比較回路の出力に応じ、前記クロック信号に同期してカウント値を増減させるカウンタ回路と、前記カウンタ回路のカウント値をアナログ電圧に変換し、前記制御電圧を生成するD/A変換回路を備えることを第12の特徴とする。   Furthermore, in the light-emitting element driving device according to the present invention, in addition to any of the third to seventh features, the control voltage generation circuit sets a voltage at an output terminal of the amplifier of the constant current driving circuit to a predetermined value. A third voltage comparison circuit for comparing with the third voltage; a counter circuit for increasing or decreasing a count value in synchronization with the clock signal according to an output of the third voltage comparison circuit; and an analog value for the count value of the counter circuit. A twelfth feature includes a D / A conversion circuit that converts the voltage into a voltage and generates the control voltage.

上記本発明の第12の特徴の発光素子駆動装置に依れば、増幅器の出力端の電圧を第3電圧と比較する第3の電圧比較回路を備えることで、定電流駆動回路の端子電圧を直接モニタリングする必要がなく、より安価なシステムで発光素子回路のVfに応じた電源回路の出力を得ることができる。   According to the light emitting element driving device of the twelfth aspect of the present invention, the terminal voltage of the constant current driving circuit is obtained by providing the third voltage comparison circuit that compares the voltage at the output terminal of the amplifier with the third voltage. There is no need for direct monitoring, and an output of the power supply circuit corresponding to Vf of the light emitting element circuit can be obtained with a cheaper system.

更に、本発明に係る発光素子駆動装置は、上記第12の特徴に加えて、前記第3の電圧比較回路は、複数の前記定電流駆動回路を有する場合、当該複数の定電流駆動回路の前記増幅器の出力端の電圧のうち、最も高い電圧と前記所定の第3電圧との比較結果を前記カウンタ回路に出力することを第13の特徴とする。   Furthermore, in addition to the twelfth feature, in the light emitting element driving device according to the present invention, when the third voltage comparison circuit includes a plurality of constant current driving circuits, the plurality of constant current driving circuits include the plurality of constant current driving circuits. A thirteenth feature is that a comparison result between the highest voltage among the voltages at the output terminals of the amplifier and the predetermined third voltage is output to the counter circuit.

上記本発明の第13の特徴の発光素子駆動装置に依れば、第3の電圧比較回路は、複数の定電流駆動回路に備えられた定電流駆動用トランジスタを制御する増幅器の出力のうち、最も高い電圧と第3電圧とを比較することで、複数の発光素子回路の中で、最もVfが高い発光素子回路に応じた制御電圧の出力が可能となり、多数の発光素子の制御を安価なシステムで提供することが可能となる。   According to the light emitting element driving device of the thirteenth aspect of the present invention, the third voltage comparison circuit includes the outputs of the amplifiers that control the constant current driving transistors provided in the plurality of constant current driving circuits. By comparing the highest voltage with the third voltage, it becomes possible to output a control voltage according to the light emitting element circuit having the highest Vf among the plurality of light emitting element circuits, and control of many light emitting elements is inexpensive. It can be provided by the system.

更に、本発明に係る発光素子駆動装置は、上記第1乃至第13の何れかの特徴に加えて、前記電源回路、前記定電流駆動回路、前記定電流駆動制御回路、前記定電流駆動オン時間検出回路、前記クロック信号出力回路、及び、前記制御電圧生成回路のうち、少なくとも2つ以上の回路が同一チップ上に備えられてなることを第14の特徴とする。   Furthermore, the light emitting element driving device according to the present invention, in addition to any of the first to thirteenth features, includes the power supply circuit, the constant current driving circuit, the constant current driving control circuit, and the constant current driving on time. A fourteenth feature is that at least two of the detection circuit, the clock signal output circuit, and the control voltage generation circuit are provided on the same chip.

上記本発明の第14の特徴の発光素子駆動装置に依れば、発光素子駆動装置を構成する各回路のうち、少なくとも2つ以上の回路が同一チップ上に備えられてなることで、より安価で、部品点数の少ない発光素子駆動装置が実現できる。   According to the light emitting element driving device of the fourteenth aspect of the present invention, at least two or more circuits among the circuits constituting the light emitting element driving device are provided on the same chip, so that it is cheaper. Thus, a light emitting element driving device with a small number of parts can be realized.

従って、本発明の発光素子駆動装置に依れば、一の発光素子、又は、複数の直列に接続された発光素子に効率良く、所定の輝度が得られるように最適なアノード電圧を安定的に供給することができ、低消費電力が実現可能な発光素子駆動装置を提供することができる。   Therefore, according to the light emitting element driving apparatus of the present invention, the optimum anode voltage is stably applied to one light emitting element or a plurality of light emitting elements connected in series efficiently so as to obtain a predetermined luminance. A light-emitting element driving device that can be supplied and can realize low power consumption can be provided.

本発明の第1実施形態に係る発光素子駆動装置の回路構成図。The circuit block diagram of the light emitting element drive device which concerns on 1st Embodiment of this invention. 図1に示す定電流駆動回路の回路構成の一例を示す図。FIG. 2 is a diagram showing an example of a circuit configuration of the constant current drive circuit shown in FIG. 1. 図1に示す定電流駆動回路の回路構成の別の例を示す図。The figure which shows another example of the circuit structure of the constant current drive circuit shown in FIG. 図1に示す制御電圧生成回路の回路構成の一例を示す図。FIG. 2 is a diagram illustrating an example of a circuit configuration of a control voltage generation circuit illustrated in FIG. 1. 図1に示す制御電圧生成回路の回路構成の別の例を示す図。FIG. 4 is a diagram showing another example of the circuit configuration of the control voltage generation circuit shown in FIG. 1. 図1に示す制御電圧生成回路の回路構成の別の例を示す図。FIG. 4 is a diagram showing another example of the circuit configuration of the control voltage generation circuit shown in FIG. 1. 本発明の第2実施形態に係る発光素子駆動装置の回路構成の一例を示す図。The figure which shows an example of the circuit structure of the light emitting element drive device which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る発光素子駆動装置の回路構成の別の例を示す図。The figure which shows another example of the circuit structure of the light emitting element drive device which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る発光素子駆動装置の回路構成の別の例を示す図。The figure which shows another example of the circuit structure of the light emitting element drive device which concerns on 2nd Embodiment of this invention. 複数のカソード電圧の入力を受ける制御電圧生成回路の構成例を示す図。The figure which shows the structural example of the control voltage generation circuit which receives the input of a some cathode voltage. 複数のカソード電圧の入力を受ける制御電圧生成回路の構成例を示す図。The figure which shows the structural example of the control voltage generation circuit which receives the input of a some cathode voltage. 複数のカソード電圧の入力を受ける制御電圧生成回路の構成例を示す図。The figure which shows the structural example of the control voltage generation circuit which receives the input of a some cathode voltage. 複数のカソード電圧の入力を受ける制御電圧生成回路の構成例を示す図。The figure which shows the structural example of the control voltage generation circuit which receives the input of a some cathode voltage. 従来技術に係る発光素子駆動装置の回路構成図。The circuit block diagram of the light emitting element drive device which concerns on a prior art. 従来技術に係る発光素子駆動装置の回路構成図。The circuit block diagram of the light emitting element drive device which concerns on a prior art.

〈第1実施形態〉
本発明の一実施形態に係る発光素子駆動装置1(以降、適宜「本発明装置1」と称す)の構成例を図1に示す。尚、本発明は以下の実施形態に限定されるものではなく、請求項に記載された範囲を逸脱しない限り、任意に変更可能であることは言うまでもない。これは以降に示される各実施形態についても同様である。
<First Embodiment>
FIG. 1 shows a configuration example of a light-emitting element driving device 1 according to an embodiment of the present invention (hereinafter referred to as “the present invention device 1” as appropriate). Needless to say, the present invention is not limited to the following embodiments, and can be arbitrarily changed without departing from the scope described in the claims. The same applies to the embodiments described below.

図1の回路構成図に示されるように、本発明装置1は、複数の発光素子(LED)が直列に接続された発光素子回路11と、発光素子回路11のアノード端と接続し、発光素子回路11に発光素子の駆動に必要な電圧(アノード電圧)を供給する電源回路20と、発光素子回路11のカソード端と接続し、発光素子回路11の各発光素子の駆動に必要な定電流を流す定電流駆動回路30と、発光素子の輝度を示す論理データに基づき、定電流のオンとオフを切り替えるためのパルス幅変調信号Spwmを出力する定電流駆動制御回路40と、当該論理データに基づき、パルス幅変調信号Spwmのオン時間を検出する定電流駆動オン時間検出回路65と、クロック信号CLKを生成するクロック信号出力回路60と、発光素子回路11のカソード端と接続する定電流駆動回路30の端子電圧(カソード電圧)Vcathに応じて、クロック信号CLKに同期して制御電圧を生成する制御電圧生成回路50から構成されている。   As shown in the circuit configuration diagram of FIG. 1, the device 1 of the present invention is connected to a light emitting element circuit 11 in which a plurality of light emitting elements (LEDs) are connected in series and an anode end of the light emitting element circuit 11. A power supply circuit 20 for supplying a voltage (anode voltage) necessary for driving the light emitting element to the circuit 11 and a cathode terminal of the light emitting element circuit 11 are connected, and a constant current necessary for driving each light emitting element of the light emitting element circuit 11 is supplied. Based on the constant current drive circuit 30 that flows, the constant current drive control circuit 40 that outputs the pulse width modulation signal Spwm for switching on and off the constant current based on the logical data indicating the luminance of the light emitting element, and on the basis of the logical data The constant current drive on time detection circuit 65 for detecting the on time of the pulse width modulation signal Spwm, the clock signal output circuit 60 for generating the clock signal CLK, and the cathode of the light emitting element circuit 11 Depending on the constant-current terminal voltage (cathode voltage) of the drive circuit 30 Vcath be connected to the de-end, and a control voltage generating circuit 50 which generates a control voltage in synchronism with the clock signal CLK.

発光素子の輝度を示す論理データが例えば液晶表示装置の画像処理回路から出力されると、当該論理データは定電流駆動制御回路40に入力される。定電流駆動制御回路40は、当該論理データに基づきパルス幅変調信号Spwmを生成し、定電流駆動回路30への入力とする。パルス幅変調信号Spwmにより、定電流駆動回路30が流す定電流のオンオフが制御されることで、発光素子の点灯および消灯が制御され、映像信号に応じた発光動作を行うことができる。   When logical data indicating the luminance of the light emitting element is output from, for example, an image processing circuit of the liquid crystal display device, the logical data is input to the constant current drive control circuit 40. The constant current drive control circuit 40 generates a pulse width modulation signal Spwm based on the logical data and inputs it to the constant current drive circuit 30. By controlling on / off of the constant current supplied by the constant current drive circuit 30 by the pulse width modulation signal Spwm, lighting and extinguishing of the light emitting element are controlled, and a light emitting operation corresponding to the video signal can be performed.

電源回路20は、制御電圧生成回路50から出力される制御電圧Vrefを参照して、発光素子回路11のアノード端に供給する出力電圧Voutを制御する。例えば、制御電圧Vrefが上昇すると、それに応じて出力電圧Voutを上昇させ、発光素子回路11のアノード電圧を上昇させる。一方、制御電圧Vrefが下降すると、それに応じて出力電圧Voutを下降させ、発光素子回路11のアノード電圧を下降させる。これにより、発光素子回路11の各発光素子のVfの合計値に応じたアノード電圧の出力が可能となり、低消費電力動作が可能となる。尚、電源回路20の回路構成としては、例えば特許文献1の図3に記載されている構成を用いることができるが、本発明は当該構成に限られるものではない。電源回路20の回路構成として他の公知な構成を利用することができる。   The power supply circuit 20 controls the output voltage Vout supplied to the anode terminal of the light emitting element circuit 11 with reference to the control voltage Vref output from the control voltage generation circuit 50. For example, when the control voltage Vref increases, the output voltage Vout is increased accordingly, and the anode voltage of the light emitting element circuit 11 is increased. On the other hand, when the control voltage Vref falls, the output voltage Vout is lowered accordingly, and the anode voltage of the light emitting element circuit 11 is lowered. As a result, it is possible to output an anode voltage corresponding to the total value of Vf of each light emitting element of the light emitting element circuit 11, and a low power consumption operation is possible. As the circuit configuration of the power supply circuit 20, for example, the configuration described in FIG. 3 of Patent Document 1 can be used, but the present invention is not limited to this configuration. Other known configurations can be used as the circuit configuration of the power supply circuit 20.

制御電圧生成回路50は、発光素子回路11のカソード電圧Vcathを検出し、所定の第1電圧との比較を行い、当該比較結果に基づき、クロック信号CLKの周期に従って制御電圧Vrefを変化させる。例えば、カソード電圧Vcathが第1電圧より低い場合には、制御電圧Vrefを上昇させ、カソード電圧Vcathが第1電圧より高い場合には、制御電圧Vrefを下降させる。これにより、カソード電圧Vcathは第1電圧以上の電圧になるように制御され、カソード電圧Vcathは定電流駆動回路30の定電流動作に必要な電圧を維持する。   The control voltage generation circuit 50 detects the cathode voltage Vcath of the light emitting element circuit 11, compares it with a predetermined first voltage, and changes the control voltage Vref according to the period of the clock signal CLK based on the comparison result. For example, when the cathode voltage Vcath is lower than the first voltage, the control voltage Vref is increased, and when the cathode voltage Vcath is higher than the first voltage, the control voltage Vref is decreased. As a result, the cathode voltage Vcath is controlled to be equal to or higher than the first voltage, and the cathode voltage Vcath maintains a voltage necessary for the constant current operation of the constant current drive circuit 30.

本発明では、定電流駆動制御回路40に入力される論理データの値から、定電流駆動オン時間検出回路65が、パルス幅変調信号Spwmのオン時間、即ち発光素子回路11の各発光素子の点灯期間を検出し、当該オン時間に連動してクロック信号出力回路60が生成するクロック信号CLKの周期を制御することで、発光素子の点灯期間に応じた制御電圧の上昇および下降を可能とし、電源回路20の出力電圧を安定化させ、更なる低消費電力動作と安定した発光素子の発光動作が可能となる。   In the present invention, from the value of the logical data input to the constant current drive control circuit 40, the constant current drive ON time detection circuit 65 turns on the ON time of the pulse width modulation signal Spwm, that is, the lighting of each light emitting element of the light emitting element circuit 11. By detecting the period and controlling the cycle of the clock signal CLK generated by the clock signal output circuit 60 in conjunction with the ON time, it is possible to increase and decrease the control voltage according to the lighting period of the light emitting element. The output voltage of the circuit 20 is stabilized, and further low power consumption operation and stable light emitting operation of the light emitting element are possible.

即ち、発光素子の輝度を示す論理データとして、発光素子回路11の各発光素子の点灯期間を長くする値が定電流駆動制御回路40に入力される場合には、定電流駆動オン時間検出回路65は、クロック信号CLKの周期を長くし、制御電圧生成回路50による制御電圧Vrefの上昇および下降の周期を長くする。これにより制御電圧Vrefの変動回数が減少し、これに伴い電源回路20の出力Voutの変動回数も減少し、安定的な出力電圧Voutを発光素子回路11に供給することが可能となる。この結果、無駄な出力電圧Voutの変動を抑えることができ、低消費電力動作と安定した発光素子の発光動作が可能となる。   That is, when a value for increasing the lighting period of each light emitting element of the light emitting element circuit 11 is input to the constant current drive control circuit 40 as logical data indicating the luminance of the light emitting element, the constant current drive on time detection circuit 65 is used. Increases the period of the clock signal CLK, and increases the period of increase and decrease of the control voltage Vref by the control voltage generation circuit 50. As a result, the number of fluctuations of the control voltage Vref is reduced, and accordingly, the number of fluctuations of the output Vout of the power supply circuit 20 is also reduced, and a stable output voltage Vout can be supplied to the light emitting element circuit 11. As a result, useless fluctuations in the output voltage Vout can be suppressed, and low power consumption operation and stable light emitting operation of the light emitting element are possible.

一方、発光素子の輝度を示す論理データとして、発光素子回路11の各発光素子の点灯期間を短くする値が定電流駆動制御回路40に入力される場合には、定電流駆動オン時間検出回路65は、クロック信号CLKの周期を短くし、制御電圧生成回路50による制御電圧Vrefの上昇および下降の周期を短くする。ここで、クロック信号CLKの周期を発光素子の点灯期間(パルス幅変調信号Spwmのオン期間)よりも短くすることで、制御電圧生成回路50は、発光素子が点灯し、定電流が流れている期間中にカソード電圧Vcathに応じた制御電圧の出力が可能となる。従って、発光素子回路11の各発光素子の点灯期間が短い場合であっても、所望の輝度が得られ、論理データの値に対して線形性を保った輝度で発光することが可能となる。尚、発光素子の点灯期間(パルス幅変調信号Spwmのオン期間)は、クロック信号CLKの周期の数倍以上であることが望ましいが、所望の特性が得られる限りにおいては、特に限定しない。   On the other hand, when a value that shortens the lighting period of each light emitting element of the light emitting element circuit 11 is input to the constant current drive control circuit 40 as logic data indicating the luminance of the light emitting element, the constant current drive on time detection circuit 65 is used. Shortens the cycle of the clock signal CLK and shortens the cycle of increase and decrease of the control voltage Vref by the control voltage generation circuit 50. Here, by making the cycle of the clock signal CLK shorter than the lighting period of the light emitting element (the ON period of the pulse width modulation signal Spwm), the control voltage generation circuit 50 lights the light emitting element and a constant current flows. During the period, it is possible to output a control voltage according to the cathode voltage Vcath. Therefore, even when the lighting period of each light emitting element of the light emitting element circuit 11 is short, a desired luminance can be obtained and light can be emitted with a luminance that maintains linearity with respect to the value of the logical data. Note that the lighting period of the light emitting element (the ON period of the pulse width modulation signal Spwm) is preferably several times the cycle of the clock signal CLK, but is not particularly limited as long as desired characteristics can be obtained.

定電流駆動回路30の回路構成の一例を図2に示す。図2に示す定電流駆動回路30aは、NチャネルMOSFET(定電流駆動用トランジスタ)31と、電流検出抵抗32と、制御アンプ33と、制御アンプ用基準電圧源34と、上述のパルス幅変調信号Spwmを受け、MOSFET31のゲート端子に印加される電圧を切り替えるスイッチ35からなる。MOSFET31のドレイン端子は発光素子回路11のカソード端と接続し、MOSFET31のゲート端子はスイッチ35を介して制御アンプ33の出力端と接続している。定電流駆動回路30aが定電流を流している状態、即ち発光素子が点灯している状態では、制御アンプ用基準電圧源34の出力電圧と、電流検出抵抗32に接続された制御アンプ33の反転入力端子の電圧が同一となるように、制御アンプ33がMOSFET31のゲート電圧をスイッチ35を介して制御することで、制御アンプ用基準電圧源34の出力電圧と電流検出抵抗32の抵抗値で決まる定電流をMOSFET31を介して発光素子回路11に供給し、定電流動作を可能とする構成である。一方、スイッチ35によりMOSFET31のゲート端子を所定の固定電位(ここでは、接地電位)に接続することで、定電流を遮断させ、発光素子を消灯させる。   An example of the circuit configuration of the constant current drive circuit 30 is shown in FIG. A constant current drive circuit 30a shown in FIG. 2 includes an N-channel MOSFET (constant current drive transistor) 31, a current detection resistor 32, a control amplifier 33, a control amplifier reference voltage source 34, and the pulse width modulation signal described above. It comprises a switch 35 that receives Spwm and switches a voltage applied to the gate terminal of the MOSFET 31. The drain terminal of the MOSFET 31 is connected to the cathode terminal of the light emitting element circuit 11, and the gate terminal of the MOSFET 31 is connected to the output terminal of the control amplifier 33 via the switch 35. In a state where the constant current drive circuit 30a is passing a constant current, that is, in a state where the light emitting element is lit, the output voltage of the control amplifier reference voltage source 34 and the inversion of the control amplifier 33 connected to the current detection resistor 32 are obtained. The control amplifier 33 controls the gate voltage of the MOSFET 31 via the switch 35 so that the voltages at the input terminals are the same, so that the output voltage of the control amplifier reference voltage source 34 and the resistance value of the current detection resistor 32 are determined. In this configuration, a constant current is supplied to the light emitting element circuit 11 via the MOSFET 31 to enable a constant current operation. On the other hand, by connecting the gate terminal of the MOSFET 31 to a predetermined fixed potential (here, ground potential) by the switch 35, the constant current is cut off and the light emitting element is turned off.

尚、定電流駆動回路30は、少なくとも1つの定電流駆動用トランジスタと、当該定電流駆動用トランジスタを制御するアンプを備えている限りにおいては、その構成は特に限定されない。例えば、上述のNチャネルMOSFET31は、耐圧保護用MOSFETと電流制御用MOSFETの2つのトランジスタから構成されていても構わないし、バイポーラトランジスタで構成されていても構わない。   The configuration of the constant current driving circuit 30 is not particularly limited as long as it includes at least one constant current driving transistor and an amplifier that controls the constant current driving transistor. For example, the above-described N-channel MOSFET 31 may be composed of two transistors, a withstand voltage protection MOSFET and a current control MOSFET, or may be composed of a bipolar transistor.

定電流駆動回路の回路構成の別の例を図3に示す。図3に示す定電流駆動回路30bは、NPNバイポーラトランジスタ31bと、電流検出抵抗32と、制御アンプ33と、制御アンプ用基準電圧源34と、上記パルス幅変調信号Spwmを受け、バイポーラトランジスタ31bのベース端子に印加される電圧を切り替えるスイッチ35と、バイポーラトランジスタ31bのベース端子に接続された抵抗36からなる。バイポーラトランジスタ31bのコレクタ端子は発光素子回路11のカソード端と接続し、バイポーラトランジスタ31bのベース端子は抵抗36とスイッチ35を介して制御アンプ33の出力端と接続している。定電流駆動回路30bが定電流を流している状態、即ち発光素子が点灯している状態では、制御アンプ用基準電圧源34の出力電圧と、電流検出抵抗32に接続された制御アンプ33の反転入力端子の電圧が同一となるように、制御アンプ33がバイポーラトランジスタ31bのベース電圧をスイッチ35と抵抗36を介して制御することで、制御アンプ用基準電圧源34の出力電圧と電流検出抵抗32の抵抗値で決まる定電流をバイポーラトランジスタ31bを介して発光素子回路11に供給し、定電流動作を可能とする構成である。一方、スイッチ35によりバイポーラトランジスタ31bのベース端子を所定の固定電位(ここでは、接地電位)に接続することで、定電流を遮断させ、発光素子を消灯させる。   Another example of the circuit configuration of the constant current driving circuit is shown in FIG. A constant current drive circuit 30b shown in FIG. 3 receives an NPN bipolar transistor 31b, a current detection resistor 32, a control amplifier 33, a control amplifier reference voltage source 34, and the pulse width modulation signal Spwm. The switch 35 switches the voltage applied to the base terminal, and the resistor 36 is connected to the base terminal of the bipolar transistor 31b. The collector terminal of the bipolar transistor 31 b is connected to the cathode terminal of the light emitting element circuit 11, and the base terminal of the bipolar transistor 31 b is connected to the output terminal of the control amplifier 33 via the resistor 36 and the switch 35. In a state where the constant current driving circuit 30 b is passing a constant current, that is, in a state where the light emitting element is lit, the output voltage of the reference voltage source 34 for the control amplifier and the inversion of the control amplifier 33 connected to the current detection resistor 32. The control amplifier 33 controls the base voltage of the bipolar transistor 31b via the switch 35 and the resistor 36 so that the voltages at the input terminals are the same, so that the output voltage of the control amplifier reference voltage source 34 and the current detection resistor 32 are controlled. The constant current determined by the resistance value is supplied to the light-emitting element circuit 11 via the bipolar transistor 31b, thereby enabling a constant current operation. On the other hand, by connecting the base terminal of the bipolar transistor 31b to a predetermined fixed potential (here, ground potential) by the switch 35, the constant current is cut off and the light emitting element is turned off.

上記定電流駆動回路30bでは、安価で電流駆動能力の高いバイポーラトランジスタを用いることにより、安価な発光素子駆動装置を提供することが可能となる。尚、上記定電流駆動回路30bの回路構成として、バイポーラトランジスタ31bを1個用いた構成を示したが、例えば、バイポーラトランジスタの電流増幅率を向上させるため、バイポーラトランジスタを2個、所謂ダーリントン接続をした構成でもよく、所望の特性が得られる限りにおいて、その構成は特に限定されない。   In the constant current driving circuit 30b, an inexpensive light emitting element driving device can be provided by using a bipolar transistor that is inexpensive and has high current driving capability. The circuit configuration of the constant current drive circuit 30b is shown as using one bipolar transistor 31b. For example, in order to improve the current amplification factor of the bipolar transistor, two bipolar transistors, so-called Darlington connection, are used. The configuration is not particularly limited as long as desired characteristics can be obtained.

次に、制御電圧生成回路50の回路構成の一例を図4に示す。図4に示す制御電圧生成回路50aは、発光素子回路11のカソード端と接続する定電流駆動回路30(30a,30b)の端子電圧(カソード電圧)Vcathと所定の第1電圧V1とを比較するコンパレータ51、および当該第1電圧V1を供給する基準電圧源52で構成される第1の電圧比較回路と、コンパレータ51の出力結果に応じて、クロック信号CLKに同期してカウント値を増減させるカウンタ回路53と、カウンタ回路53の出力であるデジタルのカウント値をアナログ電圧に変換し、制御電圧Vrefを生成するD/A変換回路54からなる。   Next, an example of the circuit configuration of the control voltage generation circuit 50 is shown in FIG. The control voltage generation circuit 50a shown in FIG. 4 compares the terminal voltage (cathode voltage) Vcath of the constant current drive circuit 30 (30a, 30b) connected to the cathode terminal of the light emitting element circuit 11 with a predetermined first voltage V1. A first voltage comparison circuit including a comparator 51 and a reference voltage source 52 that supplies the first voltage V1, and a counter that increases or decreases a count value in synchronization with the clock signal CLK according to an output result of the comparator 51 The circuit 53 includes a D / A conversion circuit 54 that converts a digital count value output from the counter circuit 53 into an analog voltage and generates a control voltage Vref.

コンパレータ51がカソード電圧Vcathと第1電圧V1を比較すると、カウンタ回路53は、当該比較結果に基づき、例えば、カソード電圧Vcathが第1電圧V1より高い場合にはカウント値をダウンさせ、カソード電圧Vcathが第1電圧V1より低い場合にはカウント値をアップさせる信号をクロック信号CLKに併せて出力する。そして、D/A変換回路54は、カウンタ回路53のカウント値のデジタル出力をアナログ電圧に変換し、制御電圧Vrefを出力する。上述の如き動作により、カソード電圧Vcathが第1電圧V1に一致するように制御電圧Vrefが制御され、発光素子回路11のカソード電圧に応じた制御電圧Vrefの出力が可能になる。これにより、電源回路20は、発光素子回路11のVfに応じたアノード電圧を発光素子回路11に供給することができ、低消費電力動作が可能な発光素子駆動装置が提供可能になる。   When the comparator 51 compares the cathode voltage Vcath with the first voltage V1, the counter circuit 53 reduces the count value based on the comparison result, for example, when the cathode voltage Vcath is higher than the first voltage V1, and the cathode voltage Vcath. Is lower than the first voltage V1, a signal for increasing the count value is output together with the clock signal CLK. The D / A conversion circuit 54 converts the digital output of the count value of the counter circuit 53 into an analog voltage, and outputs a control voltage Vref. By the operation as described above, the control voltage Vref is controlled so that the cathode voltage Vcath matches the first voltage V1, and the control voltage Vref corresponding to the cathode voltage of the light emitting element circuit 11 can be output. As a result, the power supply circuit 20 can supply the anode voltage corresponding to Vf of the light emitting element circuit 11 to the light emitting element circuit 11, and a light emitting element driving device capable of low power consumption operation can be provided.

尚、上述の説明において、カウント回路53は、カソード電圧Vcathが第1電圧V1より高い場合にはカウント値をダウンさせ、カソード電圧Vcathが第1電圧V1より低い場合にはカウント値をアップさせる信号を出力するとしたが、カウント値のアップ及びダウンとVcathとの関係は必ずしも上述の関係である必要はなく、カソード電圧Vcathが第1電圧V1より高い場合にはアノード電圧が低下し、カソード電圧Vcathが第1電圧V1より低い場合にはアノード電圧が上昇するように制御電圧Vrefが制御される限りにおいて、その構成は特に限定されない。   In the above description, the count circuit 53 is a signal that decreases the count value when the cathode voltage Vcath is higher than the first voltage V1, and increases the count value when the cathode voltage Vcath is lower than the first voltage V1. However, when the cathode voltage Vcath is higher than the first voltage V1, the anode voltage decreases and the cathode voltage Vcath decreases. As long as the control voltage Vref is controlled so that the anode voltage increases when the voltage is lower than the first voltage V1, the configuration is not particularly limited.

制御電圧生成回路の回路構成の別の例を図5に示す。図5に示す制御電圧生成回路50bは、図4の構成に加えて、更に、発光素子回路11のカソード端と接続する定電流駆動回路30の端子電圧(カソード電圧)Vcathと第1電圧V1よりも高い所定の第2電圧V2とを比較するコンパレータ56、および当該第2電圧V2を供給する基準電圧源57で構成される第2の電圧比較回路を備え、カウンタ回路53は、2つのコンパレータ51と56の出力結果に応じて、クロック信号CLKに同期してカウント値を増減させる。   Another example of the circuit configuration of the control voltage generation circuit is shown in FIG. In addition to the configuration of FIG. 4, the control voltage generation circuit 50b shown in FIG. 5 further includes a terminal voltage (cathode voltage) Vcath of the constant current drive circuit 30 connected to the cathode terminal of the light emitting element circuit 11 and a first voltage V1. The counter circuit 53 includes two comparators 51, each of which includes a comparator 56 that compares the second predetermined voltage V 2 with a higher voltage and a reference voltage source 57 that supplies the second voltage V 2. And 56, the count value is increased or decreased in synchronization with the clock signal CLK.

コンパレータ51は、図4と同様、カソード電圧Vcathと第1電圧V1を比較し、例えば、カソード電圧Vcathが第1電圧V1より高い場合にLowレベルの信号を、カソード電圧Vcathが第1電圧V1より低い場合にHighレベルの信号を出力する。コンパレータ56は、カソード電圧Vcathと第2電圧V2を比較し、例えば、カソード電圧Vcathが第2電圧V2より高い場合にHighレベルの信号を、カソード電圧Vcathが第2電圧V2より低い場合にLowレベルの信号を出力する。カウンタ回路53は、コンパレータ51及び56の出力結果に応じて、カソード電圧Vcathが第1電圧V1より低い場合には、コンパレータ51からのHighレベルの信号を受けてカウント値をアップさせ、カソード電圧Vcathが第2電圧V2より高い場合に、コンパレータ56からのHighレベルの信号を受けてカウント値をダウンさせる。一方、カソード電圧Vcathが第1電圧V1より高いが、第2電圧V2よりは低い場合には、カウンタ回路53はカウント値を増減させない。そして、D/A変換回路54は、カウンタ回路53のカウント値のデジタル出力をアナログ電圧に変換し、制御電圧Vrefを出力する。   The comparator 51 compares the cathode voltage Vcath and the first voltage V1 as in FIG. 4. For example, when the cathode voltage Vcath is higher than the first voltage V1, the comparator 51 outputs a low level signal, and the cathode voltage Vcath exceeds the first voltage V1. When it is low, a high level signal is output. The comparator 56 compares the cathode voltage Vcath with the second voltage V2. For example, when the cathode voltage Vcath is higher than the second voltage V2, a high level signal is output. When the cathode voltage Vcath is lower than the second voltage V2, the comparator 56 compares the cathode voltage Vcath with the second voltage V2. The signal is output. When the cathode voltage Vcath is lower than the first voltage V1 according to the output results of the comparators 51 and 56, the counter circuit 53 receives the High level signal from the comparator 51 and increases the count value, and the cathode voltage Vcath. Is higher than the second voltage V2, the high level signal from the comparator 56 is received and the count value is decreased. On the other hand, when the cathode voltage Vcath is higher than the first voltage V1 but lower than the second voltage V2, the counter circuit 53 does not increase or decrease the count value. The D / A conversion circuit 54 converts the digital output of the count value of the counter circuit 53 into an analog voltage, and outputs a control voltage Vref.

上述の如き動作により、カソード電圧Vcathが第1電圧V1と第2電圧V2の間の電圧となるように制御電圧Vrefが制御され、発光素子回路11のカソード電圧に応じて最適なアノード電圧の供給が可能になる。即ち、アノード電圧は、ノイズを含めた微小なカソード電圧の変動には追随せず、例えば、温度等による発光素子のVfの変動があった場合においても、安定したアノード電圧の供給が可能であり、低消費電力の発光素子駆動装置の提供が可能となる。   By the operation as described above, the control voltage Vref is controlled so that the cathode voltage Vcath becomes a voltage between the first voltage V1 and the second voltage V2, and the optimum anode voltage is supplied according to the cathode voltage of the light emitting element circuit 11. Is possible. In other words, the anode voltage does not follow minute fluctuations in the cathode voltage including noise. For example, even when there is a fluctuation in Vf of the light emitting element due to temperature or the like, a stable anode voltage can be supplied. Accordingly, it is possible to provide a light-emitting element driving device with low power consumption.

制御電圧生成回路の回路構成の更に別の例を図6に示す。図6に示す制御電圧生成回路50cでは、コンパレータ58は、カソード電圧Vcathと第1電圧V1を比較するのに代えて、定電流駆動回路30cの制御アンプ33の出力端の電圧Vamと基準電圧源59から供給される第3電圧V3とを比較する。カウンタ回路53は、コンパレータ58の出力結果に応じて、クロック信号CLKに同期してカウント値を増減させる。そして、D/A変換回路54は、カウンタ回路53のカウント値のデジタル出力をアナログ電圧に変換し、制御電圧Vrefを出力する。   FIG. 6 shows still another example of the circuit configuration of the control voltage generation circuit. In the control voltage generation circuit 50c shown in FIG. 6, the comparator 58 does not compare the cathode voltage Vcath and the first voltage V1, but outputs the voltage Vam at the output terminal of the control amplifier 33 of the constant current drive circuit 30c and the reference voltage source. The third voltage V3 supplied from 59 is compared. The counter circuit 53 increases or decreases the count value in synchronization with the clock signal CLK according to the output result of the comparator 58. The D / A conversion circuit 54 converts the digital output of the count value of the counter circuit 53 into an analog voltage, and outputs a control voltage Vref.

このような構成とすることで、コンパレータ58に入力される電圧は、制御アンプ33の出力の最大電圧以下であることから、コンパレータ58は、反転入力端に発光素子回路11のカソード電圧Vcathが直接入力される場合に比べ低耐圧の素子を用いることができ、低消費電力であると共に、安価な発光素子駆動装置を実現することが可能となる。   With such a configuration, since the voltage input to the comparator 58 is equal to or lower than the maximum voltage of the output of the control amplifier 33, the comparator 58 has the cathode voltage Vcath of the light emitting element circuit 11 directly at the inverting input terminal. An element having a lower withstand voltage can be used as compared with the case of inputting, and it is possible to realize a light-emitting element driving device that has low power consumption and is inexpensive.

〈第2実施形態〉
上述の本発明装置1は、一の発光素子回路11を有し、当該発光素子回路11の一方端(アノード端)が電源回路と接続し、他方端(カソード端)が定電流駆動回路と接続している場合の例を説明したが、本発明は当該構成に限られるものではない。本発明の一実施形態に係る発光素子駆動装置2(以降、適宜「本発明装置2」と称す)の構成例を図7に示す。
Second Embodiment
The above-described inventive device 1 has one light emitting element circuit 11, one end (anode end) of the light emitting element circuit 11 is connected to the power supply circuit, and the other end (cathode end) is connected to the constant current drive circuit. Although the example in the case of having carried out was demonstrated, this invention is not limited to the said structure. FIG. 7 shows a configuration example of a light-emitting element driving device 2 according to an embodiment of the present invention (hereinafter referred to as “the present invention device 2” as appropriate).

図7に示される本発明装置2では、複数(n個)の発光素子回路L1〜Lnが並列に配置され、夫々の発光素子回路L1〜Lnのアノード端は共通の電源回路20と接続されている。また、発光素子回路L1〜Lnのカソード端は共通の定電流駆動回路30と接続されている。電源回路20、定電流駆動回路30(30a,30b,30c)、定電流駆動制御回路40、制御電圧生成回路50(50a,50b,50c)、クロック信号出力回路60、及び、定電流駆動オン時間検出回路65の各構成は上述の本発明装置1と同様である。   In the device 2 of the present invention shown in FIG. 7, a plurality (n) of light emitting element circuits L1 to Ln are arranged in parallel, and the anode ends of the respective light emitting element circuits L1 to Ln are connected to a common power supply circuit 20. Yes. The cathode ends of the light emitting element circuits L1 to Ln are connected to a common constant current driving circuit 30. Power supply circuit 20, constant current drive circuit 30 (30a, 30b, 30c), constant current drive control circuit 40, control voltage generation circuit 50 (50a, 50b, 50c), clock signal output circuit 60, and constant current drive on time Each configuration of the detection circuit 65 is the same as that of the above-described device 1 of the present invention.

本発明装置2は、一の発光素子駆動装置で、多数の発光素子を駆動することが可能であり、安価なシステムで輝度の高い発光素子駆動装置が実現できる。   The device 2 of the present invention can drive a large number of light emitting elements with a single light emitting element driving device, and can realize a light emitting element driving device with high brightness with an inexpensive system.

〈第3実施形態〉
また、本発明の一実施形態に係る発光素子駆動装置3(以降、適宜「本発明装置3」と称す)の構成例を図8に示す。図8に示される本発明装置3は、発光素子回路L1〜Lnのカソード端が、夫々、定電流駆動回路D1〜Dnと各別に接続されていることを除き、本発明装置2と同様の構成である。尚、定電流駆動回路D1〜Dnは、夫々、本発明装置1における定電流駆動回路30(30a,30b,30c)と同様の構成である。
<Third Embodiment>
FIG. 8 shows a configuration example of the light emitting element driving device 3 according to an embodiment of the present invention (hereinafter, referred to as “the present invention device 3” as appropriate). The inventive device 3 shown in FIG. 8 has the same configuration as the inventive device 2 except that the cathode ends of the light emitting element circuits L1 to Ln are connected to the constant current drive circuits D1 to Dn, respectively. It is. The constant current drive circuits D1 to Dn have the same configuration as the constant current drive circuit 30 (30a, 30b, 30c) in the device 1 of the present invention.

このような構成とすることで、複数の発光素子回路L1〜Lnは、夫々別の定電流駆動回路D1〜Dnにより各別に定電流駆動され、一の発光素子駆動装置にて、異なる輝度をもつ発光素子の配置が可能となる。   With such a configuration, the plurality of light emitting element circuits L1 to Ln are driven by constant current by different constant current driving circuits D1 to Dn, respectively, and have different luminance in one light emitting element driving device. Light emitting elements can be arranged.

更に、図9に示される発光素子駆動装置4のように、定電流駆動回路D1〜Dnは、夫々、別のパルス幅変調信号Spwm1〜Spwmnに基づき、発光素子回路L1〜Lnに供給する定電流のオンとオフが各別に制御される構成とすることができる。このような構成とすることで、例えば、エリアアクティブ方式のようなバックライトシステムを安価に実現することが可能となる。   Further, like the light emitting element driving device 4 shown in FIG. 9, the constant current driving circuits D1 to Dn are respectively supplied with constant currents supplied to the light emitting element circuits L1 to Ln based on different pulse width modulation signals Spwm1 to Spwmn. Can be configured to be controlled on and off separately. With such a configuration, for example, a backlight system such as an area active method can be realized at low cost.

このとき、定電流駆動オン時間検出回路65は、個々のパルス幅変調信号Spwm1〜Spwmnのオン時間、即ち個々の発光素子回路L1〜Lnの発光素子の点灯期間を検出しても構わないが、うち最も短いオン時間のみ検出し、当該オン時間に連動してクロック信号出力回路60が生成するクロック信号CLKの周期を決定する信号をクロック信号出力回路60に出力すればよい。ただし、必ずしもその限りではなく、所望の発光ダイオードの特性が得られる限りにおいては、特に限定されない。   At this time, the constant current drive on time detection circuit 65 may detect the on time of the individual pulse width modulation signals Spwm1 to Spwmn, that is, the lighting period of the light emitting elements of the individual light emitting element circuits L1 to Ln. Of these, only the shortest on-time may be detected, and a signal for determining the cycle of the clock signal CLK generated by the clock signal output circuit 60 in conjunction with the on-time may be output to the clock signal output circuit 60. However, the present invention is not necessarily limited thereto, and is not particularly limited as long as desired light emitting diode characteristics can be obtained.

尚、上記図8及び図9に示される発光素子駆動装置において、制御電圧生成回路には、発光素子回路L1〜Lnのカソード端と各別に接続する定電流駆動回路D1〜Dnの複数の端子電圧Vcath1〜Vcathnが入力されることになる。その場合、第1の電圧比較回路は、当該複数のカソード電圧のうち、最も低い電圧と第1電圧とを比較し、カウンタ回路53は、当該比較結果に基づきカウント値を増減させればよい。このようにすることで、複数の発光素子回路の中で、最もVfが高い発光素子回路に応じた制御電圧の出力が可能となり、多数の発光素子の制御を安価なシステムで提供することが可能となる。   In the light emitting element driving device shown in FIGS. 8 and 9, the control voltage generation circuit includes a plurality of terminal voltages of the constant current driving circuits D1 to Dn connected to the cathode ends of the light emitting element circuits L1 to Ln, respectively. Vcath1 to Vcatn are input. In this case, the first voltage comparison circuit compares the lowest voltage among the plurality of cathode voltages with the first voltage, and the counter circuit 53 may increase or decrease the count value based on the comparison result. By doing so, it becomes possible to output a control voltage corresponding to the light emitting element circuit having the highest Vf among the plurality of light emitting element circuits, and it is possible to provide control of a large number of light emitting elements with an inexpensive system. It becomes.

複数のカソード電圧Vcath1〜Vcathnを入力として受ける制御電圧生成回路50d(50e)の回路構成の例を図10及び図11に示す。第1の電圧比較回路48の構成としては、図10に示されるように、n個のコンパレータ51を用いて、個々のカソード電圧Vcath1〜Vcathnを第1電圧V1と夫々比較し、当該比較結果に基づき、最も第1電圧との電位差が低いものをセレクタ49により選択し、カウンタ回路53への入力としてもよいし、図11に示されるように、一のコンパレータ51が、カソード電圧Vcath1〜Vcathnのうち最も電圧が低いものを選択後、当該選択されたカソード電圧Vcath1〜Vcathnの何れかと第1電圧V1とを比較してもよい。また、図10及び図11に示した制御電圧生成回路50d及び50eは、上述の図4に示した制御電圧生成回路50aにおいて複数の異なるカソード電圧の入力を受けるようにした構成であるが、上述の図5又は図6に示した制御電圧生成回路50b或いは50cにおいて複数の異なるカソード電圧の入力を受けるようにした構成でもよく、その構成は特に限定されない。例えば、図5の制御電圧生成回路50bにおいて複数の異なるカソード電圧の入力を受けるようにした制御電圧生成回路50fの一例を図12に、図6の制御電圧生成回路50cにおいて複数の異なるカソード電圧の入力を受けるようにした制御電圧生成回路50gの一例を図13に示す。   An example of the circuit configuration of the control voltage generation circuit 50d (50e) that receives a plurality of cathode voltages Vcath1 to Vcatn as inputs is shown in FIGS. As shown in FIG. 10, the first voltage comparison circuit 48 uses n comparators 51 to compare individual cathode voltages Vcath1 to Vcatn with the first voltage V1, respectively. On the basis of this, the selector 49 selects the one having the lowest potential difference from the first voltage and may input it to the counter circuit 53. As shown in FIG. 11, one comparator 51 has the cathode voltages Vcath1 to Vcathn. After selecting the one having the lowest voltage, any one of the selected cathode voltages Vcath1 to Vcatn may be compared with the first voltage V1. Further, the control voltage generation circuits 50d and 50e shown in FIGS. 10 and 11 are configured to receive a plurality of different cathode voltages in the control voltage generation circuit 50a shown in FIG. The control voltage generation circuit 50b or 50c shown in FIG. 5 or 6 may receive a plurality of different cathode voltages, and the configuration is not particularly limited. For example, FIG. 12 shows an example of a control voltage generation circuit 50f that receives a plurality of different cathode voltages in the control voltage generation circuit 50b of FIG. 5, and FIG. An example of the control voltage generation circuit 50g that receives the input is shown in FIG.

図12の制御電圧生成回路50fでは、例えば、コンパレータ51が、カソード電圧Vcath1〜Vcathnのうち最も電圧が低いものを選択後、当該選択されたカソード電圧Vcath1〜Vcathnの何れかと第1電圧V1とを比較し、最も電圧が低いカソード電圧が第1電圧V1より低い場合にHighレベルの信号をカウンタ回路53に出力する。コンパレータ56は、カソード電圧Vcath1〜Vcathnのうち最も電圧が低いものを選択後、当該選択されたカソード電圧Vcath1〜Vcathnの何れかと第2電圧V2とを比較し、最も電圧が低いカソード電圧が第2電圧V2より高い場合にHighレベルの信号をカウンタ回路53に出力する。   In the control voltage generation circuit 50f of FIG. 12, for example, the comparator 51 selects one of the cathode voltages Vcath1 to Vcatn that has the lowest voltage, and then selects one of the selected cathode voltages Vcath1 to Vcatn and the first voltage V1. In comparison, when the cathode voltage having the lowest voltage is lower than the first voltage V <b> 1, a high level signal is output to the counter circuit 53. The comparator 56 selects one of the cathode voltages Vcath1 to Vcatn having the lowest voltage, then compares any one of the selected cathode voltages Vcath1 to Vcatn with the second voltage V2, and the cathode voltage having the lowest voltage is the second voltage. When the voltage is higher than the voltage V <b> 2, a high level signal is output to the counter circuit 53.

また、図13の制御電圧生成回路50gでは、カソード電圧Vcathが低いほど制御アンプ33の出力電圧は高くなるため、コンパレータ58は、定電流駆動回路D1〜Dnの各制御アンプの出力電圧Vam1〜Vamnのうち、最も電圧の高いものを選択後、当該選択された電圧Vam1〜Vamnの何れかと第3電圧V3とを比較している。   In the control voltage generation circuit 50g of FIG. 13, the lower the cathode voltage Vcath, the higher the output voltage of the control amplifier 33. Therefore, the comparator 58 outputs the output voltages Vam1 to Vamn of the control amplifiers of the constant current drive circuits D1 to Dn. After selecting the one having the highest voltage, the selected voltage Vam1 to Vamn is compared with the third voltage V3.

上述の本発明に係る発光素子駆動装置1〜4は、発光素子回路11の各発光素子、或いは、並列に配置された複数の発光素子回路L1〜Ln内の各発光素子に対し、効率良く、所定の輝度が得られるように最適なアノード電圧を安定的に供給することができ、低消費電力が実現可能な発光素子駆動装置を提供することができる。   The light emitting element driving devices 1 to 4 according to the present invention described above are efficient for each light emitting element of the light emitting element circuit 11 or each light emitting element in the plurality of light emitting element circuits L1 to Ln arranged in parallel. It is possible to provide a light emitting element driving device capable of stably supplying an optimum anode voltage so as to obtain a predetermined luminance and realizing low power consumption.

以下に、別実施形態について説明する。   Another embodiment will be described below.

〈1〉上述の実施形態において、発光素子回路11は複数の発光素子が直列に接続されている場合を例示したが、一の発光素子のアノード端が電源回路に、カソード端が定電流駆動回路に接続される構成でも勿論よく、本発明は直列に接続される発光素子の個数には限定されない。また、直列に接続される各発光素子の発光色についても、特に限定されない。   <1> In the above-described embodiment, the light emitting element circuit 11 exemplifies the case where a plurality of light emitting elements are connected in series, but the anode end of one light emitting element is a power supply circuit, and the cathode end is a constant current drive circuit. Needless to say, the present invention is not limited to the number of light emitting elements connected in series. Further, the emission color of each light emitting element connected in series is not particularly limited.

〈2〉上述の第2及び第3実施形態では、複数の発光素子回路L1〜Lnの各カソード端が共通の定電流駆動回路30と接続する構成(図7)と、複数の発光素子回路L1〜Lnのカソード端が定電流駆動回路D1〜Dnと各別に接続する構成(図8)について説明したが、複数の発光素子回路L1〜Lnのうち、所定数の発光素子回路毎に共通の定電流駆動回路を備え、当該所定数の発光素子回路毎にカソード端を同一の定電流駆動回路に接続する構成としてもよい。   <2> In the above-described second and third embodiments, the cathode terminals of the plurality of light emitting element circuits L1 to Ln are connected to the common constant current drive circuit 30 (FIG. 7), and the plurality of light emitting element circuits L1. Although the configuration (FIG. 8) in which the cathode ends of .about.Ln are separately connected to the constant current drive circuits D1 to Dn has been described, a common constant for each of a predetermined number of light emitting element circuits among the plurality of light emitting element circuits L1 to Ln. A current driving circuit may be provided, and the cathode end may be connected to the same constant current driving circuit for each of the predetermined number of light emitting element circuits.

〈3〉また、上述の実施形態において、電源回路、定電流駆動回路、定電流駆動制御回路、制御電圧生成回路、定電流駆動オン時間検出回路、及び、クロック信号出力回路のうち、少なくとも2つ以上の回路が同一チップ上に備えられていることが、より安価で、簡易なシステムでの発光素子の点灯及び消灯制御が可能となり、望ましい形態である。   <3> In the above-described embodiment, at least two of the power supply circuit, the constant current drive circuit, the constant current drive control circuit, the control voltage generation circuit, the constant current drive on-time detection circuit, and the clock signal output circuit. It is a desirable mode that the above circuits are provided on the same chip because the light emitting element can be turned on and off with a simple system at a lower cost.

本発明は、複数のLEDを光源として使用する発光素子の駆動装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a light emitting element driving device that uses a plurality of LEDs as light sources.

1〜4: 本発明に係る発光素子駆動装置
10: 発光素子
11,L1〜Ln: 発光素子回路
20: 電源回路
30,30a〜30c,D1〜Dn: 定電流駆動回路
31: MOSFET(定電流駆動用トランジスタ)
31b: バイポーラトランジスタ(定電流駆動用トランジスタ)
32: 電流検出抵抗
33: 制御アンプ
34: 制御アンプ用基準電圧源
35: スイッチ
36: 抵抗
40,74: 定電流駆動制御回路
48: 第1の電圧比較回路
49: セレクタ
50,50a〜50g: 制御電圧生成回路
51,56,58: コンパレータ
52,57,59: 基準電圧源
53: カウンタ回路
54: D/A変換回路
60,75: クロック信号出力回路
65: 定電流駆動オン時間検出回路
70: 従来技術に係る発光素子駆動装置
71: 定電圧回路
72: 定電流回路
73: 第1基準電圧発生回路
CLK: クロック信号
V1: 第1電圧
V2: 第2電圧
V3: 第3電圧
Vam,Vam1〜Vamn: 制御アンプの出力電圧
Vcath,Vcath1〜Vcathn: カソード電圧
Vout: 電源回路の出力電圧(アノード電圧)
Vref,Vref1: 電源回路の制御電圧
Spwm,Spwm1〜Spwmn: パルス幅変調信号
1-4: Light-emitting element driving device 10 according to the present invention: Light-emitting element 11, L1-Ln: Light-emitting element circuit 20: Power supply circuit 30, 30a-30c, D1-Dn: Constant current drive circuit 31: MOSFET (constant current drive) Transistor)
31b: Bipolar transistor (Constant current drive transistor)
32: current detection resistor 33: control amplifier 34: control amplifier reference voltage source 35: switch 36: resistors 40, 74: constant current drive control circuit 48: first voltage comparison circuit 49: selectors 50, 50a to 50g: control Voltage generation circuits 51, 56, 58: Comparators 52, 57, 59: Reference voltage source 53: Counter circuit 54: D / A conversion circuit 60, 75: Clock signal output circuit 65: Constant current drive ON time detection circuit 70: Conventional Light-emitting element driving device 71 according to technology: Constant voltage circuit 72: Constant current circuit 73: First reference voltage generation circuit CLK: Clock signal V1: First voltage V2: Second voltage V3: Third voltages Vam, Vam1 to Vamn: Output voltages Vcath, Vcath1 to Vcatn of the control amplifier: Cathode voltage Vout: Output voltage of the power supply circuit (anode power) )
Vref, Vref1: power supply circuit control voltages Spwm, Spwm1 to Spwmn: pulse width modulation signals

Claims (14)

一の発光素子、又は、複数の直列に接続された発光素子を備える発光素子回路と、
前記発光素子回路の一方端と接続し、前記発光素子回路に前記発光素子の駆動に必要な電圧を供給する電源回路と、
前記発光素子回路の他方端と接続し、前記発光素子回路に前記発光素子の駆動に必要な定電流を流す定電流駆動回路と、
前記発光素子の輝度を示す論理データに基づき、前記定電流のオンとオフを切り替えるためのパルス幅変調信号を出力する定電流駆動制御回路と、
前記論理データに基づき、前記パルス幅変調信号のオン時間を検出する定電流駆動オン時間検出回路と、
クロック信号を生成するクロック信号出力回路と、
前記発光素子回路の他方端と接続する前記定電流駆動回路の端子電圧に応じて、前記クロック信号に同期して制御電圧を生成する制御電圧生成回路を備え、
前記電源回路により前記発光素子回路に供給される電圧は、前記定電流駆動回路の前記端子電圧が所定の第1電圧以上になるように、前記制御電圧により制御され、
前記クロック信号の周期が、前記パルス幅変調信号のオン時間に連動して制御されることを特徴とする発光素子駆動装置。
A light emitting element circuit comprising one light emitting element or a plurality of light emitting elements connected in series;
A power supply circuit connected to one end of the light emitting element circuit and supplying a voltage necessary for driving the light emitting element to the light emitting element circuit;
A constant current driving circuit that is connected to the other end of the light emitting element circuit and causes a constant current necessary for driving the light emitting element to flow through the light emitting element circuit;
A constant current drive control circuit that outputs a pulse width modulation signal for switching on and off the constant current based on logical data indicating luminance of the light emitting element;
A constant current drive on time detection circuit for detecting an on time of the pulse width modulation signal based on the logic data;
A clock signal output circuit for generating a clock signal;
A control voltage generation circuit that generates a control voltage in synchronization with the clock signal according to a terminal voltage of the constant current drive circuit connected to the other end of the light emitting element circuit,
The voltage supplied to the light emitting element circuit by the power supply circuit is controlled by the control voltage so that the terminal voltage of the constant current driving circuit is equal to or higher than a predetermined first voltage,
The light-emitting element driving device, wherein a cycle of the clock signal is controlled in conjunction with an ON time of the pulse width modulation signal.
前記クロック信号の周期は、前記パルス幅変調信号のオン時間よりも短くなるように制御されることを特徴とする請求項1に記載の発光素子駆動装置。   The light emitting element driving device according to claim 1, wherein the cycle of the clock signal is controlled to be shorter than an ON time of the pulse width modulation signal. 前記定電流駆動回路は、増幅器と、出力端子が前記発光素子回路の他方端と接続し、制御端子が前記増幅器の出力端と接続する少なくとも一つの定電流駆動用トランジスタを備えることを特徴とする請求項1又は2に記載の発光素子駆動装置。   The constant current driving circuit includes an amplifier and at least one constant current driving transistor whose output terminal is connected to the other end of the light emitting element circuit and whose control terminal is connected to the output end of the amplifier. The light emitting element driving device according to claim 1. 前記定電流駆動用トランジスタは、バイポーラトランジスタであり、
前記定電流駆動回路の前記増幅器の出力端は、抵抗を介して前記バイポーラトランジスタのベース端子と接続することを特徴とする請求項3に記載の発光素子駆動装置。
The constant current driving transistor is a bipolar transistor,
4. The light emitting element driving apparatus according to claim 3, wherein an output terminal of the amplifier of the constant current driving circuit is connected to a base terminal of the bipolar transistor through a resistor.
複数の前記発光素子回路が並列に配置され、夫々の前記発光素子回路の一方端が共通の前記電源回路と接続されていることを特徴とする請求項1〜4の何れか一項に記載の発光素子駆動装置。   5. The plurality of light emitting element circuits are arranged in parallel, and one end of each of the light emitting element circuits is connected to the common power supply circuit. 6. Light emitting element driving device. 複数の前記定電流駆動回路を有し、
並列に配置される前記発光素子回路の他方端は、夫々、別の前記定電流駆動回路と接続されていることを特徴とする請求項5に記載の発光素子駆動装置。
A plurality of the constant current drive circuits;
6. The light emitting element driving device according to claim 5, wherein the other ends of the light emitting element circuits arranged in parallel are connected to different constant current driving circuits, respectively.
前記複数の定電流駆動回路が流す定電流のオンとオフが、夫々別の前記パルス幅変調信号により各別に制御されることを特徴とする請求項6に記載の発光素子駆動装置。   7. The light emitting element driving device according to claim 6, wherein on and off of the constant currents flowing through the plurality of constant current driving circuits are individually controlled by the different pulse width modulation signals. 前記制御電圧生成回路は、
前記定電流駆動回路の前記端子電圧と前記所定の第1電圧を比較する第1の電圧比較回路と、
前記第1の電圧比較回路の出力に応じ、前記クロック信号に同期してカウント値を増減させるカウンタ回路と、
前記カウンタ回路のカウント値をアナログ電圧に変換し、前記制御電圧を生成するD/A変換回路を備えることを特徴とする請求項1〜7の何れか一項に記載の発光素子駆動装置。
The control voltage generation circuit includes:
A first voltage comparison circuit for comparing the terminal voltage of the constant current drive circuit with the predetermined first voltage;
A counter circuit that increases or decreases a count value in synchronization with the clock signal in accordance with an output of the first voltage comparison circuit;
The light emitting element drive device according to claim 1, further comprising a D / A conversion circuit that converts a count value of the counter circuit into an analog voltage and generates the control voltage.
前記第1の電圧比較回路は、
複数の前記定電流駆動回路を有する場合、当該複数の定電流駆動回路の前記端子電圧のうち、最も低い前記端子電圧と前記所定の第1電圧との比較結果を前記カウンタ回路に出力することを特徴とする請求項8に記載の発光素子駆動装置。
The first voltage comparison circuit includes:
When a plurality of the constant current drive circuits are provided, a comparison result between the lowest terminal voltage and the predetermined first voltage among the terminal voltages of the plurality of constant current drive circuits is output to the counter circuit. The light-emitting element driving device according to claim 8.
前記制御電圧生成回路は、
前記定電流駆動回路の前記端子電圧と前記所定の第1電圧より高い所定の第2電圧を比較する第2の電圧比較回路を備え、
前記カウンタ回路は、
前記第1の電圧比較回路および前記第2の電圧比較回路の出力に応じて前記カウント値を増減させ、
前記定電流駆動回路の前記端子電圧が前記所定の第1電圧より高く、前記所定の第2電圧より低い場合、前記カウント値を増減させないことを特徴とする請求項8に記載の発光素子駆動装置。
The control voltage generation circuit includes:
A second voltage comparison circuit for comparing the terminal voltage of the constant current drive circuit with a predetermined second voltage higher than the predetermined first voltage;
The counter circuit is
Increase or decrease the count value according to the outputs of the first voltage comparison circuit and the second voltage comparison circuit,
9. The light emitting element driving device according to claim 8, wherein when the terminal voltage of the constant current driving circuit is higher than the predetermined first voltage and lower than the predetermined second voltage, the count value is not increased or decreased. .
複数の前記定電流駆動回路を有し、
前記第1の電圧比較回路は、当該複数の定電流駆動回路の前記端子電圧のうち、最も低い前記端子電圧と前記所定の第1電圧との比較結果を前記カウンタ回路に出力し、
前記第2の電圧比較回路は、当該複数の定電流駆動回路の前記端子電圧のうち、最も低い前記端子電圧と前記所定の第2電圧との比較結果を前記カウンタ回路に出力することを特徴とする請求項10に記載の発光素子駆動装置。
A plurality of the constant current drive circuits;
The first voltage comparison circuit outputs a comparison result between the lowest terminal voltage and the predetermined first voltage among the terminal voltages of the plurality of constant current drive circuits to the counter circuit,
The second voltage comparison circuit outputs a comparison result between the lowest terminal voltage among the terminal voltages of the plurality of constant current drive circuits and the predetermined second voltage to the counter circuit. The light emitting element drive device according to claim 10.
前記制御電圧生成回路は、
前記定電流駆動回路の前記増幅器の出力端の電圧を所定の第3電圧と比較する第3の電圧比較回路と、
前記第3の電圧比較回路の出力に応じ、前記クロック信号に同期してカウント値を増減させるカウンタ回路と、
前記カウンタ回路のカウント値をアナログ電圧に変換し、前記制御電圧を生成するD/A変換回路を備えることを特徴とする請求項3〜7の何れか一項に記載の発光素子駆動装置。
The control voltage generation circuit includes:
A third voltage comparison circuit for comparing the voltage at the output terminal of the amplifier of the constant current drive circuit with a predetermined third voltage;
A counter circuit that increases or decreases a count value in synchronization with the clock signal in accordance with an output of the third voltage comparison circuit;
The light emitting element driving device according to claim 3, further comprising a D / A conversion circuit that converts a count value of the counter circuit into an analog voltage and generates the control voltage.
前記第3の電圧比較回路は、
複数の前記定電流駆動回路を有する場合、当該複数の定電流駆動回路の前記増幅器の出力端の電圧のうち、最も高い電圧と前記所定の第3電圧との比較結果を前記カウンタ回路に出力することを特徴とする請求項12に記載の発光素子駆動装置。
The third voltage comparison circuit includes:
In the case of having a plurality of the constant current drive circuits, a comparison result between the highest voltage among the voltages at the output terminals of the amplifiers of the plurality of constant current drive circuits and the predetermined third voltage is output to the counter circuit. The light-emitting element driving device according to claim 12.
前記電源回路、前記定電流駆動回路、前記定電流駆動制御回路、前記定電流駆動オン時間検出回路、前記クロック信号出力回路、及び、前記制御電圧生成回路のうち、少なくとも2つ以上の回路が同一チップ上に備えられてなることを特徴とする請求項1〜13の何れか一項に記載の発光素子駆動装置。   At least two of the power supply circuit, the constant current drive circuit, the constant current drive control circuit, the constant current drive on time detection circuit, the clock signal output circuit, and the control voltage generation circuit are the same. The light emitting element driving device according to claim 1, wherein the light emitting element driving device is provided on a chip.
JP2010067325A 2010-03-24 2010-03-24 Light emitting element driving device Withdrawn JP2011199220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067325A JP2011199220A (en) 2010-03-24 2010-03-24 Light emitting element driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067325A JP2011199220A (en) 2010-03-24 2010-03-24 Light emitting element driving device

Publications (1)

Publication Number Publication Date
JP2011199220A true JP2011199220A (en) 2011-10-06

Family

ID=44877009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067325A Withdrawn JP2011199220A (en) 2010-03-24 2010-03-24 Light emitting element driving device

Country Status (1)

Country Link
JP (1) JP2011199220A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610199A (en) * 2012-03-15 2012-07-25 深圳麦格米特电气股份有限公司 Light-emitting diode (LED) backlight driving circuit
JP2014160803A (en) * 2013-02-19 2014-09-04 Princeton Technology Corp Led driving device
WO2014180057A1 (en) * 2013-05-08 2014-11-13 深圳市华星光电技术有限公司 Led backlight drive circuit, backlight module, and liquid crystal display apparatus
US9257078B2 (en) 2013-05-08 2016-02-09 Shenzhen China Star Optoelectronics Technology Co., Ltd LED backlight driving circuit having divider units and method for driving the LED backlight driving circuit
JP2016511438A (en) * 2013-03-20 2016-04-14 深▲セン▼市華星光電技術有限公司 Backlight drive substrate and liquid crystal display device
JP2021502691A (en) * 2017-11-10 2021-01-28 ルミレッズ ホールディング ベーフェー LED array driver
JP2021072377A (en) * 2019-10-31 2021-05-06 浜松ホトニクス株式会社 Light-emitting element driving circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610199A (en) * 2012-03-15 2012-07-25 深圳麦格米特电气股份有限公司 Light-emitting diode (LED) backlight driving circuit
JP2014160803A (en) * 2013-02-19 2014-09-04 Princeton Technology Corp Led driving device
JP2016511438A (en) * 2013-03-20 2016-04-14 深▲セン▼市華星光電技術有限公司 Backlight drive substrate and liquid crystal display device
WO2014180057A1 (en) * 2013-05-08 2014-11-13 深圳市华星光电技术有限公司 Led backlight drive circuit, backlight module, and liquid crystal display apparatus
US9257078B2 (en) 2013-05-08 2016-02-09 Shenzhen China Star Optoelectronics Technology Co., Ltd LED backlight driving circuit having divider units and method for driving the LED backlight driving circuit
JP2021502691A (en) * 2017-11-10 2021-01-28 ルミレッズ ホールディング ベーフェー LED array driver
JP7213875B2 (en) 2017-11-10 2023-01-27 ルミレッズ ホールディング ベーフェー LED array driver
JP2021072377A (en) * 2019-10-31 2021-05-06 浜松ホトニクス株式会社 Light-emitting element driving circuit
WO2021085292A1 (en) * 2019-10-31 2021-05-06 浜松ホトニクス株式会社 Light-emitting element driving circuit
US11729885B2 (en) 2019-10-31 2023-08-15 Hamamatsu Photonics K.K. Light-emitting element driving circuit
JP7428500B2 (en) 2019-10-31 2024-02-06 浜松ホトニクス株式会社 Light emitting element drive circuit

Similar Documents

Publication Publication Date Title
US8134304B2 (en) Light source driving device capable of dynamically keeping constant current sink and related method
TWI418252B (en) Control method capable of avoiding flicker effect and light emitting device
JP6635689B2 (en) Illumination device, control circuit thereof, control method, and display device using the same
KR101985872B1 (en) Light emitting diode driver apparatus, method for light emitting diode driving, and computer-readable recording medium
TWI391028B (en) Light emitting diode module
US7471287B2 (en) Light source driving circuit for driving light emitting diode components and driving method thereof
KR101712676B1 (en) PWM controlling circuit and LED driver circuit having the same in
TWI400986B (en) Light emitting diode driving circuit
JP2011199220A (en) Light emitting element driving device
US7999486B2 (en) Driving circuit and method for light emitting diode
US10178732B2 (en) Backlight unit, method of driving the same, and display device including the same
JP2006140438A (en) Drive device for light emitting device and display device
JP5952630B2 (en) Driving circuit and driving method of backlight LED string, and backlight device and electronic apparatus using the same
KR20070104804A (en) Led driving apparatus having fuction of over-voltage protection and duty control
JP2007110070A (en) Controller circuit for light emitting diode
US9185763B2 (en) Light emitting diode string driving method
TWI390482B (en) The circuit and method for driving strings of light emitting diode
US20110043138A1 (en) Light Emitting Device Capable of Dynamically Regulating Output Voltage and Related Control Method
JP2008258428A (en) Driving circuit of white led for illumination, illuminator with the same, and electronic device
KR20140069638A (en) Backlight unit and display device having the same
KR20190032689A (en) Backlight unit capable of controlling brightness and display apparatus having the same
KR20120070266A (en) Vref generating circuit and led driver circuit having the same in
JP2011108799A (en) Light emitting device, and lighting system and display device equipped with light emitting device
KR20130124099A (en) Led driver apparatus
US9210747B2 (en) Driver for driving LED backlight source, LED backlight source and LCD device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604