JP6318383B2 - Linear light source unit structure - Google Patents

Linear light source unit structure Download PDF

Info

Publication number
JP6318383B2
JP6318383B2 JP2014074019A JP2014074019A JP6318383B2 JP 6318383 B2 JP6318383 B2 JP 6318383B2 JP 2014074019 A JP2014074019 A JP 2014074019A JP 2014074019 A JP2014074019 A JP 2014074019A JP 6318383 B2 JP6318383 B2 JP 6318383B2
Authority
JP
Japan
Prior art keywords
light
light source
emitting surface
light emitting
source unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014074019A
Other languages
Japanese (ja)
Other versions
JP2015197963A (en
Inventor
研介 大島
研介 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2014074019A priority Critical patent/JP6318383B2/en
Publication of JP2015197963A publication Critical patent/JP2015197963A/en
Application granted granted Critical
Publication of JP6318383B2 publication Critical patent/JP6318383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、LED等の点光源の数を低減しつつ発光面での十分な光の拡散を確保し得る簡単な構成の線状光源ユニット構造に関する。 The present invention relates to a linear light source unit structure having a simple configuration capable of ensuring sufficient light diffusion on a light emitting surface while reducing the number of point light sources such as LEDs.

LED照明装置の場合。通常の光源に比べて各LED光源の照射光は点光源に近く光軸に対する拡散性が少ないという特性を有している。通常、複数のLED光源の照射光を発光部材に透過させて自動車灯火器に用いた場合に、発光面における光の強弱(ムラ)が大きく、その反面、光の強弱をなくすために多数のLED光源を用いた場合、経済性が悪いという問題があった。 For LED lighting devices. Compared with a normal light source, the irradiation light of each LED light source is close to a point light source and has a characteristic of less diffusibility with respect to the optical axis. Usually, when the light emitted from a plurality of LED light sources is transmitted through a light emitting member and used in an automobile lighting device, the light intensity (unevenness) on the light emitting surface is large. On the other hand, many LEDs are used to eliminate the light intensity. When a light source is used, there is a problem that economic efficiency is poor.

この問題を解決すべく例えば、特許文献1では、導光部材を用いた線光源ユニットにおいて、照明光の強さの不均一性を改善すべく、導光部材の光源と発光面との間に光源側に放物面と凸面とを組み合わせた孔を設け、凸面に入射した光を透過させ、その他の光は放物面で全反射させて左右に振り分け、2次反射により発光面から出射させる線状光源ユニット構造が提供されている。 In order to solve this problem, for example, in Patent Document 1, in a linear light source unit using a light guide member, in order to improve non-uniformity of the intensity of illumination light, between the light source of the light guide member and the light emitting surface. A hole that combines a paraboloid and a convex surface is provided on the light source side to transmit light incident on the convex surface, and other light is totally reflected by the paraboloid and distributed to the left and right to be emitted from the light emitting surface by secondary reflection. A linear light source unit structure is provided.

しかしながら、特許文献1の線状光源ユニット構造の場合、別途、放物面を有する2次反射面の加工が必要となり、コスト増加を招くこととなる。また、この線状光源ユニット構造の場合、発光面における光は凸面からの透過光と放物面からの反射光とで構成されており、それぞれの光の強弱の差が生じやすいという問題や、2次反射面で光が漏れることで反射光のロスが生じるという問題がある。 However, in the case of the linear light source unit structure of Patent Document 1, it is necessary to separately process a secondary reflecting surface having a parabolic surface, resulting in an increase in cost. Further, in the case of this linear light source unit structure, the light on the light emitting surface is composed of the transmitted light from the convex surface and the reflected light from the parabolic surface, and the problem that the difference in intensity of each light tends to occur, There is a problem that a loss of reflected light occurs due to light leaking from the secondary reflecting surface.

特開2000−307807号公報JP 2000-307807 A

本発明は、このような事情に鑑みて創作された発明であり、LED等の点光源の数を低減しつつ発光面での十分な光の拡散を確保することができ、また2次反射面の加工が不要で安価な線状光源ユニット構造を提供することを目的とする。 The present invention is an invention created in view of such circumstances, and can ensure sufficient light diffusion on the light emitting surface while reducing the number of point light sources such as LEDs, and is also a secondary reflecting surface. It is an object of the present invention to provide an inexpensive linear light source unit structure that requires no processing.

上述した課題を解決すべく提供される第一の本発明は、
導光部材(例えば、本実施形態では導光体14)の光源側と発光面との間に孔を設け入射した光を拡散させる線状光源ユニット構造である。この線状光源ユニットの孔(例えば、本実施形態ではスリット20)の形状は、光源側と発光面側の2つの向かい合った曲率を有する面により構成されており、光源側の面は光源から入射した光を概ね発光面側に透過する曲率とし、発光面側の面の曲率は光源側の面の曲率よりも大きい。さらに、前記孔の光源側の面は、光源側に膨らむ略円弧形状であり、前記孔の発光面側の面は、発光面側に膨らむ略円弧形状である。
The first aspect of the present invention provided to solve the above-described problems is as follows.
This is a linear light source unit structure that diffuses incident light by providing a hole between the light source side of the light guide member (for example, the light guide 14 in the present embodiment) and the light emitting surface. The shape of the hole (for example, the slit 20 in this embodiment) of the linear light source unit is composed of two surfaces having opposite curvatures on the light source side and the light emitting surface side, and the surface on the light source side is incident from the light source. The curvature of the transmitted light is generally transmitted to the light emitting surface, and the curvature of the light emitting surface is larger than that of the light source. Furthermore, the surface on the light source side of the hole has a substantially arc shape that swells toward the light source side, and the surface on the light emitting surface side of the hole has a substantially arc shape that swells on the light emitting surface side.

本発明によれば、光源から照射された光が孔に入射した際に拡散しながら概ね透過し、さらに透過した光の発光面側に入射する角度を小さくすることで再集光によるロスがない状態で透過し光強度を下げずに導光部材内に入射して発光面から照射される。したがって、本線状光源ユニットを採用すれば、単に導光部材に光を透過させるだけで光強度を低減させずに効率よく光を拡散させることができ、光発光面での出射光の強弱ムラを低減することができる。 According to the present invention, when the light emitted from the light source is incident on the hole, the light is generally diffused and transmitted, and further, the incident angle of the transmitted light to the light emitting surface side is reduced so that there is no loss due to re-condensing. The light is transmitted in a state, enters the light guide member without lowering the light intensity, and is irradiated from the light emitting surface. Therefore, if the main light source unit is adopted, light can be efficiently diffused without reducing the light intensity simply by transmitting the light to the light guide member, and the intensity unevenness of the emitted light on the light emitting surface can be reduced. Can be reduced.

また、導光部材内の孔の放物線の曲率を調整するだけで集光、拡散光、平行光など導光部材の形状に合わせて発光面での出射光を制御することができる点でも有利である。また、透過光のみで発光面での光強弱を制御しているため前述の特許文献1のような2次反射面の加工が不要で加工コストの増加を抑制することができる。とりわけ、LED照明のように指向性の高い光源の場合、光源の数を減らすことができ、その点でもコストダウンを図ることができる。 In addition, it is advantageous in that the emitted light on the light emitting surface can be controlled in accordance with the shape of the light guide member such as condensed light, diffused light, and parallel light only by adjusting the curvature of the parabola of the hole in the light guide member. is there. Further, since the intensity of light on the light emitting surface is controlled only by transmitted light, the processing of the secondary reflecting surface as described in Patent Document 1 is unnecessary, and an increase in processing cost can be suppressed. In particular, in the case of a light source with high directivity such as LED lighting, the number of light sources can be reduced, and the cost can be reduced in this respect.

また、第二の本発明は、導光部材(例えば、本実施形態では導光体54)の光源側と発光面との間に孔(例えば、本実施形態ではスリット60〜62)を設け入射した光を拡散させる線状光源ユニット構造であり、その孔の形状は、光源からの光軸に対して斜めの角度を有する直線状のスリット状であり、少なくとも2つ以上並べられている。 In the second aspect of the present invention, a hole (for example, slits 60 to 62 in the present embodiment) is provided between the light source side of the light guide member (for example, the light guide 54 in the present embodiment) and the light emitting surface. The light source unit structure diffuses the light, and the shape of the hole is a linear slit having an oblique angle with respect to the optical axis from the light source, and at least two are arranged.

第二の本発明によれば、光源からの照射光が導光部材内に設けられた傾斜するスリットで幅方向(光軸に対して横方向)に反射され、次のスリットでさらに反射されて発光面から出射される。その結果、光源からの光は単に導光部材内を透過する場合に比べてスリット間を通過する分だけ光路が長くなり、より拡散して発光面から出射される。 According to the second aspect of the present invention, the irradiation light from the light source is reflected in the width direction (lateral direction with respect to the optical axis) by the inclined slit provided in the light guide member, and further reflected by the next slit. The light is emitted from the light emitting surface. As a result, the light path from the light source becomes longer by the amount that passes between the slits as compared with the case where the light simply passes through the light guide member, and is further diffused and emitted from the light emitting surface.

したがって、第二の本発明の線状光源ユニット構造においても、導光部材に光を透過させるだけで発光面での出射光を大きく拡散させることができ、発光面での光の強弱(ムラ)を抑制することができる。また、第一の本発明と同様に製造工程でスリットを設けるだけで足り2次反射面の加工が不要である。したがって、加工時のコスト増加を抑制することができる。さらに、LED照明のように指向性の高い光源の場合、光源の数を減らし、コストダウンを図ることができる点も第一の本発明と同様である。 Therefore, also in the linear light source unit structure of the second aspect of the present invention, it is possible to greatly diffuse the emitted light on the light emitting surface only by transmitting the light to the light guide member, and the intensity (unevenness) of the light on the light emitting surface. Can be suppressed. Further, as in the first aspect of the present invention, it is sufficient to provide a slit in the manufacturing process, and it is not necessary to process the secondary reflecting surface. Therefore, an increase in cost during processing can be suppressed. Furthermore, in the case of a light source with high directivity such as LED lighting, the number of light sources can be reduced and the cost can be reduced as in the first aspect of the present invention.

本線状光源ユニット構造では、LED等の点光源の数を低減しつつ発光面での十分な光の拡散を確保することができ、また2次反射面の加工が不要で加工時のコスト増加を抑制することができる。 In the present linear light source unit structure, it is possible to secure sufficient light diffusion on the light emitting surface while reducing the number of point light sources such as LEDs, and the processing of the secondary reflecting surface is unnecessary, and the cost for processing is increased. Can be suppressed.

第一の本発明の線状光源ユニット構造を簡単に示す斜視図である。It is a perspective view which shows simply the linear light source unit structure of 1st this invention. 図1の線状光源ユニット構造を上方から見た略平面図である。It is the schematic plan view which looked at the linear light source unit structure of FIG. 1 from upper direction. 図1〜図2の線状光源ユニット構造を用いた自動車用灯火器で実際に光照射した様子を示した実験例であり、(a)は自動車用灯火器を正面から見た様子、(b)は(a)を上面から見た断面の様子である。It is the experiment example which showed a mode that it actually light-irradiated with the vehicle lighting device using the linear light source unit structure of FIGS. 1-2, (a) is a mode which looked at the vehicle lighting device from the front, (b ) Is a cross-sectional view of (a) as viewed from above. 第二の本発明の線状光源ユニット構造を上方から見た略平面図である。It is the schematic plan view which looked at the linear light source unit structure of 2nd this invention from upper direction. 従来の線状光源ユニット構造を簡単に示す斜視図である。It is a perspective view which shows the conventional linear light source unit structure simply.

《従来の線状光源ユニット構造について》
本明細書では、本発明の線状光源ユニット構造の説明をする前提として従来の線状光源ユニット構造を説明しておく。
<< Conventional linear light source unit structure >>
In the present specification, a conventional linear light source unit structure will be described as a premise for describing the linear light source unit structure of the present invention.

図5は、従来の線状光源ユニット構造100の構造の一例の斜視図が示されている。線状光源ユニット構造100は、自動車用灯火器として使用される例であり、線状光源112としてのLEDがその支持部材113に沿って横方向(紙面X方向)に配設されている。図5では理解しやすさを考慮してLED112を2個で例示している。各LED112の光の照射方向(紙面Y方向)前方には、その肉厚部分が位置するように板状の導光体114が配設されている。一方のLED112aに注目すると、その照射光115は導光体114の肉厚114a内に取り込まれ、そのまま内部を伝播しながら矢印に示すように拡散し、発光面114bから外部に照射される。図5ではこのとき発光面114bで発光する部分が領域aであることが示されている。 FIG. 5 shows a perspective view of an example of the structure of a conventional linear light source unit structure 100. The linear light source unit structure 100 is an example used as an automobile lighting device, and LEDs as the linear light source 112 are arranged along the support member 113 in the lateral direction (the X direction on the paper surface). In FIG. 5, two LEDs 112 are illustrated for ease of understanding. A plate-shaped light guide 114 is disposed in front of the light irradiation direction (the Y direction on the paper surface) of each LED 112 so that the thick portion is located. When attention is paid to one of the LEDs 112a, the irradiation light 115 is taken into the thickness 114a of the light guide 114, diffuses as shown by the arrow while propagating through the inside, and is irradiated to the outside from the light emitting surface 114b. FIG. 5 shows that the portion that emits light on the light emitting surface 114b at this time is the region a.

次に、他方のLED112bに注目すると、その照射光116も導光体114の肉厚114a内に取り込まれ内部を伝播しながら拡散し、発光面114aから外部に出射される。図5では発光面114bで発光する部分が領域cで示されている。 Next, paying attention to the other LED 112b, the irradiation light 116 is also taken into the thickness 114a of the light guide 114, diffuses while propagating through the inside, and is emitted to the outside from the light emitting surface 114a. In FIG. 5, a portion that emits light on the light emitting surface 114b is indicated by a region c.

LED112のような指向性の高い点光源からの照射光115、116の場合、光が拡散していな領域(図5では発光面114bの領域b参照)では非常に暗く発光体としては光の強弱のムラ(不均一(点光りを含む))が発生してしまう。この領域bの存在を排除するには、一般に(1)各LED112の間隔距離を狭める、(2)光の進行方向の導光体114の距離Lを長くする、(3)発光面114bの表面上を拡散処理(後述する図1、図2、図4の参照番号23、63参照)する、などが考えられる。 In the case of irradiation light 115 and 116 from a point light source with high directivity such as LED 112, it is very dark in a region where light is not diffused (see region b of light emitting surface 114b in FIG. 5), and light intensity as a light emitter Unevenness (non-uniformity (including spotlight)) occurs. In order to eliminate the presence of this region b, in general, (1) the distance between the LEDs 112 is reduced, (2) the distance L of the light guide 114 in the light traveling direction is increased, and (3) the surface of the light emitting surface 114b. It is possible to perform a diffusion process (see reference numerals 23 and 63 in FIGS. 1, 2, and 4 described later).

(1)の場合は、発光面114bの発光領域aと発光領域cとが重複して領域bが消滅するという点で有利であるが、LED112の数を増加させる必要がありコスト増加を招くという問題があり、発光領域aと発光領域cとの重複する光の強い部分とそれ以外の部分とでの光の強弱ムラとが発生する可能性がある。また、(2)の場合は、LED114bから発光面114bまでの光路の長さが増加し、光の拡散が大きくなり、発光面114bの領域bが減少するという点で有利であるが、導光体114の距離(紙面Y方向)の確保が必須となり意匠上、不都合な場合が多い。さらに、(3)の場合、通常、発光面114bの拡散処理加工だけでは光の拡散量が少なく光の強弱ムラを抑制するほどの効果が見られないことが多い。とりわけ自動車用灯火器としてLEDのごとき線状光源を用いる場合、コスト、スペースの点から(1)〜(3)の対策で光の強度ムラや点光りの問題を解決することが困難な場合が多い。 In the case of (1), it is advantageous in that the light emitting area a and the light emitting area c of the light emitting surface 114b overlap and the area b disappears, but it is necessary to increase the number of LEDs 112, resulting in an increase in cost. There is a problem, and there is a possibility that unevenness in the intensity of light in a portion where the light emission region a and the light emission region c overlap with each other and a portion other than that is generated. In the case of (2), the length of the optical path from the LED 114b to the light emitting surface 114b is increased, the light diffusion is increased, and the region b of the light emitting surface 114b is reduced. It is essential to ensure the distance of the body 114 (in the Y direction on the paper surface), which is often inconvenient in design. Furthermore, in the case of (3), usually, only the diffusion processing of the light emitting surface 114b has a small amount of light diffusion, and an effect that suppresses unevenness of light intensity is often not seen. In particular, when a linear light source such as an LED is used as an automotive lighting device, it may be difficult to solve the problems of uneven light intensity and light flashing by measures (1) to (3) in terms of cost and space. Many.

《本発明の線状光源ユニット構造について》
この問題に対して本発明(第一および第二の本発明)の線状光源ユニット構造では上記(1)〜(3)以外の方法で解決しており、以下にその具体的な実施形態を例示する。
<< Linear light source unit structure of the present invention >>
To solve this problem, the linear light source unit structure of the present invention (the first and second present inventions) has been solved by methods other than the above (1) to (3). Illustrate.

《第一の本発明の実施形態例》
図1は、自動車用灯火器等として使用される線状光源ユニット構造10の構造の一例の斜視図が示されている。線状光源ユニット構造10は、上記図5の例と同様に点状光源12としてのLEDがその支持部材13に沿って横方向(紙面X方向)に複数個配設されている(図1では2個のLED12で例示)。各LED12の光の照射方向(紙面Y方向)前方には、その肉厚部分が位置するように板状の導光体14が配設されている。一方のLED12aに注目すると、その照射光15は導光体14の肉厚14a内に取り込まれ、そのまま内部を伝播しながら矢印α1、α2で挟まれた領域に光が拡散していき、発光面14bから外部に照射される。図1ではこのとき発光面14bで発光する部分が領域であることが示されている。
<< First Embodiment of the Present Invention >>
FIG. 1 shows a perspective view of an example of the structure of a linear light source unit structure 10 used as an automobile lighting device or the like. In the linear light source unit structure 10, a plurality of LEDs as point light sources 12 are arranged along the support member 13 in the lateral direction (the X direction in the drawing) as in the example of FIG. 5 (in FIG. 1). Illustrated with two LEDs 12). A plate-shaped light guide 14 is disposed in front of the light irradiation direction (the Y direction on the paper surface) of each LED 12 so that the thick portion is located. When attention is paid to one of the LEDs 12a, the irradiated light 15 is taken into the thickness 14a of the light guide 14, and the light is diffused into the region sandwiched by the arrows α1 and α2 while propagating through the inside as it is. 14b is irradiated to the outside. In FIG. 1, it is shown that the portion that emits light on the light emitting surface 14 b at this time is the region A.

また、他方のLED12bの場合も同様に、その照射光16も導光体14の肉厚14a内に取り込まれ内部を伝播しながら拡散し、発光面14から外部に照射され、発光面14bで発光する部分が領域で示されている。 Similarly, in the case of the other LED 12b, the irradiation light 16 is also diffused while propagating inside incorporated into the thickness 14a of the light guide 14 is emitted to the outside from the light emitting surface 14 b, the light-emitting surface 14b A portion that emits light is indicated by a region B.

しかしながら、図1の線状光源ユニット構造10では、導光体14内にスリット20、21が設けられている点が大きく異なる。スリット20、21は、導光体14を肉厚方向に貫通する孔であり、スリット20、21内は空気等の環境雰囲気で充填されている。スリット20、21は、LED12a、12bからそれぞれ照射され導光体14内を透過してきた光が通過するときに大きく拡散させる役割を有する。これについて以下、図1の線状光源ユニット10を上面から見た略示図を参照しつつ説明する。 However, the linear light source unit structure 10 of FIG. 1 is greatly different in that slits 20 and 21 are provided in the light guide 14. The slits 20 and 21 are holes penetrating the light guide 14 in the thickness direction, and the slits 20 and 21 are filled with an environmental atmosphere such as air. The slits 20 and 21 have a role of largely diffusing when the light irradiated from the LEDs 12a and 12b and transmitted through the light guide 14 passes therethrough. This will be described below with reference to a schematic view of the linear light source unit 10 of FIG. 1 viewed from above.

図2左側に示すようにLED12aから照射された光は拡散しながら導光体14の縁部14cに入射される。拡散光は5つの矢印α1〜α5で示されており、α1とα2の間で拡散する(α1〜α2の範囲を超える場合もあり得る)。なお、ここでは光軸となる光を矢印α4で示している。スリット20は、光が入射する縁部20aはLED12a側に膨らむ略円弧形状を形成している。このような形状にすると法線状に入射する光軸α4を除いて縁部20aを透過するときに大部分が屈折して拡散することとなる。縁部20aは光源12aから入射した光を概ね発光面側に透過する曲率を有している。また、光軸α4に近い光は法線状に入射され、ほとんど屈折も反射されずにそのまま透過する。なお、導光体14はガラス等の空気より屈折率が高い材質で構成されており大きく屈折する。 As shown on the left side of FIG. 2, the light emitted from the LED 12a is incident on the edge 14c of the light guide 14 while diffusing. The diffused light is indicated by five arrows α1 to α5 and diffuses between α1 and α2 (which may exceed the range of α1 to α2). Here, the light that becomes the optical axis is indicated by an arrow α4. The slit 20 has a substantially arc shape in which an edge 20a on which light is incident swells toward the LED 12a. When such a shape is used, most of the light is refracted and diffused when passing through the edge 20a except for the optical axis α4 that is incident in a normal line. The edge portion 20a has a curvature that allows light incident from the light source 12a to pass through the light emitting surface. Further, light close to the optical axis α4 is incident in a normal line, and is transmitted as it is with almost no refraction. The light guide 14 is made of a material having a higher refractive index than air, such as glass, and is largely refracted.

スリット20内に透過された光は、屈折して拡散された状態でそのまま空気層の孔20c内を通過し、発光面14b側(紙面下側)の縁部20bに到達する。縁部20bは、発光面14b側に膨らむ略円弧形状を形成しており、縁部20aよりも曲率が大きく形成されている(縁部20bの曲率半径の方が小さい)。このような形状にすると縁部20aで拡散し、スリット20の孔20cを通過してきた光を縁部20bが法線方向に近い状態で導光体14に入射させるため光軸α4を含めて大きく屈折しないで、光が縁部20bを透過する。そして、導光体14内を通過し、発光面14bまで到達する。 The light transmitted through the slit 20 passes through the hole 20c of the air layer as it is in a refracted and diffused state, and reaches the edge 20b on the light emitting surface 14b side (the lower side in the drawing). The edge portion 20b has a substantially arc shape that swells toward the light emitting surface 14b, and has a larger curvature than the edge portion 20a (the radius of curvature of the edge portion 20b is smaller). With such a shape, the light that diffuses at the edge 20a and passes through the hole 20c of the slit 20 is incident on the light guide 14 in a state where the edge 20b is close to the normal direction. The light passes through the edge 20b without being refracted. Then, it passes through the light guide 14 and reaches the light emitting surface 14b.

図5の例では、光が発光面114bから外部に出射され発光するが、図1〜図2の線状光源ユニット構造10では、発光面14bに拡散処理加工23がなされており、発光直前の光が拡散する(図1矢印参照)。 In the example of FIG. 5, light is emitted to the outside from the light emitting surface 114b and emits light. However, in the linear light source unit structure 10 of FIGS. Light diffuses (see arrow in FIG. 1).

図3は、図1〜図2の線状光源ユニット構造10を用いた自動車用灯火器で実際に光照射した様子を示した実験例であり、(a)は自動車用灯火器を正面から見た様子、(b)は(a)を上面から見た断面の様子を示している。 FIG. 3 is an experimental example showing a state in which light is actually irradiated with an automotive lighting device using the linear light source unit structure 10 of FIGS. 1 to 2, and (a) shows the automotive lighting device as viewed from the front. (B) shows a cross-sectional view of (a) as viewed from above.

図3(a)ではLED12からの光路が白いバツ印で表示されており、(b)ではLED12からの光路が白線で表示されている(単に光路を示しており、各白線が光強度を示してはいない)。この図からもわかるように、LED12からの光はスリット20で拡散していることが理解される。 In FIG. 3 (a), the optical path from the LED 12 is indicated by a white cross, and in FIG. 3 (b), the optical path from the LED 12 is indicated by a white line (only the optical path is shown, and each white line indicates the light intensity. Not) As can be seen from this figure, it is understood that the light from the LED 12 is diffused by the slit 20.

《第二の本発明の実施形態例》
図4は、自動車用灯火器等として使用される線状光源ユニット構造50の構造の一例の平面図が示されている。光源としてのLED52と導光体50と発光面50bとの位置関係は概ね図1の斜視図と同様であるため、これを参照する。具体的には、線状光源ユニット構造50は、上記図2の例と同様にLED52が横方向(紙面左右方向)に複数個配設され(図2同様に2個のLED52で例示)、各LED52の光の照射方向(紙面下方向)前方には、その肉厚部分が位置するように板状の導光体54が配設されてLED52からの照射光が導光体54の肉厚内に取り込まれ内部を伝播しながら発光面54bから外部に照射される。
<< Second Embodiment of the Invention >>
FIG. 4 shows a plan view of an example of the structure of a linear light source unit structure 50 used as an automobile lamp or the like. The positional relationship among the LED 52 as the light source, the light guide 50, and the light emitting surface 50b is substantially the same as that in the perspective view of FIG. Specifically, in the linear light source unit structure 50, a plurality of LEDs 52 are arranged in the horizontal direction (left and right direction on the paper surface) as in the example of FIG. 2 (illustrated by two LEDs 52 as in FIG. 2). A plate-shaped light guide 54 is disposed in front of the light irradiation direction (downward direction of the paper) of the LED 52 so that the thick portion is located, and the light emitted from the LED 52 is within the thickness of the light guide 54. The light is emitted from the light emitting surface 54b while propagating through the inside.

図4の線状光源ユニット構造50では、導光体54内にスリット60、61、62が設けられている。スリット60、61、62は、導光体54を肉厚方向に貫通する孔であり、スリット60、61、62内は空気等の環境雰囲気で充填されている。スリット60、61、62は、LED52a、52bからそれぞれ照射され導光体54内を透過してきた光を横略同方向(図1、図5に示すX方向)に順に反射させ光路の長さを延ばしながら発光面54bまで伝播する役割を有する。 In the linear light source unit structure 50 of FIG. 4, slits 60, 61, 62 are provided in the light guide 54. The slits 60, 61, 62 are holes that penetrate the light guide 54 in the thickness direction, and the slits 60, 61, 62 are filled with an environmental atmosphere such as air. The slits 60, 61, and 62 sequentially reflect light irradiated from the LEDs 52a and 52b and transmitted through the light guide 54 in the substantially horizontal direction (X direction shown in FIGS. 1 and 5) in order to reduce the length of the optical path. It has a role of propagating to the light emitting surface 54b while extending.

図4に示すLED52bから照射された光は導光体54の縁部54cに入射され、λ3〜λ4の範囲(λ3〜λ4の範囲を超える場合もあり得る)で拡散しながら、スリット62に到達する。スリット62は、右に傾斜(右上から左斜め下に傾斜(図示しない光の光軸に対して斜めの角度を有する))した直線状の形状であり、これに到達した光λ3〜λ4は、左側に反射する。図示しないがこのとき光λ3〜λ4はその一部が反射せず図1〜図2の場合と同様にスリット62を透過し、そのままスリット62から発光面54bまで到達するものもある。スリット62で反射した光λ3〜λ4は、同じ形状で配設された左隣のスリット61に拡散しながら到達し、発光面54b側に反射し、さらに拡散して発光面54bまで到達する。この線状光源ユニット構造50では同形状に傾斜する隣同士のスリットにより導光体54内での光路を延長することで光を大きく拡散させて発光面54bに到達させ放出させることである。 The light emitted from the LED 52b shown in FIG. 4 is incident on the edge 54c of the light guide 54 and reaches the slit 62 while diffusing in the range of λ3 to λ4 (which may exceed the range of λ3 to λ4). To do. The slit 62 has a linear shape that is inclined to the right (inclined from the upper right to the lower left (having an oblique angle with respect to the optical axis of light (not shown)). Reflects to the left. Although not shown, some of the light λ3 to λ4 are not reflected at this time, but pass through the slit 62 as in the case of FIGS. 1 to 2 and reach the light emitting surface 54b from the slit 62 as it is. The light λ3 to λ4 reflected by the slit 62 arrives while diffusing to the left adjacent slit 61 arranged in the same shape, reflected to the light emitting surface 54b side, and further diffused to reach the light emitting surface 54b. In this linear light source unit structure 50, the light path in the light guide 54 is extended by adjacent slits inclined in the same shape, so that the light is diffused greatly and reaches the light emitting surface 54b to be emitted.

次に、LED52aに注目すると、これもLED52bからの照射光と同様に、導光体54の縁部54cに入射され、λ1〜λ2の範囲で拡散しながら、スリット61に到達し、左側に反射する。図示しないがこのとき光λ1〜λ2もその一部が反射せずスリット61を透過し、そのまま発光面54bまで到達する。スリット61で反射した光λ1〜λ2は、同じ形状で配設された隣のスリット60に拡散しながら到達し、発光面54b側に反射し拡散して発光面54bまで到達する。このように線状光源ユニット構造50では同形状に傾斜する隣同士のスリットを複数連続させて大きく拡散させた光を発光面54bから出射させることである。 Next, paying attention to the LED 52a, similarly to the light emitted from the LED 52b, the light enters the edge 54c of the light guide 54, reaches the slit 61 while being diffused in the range of λ1 to λ2, and is reflected to the left side. To do. Although not shown, a part of the light λ1 to λ2 is not reflected at this time but is transmitted through the slit 61 and reaches the light emitting surface 54b as it is. The light λ1 to λ2 reflected by the slit 61 reaches the adjacent slit 60 arranged in the same shape while diffusing, reflects to the light emitting surface 54b side, diffuses, and reaches the light emitting surface 54b. As described above, in the linear light source unit structure 50, the light that is greatly diffused by a plurality of adjacent slits inclined in the same shape is emitted from the light emitting surface 54 b.

なお、図4の例では、発光面54bから外部に放射された光も図2の場合と同様に拡散処理加工63されたさらに拡散されて発光面54bから放出される In the example of FIG. 4, the light emitted to the outside from the light emitting surface 54b is further diffused and diffused by the diffusion processing 63 as in the case of FIG. 2, and emitted from the light emitting surface 54b .

以上、本発明における線状光源ユニット構造を説明してきたが本発明はこれに限定されるものではなく特許請求の範囲および明細書等に記載の精神や教示を逸脱しない範囲で他の変形例、改良例が得られることが当業者は理解できるであろう。 Although the linear light source unit structure in the present invention has been described above, the present invention is not limited to this, and other modifications, without departing from the spirit and teaching described in the claims and the description, etc. One skilled in the art will appreciate that improvements can be obtained.

10 線状光源ユニット構造
12 点光源(LED)
13 支持部材
14 導光体
14b 発光面
20 スリット(孔)
23 拡散処理加工
50 線状光源ユニット構造
52 点光源(LED)
54 導光体
54b 発光面
61、62、62 スリット(孔)
63 拡散処理加工
10 Linear light source unit structure 12 Point light source (LED)
13 Support member 14 Light guide 14b Light emitting surface 20 Slit (hole)
23 Diffusion processing 50 Linear light source unit structure 52 Point light source (LED)
54 Light guide 54b Light-emitting surface 61, 62, 62 Slit (hole)
63 Diffusion processing

Claims (1)

導光部材の光源側と発光面との間に孔を設け入射した光を拡散させる線状光源ユニット構造において、
前記孔の形状は、光源側と発光面側の2つの向かい合った曲率を有する面により構成されており、光源側の面は光源から入射した光を概ね発光面側に透過する曲率とし、発光面側の面の曲率は光源側の面の曲率よりも大きく、
前記孔の光源側の面は、光源側に膨らむ略円弧形状であり、
前記孔の発光面側の面は、発光面側に膨らむ略円弧形状である、ことを特徴とする線状光源ユニット構造。
In the linear light source unit structure that diffuses incident light by providing a hole between the light source side of the light guide member and the light emitting surface,
The shape of the hole is composed of two oppositely curved surfaces on the light source side and the light emitting surface side. The surface on the light source side has a curvature that transmits light incident from the light source to the light emitting surface side. the curvature of the side surfaces much larger than the curvature of the surface on the light source side,
The surface on the light source side of the hole has a substantially arc shape that swells toward the light source side,
The surface of the hole on the light emitting surface side has a substantially arc shape that swells toward the light emitting surface .
JP2014074019A 2014-03-31 2014-03-31 Linear light source unit structure Active JP6318383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014074019A JP6318383B2 (en) 2014-03-31 2014-03-31 Linear light source unit structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014074019A JP6318383B2 (en) 2014-03-31 2014-03-31 Linear light source unit structure

Publications (2)

Publication Number Publication Date
JP2015197963A JP2015197963A (en) 2015-11-09
JP6318383B2 true JP6318383B2 (en) 2018-05-09

Family

ID=54547545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014074019A Active JP6318383B2 (en) 2014-03-31 2014-03-31 Linear light source unit structure

Country Status (1)

Country Link
JP (1) JP6318383B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284803A (en) * 1998-03-27 1999-10-15 Citizen Electronics Co Ltd Linear light source unit
JP3506021B2 (en) * 1998-11-09 2004-03-15 松下電器産業株式会社 Surface lighting device and display device using this surface lighting device
JP4367801B2 (en) * 1999-07-22 2009-11-18 シチズン電子株式会社 Planar light source unit
JP2005071798A (en) * 2003-08-25 2005-03-17 Seiko Epson Corp Lighting system, electro-optical device, and electronic apparatus
JP4260811B2 (en) * 2006-01-27 2009-04-30 日本ライツ株式会社 Light guide plate and flat illumination device
JP2009032535A (en) * 2007-07-27 2009-02-12 Ushio Inc Linear light source device

Also Published As

Publication number Publication date
JP2015197963A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
US20140036522A1 (en) Vehicular lamp
US20160369972A1 (en) Light-emitting device
JP2013168350A5 (en)
JP6073718B2 (en) Optical lens
JP6709095B2 (en) Vehicle lighting
JP2014150049A5 (en)
TWI386591B (en) Light source apparatus
JP6214151B2 (en) Lighting device
JP5668920B2 (en) Lighting device
JP6437252B2 (en) Luminous flux control member, light emitting device, and illumination device
US20140092628A1 (en) Illumination device
RU2016102340A (en) LIGHTING DEVICE
TW201736772A (en) Headlight lens and headlight with same
JP2016085829A (en) Vehicular lighting fixture
JP3156238U (en) Curved light guide illuminator
JP2017041370A (en) Light guide body and vehicular lighting fixture using the same
JP2015076249A (en) Vehicular lighting fixture
JP6385175B2 (en) Vehicle signal lights
JP6318383B2 (en) Linear light source unit structure
KR102177715B1 (en) Lighting Device
JP2012145829A (en) Light-emitting device and luminaire
JP5808995B2 (en) Vehicle lighting
JP2012156123A5 (en)
US20140063845A1 (en) Light-guiding plate and plane illumination apparatus therewith
KR101684741B1 (en) Back light unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180307

R150 Certificate of patent or registration of utility model

Ref document number: 6318383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250