JP6318290B2 - Method for manufacturing nitride semiconductor crystal - Google Patents

Method for manufacturing nitride semiconductor crystal Download PDF

Info

Publication number
JP6318290B2
JP6318290B2 JP2017110457A JP2017110457A JP6318290B2 JP 6318290 B2 JP6318290 B2 JP 6318290B2 JP 2017110457 A JP2017110457 A JP 2017110457A JP 2017110457 A JP2017110457 A JP 2017110457A JP 6318290 B2 JP6318290 B2 JP 6318290B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
growth
crystal
substrate
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017110457A
Other languages
Japanese (ja)
Other versions
JP2017193486A (en
Inventor
藤倉 序章
序章 藤倉
今野 泰一郎
泰一郎 今野
大島 祐一
祐一 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JP2017193486A publication Critical patent/JP2017193486A/en
Application granted granted Critical
Publication of JP6318290B2 publication Critical patent/JP6318290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、窒化物半導体結晶の製造方法、窒化物半導体エピタキシヤルウエハ、および
窒化物半導体自立基板に関する。
The present invention relates to a method for manufacturing a nitride semiconductor crystal, a nitride semiconductor epitaxial wafer, and a nitride semiconductor free-standing substrate.

GaN系材料の成長は、有機金属気相成長法(MOVPE法)やハイドライド気相成長
法(HVPE法)などの気相成長法が主に用いられる。これらの成長においては、サファ
イア基板、SiC基板、あるいは窒化物半導体基板などの種結晶基板をホルダ、トレーな
どに設置し、種結晶基板へ原料ガスを供給して窒化物半導体を成長する。具体的には、有
機金属気相成長法であれば、トリメチルガリウム(TMG)やトリメチルアルミニュウム
(TMA)などの有機金属ガスとアンモニアを供給することで、窒化物半導体を種結晶基
板上に成長する。また、ハイドライド気相成長法であれば、ホルダ、トレーなどに設置さ
れた種結晶基板に、塩化ガリウム(GaCl)ガスや塩化アルミニュウム(AlCl、A
lCl3)などのIII族原料ガスとアンモニアを供給することで、窒化物半導体を種結晶基
板上に成長する。
種結晶基板としては、サファイア、SiC、Si等からなる異種基板や、GaNやAl
N等からなる窒化物半導体自立基板などが用いられる。これらの種結晶基板上に、通常は
Ga面などのIII族極性のC面が表面となるように結晶成長が行われ、この面がデバイス
形成に用いられる。
For the growth of GaN-based materials, vapor phase growth methods such as metal organic chemical vapor deposition (MOVPE) and hydride vapor deposition (HVPE) are mainly used. In these growths, a seed crystal substrate such as a sapphire substrate, a SiC substrate, or a nitride semiconductor substrate is placed on a holder, a tray, or the like, and a source gas is supplied to the seed crystal substrate to grow a nitride semiconductor. Specifically, in the case of a metal organic vapor phase growth method, a nitride semiconductor is grown on a seed crystal substrate by supplying an organic metal gas such as trimethyl gallium (TMG) or trimethyl aluminum (TMA) and ammonia. . In the case of the hydride vapor phase growth method, gallium chloride (GaCl) gas or aluminum chloride (AlCl, A) is applied to a seed crystal substrate placed on a holder, a tray or the like.
By supplying a group III source gas such as lCl 3 ) and ammonia, a nitride semiconductor is grown on the seed crystal substrate.
As a seed crystal substrate, a heterogeneous substrate made of sapphire, SiC, Si, or the like, GaN or Al
A nitride semiconductor free-standing substrate made of N or the like is used. Crystal growth is usually performed on these seed crystal substrates so that a group III polar C-plane such as a Ga-plane is the surface, and this plane is used for device formation.

窒化物半導体の結晶成長の際に問題となる点に、窒化物半導体の成長層が厚くなると、
成長層にクラックが生じやすくなる点が挙げられる。
これは、特に異種基板上の薄膜成長であれば、種結晶基板とその上に成長する窒化物半
導体層の熱膨張係数が大きく異なる場合に問題となる。例えば、サファイア基板上のGa
N層の成長に際しては、GaN層の厚さが5〜6μmを超えた場合に、クラックが発生し
易くなる。SiC基板上やSi基板上の成長では、複雑な応力緩和層などを組み込まない
限り、更に薄い2〜3μm程度のGaN層でもクラックが生じてしまう。このようにGa
N層の成長可能な厚さに制限があることで、応用可能なデバイスの種類が制限されたり、
デバイス特性の向上が妨げられたりと、様々な不都合が生じる。
When the nitride semiconductor growth layer becomes thicker, it becomes a problem in the crystal growth of the nitride semiconductor.
The point which becomes easy to produce a crack in a growth layer is mentioned.
This is a problem particularly in the case of thin film growth on a heterogeneous substrate, when the thermal expansion coefficients of the seed crystal substrate and the nitride semiconductor layer grown thereon are greatly different. For example, Ga on a sapphire substrate
During the growth of the N layer, cracks are likely to occur when the thickness of the GaN layer exceeds 5 to 6 μm. In the growth on the SiC substrate or on the Si substrate, a crack is generated even in a thinner GaN layer of about 2 to 3 μm unless a complicated stress relaxation layer is incorporated. Thus Ga
The limited thickness of the N layer that can be grown limits the types of devices that can be applied,
Various inconveniences occur when improvement of device characteristics is hindered.

異種基板上の薄膜成長におけるクラックの発生メカニズムは、通常以下の様に説明され
る。成長温度(〜1000℃)で異種基板上にGaN層を成長しても、成長中には大きな
応力は発生しない。しかし、成長後に、異種基板上にGaN層を形成した窒化物半導体エ
ピタキシヤルウエハの温度を室温に戻した際に、熱膨張率差による応力が発生し、バイメ
タル効果により窒化物半導体エピタキシヤルウエハが反る。サファイア基板上のGaN層
では厚さが5〜6μmを超えると、応力が臨界値を超え、GaN層にクラックが導入され
る。ここでは、5〜6μmをサファイア基板上のGaN層厚の臨界値(臨界膜厚)とした
が、実際にはこの臨界値は、使用する成長装置や成長条件などで異なり、どの程度の成長
厚でクラックが生じるかに関しては、現状では明確な予測は難しい状況にある。
The generation mechanism of cracks in the growth of thin films on different types of substrates is usually explained as follows. Even if a GaN layer is grown on a heterogeneous substrate at a growth temperature (˜1000 ° C.), no large stress is generated during the growth. However, after the growth, when the temperature of the nitride semiconductor epitaxial wafer in which the GaN layer is formed on the different substrate is returned to room temperature, stress due to the difference in thermal expansion coefficient is generated, and the nitride semiconductor epitaxial wafer is caused by the bimetal effect. Warp. When the thickness of the GaN layer on the sapphire substrate exceeds 5 to 6 μm, the stress exceeds the critical value and cracks are introduced into the GaN layer. Here, the critical value (critical film thickness) of the GaN layer thickness on the sapphire substrate is set to 5 to 6 μm. Actually, this critical value varies depending on the growth apparatus used, growth conditions, etc. With regard to whether cracks occur, it is difficult to make a clear prediction at present.

上述の数μm厚程度の薄膜成長の際に生じるクラックと同様に、数100μm〜数mm
厚の窒化物半導体自立基板の成長においてもクラックの発生は大きな問題となっている。
窒化物半導体自立基板の製造は、上記の薄膜の場合と同様に異種基板を種結晶として用
いる場合と、窒化物半導体自立基板を種結晶として用いる場合の2通りがある。
Similar to the cracks generated during the growth of the thin film having a thickness of about several μm as described above, several hundred μm to several mm.
In the growth of a thick nitride semiconductor free-standing substrate, the generation of cracks is a serious problem.
As in the case of the above thin film, there are two types of manufacture of a nitride semiconductor free-standing substrate: a case where a heterogeneous substrate is used as a seed crystal and a case where a nitride semiconductor free-standing substrate is used as a seed crystal.

異種基板上への自立基板製造においては、例えば特許文献3に記載のボイド形成剥離法
(VAS法)を用いた場合には、異種基板とその上に成長する窒化物半導体層との間の応
力をボイド層により緩和することができる。このため、上記の薄膜成長の場合の様な異種
基板と窒化物半導体層の間の応力によるクラックの発生は抑制され、100μm程度の膜
厚の窒化物半導体層をクラック無しで成長可能となる。しかしながら、この場合にも、成
長開始時の状況は薄膜成長の場合と同様であり、成長の最初期から外周端部においてC面
から傾いた面での成長は生じ、これが応力発生の原因となり、窒化物半導体層の厚さが1
00μmを超えると、成長中や冷却時にクラックが発生し易くなる。一般的な半導体ウエ
ハの厚さは、ハンドリングの容易性の観点から、400μm〜1mm程度が求められるた
め、窒化物半導体自立基板の成長においても、この程度の非常に厚い窒化物半導体層を成
長する必要がある。このため、外周端部の応力の存在によるクラックの発生は、窒化物半
導体自立基板の製造における歩留を極端に低下させる深刻な問題となっている。
In the production of a self-supporting substrate on a different substrate, for example, when the void formation peeling method (VAS method) described in Patent Document 3 is used, the stress between the different substrate and the nitride semiconductor layer grown thereon Can be relaxed by the void layer. For this reason, generation of cracks due to stress between the heterogeneous substrate and the nitride semiconductor layer as in the case of thin film growth described above is suppressed, and a nitride semiconductor layer having a thickness of about 100 μm can be grown without cracks. However, in this case as well, the situation at the start of growth is the same as in the case of thin film growth, and growth on the surface inclined from the C-plane occurs at the outer peripheral edge from the initial stage of growth, which causes stress generation, The thickness of the nitride semiconductor layer is 1
If it exceeds 00 μm, cracks are likely to occur during growth or cooling. Since the thickness of a general semiconductor wafer is required to be about 400 μm to 1 mm from the viewpoint of easy handling, a very thick nitride semiconductor layer of this level is grown even when growing a nitride semiconductor free-standing substrate. There is a need. For this reason, the occurrence of cracks due to the presence of stress at the outer peripheral edge is a serious problem that extremely reduces the yield in the manufacture of a nitride semiconductor free-standing substrate.

なお、特許文献1には、リアクターの内壁あるいは下地基板を載置するサセプタの近傍
に付着する窒化物半導体多結晶を除去するために、成長後にリアクター内にエッチングガ
スを導入することにより、冷却中における窒化物半導体基板のクラック発生やリアクター
の内壁の損傷を抑制する方法が記載されている。特許文献1の方法では、窒化物半導体層
を厚く成長した場合に、成長中のクラック発生を低減できず、窒化物半導体結晶の歩留を
高くできないとともに、サセプタの近傍の不要な窒化物半導体多結晶が多くなるため取得
できる窒化物半導体基板の面積が小さくなってしまう。また、特許文献2には、GaNの
成長中にエッチングガスとしてHCl(塩化水素ガス)をリアクター内に供給し、リアク
ターの内壁に付着するGaNを減少させる方法が記載されている。更に、特許文献4には
、サファイア基板上にGaN層を成長させた積層体の反りを低減するために、サファイア
基板に窒化処理及び塩化水素ガスによるエッチング処理を施すことにより、サファイア基
板の表面に窒化アルミニウムの凹凸構造を形成し、この窒化アルミニウムの凹凸構造を有
するサファイア基板上にGaNを成長する方法が記載されている。
In Patent Document 1, cooling is performed by introducing an etching gas into the reactor after growth in order to remove the nitride semiconductor polycrystal adhering to the inner wall of the reactor or the vicinity of the susceptor on which the base substrate is placed. Describes a method for suppressing the occurrence of cracks in the nitride semiconductor substrate and damage to the inner wall of the reactor. In the method of Patent Document 1, when the nitride semiconductor layer is grown thick, the generation of cracks during the growth cannot be reduced, the yield of the nitride semiconductor crystal cannot be increased, and an unnecessary number of nitride semiconductors in the vicinity of the susceptor can be increased. Since the number of crystals increases, the area of the nitride semiconductor substrate that can be obtained is reduced. Patent Document 2 describes a method in which HCl (hydrogen chloride gas) is supplied as an etching gas into the reactor during the growth of GaN to reduce GaN adhering to the inner wall of the reactor. Further, in Patent Document 4, in order to reduce the warpage of the stacked body in which the GaN layer is grown on the sapphire substrate, the surface of the sapphire substrate is applied to the surface of the sapphire substrate by performing nitriding treatment and etching treatment with hydrogen chloride gas. A method is described in which an uneven structure of aluminum nitride is formed and GaN is grown on a sapphire substrate having the uneven structure of aluminum nitride.

特開2007−320811号公報JP 2007-320811 A 米国特許第6632725号明細書US Pat. No. 6,632,725 特開2004−039810号公報JP 2004-039810 A 特開2007−106667号公報JP 2007-106667 A

このように異種基板上のGaN薄膜の臨界膜厚の予測が難しい原因の一つとして、端面
の効果が挙げられる。
通常、デバイス作製に用いられるのはGa極性のC面であり、図1に示すように、異種
基板である種結晶基板1上に窒化物半導体を形成したエピタキシヤルウエハの表面は、ほ
ぼその全面がGa極性のC面f1で成長する窒化物半導体結晶2aで覆われている。しか
しながら、エピタキシヤルウエハの外周端部では内周部(C面成長の平坦部)とは状況が
異なり、C面f1から傾いた面f2を表面とした窒化物半導体結晶2bが成長する。図1
では、GaN結晶である窒化物半導体結晶2が、異種基板(例えばサファイア基板)であ
る種結晶基板1から成長を開始し、時間が進むにつれて点線の様に結晶成長が進む様子を
模式的に示している。すなわち、種結晶基板1の主面(例えばC面)上に成長するC面成
長の窒化物半導体結晶2aの面(成長面)f1は、f1-1,f1-2,f1-3と順次成長し、ま
た、C面f1から傾いた面f2で成長する外周端部の窒化物半導体結晶2bの面(成長面)
2は、同様にして、f2-1,f2-2,f2-3と順次成長する。
結晶の面が異なると、表面のダングリング・ボンドの密度や表面再構成の仕方が異なる
ため、不純物の取込効率が大きく異なるのが一般的である。このため、窒化物半導体エピ
タキシヤルウエハの成長において、ウエハの内周部の窒化物半導体結晶2aと外周端部の
窒化物半導体結晶2bとでドーピングされる不純物濃度が大きく異なる状況が生じる。不
純物濃度の違いは、結晶の弾性的、塑性的性質や、熱的性質、格子定数などに影響を及ぼ
すため、不純物濃度の違う結晶が隣接すると、それらの結晶間に応力が発生する。すなわ
ち、外周部にC面とは異なる成長面を持つウエハにおいては、外周端部にC面成長の結晶
2aとは異なる不純物濃度の結晶2bの領域が発生し、外周端部に大きな応力を内包する
ことになり、クラック発生の原因となる。この外周端部の不純物濃度の異なる領域の大き
さや、外周端部の不純物濃度の値が、装置構成や成長条件により変化するため、異種基板
上のGaN薄膜の臨界膜厚の予測が困難となるのである。
As described above, one of the reasons why it is difficult to predict the critical film thickness of the GaN thin film on the heterogeneous substrate is the effect of the end face.
Usually, a Ga-polar C-plane is used for device fabrication. As shown in FIG. 1, the surface of an epitaxial wafer in which a nitride semiconductor is formed on a seed crystal substrate 1 which is a heterogeneous substrate is almost the entire surface. Is covered with the nitride semiconductor crystal 2a grown on the Ga-polar C-plane f1. However, the situation is different from the inner peripheral portion (flat portion for C-plane growth) at the outer peripheral end portion of the epitaxial wafer, and a nitride semiconductor crystal 2b having a surface f2 inclined from the C plane f1 as a surface grows. FIG.
Then, the nitride semiconductor crystal 2 which is a GaN crystal starts to grow from the seed crystal substrate 1 which is a heterogeneous substrate (for example, a sapphire substrate), and schematically shows a state in which the crystal growth proceeds as shown by a dotted line. ing. That is, the surface (growth surface) f 1 of the C-plane grown nitride semiconductor crystal 2a grown on the main surface (eg, C surface) of the seed crystal substrate 1 is f 1-1 , f 1-2 , f 1−. 3 sequentially grown, also, the surface of the nitride semiconductor crystal 2b of the outer peripheral edge to grow in the plane f 2 inclined from the C-plane f 1 (growth surface)
f 2, similarly, f 2-1, f 2-2, sequentially grown with f 2-3.
Different crystal planes generally have different dangling bond densities on the surface and the method of surface reconstruction, so that the impurity uptake efficiency generally differs greatly. For this reason, in the growth of a nitride semiconductor epitaxial wafer, a situation occurs in which the impurity concentration of the nitride semiconductor crystal 2a at the inner peripheral portion of the wafer and the nitride semiconductor crystal 2b at the outer peripheral end portion are greatly different. Differences in impurity concentration affect the elastic and plastic properties, thermal properties, lattice constants, and the like of crystals. Therefore, when crystals with different impurity concentrations are adjacent to each other, stress is generated between the crystals. That is, in a wafer having a growth surface different from the C-plane at the outer peripheral portion, a region of crystal 2b having an impurity concentration different from that of the C-plane grown crystal 2a is generated at the outer peripheral end portion, and a large stress is included in the outer peripheral end portion. This will cause cracks. It is difficult to predict the critical film thickness of a GaN thin film on a heterogeneous substrate because the size of the region having a different impurity concentration at the outer peripheral edge and the value of the impurity concentration at the outer peripheral edge vary depending on the device configuration and growth conditions. It is.

また、窒化物半導体自立基板自体を種結晶基板として用いた場合にも、窒化物半導体結
晶の外周端部にC面以外の面の結晶成長が生じ、これが応力発生の原因となりクラックが
生じる。すなわち、図2に示す様に、トレー3の載置面4上に、窒化物半導体自立基板の
種結晶基板1を設置して、この種結晶基板1上に窒化物半導体結晶2の成長を行うと、種
結晶基板1の主面(例えばC面)上に成長するC面成長の窒化物半導体結晶2aの外周端
部に、C面f1から傾いた面f2で成長する応力発生の原因となる窒化物半導体結晶2b
が成長する。
また、窒化物半導体自立基板を種結晶基板として用いた場合には、このような外周端部
の応力以外にも、そもそも種結晶である自立基板自体が応力を内包して歪んでいる場合や
、種結晶である自立基板の窒化物半導体とその上に成長する窒化物半導体層の成長条件が
異なるなどの原因により、窒化物半導体自立基板(種結晶基板)とその上に成長する窒化
物半導体層(成長層)との間に応力が生じる場合が多く、これらが成長中や冷却時のクラ
ック発生の原因となることが多々ある。
Also, when the nitride semiconductor free-standing substrate itself is used as a seed crystal substrate, crystal growth on a surface other than the C-plane occurs at the outer peripheral edge of the nitride semiconductor crystal, which causes stress and causes cracks. That is, as shown in FIG. 2, a nitride semiconductor free-standing seed crystal substrate 1 is placed on the mounting surface 4 of the tray 3, and the nitride semiconductor crystal 2 is grown on the seed crystal substrate 1. As a result, stress is generated at the outer peripheral end of the C-plane grown nitride semiconductor crystal 2a that grows on the main surface (for example, C-plane) of the seed crystal substrate 1 and grows on the plane f2 inclined from the C-plane f1. Nitride semiconductor crystal 2b
Will grow.
In addition, when a nitride semiconductor free-standing substrate is used as a seed crystal substrate, in addition to the stress at the outer peripheral edge, the free-standing substrate itself, which is a seed crystal, is originally distorted by including stress, Nitride semiconductor free-standing substrate (seed crystal substrate) and nitride semiconductor layer grown thereon due to different growth conditions of the nitride semiconductor of the free-standing substrate that is a seed crystal and the nitride semiconductor layer grown thereon In many cases, stress is generated between the (growth layer) and these often cause cracks during growth or cooling.

上述したように、異種基板である種結晶基板上の窒化物半導体の薄膜成長、あるいは窒
化物半導体自立基板である種結晶基板上の窒化物半導体結晶の成長のいずれの場合にも、
種結晶基板の主面上などに目的とする窒化物半導体結晶を意図的に成長を行う際に、意図
的に成長を行った窒化物半導体結晶以外の窒化物半導体結晶が、例えば窒化物半導体結晶
の外周端部や種結晶基板である窒化物半導体自立基板として存在し、これらが応力発生の
原因となり、窒化物半導体結晶のクラックの発生原因となっている。
As described above, in any case of the growth of a nitride semiconductor thin film on a seed crystal substrate which is a heterogeneous substrate, or the growth of a nitride semiconductor crystal on a seed crystal substrate which is a nitride semiconductor free-standing substrate,
When the intended nitride semiconductor crystal is intentionally grown on the main surface of the seed crystal substrate or the like, a nitride semiconductor crystal other than the nitride semiconductor crystal that has been intentionally grown is, for example, a nitride semiconductor crystal As a nitride semiconductor free-standing substrate, which is an outer peripheral end portion of the semiconductor substrate, or a seed crystal substrate, these cause stress generation and cause generation of cracks in the nitride semiconductor crystal.

本発明の目的は、窒化物半導体結晶のクラック発生を抑制でき、窒化物半導体結晶の歩
留の向上が図れる窒化物半導体結晶の製造方法、及びこの方法により実現される窒化物半
導体エピタキシヤルウエハおよび窒化物半導体自立基板を提供することにある。
An object of the present invention is to provide a nitride semiconductor crystal manufacturing method capable of suppressing the occurrence of cracks in the nitride semiconductor crystal and improving the yield of the nitride semiconductor crystal, and a nitride semiconductor epitaxial wafer realized by this method It is to provide a nitride semiconductor free-standing substrate.

本発明の第1の態様は、種結晶基板上に窒化物半導体結晶を成長する窒化物半導体結晶
の製造方法であって、前記窒化物半導体結晶の成長中に、前記種結晶基板の外周端部にエ
ッチング作用を加えながら、前記窒化物半導体結晶を成長させる窒化物半導体結晶の製造
方法である。
本発明の第2の態様は、第1の態様の窒化物半導体結晶の製造方法において、
前記種結晶基板の外側を取り囲む側壁を有する容器内に前記種結晶基板を設置し、前記容
器の内面のうち成長開始時に前記種結晶基板と接触しない前記内面の部分付近の環境を、
前記窒化物半導体結晶の成長中にエッチング作用を加える環境とすることで、結晶成長の
全期間を通じて前記窒化物半導体結晶が前記容器の内面の部分に接触することなく且つ前
記容器内部の断面形状に相似するような断面形状で前記窒化物半導体結晶が成長する窒化
物半導体結晶の製造方法である。
According to a first aspect of the present invention, there is provided a nitride semiconductor crystal manufacturing method for growing a nitride semiconductor crystal on a seed crystal substrate, wherein an outer peripheral edge portion of the seed crystal substrate is grown during the growth of the nitride semiconductor crystal. This is a method for producing a nitride semiconductor crystal, in which the nitride semiconductor crystal is grown while an etching action is applied thereto.
According to a second aspect of the present invention, in the method for producing a nitride semiconductor crystal according to the first aspect,
The seed crystal substrate is placed in a container having a side wall that surrounds the outside of the seed crystal substrate, and an environment in the vicinity of a portion of the inner surface that does not come into contact with the seed crystal substrate at the start of growth of the inner surface of the container,
By providing an environment in which an etching action is applied during the growth of the nitride semiconductor crystal, the nitride semiconductor crystal does not come into contact with the inner surface portion of the container throughout the entire period of crystal growth and has a cross-sectional shape inside the container. This is a method for manufacturing a nitride semiconductor crystal in which the nitride semiconductor crystal grows with a similar cross-sectional shape.

本発明の第3の態様は、第2の態様の窒化物半導体結晶の製造方法において、前記窒化
物半導体結晶と接触しない前記容器の内面が、前記側壁の側面を含む窒化物半導体結晶の
製造方法である。
According to a third aspect of the present invention, in the method for producing a nitride semiconductor crystal according to the second aspect, the inner surface of the container that does not contact the nitride semiconductor crystal includes the side surface of the side wall. It is.

本発明の第4の態様は、第2又は第3の態様の窒化物半導体結晶の製造方法において、
前記窒化物半導体結晶と接触しない前記容器の内面が、前記種結晶基板を設置する側の面
を含む窒化物半導体結晶の製造方法である。
According to a fourth aspect of the present invention, in the method for producing a nitride semiconductor crystal of the second or third aspect,
In the method of manufacturing a nitride semiconductor crystal, the inner surface of the container that does not contact the nitride semiconductor crystal includes a surface on the side where the seed crystal substrate is placed.

本発明の第5の態様は、第2〜第4の態様のいずれかの窒化物半導体結晶の製造方法に
おいて、前記窒化物半導体結晶と接触しない前記容器の内面の部分付近の前記環境が、前
記側壁の側面からの距離とともに前記エッチング作用が弱まる環境にある窒化物半導体結
晶の製造方法である。
According to a fifth aspect of the present invention, in the method for producing a nitride semiconductor crystal according to any one of the second to fourth aspects, the environment near the inner surface portion of the container that does not contact the nitride semiconductor crystal is This is a method for producing a nitride semiconductor crystal in an environment where the etching action is weakened with the distance from the side surface of the side wall.

本発明の第6の態様は、第2〜第5の態様のいずれかの窒化物半導体結晶の製造方法に
おいて、前記窒化物半導体結晶の成長を、成長とエッチングが共存する環境で行い、前記
窒化物半導体結晶と接触しない前記容器の内面の部分付近の成長原料を希釈することで、
前記エッチング作用を強めるようにした窒化物半導体結晶の製造方法である。
According to a sixth aspect of the present invention, in the method for producing a nitride semiconductor crystal according to any one of the second to fifth aspects, the nitride semiconductor crystal is grown in an environment in which growth and etching coexist, and the nitridation is performed. By diluting the growth raw material in the vicinity of the inner surface portion of the vessel that does not come into contact with the semiconductor crystal
This is a method for producing a nitride semiconductor crystal in which the etching action is enhanced.

本発明の第7の態様は、第6の態様の窒化物半導体結晶の製造方法において、前記成長
原料の希釈が、窒素、アルゴンまたはヘリウムを含む不活性ガスを供給することで行われ
る窒化物半導体結晶の製造方法である。
According to a seventh aspect of the present invention, in the method for producing a nitride semiconductor crystal according to the sixth aspect, the growth material is diluted by supplying an inert gas containing nitrogen, argon or helium. It is a manufacturing method of a crystal.

本発明の第8の態様は、第2〜第5の態様のいずれかの窒化物半導体結晶の製造方法に
おいて、前記窒化物半導体結晶と接触しない前記容器の内面の部分付近に、エッチング作
用を持つガスあるいは液体を供給することで、前記エッチング作用を加えるようにした窒
化物半導体結晶の製造方法である。
According to an eighth aspect of the present invention, in the method for producing a nitride semiconductor crystal according to any one of the second to fifth aspects, an etching action is provided near a portion of the inner surface of the container that does not contact the nitride semiconductor crystal. This is a method for manufacturing a nitride semiconductor crystal in which the etching action is applied by supplying a gas or a liquid.

本発明の第9の態様は、第8の態様の窒化物半導体結晶の製造方法において、前記エッ
チング作用を持つガスが、水素、塩素、塩化水素の少なくともいずれか一つを含む窒化物
半導体結晶の製造方法である。
A ninth aspect of the present invention is the method for producing a nitride semiconductor crystal according to the eighth aspect, wherein the gas having an etching action contains at least one of hydrogen, chlorine and hydrogen chloride. It is a manufacturing method.

本発明の第10の態様は、第2〜第5の態様のいずれかの窒化物半導体結晶の製造方法
において、前記窒化物半導体結晶の成長を、触媒の作用によりエッチング種を発生する物
質を供給しつつ行い、前記窒化物半導体結晶と接触しない前記容器の内面の少なくとも一
部を前記触媒の作用を有する触媒物質とすることで、前記エッチング作用が発現される窒
化物半導体結晶の製造方法である。
According to a tenth aspect of the present invention, in the method for producing a nitride semiconductor crystal according to any one of the second to fifth aspects, a substance that generates an etching species by the action of a catalyst is supplied to the growth of the nitride semiconductor crystal. However, it is a method for producing a nitride semiconductor crystal that exhibits the etching action by using at least a part of the inner surface of the container that does not come into contact with the nitride semiconductor crystal as a catalytic substance having the action of the catalyst. .

本発明の第11の態様は、第10の態様の窒化物半導体結晶の製造方法において、前記
触媒の作用によりエッチング種を発生する物質が、水素ガスである窒化物半導体結晶の製
造方法である。
An eleventh aspect of the present invention is the method for producing a nitride semiconductor crystal according to the tenth aspect, wherein the substance that generates etching species by the action of the catalyst is hydrogen gas.

本発明の第12の態様は、第10又は第11の態様の窒化物半導体結晶の製造方法にお
いて、前記触媒の作用を有する触媒物質が、金属または金属の窒化物である窒化物半導体
結晶の製造方法である。
According to a twelfth aspect of the present invention, in the method for producing a nitride semiconductor crystal according to the tenth or eleventh aspect, the production of a nitride semiconductor crystal in which the catalyst substance having the catalytic action is a metal or a metal nitride. Is the method.

本発明の第13の態様は、第12の態様の窒化物半導体結晶の製造方法において、前記
金属が、Ti、Zr、Nb、Ta、Cr、W、Mo、Niのいずれかである窒化物半導体
結晶の製造方法である。
A thirteenth aspect of the present invention is the nitride semiconductor crystal manufacturing method according to the twelfth aspect, wherein the metal is any one of Ti, Zr, Nb, Ta, Cr, W, Mo, and Ni. It is a manufacturing method of a crystal.

本発明の第14の態様は、第2〜第13の態様のいずれかの窒化物半導体結晶の製造方
法において、前記窒化物半導体結晶と接触しない前記容器のエッチング作用が生じる内面
と前記窒化物半導体結晶との距離が、結晶成長開始から終了までの期間、1〜10mmの
範囲にある窒化物半導体結晶の製造方法である。
According to a fourteenth aspect of the present invention, in the method for producing a nitride semiconductor crystal according to any one of the second to thirteenth aspects, the inner surface of the vessel that does not contact the nitride semiconductor crystal and causing an etching action and the nitride semiconductor This is a method for producing a nitride semiconductor crystal in which the distance from the crystal is in the range of 1 to 10 mm during the period from the start to the end of crystal growth.

本発明の第15の態様は、第2〜第14の態様のいずれかの窒化物半導体結晶の製造方
法において、前記側壁の側面と前記種結晶基板が載置される前記容器の載置面とのなす角
度が90度より大きく135度以下の範囲にあって、前記容器内部の断面がその開口部側
に向けて拡大した形状であり、前記窒化物半導体結晶が窒素面を成長面としてその径を拡
大しつつ成長する窒化物半導体結晶の製造方法である。
According to a fifteenth aspect of the present invention, in the nitride semiconductor crystal manufacturing method according to any one of the second to fourteenth aspects, the side surface of the side wall and the mounting surface of the container on which the seed crystal substrate is mounted Is formed in a range in which the cross section inside the container is enlarged toward the opening side, and the nitride semiconductor crystal has a nitrogen surface as a growth surface and the diameter thereof. This is a method for producing a nitride semiconductor crystal that grows while increasing the thickness.

本発明の第16の態様は、板状の種結晶基板上に窒化物半導体結晶を成長した窒化物半
導体エピタキシヤルウエハであって、前記窒化物半導体結晶は、前記種結晶基板の主面方
向に成長した窒化物半導体結晶と、前記主面方向に成長した前記窒化物半導体結晶の外周
端部に、前記主面から傾いた面方向に成長し、前記主面方向に成長した前記窒化物半導体
結晶よりも高い不純物濃度の窒化物半導体結晶とを有していないか、有していた場合でも
、高い不純物濃度の前記窒化物半導体結晶の成長厚が、主面方向に成長した前記窒化物半
導体結晶の成長厚の10分の1未満である窒化物半導体エピタキシヤルウエハである。
According to a sixteenth aspect of the present invention, there is provided a nitride semiconductor epitaxial wafer obtained by growing a nitride semiconductor crystal on a plate-like seed crystal substrate, wherein the nitride semiconductor crystal is oriented in a main surface direction of the seed crystal substrate. The grown nitride semiconductor crystal and the nitride semiconductor crystal grown in the surface direction inclined from the main surface and grown in the main surface direction at the outer peripheral end of the nitride semiconductor crystal grown in the main surface direction The nitride semiconductor crystal having a higher impurity concentration than the nitride semiconductor crystal having a higher impurity concentration or having a growth thickness of the nitride semiconductor crystal having a higher impurity concentration grown in the main surface direction. This is a nitride semiconductor epitaxial wafer having a growth thickness of less than 1/10.

本発明の第17の態様は、第16の態様の窒化物半導体結晶の製造方法において、前記
種結晶基板がサファイア基板であり、前記窒化物半導体結晶がGaN層である窒化物半導
体エピタキシャルウエハであって、前記窒化物半導体エピタキシャルウエハの曲率半径を
R(m)、前記GaN層の厚さをt(μm)、前記サファイア基板の厚さをY(μm)、
係数をAとした場合に、次の式(1)、(2)
R=A/t ……式(1)
A>0.00249×Y1.58483 ……式(2)
を満足する窒化物半導体エピタキシャルウエハである。
A seventeenth aspect of the present invention is the nitride semiconductor epitaxial wafer according to the sixteenth aspect of the method for producing a nitride semiconductor crystal, wherein the seed crystal substrate is a sapphire substrate and the nitride semiconductor crystal is a GaN layer. The radius of curvature of the nitride semiconductor epitaxial wafer is R (m), the thickness of the GaN layer is t (μm), the thickness of the sapphire substrate is Y (μm),
When the coefficient is A, the following equations (1) and (2)
R = A / t Equation (1)
A> 0.000024 × Y 1.58483 ...... Formula (2)
It is a nitride semiconductor epitaxial wafer that satisfies the above.

本発明の第18の態様は、板状の窒化物半導体自立基板であり、その外周端部に、前記
窒化物半導体自立基板の主面方向に成長した窒化物半導体結晶よりも高い不純物濃度の窒
化物半導体結晶を有していないか、有していた場合でも、前記外周端部の高い不純物濃度
の前記窒化物半導体結晶の成長厚が、前記主面方向に成長した前記窒化物半導体結晶の成
長厚の10分の1未満である窒化物半導体自立基板である。
According to an eighteenth aspect of the present invention, there is provided a plate-like nitride semiconductor free-standing substrate having a higher impurity concentration than that of a nitride semiconductor crystal grown in the main surface direction of the nitride semiconductor free-standing substrate at an outer peripheral end portion thereof. The nitride semiconductor crystal grown in the main surface direction has a growth thickness of the nitride semiconductor crystal having a high impurity concentration at the outer peripheral edge portion even if it does not have or has a nitride semiconductor crystal. It is a nitride semiconductor free-standing substrate that is less than one-tenth of the thickness.

本発明によれば、種結晶基板上に成長する窒化物半導体結晶のクラック発生を抑制でき
、歩留の向上が図れる。
According to the present invention, the occurrence of cracks in a nitride semiconductor crystal grown on a seed crystal substrate can be suppressed, and the yield can be improved.

従来法により異種基板である種結晶基板上に成長した窒化物半導体層の外周端部の近傍の断面模式図である。It is a cross-sectional schematic diagram of the vicinity of the outer peripheral edge part of the nitride semiconductor layer grown on the seed crystal substrate which is a different kind | species substrate by the conventional method. 従来法により窒化物半導体自立基板である種結晶基板上に成長した窒化物半導体層の外周端部の近傍の断面模式図である。It is a cross-sectional schematic diagram of the vicinity of the outer periphery edge part of the nitride semiconductor layer grown on the seed crystal substrate which is a nitride semiconductor self-supporting substrate by the conventional method. 本発明の一実施形態に係る窒化物半導体結晶の製造方法の要部構成を示すものであって、(a)は断面図、(b)は平面図である。BRIEF DESCRIPTION OF THE DRAWINGS The principal part structure of the manufacturing method of the nitride semiconductor crystal which concerns on one Embodiment of this invention is shown, Comprising: (a) is sectional drawing, (b) is a top view. 本発明の他の実施形態に係る窒化物半導体結晶の製造方法の要部構成を示す断面図である。It is sectional drawing which shows the principal part structure of the manufacturing method of the nitride semiconductor crystal which concerns on other embodiment of this invention. 本発明の他の実施形態に係る窒化物半導体結晶の製造方法の要部構成を示す断面図である。It is sectional drawing which shows the principal part structure of the manufacturing method of the nitride semiconductor crystal which concerns on other embodiment of this invention. 本発明の他の実施形態に係る窒化物半導体結晶の製造方法の要部構成を示す断面図である。It is sectional drawing which shows the principal part structure of the manufacturing method of the nitride semiconductor crystal which concerns on other embodiment of this invention. 比較例1において使用した従来のHVPE装置の概略図である。It is the schematic of the conventional HVPE apparatus used in the comparative example 1. 本発明の実施例1および比較例1において、サファイア基板上に形成したGaN層の特性を示すもので、(a)はGaN層の厚さと歩留との関係、(b)はGaN層の厚さと(0002)回折半値幅との関係、(c)はGaN層の厚さと(10−12)回折半値幅との関係を示すグラフである。In Example 1 and Comparative Example 1 of the present invention, the characteristics of a GaN layer formed on a sapphire substrate are shown. (A) is the relationship between the thickness of the GaN layer and the yield, and (b) is the thickness of the GaN layer. (C) is a graph showing the relationship between the thickness of the GaN layer and the (10-12) diffraction half width. 比較例1において種結晶基板上に形成したGaN結晶の断面を蛍光顕微鏡で観察した像を示す図である。6 is a diagram showing an image obtained by observing a cross section of a GaN crystal formed on a seed crystal substrate in Comparative Example 1 with a fluorescence microscope. FIG. 実施例1において使用した本発明の窒化物半導体結晶の製造方法を実施するHVPE装置の概略図である。It is the schematic of the HVPE apparatus which enforces the manufacturing method of the nitride semiconductor crystal of this invention used in Example 1. FIG. 実施例1と比較例1の方法を用いて、様々な厚さのサファイア基板上に様々な厚さのGaN層を成長したときに得られたエピタキシャルウエハの曲率半径Rを測定した結果を示すもので、(a)は直径50mm、厚さ350μmのサファイア基板上にGaN層を成長した場合、(b)は直径100mm、厚さ900μmのサファイア基板上にGaN層を成長した場合、(c)は直径150mm、厚さ1500μmのサファイア基板上にGaN層を成長した場合の結果を示すグラフである。FIG. 6 shows the result of measuring the radius of curvature R of an epitaxial wafer obtained when growing GaN layers of various thicknesses on sapphire substrates of various thicknesses using the methods of Example 1 and Comparative Example 1. (A) shows a case where a GaN layer is grown on a sapphire substrate with a diameter of 50 mm and a thickness of 350 μm, (b) shows a case where a GaN layer is grown on a sapphire substrate with a diameter of 100 mm and a thickness of 900 μm, and (c) shows It is a graph which shows the result at the time of growing a GaN layer on the sapphire substrate 150 mm in diameter and 1500 micrometers in thickness. 実施例1において図10のHVPE装置を用いて異種基板である種結晶基板上に成長したGaN層の外周端部近傍の断面の模式図である。FIG. 11 is a schematic view of a cross section in the vicinity of an outer peripheral end portion of a GaN layer grown on a seed crystal substrate that is a different substrate using the HVPE apparatus of FIG. 10 in Example 1. 実施例10及び比較例2において用いたVAS法によるGaN自立基板の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the GaN self-supporting substrate by VAS method used in Example 10 and Comparative Example 2. 本発明の実施例10および比較例2における、異種基板上に成長したGaN結晶の厚さと歩留の関係を示すグラフである。It is a graph which shows the relationship between the thickness of the GaN crystal grown on the dissimilar substrate, and the yield in Example 10 and Comparative Example 2 of the present invention. 本発明の実施例11および比較例3における、GaN基板上に成長したGaN成長層の厚さと歩留の関係を示すグラフである。It is a graph which shows the relationship between the thickness of the GaN growth layer grown on the GaN substrate, and the yield in Example 11 and Comparative Example 3 of the present invention. 本発明の実施例11におけるGaN自立基板を種結晶として成長したGaN結晶の外周端部の近傍の断面模式図である。It is a cross-sectional schematic diagram of the vicinity of the outer periphery edge part of the GaN crystal grown using the GaN self-supporting substrate in Example 11 of this invention as a seed crystal. 本発明の実施例12におけるGaN基板上に成長したGaN成長層の厚さと歩留の関係を示すグラフである。It is a graph which shows the relationship between the thickness of the GaN growth layer grown on the GaN substrate in Example 12 of this invention, and a yield. 本発明の変形例9における、水平フロー方式の成長装置を示す断面図である。It is sectional drawing which shows the growth apparatus of the horizontal flow system in the modification 9 of this invention.

(知見)
本発明者は、窒化物半導体の成長時にクラックが生じ易いと言う欠点を解決すべく鋭意
検討を行った。その結果、上述したように、異種基板あるいは窒化物半導体自立基板から
なる種結晶基板上へ成長を行う際に、成長を行おうと意図している成長面上(例えば種結
晶基板の主面上)へ成長される結晶とは異なる性質の結晶が、例えば意図して成長させて
いる窒化物半導体結晶の外周端部に、あるいは種結晶基板自体として存在し、これらの結
晶が意図している成長面上の窒化物半導体結晶との間に応力を生じ、これが成長中にクラ
ックが生じる原因となることを見出した。
この知見に基づき、本発明者は、窒化物半導体結晶の意図している成長面以外の面に成
長している部分(特に外周端部)、または種結晶基板の外周端部にエッチング作用を加え
、応力を発生する外周端部の成長を抑制し、または応力の原因となる種結晶基板としての
窒化物半導体自立基板を成長中に徐々にエッチングすることで、窒化物半導体結晶の成長
時のクラックを抑制する本発明の窒化物半導体結晶の製造方法に想到した。
(Knowledge)
The present inventor has intensively studied to solve the defect that cracks are likely to occur during the growth of a nitride semiconductor. As a result, as described above, when growing on a seed crystal substrate made of a heterogeneous substrate or a nitride semiconductor free-standing substrate, the growth surface is intended to grow (for example, on the main surface of the seed crystal substrate). A crystal having a property different from that of the crystal to be grown exists, for example, on the outer peripheral edge of the nitride semiconductor crystal that is intentionally grown or as the seed crystal substrate itself, and the growth surface on which these crystals are intended It has been found that stress is generated between the upper nitride semiconductor crystal and this causes cracks during growth.
Based on this knowledge, the inventor applied an etching action to a portion (particularly the outer peripheral end portion) of the nitride semiconductor crystal growing on a surface other than the intended growth surface, or the outer peripheral end portion of the seed crystal substrate. Cracks during the growth of nitride semiconductor crystals can be obtained by gradually etching the nitride semiconductor free-standing substrate as a seed crystal substrate, which suppresses the growth of the outer peripheral edge that generates stress, during growth. The inventors have conceived a method for producing a nitride semiconductor crystal of the present invention that suppresses the above-described phenomenon.

以下に、本発明の実施形態に係る窒化物半導体結晶の製造方法、窒化物半導体エピタキ
シヤルウエハ、および窒化物半導体自立基板を説明する。
A nitride semiconductor crystal manufacturing method, a nitride semiconductor epitaxial wafer, and a nitride semiconductor free-standing substrate according to embodiments of the present invention will be described below.

本発明の一実施形態に係る窒化物半導体結晶の製造方法は、例えば図3に示すように、
種結晶基板1の外側を取り囲む側壁5aを有する、るつぼ状乃至浅いカップ状の容器5内
の底壁5b上に種結晶基板1を設置し、種結晶基板1の成長面上(種結晶基板1の主面上
)へと原料ガスGを供給して、種結晶基板1上に窒化物半導体結晶2を成長する。容器5
の内面のうち成長開始時に種結晶基板1と接触していなかった内面の部分(図3では側壁
5aの側面6及び底壁5bの底面7のうち側面6付近の部分)付近の環境・雰囲気を、成
長中の窒化物半導体結晶2にエッチング作用を加える環境・雰囲気とする。これにより、
結晶成長の全期間を通じて窒化物半導体結晶2が容器5の内面の部分に接触することなく
且つ容器5内部の断面形状(図3では円形)に相似するような断面形状で窒化物半導体結
晶2が成長する。
A method for producing a nitride semiconductor crystal according to an embodiment of the present invention, for example, as shown in FIG.
The seed crystal substrate 1 is placed on a bottom wall 5b in a crucible-shaped or shallow cup-shaped container 5 having a side wall 5a that surrounds the outside of the seed crystal substrate 1, and the seed crystal substrate 1 is grown on the growth surface (seed crystal substrate 1 The source gas G is supplied to the main surface of the substrate to grow a nitride semiconductor crystal 2 on the seed crystal substrate 1. Container 5
The environment / atmosphere in the vicinity of the inner surface portion of the inner surface of the substrate that was not in contact with the seed crystal substrate 1 at the start of growth (in FIG. 3, the portion of the side surface 6 of the side wall 5a and the bottom surface 7 of the bottom wall 5b near the side surface 6). The environment / atmosphere is such that an etching action is applied to the growing nitride semiconductor crystal 2. This
The nitride semiconductor crystal 2 has a cross-sectional shape similar to the cross-sectional shape inside the container 5 (circular in FIG. 3) without contacting the inner surface of the container 5 throughout the crystal growth period. grow up.

上記の窒化物半導体結晶と接触しない容器の内面は、容器の側壁の側面を含むのが好ま
しい。また、窒化物半導体自立基板である種結晶基板上に窒化物半導体結晶を成長する場
合には、上記の窒化物半導体結晶と接触しない容器の内面には、容器の側壁の側面に加え
て、窒化物半導体自立基板を設置する側の面を含むのが好ましい。
The inner surface of the container that does not come into contact with the nitride semiconductor crystal preferably includes the side surface of the side wall of the container. In addition, when a nitride semiconductor crystal is grown on a seed crystal substrate that is a nitride semiconductor free-standing substrate, the inner surface of the container that does not contact the nitride semiconductor crystal is nitrided in addition to the side surface of the side wall of the container. It is preferable to include a surface on which the physical semiconductor free-standing substrate is installed.

上記の窒化物半導体と接触しない容器の内面の部分付近のエッチング環境・エッチング
雰囲気は、容器の内面からの距離とともにエッチング作用が弱まるのが好ましい。エッチ
ング作用が内面からの距離とともに弱まらない場合には、成長期間中に成長する窒化物半
導体結晶の多くがエッチングされてしまうおそれがある。
また、エッチング作用が内面からの距離と共に減衰する場合においても、内面から離れ
た位置でもエッチング作用が強すぎると、窒化物半導体結晶の主面上に成長する成長層が
失われてしまう。また、エッチング作用が弱すぎると、窒化物半導体結晶の成長層に意図
しない面(例えば端面)での成長が生じ、成長中の窒化物半導体結晶に応力が発生し、窒
化物半導体結晶にクラックが生じてしまう。これらのことから、エッチング作用の強さ、
及び容器の内面からの距離によるエッチング作用の弱まり(減衰)の度合いは、過大な応
力が発生しないように、あるいは応力が除去されるように適切に選択する必要がある。
The etching environment / etching atmosphere in the vicinity of the inner surface portion of the container that does not come into contact with the nitride semiconductor preferably has an etching action that decreases with the distance from the inner surface of the container. If the etching action does not weaken with the distance from the inner surface, many of the nitride semiconductor crystals that grow during the growth period may be etched.
Even when the etching action attenuates with the distance from the inner surface, if the etching action is too strong even at a position away from the inner surface, the growth layer growing on the main surface of the nitride semiconductor crystal is lost. Also, if the etching action is too weak, the growth layer of the nitride semiconductor crystal grows on an unintended surface (for example, an end face), stress is generated in the growing nitride semiconductor crystal, and the nitride semiconductor crystal is cracked. It will occur. From these, the strength of the etching action,
The degree of weakening (attenuation) of the etching action due to the distance from the inner surface of the container must be appropriately selected so that excessive stress is not generated or is removed.

このエッチング作用が、例えば図3に示すような、るつぼ状の容器5の側面6付近に存
在すると、種結晶基板1上に成長する窒化物半導体結晶2の外周端部(端面)8の成長が
抑制される。つまり意図して成長する面(例えばC面)9の結晶とは不純物濃度の異なる
外周端部8の結晶の成長が抑制され、外周端部8の結晶に起因する応力によってクラック
が発生することを抑制できる。この状況では、容器の内面の断面形状(図3では円形)を
概ね相似した断面形状の窒化物半導体結晶が成長し、かつ、容器の内面のうち成長開始時
に種結晶基板と接触していなかった内面の部分に、成長の全期間を通じて接触せずに成長
するという状況が実現される。種結晶基板1の外周部が開放されておらず、容器5の側壁
5aが種結晶基板1の外側を取り囲むように設けられているので、種結晶基板1の外周部
に、外周端部8の窒化物半導体結晶を選択的にエッチングすることが可能なエッチング環
境・エッチング雰囲気を形成・維持することができる。
この場合、上記のエッチング作用の下で、外周端部の結晶が成長する成長速度は0であ
るのが好ましい。この状況は、エッチング作用と成長がバランスしている状態である。つ
まり、外周端部がエッチング作用を加える環境・雰囲気であるので、外周端部の成長を抑
制できる。ただし外周端部の成長面の法線方向の成長速度としては、意図した成長面(例
えば、種結晶基板の主面(例えばC面)の法線方向に成長する成長面)の法線方向の成長
速度の10分の1未満であれば、クラック防止の効果が得られる。10分の1以上の場合
には、過大な応力が発生しクラック発生確率が増大する。
If this etching action exists in the vicinity of the side surface 6 of the crucible-like container 5 as shown in FIG. 3, for example, the growth of the outer peripheral end (end surface) 8 of the nitride semiconductor crystal 2 growing on the seed crystal substrate 1 occurs. It is suppressed. That is, the growth of the crystal at the outer peripheral end 8 having a different impurity concentration from that of the crystal on the intentionally growing surface (for example, the C plane) 9 is suppressed, and a crack is generated due to the stress caused by the crystal at the outer peripheral end 8. Can be suppressed. In this situation, a nitride semiconductor crystal having a cross-sectional shape approximately similar to the cross-sectional shape (circular in FIG. 3) of the inner surface of the container grew, and the inner surface of the container was not in contact with the seed crystal substrate at the start of growth. A situation is realized where the inner part is grown without contact throughout the growth period. Since the outer peripheral portion of the seed crystal substrate 1 is not opened and the side wall 5a of the container 5 is provided so as to surround the outer side of the seed crystal substrate 1, the outer peripheral end portion 8 of the outer peripheral portion of the seed crystal substrate 1 is provided. It is possible to form and maintain an etching environment / etching atmosphere in which the nitride semiconductor crystal can be selectively etched.
In this case, it is preferable that the growth rate at which the crystal at the outer peripheral edge grows is 0 under the above-described etching action. This situation is a state where the etching action and growth are balanced. That is, since the outer peripheral end portion is an environment / atmosphere in which an etching action is applied, growth of the outer peripheral end portion can be suppressed. However, as the growth rate in the normal direction of the growth surface at the outer peripheral edge, the growth direction in the normal direction of the intended growth surface (for example, the growth surface growing in the normal direction of the main surface (for example, C surface) of the seed crystal substrate) If it is less than 1/10 of the growth rate, the effect of preventing cracks can be obtained. In the case of 1/10 or more, excessive stress is generated and the probability of occurrence of cracks is increased.

また、外周端部にエッチングを生じさせる場合には、そのエッチング面の法線方向のエ
ッチング速度は、意図した成長面の成長速度以下であるのが好ましい。外周端部のエッチ
ング速度が意図した成長面の成長速度より大きくても、クラック防止の効果は得られるが
、最終的に得られる結晶の大きさが極端に小さくなるからである。
When etching is performed on the outer peripheral edge, the etching rate in the normal direction of the etched surface is preferably equal to or lower than the intended growth rate. This is because even if the etching rate at the outer peripheral edge is higher than the intended growth rate of the growth surface, the crack prevention effect can be obtained, but the size of the finally obtained crystal becomes extremely small.

また、種結晶基板である窒化物半導体自立基板上に窒化物半導体を成長する場合に、こ
のエッチング作用が窒化物半導体自立基板を設置する側の面に存在すると、成長中に種結
晶基板の裏面が徐々にエッチングされるため、種結晶基板の表面側に新たな窒化物半導体
の成長層を厚く成長した段階で種結晶基板による応力が除去・低減され、成長中のクラッ
クの発生を抑制することができる。
この場合には、種結晶基板の裏面のエッチング速度は、意図した成長面上の成長速度の
100分の1以上の場合に良好な結果が得られる。また、種結晶基板の裏面のエッチング
速度が速い場合には、成長後に窒化物半導体の全体の厚さが初期の窒化物半導体自立基板
よりも小さくなる場合も想定される。このような事態を避けるため、種結晶基板の裏面の
エッチング速度としては、意図した成長面上の成長速度の半分以下であるのが好ましい。
Further, when a nitride semiconductor is grown on a nitride semiconductor free-standing substrate that is a seed crystal substrate, if this etching action exists on the surface on the side where the nitride semiconductor free-standing substrate is installed, the back surface of the seed crystal substrate during growth Is gradually etched, so that the stress due to the seed crystal substrate is removed and reduced at the stage where a new nitride semiconductor growth layer is grown thick on the surface side of the seed crystal substrate, thereby suppressing the generation of cracks during growth. Can do.
In this case, good results can be obtained when the etching rate of the back surface of the seed crystal substrate is 1/100 or more of the growth rate on the intended growth surface. In addition, when the etching rate of the back surface of the seed crystal substrate is high, it may be assumed that the entire thickness of the nitride semiconductor becomes smaller than the initial nitride semiconductor free-standing substrate after growth. In order to avoid such a situation, it is preferable that the etching rate of the back surface of the seed crystal substrate is not more than half of the intended growth rate on the growth surface.

また、成長中の応力バランスを維持するためには、上記のエッチング作用は成長する結
晶中のある点、線あるいは面に対して対称を保って加えるのが好ましい。結晶基板、例え
ば円盤状の種結晶基板でその一面が意図した成長面である場合には、断面が円形の容器を
用い、結晶外周の端面に均等にエッチング作用を加えるのが好ましい。また、四角形、六
角形など多角形の板状の種結晶基板で、その一面が主たる成長面である場合にも、種結晶
基板の断面形状と同様の断面形状の容器を用い、種結晶基板上の窒化物半導体結晶の外周
の端面に均等にエッチング作用を加えるのが好ましい。更に、本発明の種結晶基板は板状
のものに限らず、各種の種結晶が含まれる。例えば、円柱状、あるいは多角錐状などの種
結晶基板で、その円周面あるいは多角形の面が主たる成長面である場合には、主たる成長
面に対する側面に均等にエッチング作用を加えるのが好ましい。
Further, in order to maintain the stress balance during growth, it is preferable to add the etching action while maintaining symmetry with respect to a certain point, line or plane in the growing crystal. In the case of a crystal substrate, for example, a disc-shaped seed crystal substrate, where one surface is the intended growth surface, it is preferable to use a container having a circular cross section and apply an etching action evenly to the end surface of the crystal periphery. In addition, in the case of a quadrangular, hexagonal or other polygonal plate-like seed crystal substrate, where one surface is the main growth surface, a container having a cross-sectional shape similar to that of the seed crystal substrate is used. It is preferable to apply an etching action evenly to the outer peripheral end face of the nitride semiconductor crystal. Furthermore, the seed crystal substrate of the present invention is not limited to a plate-like substrate, and includes various seed crystals. For example, in the case of a seed crystal substrate having a cylindrical shape or a polygonal pyramid shape, when the circumferential surface or the polygonal surface is a main growth surface, it is preferable to apply an etching action evenly to the side surface with respect to the main growth surface. .

また、種結晶基板の裏面にエッチング作用を加える場合には、その全面に均等にエッチ
ング作用を加えるか、面内の点、あるいは線に対して対称にエッチング作用を加えるのが
好ましい。ただし、容器の内面に対向する種結晶基板の裏面にエッチング作用を加えるた
めには、種結晶基板の裏面を容器の内面から一定距離を離す必要があり、例えば種結晶基
板よりも小さいブロックを介して種結晶基板を容器に設置するという工夫が必要となる。
この場合、ブロックは十分小さい複数個のものを使用し、ブロックと接して隠れる面の面
積は種結晶基板の裏面全体の面積の10分の1以下であるのが好ましい。この割合が高す
ぎると、種結晶基板のエッチングによる応力緩和の効果が十分に得られなくなるためであ
る。
具体的には、例えば、図6に示すように、種結晶基板1を側壁10aを有する容器10
の底壁10b上に複数のブロック17を介して設置し、種結晶基板1の裏面にエッチング
作用を加えるためのガスgを導入する。図6では、容器10の底壁10bの中央部にはガ
スgを供給する供給管18が接続されており、供給管18から導入されたガスgが、容器
10の底壁10bと種結晶基板1との間を流れ、種結晶基板1の裏面16がガスgにより
エッチングされる。更に、裏面16に沿って流れたガスgが、容器10の側壁10aと種
結晶基板1の外周部との間から放出され、種結晶基板1上に成長する窒化物半導体結晶2
のうち、主に外周端部8の窒化物半導体結晶2をエッチングする。
In addition, when an etching action is applied to the back surface of the seed crystal substrate, it is preferable to apply the etching action uniformly to the entire surface, or to apply the etching action symmetrically with respect to in-plane points or lines. However, in order to apply an etching action to the back surface of the seed crystal substrate facing the inner surface of the container, the back surface of the seed crystal substrate needs to be separated from the inner surface of the container by, for example, a block smaller than the seed crystal substrate. Therefore, it is necessary to devise a method of installing the seed crystal substrate in the container.
In this case, a plurality of sufficiently small blocks are used, and the area of the surface hidden in contact with the block is preferably 1/10 or less of the entire area of the rear surface of the seed crystal substrate. If this ratio is too high, the effect of stress relaxation by etching the seed crystal substrate cannot be obtained sufficiently.
Specifically, for example, as shown in FIG. 6, the seed crystal substrate 1 is a container 10 having a side wall 10a.
A gas g for introducing an etching action on the back surface of the seed crystal substrate 1 is introduced on the bottom wall 10b of the seed crystal via a plurality of blocks 17. In FIG. 6, a supply pipe 18 that supplies a gas g is connected to the center of the bottom wall 10 b of the container 10, and the gas g introduced from the supply pipe 18 is supplied to the bottom wall 10 b of the container 10 and the seed crystal substrate. 1 and the back surface 16 of the seed crystal substrate 1 is etched by the gas g. Further, the gas g flowing along the back surface 16 is released from between the side wall 10 a of the container 10 and the outer periphery of the seed crystal substrate 1, and grows on the seed crystal substrate 1.
Of these, the nitride semiconductor crystal 2 at the outer peripheral end 8 is mainly etched.

上記のエッチング作用は、定常的に加えるのが好ましいが、断続的に加えても良い。例
えば、本発明の目的を達成するためには、エッチング作用を持つガスを、ウエハの外周部
に定常的に流すのが好ましい方法の一つであるが、この場合ウエハの外周部全体にガスの
放出口を設置する必要がある。一方、ウエハの外周の一部にのみエッチング作用を持つガ
スの放出口を設け、あるいは、ウエハ外周部へ一方向からエッチング作用を持つガスを吹
きつけ、ウエハを回転することで、ウエハ外周部全体あるいはウエハ裏面全体を断続的に
エッチングすることもできる。エッチング作用が十分であれば、この方法には、装置構成
が簡便になるというメリットがある。
The above etching action is preferably applied constantly, but may be added intermittently. For example, in order to achieve the object of the present invention, it is one of the preferable methods to constantly flow a gas having an etching action to the outer peripheral portion of the wafer. It is necessary to install a discharge port. On the other hand, a gas discharge port having an etching action is provided only at a part of the outer periphery of the wafer, or a gas having an etching action is blown from one direction to the outer periphery of the wafer, and the wafer is rotated to rotate the entire outer periphery of the wafer. Alternatively, the entire back surface of the wafer can be etched intermittently. If the etching action is sufficient, this method has an advantage that the apparatus configuration is simplified.

上記のエッチング作用を発現させる方法は幾つかあるが、一つの好ましい方法としては
、窒化物半導体の成長を、成長とエッチングとが共存する環境で行い、上記のエッチング
作用を加える面の近傍の成長原料を希釈することで、上記のエッチング作用を強めるよう
にする方法がある。成長とエッチングが共存する環境としては、例えば、MOVPE成長
やHVPE成長などの気相成長において、成長雰囲気に水素、塩素、塩化水素などを添加
した場合が対応する。この場合、成長原料の希釈は、窒素、アルゴン、ヘリウムなどの不
活性ガスを供給することで行うのが好ましい。例えば、図3において、原料ガスG中に成
長原料(III族原料およびV族原料)に加えて水素、塩素、塩化水素などのエッチング作
用を持つガスを添加し、容器5の側面6近傍に窒素、アルゴン、ヘリウムなどの不活性ガ
スを供給して、原料ガスG中の成長原料を希釈する。
適切なエッチング作用を得るためのこれらの希釈ガス(不活性ガス)の添加量の望まし
い値は、成長条件により異なるが、III族原料の供給量の10分の1から10倍の範囲で
、上述した成長速度およびエッチング速度を実現するように設定するのが好ましい。
また、Naフラックス法や安熱合成法などの閉鎖系で行われる溶液を用いた成長に対し
ても本発明は適用可能である。これらの場合には、意図的に成長する面の近傍の溶液より
も原料の溶解度の少ない溶液を、エッチング作用を加える面の近傍に強制的に導入するこ
とでエッチング作用が発現する。
There are several methods for developing the above-mentioned etching action. One preferable method is to perform nitride semiconductor growth in an environment in which growth and etching coexist, and to grow near the surface to which the above-mentioned etching action is applied. There is a method in which the etching action is strengthened by diluting the raw material. The environment where growth and etching coexist corresponds to the case where hydrogen, chlorine, hydrogen chloride, or the like is added to the growth atmosphere in vapor phase growth such as MOVPE growth or HVPE growth. In this case, the growth raw material is preferably diluted by supplying an inert gas such as nitrogen, argon or helium. For example, in FIG. 3, a gas having an etching action such as hydrogen, chlorine, hydrogen chloride or the like is added to the raw material gas G in addition to the growth raw material (group III raw material and group V raw material). Then, an inert gas such as argon or helium is supplied to dilute the growth raw material in the raw material gas G.
A desirable value of the addition amount of these dilution gases (inert gas) for obtaining an appropriate etching action varies depending on the growth conditions, but is in the range of 1/10 to 10 times the supply amount of the group III raw material, as described above. It is preferable to set so as to realize the growth rate and the etching rate.
The present invention can also be applied to growth using a solution performed in a closed system such as a Na flux method or a low temperature synthesis method. In these cases, the etching action is manifested by forcibly introducing a solution having a lower raw material solubility than the solution in the vicinity of the intentionally growing face into the vicinity of the face to which the etching action is applied.

上記のエッチング作用は、エッチング作用を加える面の近傍へ、エッチング作用を持つ
ガスあるいは液体(溶液)を供給することで発現させても良い。
上記のエッチング作用を持つガスとしては、水素、塩素、塩化水素の少なくともいずれ
か一つを含むのが好ましい。適切なエッチング作用を得るために、これらのエッチング性
ガスの添加量の望ましい値は、成長条件により異なるが、III族原料の供給量の10分の
1から10倍の範囲で、上述した成長速度およびエッチング速度を実現するように設定す
るのが好ましい。
Naフラックス法や安熱合成法においては、上記と同様に、意図的に成長する面の近傍
の溶液よりも成長原料の溶解度の少ない溶液がエッチング作用を有する液体(溶液)とな
る。
The etching action may be expressed by supplying a gas or liquid (solution) having an etching action to the vicinity of the surface to which the etching action is applied.
The gas having an etching action preferably contains at least one of hydrogen, chlorine and hydrogen chloride. In order to obtain an appropriate etching action, the desired value of the addition amount of these etching gases varies depending on the growth conditions, but the growth rate described above is in the range of 1/10 to 10 times the supply amount of the group III raw material. It is preferable that the etching rate is set to be realized.
In the Na flux method and the low-temperature synthesis method, as described above, a solution having a growth raw material solubility lower than the solution in the vicinity of the surface on which the surface is intentionally grown becomes a liquid (solution) having an etching action.

図4に、エッチング作用を加える面の近傍にエッチング作用を持つガスを供給する上記
方法の一実施形態を示す。この実施形態における容器は、側壁10aを有するカップ状の
容器10と、種結晶基板1を載置するトレー3とから主に構成されている。トレー3の載
置面(設置面)4と側壁10aの側面とにより、浅いカップ形状の容器の内面を構成し、
この容器の内面の底面外周からエッチング作用を持つガスgが、この容器内の外周部に導
入されるようにした。
容器10の底壁10bの中央部にはエッチング作用を持つガスgを供給する供給管11
が接続され、供給管11を挿通させてトレー3を支持する支持軸13が設けられている。
支持軸13上のトレー3は、容器10の底壁10bと所定の間隙を隔てて配置されている
。供給管11から容器10の底壁10bの中央部に供給されたガスgは、トレー3と底壁
10bとの間を支持軸13を中心に放射状に流れ、トレー3の外周面と側壁10aの内周
面との間に形成された環状のガス放出口(ガス吹出口)19から流出する。一方、トレー
3の載置面4上に設置された種結晶基板1の成長面上(種結晶基板の主面上)には、成長
原料を含む原料ガスGが供給され、種結晶基板1上に窒化物半導体結晶2が成長する。こ
の窒化物半導体結晶2の外周端部8は、ガス放出口19から放出されるエッチング作用を
持つガスgにより、所定のエッチングを受ける。
FIG. 4 shows an embodiment of the above method for supplying a gas having an etching action in the vicinity of the surface to which the etching action is applied. The container in this embodiment is mainly composed of a cup-shaped container 10 having a side wall 10a and a tray 3 on which the seed crystal substrate 1 is placed. The mounting surface (installation surface) 4 of the tray 3 and the side surface of the side wall 10a constitute the inner surface of the shallow cup-shaped container,
A gas g having an etching action was introduced from the outer periphery of the bottom surface of the inner surface of the container into the outer periphery of the container.
A supply pipe 11 that supplies an etching gas g to the center of the bottom wall 10b of the container 10
Are connected, and a support shaft 13 that supports the tray 3 through the supply pipe 11 is provided.
The tray 3 on the support shaft 13 is disposed with a predetermined gap from the bottom wall 10 b of the container 10. The gas g supplied from the supply pipe 11 to the central portion of the bottom wall 10b of the container 10 flows radially between the tray 3 and the bottom wall 10b with the support shaft 13 as a center, and the outer surface of the tray 3 and the side wall 10a. The gas flows out from an annular gas discharge port (gas outlet) 19 formed between the inner peripheral surface and the inner peripheral surface. On the other hand, on the growth surface of the seed crystal substrate 1 placed on the mounting surface 4 of the tray 3 (on the main surface of the seed crystal substrate), a source gas G containing a growth material is supplied. The nitride semiconductor crystal 2 grows on the surface. The outer peripheral end portion 8 of the nitride semiconductor crystal 2 is subjected to predetermined etching by a gas g having an etching action released from the gas discharge port 19.

また、窒化物半導体結晶の成長を、触媒の作用によりエッチング種を発生する物質を供
給しつつ行い、上記の窒化物半導体結晶と接触しない容器の内面の少なくとも一部を触媒
物質とすることで、エッチング作用を発現させても良い。本方法は、局所的なガス・液体
の導入を伴わないため、前述の2種類の方法よりも簡便な装置にて実施できるというメリ
ットがある。
上記の触媒の作用によりエッチング種を発生する物質としては水素ガスが好ましく、触
媒物質としては金属または金属の窒化物であるのが好ましい。
水素ガスは、高温状態の金属または金属窒化物からなる触媒物質と接触して、強いエッ
チング作用を持つ原子状水素が生成され、生成された原子状水素が拡散して窒化物半導体
結晶に到達してエッチングするものと推測される。原子状水素は不安定であって短時間で
反応して消滅してしまう。従って、原子状水素によるエッチング作用は、容器の内面から
離れるにつれて急速に減衰し、容器の内面から一定の距離の内側にある窒化物半導体結晶
のみがエッチングされる。すなわち、容器の内面付近は、容器の内面からの距離とともに
エッチング作用が弱まる雰囲気となり、窒化物半導体結晶のエッチングが過度で窒化物半
導体結晶の多くがエッチングされてしまったり、エッチングが不十分で窒化物半導体結晶
にクラックが生じてしまったりすることなく、適切なエッチングを行うことができる。
Further, the nitride semiconductor crystal is grown while supplying a substance that generates etching species by the action of a catalyst, and at least a part of the inner surface of the container that does not come into contact with the nitride semiconductor crystal is used as a catalyst substance. An etching action may be developed. Since this method does not involve the introduction of a local gas / liquid, there is an advantage that it can be carried out with a simpler apparatus than the above two methods.
Hydrogen gas is preferable as the substance that generates etching species by the action of the catalyst, and the catalyst substance is preferably a metal or a metal nitride.
Hydrogen gas comes into contact with a catalyst material made of a metal or metal nitride in a high temperature state, and atomic hydrogen having a strong etching action is generated, and the generated atomic hydrogen diffuses to reach the nitride semiconductor crystal. This is presumed to be etched. Atomic hydrogen is unstable and reacts in a short time and disappears. Therefore, the etching action by atomic hydrogen is rapidly attenuated as the distance from the inner surface of the container increases, and only the nitride semiconductor crystal located at a certain distance from the inner surface of the container is etched. That is, the vicinity of the inner surface of the container becomes an atmosphere in which the etching action becomes weaker with the distance from the inner surface of the container. Appropriate etching can be performed without causing cracks in the semiconductor crystal.

また、上記触媒物質である金属としては、Ti(チタン)、Zr(ジルコニウム)、N
b(ニオブ)、Ta(タンタル)、Cr(クロム)、W(タングステン)、Mo(モリブ
デン)、Ni(ニッケル)が好ましい。例えば、上記の金属の無垢材からなる容器の内面
を、窒化物半導体成長前に窒化物半導体結晶の成長装置内で窒化し、その後に結晶成長を
行うのは、本発明の好ましい実施形態の一つである。なお、窒化物半導体結晶と接触しな
い容器の内面に、上記金属または金属窒化物の膜を形成するようにしても良い。
本方法は、例えば、図3において、原料ガスGの水素ガスを添加し、容器5の側面6が
上記金属または金属窒化物で形成されていればよい。また、例えば、図4、図6において
、ガスgに水素ガスを含ませ、図4または図6の容器10の側壁10aの内面、あるいは
容器10の底壁10bが上記金属または金属窒化物で形成されていればよい。
Further, as the metal as the catalyst substance, Ti (titanium), Zr (zirconium), N
b (niobium), Ta (tantalum), Cr (chromium), W (tungsten), Mo (molybdenum), and Ni (nickel) are preferable. For example, nitriding the inner surface of a container made of the above-described solid metal material in a nitride semiconductor crystal growth apparatus before the growth of the nitride semiconductor and then performing the crystal growth is one preferred embodiment of the present invention. One. The metal or metal nitride film may be formed on the inner surface of the container that is not in contact with the nitride semiconductor crystal.
In this method, for example, in FIG. 3, the hydrogen gas of the source gas G is added, and the side surface 6 of the container 5 may be formed of the metal or metal nitride. Further, for example, in FIGS. 4 and 6, hydrogen gas is included in the gas g, and the inner surface of the side wall 10a of the container 10 or the bottom wall 10b of the container 10 is formed of the above metal or metal nitride. It only has to be done.

上記の窒化物半導体結晶と接触しない容器の側壁と窒化物半導体結晶との距離は、成長
開始から成長終了までの期間、1〜10mmの範囲であるのが好ましい。この距離が1m
mより近いと、若干の成長条件の変動によって窒化物半導体結晶が容器の内面に接触し、
容器と窒化物半導体結晶とが固着し、固着することで応力が生じて窒化物半導体結晶にク
ラックが発生する。逆に、この距離が10mmより遠いと、エッチング作用の減衰の急峻
性が失われ、外周端部のみの成長をエッチングにより選択的に阻害することができなくな
る。容器の内面と窒化物半導体結晶との距離は、例えば、図3(b)に示す距離dである
The distance between the side wall of the container that is not in contact with the nitride semiconductor crystal and the nitride semiconductor crystal is preferably in the range of 1 to 10 mm during the period from the start of growth to the end of growth. This distance is 1m
If it is closer than m, the nitride semiconductor crystal contacts the inner surface of the container due to slight fluctuations in growth conditions,
The container and the nitride semiconductor crystal are fixed to each other, and stress is generated by the fixation, thereby generating a crack in the nitride semiconductor crystal. On the other hand, if this distance is longer than 10 mm, the steepness of the attenuation of the etching action is lost, and the growth of only the outer peripheral edge cannot be selectively inhibited by etching. The distance between the inner surface of the container and the nitride semiconductor crystal is, for example, a distance d shown in FIG.

上記の窒化物半導体結晶の製造方法により実現される、板状の種結晶基板上に窒化物半
導体結晶を成長した窒化物半導体エピタキシヤルウエハにあっては、前記窒化物半導体結
晶が、前記種結晶基板の主面方向に成長した窒化物半導体結晶と、前記主面方向に成長し
た窒化物半導体結晶の外周端部に、前記主面から傾いた面方向に成長し、前記主面方向に
成長した前記窒化物半導体結晶よりも高い不純物濃度の窒化物半導体結晶とを有していな
いか、有していた場合でも、高い不純物濃度の窒化物半導体結晶の成長厚が、主面方向に
、成長した窒化物半導体結晶の成長厚の10分の1未満である窒化物半導体エピタキシヤ
ルウエハが得られる。
このため、成長中、冷却中の窒化物半導体結晶のクラック発生が劇的に抑制され、高い
歩留が実現可能である。ここでいう高い不純物濃度とは、意図した面上の結晶である主面
方向に成長した窒化物半導体結晶はその不純物濃度にある程度の面内分布を有するが、そ
の分布の不純物濃度の最大値を遥かに超えるほど(例えば2倍以上)の高い不純物濃度で
あるという意味であり、意図した主面上の結晶の不純物濃度分布の範囲内あるいは主面上
の結晶の不純物濃度の最大値を僅かに超える程度の不純物濃度値を意味するものではない
In a nitride semiconductor epitaxial wafer realized by the above-described method for producing a nitride semiconductor crystal and having a nitride semiconductor crystal grown on a plate-like seed crystal substrate, the nitride semiconductor crystal is the seed crystal. The nitride semiconductor crystal grown in the main surface direction of the substrate and the outer peripheral edge of the nitride semiconductor crystal grown in the main surface direction grew in the surface direction inclined from the main surface, and grew in the main surface direction. The nitride semiconductor crystal having a higher impurity concentration than that of the nitride semiconductor crystal is not present, or even if it has, the growth thickness of the nitride semiconductor crystal having a higher impurity concentration has grown in the main surface direction. A nitride semiconductor epitaxial wafer having a growth thickness of the nitride semiconductor crystal of less than 1/10 is obtained.
For this reason, during the growth and cooling, the generation of cracks in the nitride semiconductor crystal is dramatically suppressed, and a high yield can be realized. The high impurity concentration mentioned here means that the nitride semiconductor crystal grown in the principal plane direction which is a crystal on the intended plane has a certain in-plane distribution in the impurity concentration, but the maximum value of the impurity concentration of the distribution is It means that the impurity concentration is much higher (for example, 2 times or more), and the maximum value of the impurity concentration of the crystal on the main surface is slightly within the intended impurity concentration distribution range on the main surface. It does not mean an impurity concentration value exceeding that.

窒化物半導体エピタキシヤルウエハの外周端部に高い不純物濃度の窒化物半導体結晶が
成長した場合でも、その成長厚が主面方向に成長した窒化物半導体結晶の成長厚の10分
の1未満であれば、成長中、冷却中のクラックの発生が抑制されるが、さらに窒化物半導
体エピタキシャルウェハの反りも低減することが可能となる。
上記の窒化物半導体エピタキシヤルウエハにおいて、特にサファイア基板上のGaN層
を成長したエピタキシヤルウエハにおいては、従来のエピタキシヤルウエハよりも反りの
小さいエピタキシヤルウエハが実現できる。通常、サファイア基板上にGaN層を成長し
た場合には、GaN層の表面を上に向けた場合に、上側に凸状にエピタキシヤルウエハが
反る。従来の製造方法により作製した窒化物半導体エピタキシヤルウエハの外周端部には
高い不純物濃度の窒化物半導体結晶が、主面方向に成長した窒化物半導体結晶の成長厚の
10分の1以上成長しており、窒化物半導体エピタキシャルウェハの曲率半径が小さく、
反り量が大きくなった。一方、本発明の実施形態に係る製造方法により作製した窒化物半
導体エピタキシャルウェハは、曲率半径が大きく、反り量が低減されていた。
図11に、本発明の成長方法と従来の製造方法を用いて、様々な厚さYのサファイア基
板上に様々な厚さtのGaN層を成長したときに得られたエピタキシャルウエハの曲率半
径Rを測定した結果を示す。図11(a)は直径50mm、厚さ350μmのサファイア
基板上にGaN層を成長した場合、図11 (b)は直径100mm、厚さ900μmの
サファイア基板上にGaN層を成長した場合、図11(c)は直径150mm、厚さ15
00μmのサファイア基板上にGaN層を成長した場合のデータである。
この窒化物半導体エピタキシヤルウエハの主面方向に成長した窒化物半導体結晶の成長
厚と、窒化物半導体エピタキシャルウェハの反りの関係性について検討したところ、以下
の式(1)のような関係であることがわかった。エピタキシヤルウエハの曲率半径をR(
m)、GaN層の厚さをt(μm)、係数をAとすると、
R=A/t ……式(1)
と記述できる。
これらの結果から、本発明の製造方法により作製したエピタキシャルウェハと、従来の
製造方法により作製したエピタキシャルウェハを比較したところ、サファイア基板厚さY
(μm)と係数Aが下記式のような相関をもつことが明らかとなった。
従来法で成長したサファイア上のGaN層の場合、サファイア基板の厚さをY(μm)
とした場合に、前記係数Aは、
A≦0.00249×Y1.58483 ……式(3)
となるが、本発明の実施形態に係る窒化物半導体結晶の製造方法を用いることで、
A>0.00249×Y1.58483 ……式(2)
となり、より曲率半径を大きくすることが可能であることが明らかとなった。
曲率半径が大きく、すなわち反り量の小さいエピタキシヤルウエハは、上記のGaN層
上に発光ダイオードやトランジスタ構造を形成し、これにフォトリソグラフィープロセス
などを施す場合に有利である。フォトリソグラフィープロセスにおいて、エピタキシヤル
ウエハが大きく反っていると、エピタキシヤルウエハに転写する素子パターンの分解能が
劣化し、微細な素子を形成することが不可能となり、またフォトリソグラフィー工程の歩
留が低下するなどの悪影響があるためである。
Even when a nitride semiconductor crystal having a high impurity concentration is grown on the outer peripheral edge of the nitride semiconductor epitaxial wafer, the growth thickness should be less than 1/10 of the growth thickness of the nitride semiconductor crystal grown in the main surface direction. For example, generation of cracks during growth and cooling is suppressed, but warpage of the nitride semiconductor epitaxial wafer can be further reduced.
In the above-described nitride semiconductor epitaxial wafer, in particular, an epitaxial wafer in which a GaN layer on a sapphire substrate is grown, an epitaxial wafer having a smaller warp than a conventional epitaxial wafer can be realized. Normally, when a GaN layer is grown on a sapphire substrate, the epitaxial wafer warps upward in a convex shape when the surface of the GaN layer faces upward. A nitride semiconductor crystal having a high impurity concentration is grown at one-tenth or more of the growth thickness of the nitride semiconductor crystal grown in the main surface direction on the outer peripheral edge of the nitride semiconductor epitaxial wafer manufactured by the conventional manufacturing method. The curvature radius of the nitride semiconductor epitaxial wafer is small,
The amount of warpage has increased. On the other hand, the nitride semiconductor epitaxial wafer manufactured by the manufacturing method according to the embodiment of the present invention has a large radius of curvature and a reduced amount of warpage.
FIG. 11 shows the radius of curvature R of the epitaxial wafer obtained when GaN layers with various thicknesses t are grown on sapphire substrates with various thicknesses Y using the growth method of the present invention and the conventional manufacturing method. The result of having measured is shown. 11A shows a case where a GaN layer is grown on a sapphire substrate having a diameter of 50 mm and a thickness of 350 μm. FIG. 11B shows a case where a GaN layer is grown on a sapphire substrate having a diameter of 100 mm and a thickness of 900 μm. (C) is 150 mm in diameter and 15 in thickness.
This is data when a GaN layer is grown on a 00 μm sapphire substrate.
When the relationship between the growth thickness of the nitride semiconductor crystal grown in the main surface direction of the nitride semiconductor epitaxial wafer and the warp of the nitride semiconductor epitaxial wafer is examined, the relationship is as shown in the following formula (1). I understood it. The radius of curvature of the epitaxial wafer is R (
m), when the thickness of the GaN layer is t (μm) and the coefficient is A,
R = A / t Equation (1)
Can be described.
From these results, when comparing the epitaxial wafer produced by the production method of the present invention and the epitaxial wafer produced by the conventional production method, the sapphire substrate thickness Y
It has been clarified that (μm) and the coefficient A have a correlation as shown in the following formula.
In the case of a GaN layer on sapphire grown by the conventional method, the thickness of the sapphire substrate is set to Y (μm)
The coefficient A is
A ≦ 0.00249 × Y 1.58483 …… Formula (3)
However, by using the method for manufacturing a nitride semiconductor crystal according to the embodiment of the present invention,
A> 0.00249 × Y 1.58483 ...... Formula (2)
Thus, it has become clear that the radius of curvature can be further increased.
An epitaxial wafer having a large radius of curvature, that is, a small amount of warpage is advantageous when a light emitting diode or a transistor structure is formed on the GaN layer and a photolithography process is applied thereto. If the epitaxial wafer is greatly warped in the photolithography process, the resolution of the element pattern transferred to the epitaxial wafer deteriorates, making it impossible to form fine elements, and reducing the yield of the photolithography process. This is because there is an adverse effect such as.

また、上記の窒化物半導体結晶の製造方法により実現される、窒化物半導体自立基板に
おいても、その外周端部に、窒化物半導体自立基板の主面方向に成長した窒化物半導体結
晶よりも高い不純物濃度の窒化物半導体結晶を有していないか、有していた場合でも、外
周端部の高い不純物濃度の窒化物半導体結晶の成長厚が、主面方向に成長した窒化物半導
体結晶の成長厚の10分の1未満である窒化物半導体自立基板が得られる。
このため、成長中、冷却中の窒化物半導体結晶のクラック発生が劇的に抑制され、高い
歩留が実現可能である。ここでの高い不純物濃度の意味も、上記窒化物半導体エピタキシ
ヤルウエハの場合と同様である。
Further, even in the nitride semiconductor free-standing substrate realized by the above-described method for manufacturing a nitride semiconductor crystal, impurities higher than those of the nitride semiconductor crystal grown in the main surface direction of the nitride semiconductor free-standing substrate at the outer peripheral edge portion thereof Even if it has or does not have a nitride semiconductor crystal of the concentration, the growth thickness of the nitride semiconductor crystal having a high impurity concentration at the outer peripheral edge is the growth thickness of the nitride semiconductor crystal grown in the main surface direction. Thus, a nitride semiconductor free-standing substrate that is less than one tenth of the above can be obtained.
For this reason, during the growth and cooling, the generation of cracks in the nitride semiconductor crystal is dramatically suppressed, and a high yield can be realized. The meaning of the high impurity concentration here is the same as in the case of the nitride semiconductor epitaxial wafer.

以上では、意図的に成長する面がGa極性のC面のGaN結晶について説明したが、原
理的には、本発明はAlN、InN、BNおよび、これらの混晶のIII族極性のC面や、
それ以外の全ての面を意図した成長面とする場合に適用可能である。例えば、III族極性
のC面から0.1〜2度の範囲で、A軸、M軸あるいはその中間の方向に傾いた面、或い
はN極性のC面、A面、M面、R面、その他の半極性面、またはそれらN極性面や半極性
面の微傾斜面などを意図した成長面とすることができる。
In the above description, a GaN crystal having a Ga-polarity C-plane that has been intentionally grown has been described. However, in principle, the present invention can be applied to AlN, InN, BN, and mixed crystals of these Group III-polar C-planes. ,
This is applicable when all other surfaces are intended growth surfaces. For example, in the range of 0.1 to 2 degrees from the group III polarity C-plane, the surface inclined to the A-axis, the M-axis or the intermediate direction thereof, or the N-polar C-plane, A-plane, M-plane, R-plane, Other semipolar planes, or those N-polar planes and slightly inclined planes of the semipolar planes, can be used as growth planes.

また、本発明はN極性のC面を表面とする形態で窒化物半導体結晶を成長する場合にも
適用可能である。この場合、種結晶基板としてはN極性面を表面(意図して成長する面)
として配置し、その上に結晶成長を行うことになる。この場合、窒化物半導体結晶の端面
は図2とは逆の傾きを持ち、成長に従いN極性のC面が拡大する。このためN面成長によ
る窒化物半導体結晶の成長は、より大口径の窒化物半導体基板(窒化物半導体自立基板)
を実現するためには非常に有効な手法である。
しかしながら、従来のHVPE装置を用いた場合には、N極性面成長においても、III
族極性面上の成長と同様に端面での成長による応力が発生し、高い歩留を得るのは困難で
あった。
The present invention is also applicable to the case where a nitride semiconductor crystal is grown in a form having an N-polar C-plane as a surface. In this case, the seed crystal substrate has an N-polar surface (surface intended to grow)
And crystal growth is performed thereon. In this case, the end face of the nitride semiconductor crystal has an inclination opposite to that shown in FIG. 2, and the N-polar C-plane expands as it grows. For this reason, the growth of a nitride semiconductor crystal by N-plane growth is a larger-diameter nitride semiconductor substrate (nitride semiconductor free-standing substrate).
This is a very effective method for realizing the above.
However, when the conventional HVPE apparatus is used, even in the N polar plane growth, III
Similar to the growth on the group polar face, stress was generated by the growth on the end face, and it was difficult to obtain a high yield.

ところが、本発明の窒化物半導体結晶の製造方法を用いることにより、N面成長におい
ても高い歩留で窒化物半導体自立基板の成長が可能である。
具体的には、図5に示すように、容器12の側壁12aの側面14と種結晶基板1が載
置される容器12の底壁12bの載置面15とのなす角度θが90度より大きく135度
以下の範囲にあって、容器12内部の断面をその開口部側に向けて拡大した形状とし、窒
化物半導体結晶2が窒素面を成長面としてその径を拡大しつつ成長させるのがよい。
特にN面成長においては、設置面と容器の側面とのなす角度が90度(設置面に対して
垂直な側面)より大きく135度以下の範囲で上方に開くように側壁を設置することで、
窒化物半導体結晶の端部にエッチング作用を施しつつ、かつ、種結晶基板よりN面の面積
を拡大した窒化物半導体結晶を形成することが可能となる。この配置の場合、窒化物半導
体結晶の端部に出易い結晶面のほとんどが135度以下の角度を持つため、側壁のなす角
度が135度より大きい場合には、窒化物半導体結晶の成長とともに、側壁と窒化物半導
体結晶の外周端部との距離が増加し、成長が進行すると、エッチング作用が弱まって外周
端部の窒化物半導体結晶の成長が大きくなり、外周端部の応力によりクラックが発生し易
くなり、従来法と同様の結果しか得られない。
この角度θが135度以下の場合には、側壁12aと窒化物半導体結晶2の外周端部と
の距離は、外周端部への成長とエッチングが釣り合う距離に一定に保たれやすいため、外
周端部の成長速度は低い値に保たれ、クラックの発生が抑制される。特に、側壁12aの
開く角度θが120度以下の場合には、これより小さな角度を成す安定な窒化物半導体の
結晶面が少ないため、外周端部での成長速度がほぼ0に抑えられ、更に高い成長歩留を得
ることができる。
However, by using the nitride semiconductor crystal manufacturing method of the present invention, a nitride semiconductor free-standing substrate can be grown with a high yield even in N-plane growth.
Specifically, as shown in FIG. 5, the angle θ formed by the side surface 14 of the side wall 12a of the container 12 and the mounting surface 15 of the bottom wall 12b of the container 12 on which the seed crystal substrate 1 is mounted is more than 90 degrees. The nitride semiconductor crystal 2 is grown while expanding its diameter with a nitrogen surface as a growth surface, in a shape that is in a large range of 135 degrees or less and the cross section inside the container 12 is enlarged toward the opening side. Good.
In particular, in N-plane growth, by setting the side wall so that the angle formed by the installation surface and the side surface of the container opens upward in a range greater than 90 degrees (side surface perpendicular to the installation surface) and not more than 135 degrees,
It is possible to form a nitride semiconductor crystal having an N-plane area larger than that of the seed crystal substrate while performing an etching action on the end portion of the nitride semiconductor crystal. In the case of this arrangement, most of the crystal planes that are likely to appear at the end of the nitride semiconductor crystal have an angle of 135 degrees or less, so when the angle formed by the side wall is larger than 135 degrees, along with the growth of the nitride semiconductor crystal, As the distance between the sidewall and the outer peripheral edge of the nitride semiconductor crystal increases and the growth proceeds, the etching action weakens and the growth of the nitride semiconductor crystal at the outer peripheral edge increases, and cracks are generated due to the stress at the outer peripheral edge. And only the same result as the conventional method is obtained.
When the angle θ is 135 degrees or less, the distance between the side wall 12a and the outer peripheral end of the nitride semiconductor crystal 2 is easily kept constant at a distance that balances growth and etching on the outer peripheral end. The growth rate of the part is kept at a low value, and the generation of cracks is suppressed. In particular, when the opening angle θ of the side wall 12a is 120 degrees or less, there are few stable nitride semiconductor crystal planes having an angle smaller than this, so that the growth rate at the outer peripheral edge can be suppressed to almost zero, High growth yield can be obtained.

上述したように、上記実施形態の窒化物半導体結晶の製造方法を、窒化物半導体結晶の
成長に適用することで、異種基板上の薄膜成長においては、従来よりも厚い窒化物半導体
層をクラック無く成長することが可能となり、従来法よりも大幅な歩留向上が可能となる
。また、窒化物半導体自立基板の製造に上記実施形態の窒化物半導体結晶の製造方法を適
用することで、やはり窒化物半導体結晶のクラックによる不良を大幅に低減することが可
能となる。更に、上記実施形態の窒化物半導体エピタキシヤルウエハや窒化物半導体自立
基板は、残留歪が少ないため、発光ダイオードやレーザーダイオードの製作、高電子移動
度トランジスタやヘテロテロバイポーラトランジスタの製作に適している。
As described above, by applying the nitride semiconductor crystal manufacturing method of the above embodiment to the growth of nitride semiconductor crystals, in the growth of thin films on different substrates, a nitride semiconductor layer thicker than before can be cracked. It becomes possible to grow and yields can be improved significantly compared with the conventional method. Further, by applying the nitride semiconductor crystal manufacturing method of the above-described embodiment to the manufacture of a nitride semiconductor free-standing substrate, it is possible to significantly reduce defects due to cracks in the nitride semiconductor crystal. Furthermore, since the nitride semiconductor epitaxial wafer and the nitride semiconductor free-standing substrate of the above embodiment have little residual strain, they are suitable for the production of light emitting diodes and laser diodes, and the production of high electron mobility transistors and heterotero bipolar transistors. .

なお、上記実施形態で用いた図3〜図6のそれぞれ容器等の構成を適宜組み合わせて窒
化物半導体結晶の成長を実施するようにしても良い。例えば、図5に示す容器12の底壁
12bに、図4に示すようなエッチング作用を持つガスを供給する供給管を設けると共に
、供給管を挿通させた支持軸上にトレーを設け、このトレー上に図5に示す種結晶基板1
を設置して、図5に示すような成長方向に拡大した窒化物半導体結晶2を結晶成長させる
ようにしても良い。
Note that the nitride semiconductor crystal may be grown by appropriately combining the configurations of the containers and the like shown in FIGS. 3 to 6 used in the above embodiment. For example, a supply pipe for supplying a gas having an etching action as shown in FIG. 4 is provided on the bottom wall 12b of the container 12 shown in FIG. Above the seed crystal substrate 1 shown in FIG.
The nitride semiconductor crystal 2 expanded in the growth direction as shown in FIG.

本発明を以下の実施例(変形例を含む)によりさらに詳細に説明するが、本発明はこれ
ら実施例に限定されるものではない。
The present invention will be described in more detail with reference to the following examples (including modifications), but the present invention is not limited to these examples.

[実施例1及び比較例1]
(比較例1)
比較例1においては、図7に示す従来と同様な構成の縦型配置のHVPE装置を用いて
、サファイア基板である種結晶基板1上に、低温成長GaNバッファ層を介して2〜20
μmのGaN層を成長した。HVPE装置は、上部の原料部32と下部の成長部33とに
分かれており、結晶成長を行うリアクター(成長炉)20の原料部32の外周部には原料
部ピーク30が、リアクター20の成長部33の外周部には成長部ピーク31がそれぞれ
設けられている。原料部ピーク30によってリアクター20内の原料部32は約800℃
に、また成長部ピークによってリアクター20内の成長部33は500〜1200℃に加
熱される。
原料部32から成長部33に向けて、ガスを供給するV族ライン(V族ガス供給配管)
23、III族ライン(III族ガス供給配管)25、エッチング/ドープライン(エッチング
ガス/ドープガス供給配管)24の3系統のガス供給ラインが設置されている。V族ライ
ン23からは、窒素源であるNH3(アンモニアガス)とともにキャリアガスとして水素
ガス、窒素ガスあるいはこれらの混合ガスが供給される。III族ライン25からは、HC
lとともにキャリアガスとして水素ガス、窒素ガスあるいはこれらの混合ガスが供給され
る。III族ライン25の途中には金属ガリウム27を貯留するGa融液タンク26が設置
されており、ここでHClガスと金属ガリウムが反応しGaClガスが生成され、GaC
lガスが成長部33へと送り出される。エッチング/ドープライン24からは、未成長時
およびアンドープGaN層成長時には水素と窒素の混合ガスが、n型GaN層成長時には
Si源であるジクロロシラン(SiH2Cl2、水素希釈により濃度100ppm)とHC
lガスと水素ガス及び窒素ガスが導入される。また、エッチング/ドープライン24から
は、成長後にリアクター20内に付着したGaNを除去するために行う1100℃程度の
温度でのベーキング時には、塩化水素ガスと水素、窒素が導入される。
リアクター20内の成長部33には3〜100rpm程度の回転数で回転するトレー3
が水平に設置され、そのガス供給ライン23〜25の出口と対向したトレー3の設置面(
載置面)4上に種結晶基板1が設置される。トレー3は鉛直方向に配設された回転軸(支
持軸)13上に設けられており、回転軸13の回転によりトレー3が回転する。原料ガス
は種結晶基板1上へのGaN成長に使用された後、リアクター20の最下流部から外部に
排気される。リアクター20内での成長は、比較例1では全て常圧(1気圧)にて実施し
た。
各ラインの配管23、24、25、Ga融液タンク26、トレー3の回転軸13は高純
度石英製であり、トレー3はSiCコートのカーボン製である。サファイア基板としては
、表面がC面からM軸方向に0.3°傾斜した表面を持ち、厚さが900μm、直径が1
00mmのものを用いた。
[Example 1 and Comparative Example 1]
(Comparative Example 1)
In Comparative Example 1, the vertical arrangement HVPE apparatus shown in FIG. 7 is used to place 2 to 20 on the seed crystal substrate 1 which is a sapphire substrate through a low-temperature grown GaN buffer layer.
A μm GaN layer was grown. The HVPE apparatus is divided into an upper raw material portion 32 and a lower growth portion 33, and a raw material portion peak 30 is grown on the outer periphery of the raw material portion 32 of a reactor (growth furnace) 20 that performs crystal growth. Growing part peaks 31 are provided on the outer periphery of the part 33. The raw material part 32 in the reactor 20 is about 800 ° C. by the raw material part peak 30.
In addition, the growth part 33 in the reactor 20 is heated to 500 to 1200 ° C. by the growth part peak.
Group V line for supplying gas from the raw material part 32 to the growth part 33 (Group V gas supply piping)
23, three gas supply lines are installed: a group III line (group III gas supply pipe) 25, and an etching / dope line (etching gas / dope gas supply pipe) 24. From the group V line 23, hydrogen gas, nitrogen gas or a mixed gas thereof is supplied as a carrier gas together with NH 3 (ammonia gas) which is a nitrogen source. From Group III line 25, HC
As well as l, hydrogen gas, nitrogen gas or a mixed gas thereof is supplied as a carrier gas. A Ga melt tank 26 for storing metal gallium 27 is installed in the middle of the group III line 25, where HCl gas and metal gallium react to generate GaCl gas, and GaC
l gas is sent to the growth section 33. From the etching / doping line 24, a mixed gas of hydrogen and nitrogen is used during ungrown and undoped GaN layer growth, and dichlorosilane (SiH 2 Cl 2 , concentration of 100 ppm by hydrogen dilution) is a Si source during n-type GaN layer growth. HC
l gas, hydrogen gas and nitrogen gas are introduced. Further, hydrogen chloride gas, hydrogen, and nitrogen are introduced from the etching / dope line 24 at the time of baking at a temperature of about 1100 ° C. for removing GaN adhering in the reactor 20 after growth.
The growth section 33 in the reactor 20 has a tray 3 that rotates at a rotational speed of about 3 to 100 rpm.
Is installed horizontally and the installation surface of the tray 3 facing the outlets of the gas supply lines 23 to 25 (
The seed crystal substrate 1 is placed on the (mounting surface) 4. The tray 3 is provided on a rotating shaft (support shaft) 13 disposed in the vertical direction, and the tray 3 is rotated by the rotation of the rotating shaft 13. The source gas is used for GaN growth on the seed crystal substrate 1 and then exhausted to the outside from the most downstream portion of the reactor 20. All growth in the reactor 20 was performed at normal pressure (1 atm) in Comparative Example 1.
The pipes 23, 24, 25 of each line, the Ga melt tank 26, and the rotating shaft 13 of the tray 3 are made of high-purity quartz, and the tray 3 is made of SiC-coated carbon. As a sapphire substrate, the surface has a surface inclined by 0.3 ° in the M-axis direction from the C plane, the thickness is 900 μm, and the diameter is 1
A 00 mm one was used.

HVPE成長としては、以下のように実施した。サファイア基板1をトレー3上にセッ
トした後、純窒素を流しリアクター20内の大気を追い出す。次に、3slmの水素ガス
と7slmの窒素ガスとの混合ガス中にて、成長部33の基板温度を1100℃として、
10分間保持した。その後、基板温度を550℃として、低温成長GaNバッファ層を1
200nm/時の成長速度で20nm成長した。この際に流すガスとしては、III族ライ
ン25からHClを1sccm、水素を2slm、窒素を1slm、V族ライン23から
アンモニアを1slmと水素を2slm、エッチング/ドープライン24から水素を3s
lmそれぞれ供給した。
低温成長GaNバッファ層の成長後、基板温度を1050℃に上昇し、2〜20mmの
アンドープGaN層を120μm/時の成長速度で成長した。この際に流すガスとしては
、III族ライン25からHClを100sccm、水素を2slm、窒素を1slm、V
族ライン23からアンモニアを2slmと水素を1slm、エッチング/ドープライン2
4から水素を3slmとした。
成長後にアンモニア2slmと窒素8slmを流しつつ、基板温度を室温付近まで冷却
した。その後、数十分間窒素パージを行い、リアクター20内を窒素雰囲気としてから、
基板を取り出した。
The HVPE growth was performed as follows. After setting the sapphire substrate 1 on the tray 3, pure nitrogen is flowed to expel the atmosphere in the reactor 20. Next, in a mixed gas of 3 slm hydrogen gas and 7 slm nitrogen gas, the substrate temperature of the growth portion 33 is set to 1100 ° C.
Hold for 10 minutes. Thereafter, the substrate temperature is set to 550 ° C., and the low temperature growth GaN buffer layer is set to 1
Growth was 20 nm at a growth rate of 200 nm / hour. As gases to be supplied at this time, HCl is 1 sccm from the group III line 25, hydrogen is 2 slm, nitrogen is 1 slm, ammonia is 1 slm and hydrogen is 2 slm from the group V line 23, and hydrogen is 3 s from the etching / dope line 24.
1 m each.
After the growth of the low-temperature grown GaN buffer layer, the substrate temperature was raised to 1050 ° C., and an undoped GaN layer of 2 to 20 mm was grown at a growth rate of 120 μm / hour. As gases to be supplied at this time, HCl is 100 sccm, hydrogen is 2 slm, nitrogen is 1 slm, V from the group III line 25.
Etching / doping line 2 for ammonia 2 slm and hydrogen 1 slm from group line 23
From 4 hydrogen was 3 slm.
After the growth, the substrate temperature was cooled to near room temperature while flowing 2 slm of ammonia and 8 slm of nitrogen. Thereafter, a nitrogen purge is performed for several tens of minutes, and the inside of the reactor 20 is made a nitrogen atmosphere.
The substrate was taken out.

上記のようにして、2〜20μmの範囲でGaN層の厚さを異にする複数のエピタキシ
ャルウエハを作製した。各GaN層厚さのエピタキシヤルウエハについて20枚ずつ作製
した際の、歩留、GaN層のX線回折(XRD)測定による(0002)回折の半値幅の
平均値および(10−12)回折の半値幅の平均値を図8に丸印○で示す。ここで歩留と
しては、GaN層に長さ5mm以上のクラックが1本でも生じたものを不良と考えて算出
した。
図8(a)、(b)、(c)に示すように、GaN層の厚さが4μmまでは歩留がほぼ
100%であり、GaN層の厚さが増加とともにXRD半値幅は減少した。しかしながら
、GaN層の厚さを5μm以上にすると、クラックが発生しはじめ、歩留が減少する(図
8(a))。また、クラックの発生に伴い、GaN層の結晶性が劣化し、XRD半値幅が
増大している(図8(b)、(c))。
As described above, a plurality of epitaxial wafers having different GaN layer thicknesses in the range of 2 to 20 μm were produced. Of 20 epitaxial wafers of each GaN layer thickness, yield, average value of half width of (0002) diffraction by X-ray diffraction (XRD) measurement of GaN layer, and (10-12) diffraction The average value of the full width at half maximum is indicated by a circle ○ in FIG. Here, the yield was calculated by considering that even one crack having a length of 5 mm or more occurred in the GaN layer was defective.
As shown in FIGS. 8A, 8B, and 8C, the yield is almost 100% until the thickness of the GaN layer is 4 μm, and the half width of the XRD decreases as the thickness of the GaN layer increases. . However, when the thickness of the GaN layer is 5 μm or more, cracks begin to occur and the yield decreases (FIG. 8A). Further, with the occurrence of cracks, the crystallinity of the GaN layer is deteriorated, and the XRD half-value width is increased (FIGS. 8B and 8C).

上記の従来のHVPE装置で成長したGaN層の断面を蛍光顕微鏡(紫外光を当て、可
視光領域の光を観察する)で観察したところ、図9に示すような色の違うGaN結晶の領
域が見られた。図9の下部には、図9の上部の蛍光顕微鏡による観察像における結晶領域
の輪郭線の図を示す。なお、図9に示す蛍光顕微鏡による観察像は、GaN自立基板上に
GaN結晶を厚く成長させた場合の観察像を示しているが、GaN結晶2 aの主表面(
C面)から300μmの位置での、C面から傾いた面上に成長した外周端部のGaN結晶
2bの厚さが44μmであり、GaN結晶2bの厚さがGaN結晶2aの厚さの10分の
1以上であり、GaN結晶の外周端部に大きな応力が発生し、クラックの発生が見られた

GaNのバンドギャップに対応する発光そのものは紫外領域なので蛍光顕微鏡では観察
できないが、不純物濃度が異なると欠陥準位の濃度が変化するため色の違いとなって観察
される。つまり、図1、図2を用いて説明したように、図9において色の異なる2つの領
域は不純物濃度の違いを反映したものであり、各々別の結晶面上に成長したために不純物
の取り込み効率の違いにより不純物濃度の違いが生じているのである。
具体的には、図中、淡い灰色の部分がC面f1で成長したGaN結晶2aで、黒に近い
濃い灰色の部分がC面f1から傾いた面f2で成長したGaN結晶2bの領域である。これ
らの各領域の不純物濃度をマイクロラマン測定により調べたところ、C面f1で成長した
GaN結晶2aでは0.5×1018/cm3〜5×1018/cm3程度のn型であったのが
、C面f1から傾いた面f2で成長したGaN結晶2bでは同じn型ではあるものの、Ga
N結晶2aの2倍以上の1×1019/cm3〜5×1019/cm3という極めて高い不純物
濃度となっていた。成長時にはドーピングガスを流さなかったが、成長装置の構成部材な
どから放出された不純物が成長中に結晶に取り込まれたものと考えられる。これらの各領
域についてSIMS測定を行った結果、これらのn型伝導性はSiおよび酸素の取り込み
によるものであることが判明した。このことより、外周部のC面から傾いた面f2上に成
長した結晶2bは、C面f1上の結晶2aよりも不純物の取り込み効率が高く、極めて高
い不純物濃度となっているため、平坦部に成長した結晶2aとの間に応力が発生し、これ
が膜厚を増やすほどクラックが発生し歩留が低下する原因となっていると推測される。
When the cross section of the GaN layer grown by the conventional HVPE apparatus was observed with a fluorescence microscope (observing light in the visible light region by applying ultraviolet light), regions of GaN crystals with different colors as shown in FIG. 9 were found. It was seen. In the lower part of FIG. 9, a diagram of the contour line of the crystal region in the observation image by the fluorescence microscope in the upper part of FIG. 9 is shown. The observation image by the fluorescence microscope shown in FIG. 9 shows an observation image when the GaN crystal is grown thick on the GaN free-standing substrate, but the main surface of the GaN crystal 2a (
The thickness of the GaN crystal 2b at the outer peripheral edge grown on the plane inclined from the C plane at a position 300 μm from the C plane) is 44 μm, and the thickness of the GaN crystal 2b is 10 times the thickness of the GaN crystal 2a. A large stress was generated at the outer peripheral edge of the GaN crystal, and cracks were observed.
The luminescence itself corresponding to the band gap of GaN cannot be observed with a fluorescence microscope because it is in the ultraviolet region. However, if the impurity concentration is different, the defect level concentration changes, and the difference in color is observed. That is, as described with reference to FIGS. 1 and 2, the two regions having different colors in FIG. 9 reflect the difference in impurity concentration, and are grown on different crystal planes. The difference in impurity concentration is caused by this difference.
Specifically, in the figure, the light gray portion of the GaN crystal 2a grown on the C plane f 1 and the dark gray portion close to black is the GaN crystal 2b grown on the plane f 2 inclined from the C plane f 1 . It is an area. When the impurity concentration of each of these regions was examined by micro-Raman measurement, the GaN crystal 2a grown on the C plane f 1 was n-type of about 0.5 × 10 18 / cm 3 to 5 × 10 18 / cm 3. The GaN crystal 2b grown on the plane f 2 inclined from the C plane f 1 is the same n-type, but Ga
The impurity concentration was as extremely high as 1 × 10 19 / cm 3 to 5 × 10 19 / cm 3, which is more than twice that of the N crystal 2a. Although no doping gas was allowed to flow during growth, it is considered that impurities released from the constituent members of the growth apparatus were taken into the crystal during growth. As a result of SIMS measurement for each of these regions, it was found that these n-type conductivities were due to incorporation of Si and oxygen. From this, the crystal 2b grown on the surface f 2 inclined from the C plane of the outer peripheral portion has a higher impurity uptake efficiency and a very high impurity concentration than the crystal 2a on the C plane f 1 . It is presumed that a stress is generated between the crystal 2a grown on the flat portion and this causes a crack to occur as the film thickness increases, resulting in a decrease in yield.

(実施例1)
比較例1におけるGaN結晶の外周端部に成長する高不純物濃度のGaN結晶2bの成
長を抑制するために、上記図7のHVPE装置における種結晶基板1を支持し回転するト
レー3及び回転軸(支持軸)13を含む構造部分を、図4と同様な構造に改造し、実施例
1の方法を実施する図10のHVPE装置とした。すなわち、図10に示すHVPE装置
では、種結晶基板1の設置面(載置面)4の外周部全体にパージガスgを導入できる構造
とした。図10のHVPE装置では、回転軸13及びパージガスgを供給する供給管11
を一体的に回転させている。
トレー3の外周面と側壁10aの内周面との間に形成される環状のパージガスgのガス
放出口19の上方には、設置面4から3mmの高さまで側壁10aを設けた。トレー3の
設置面4と側壁10aの側面とにより、るつぼ形状ないし浅いカップ形状の容器の内面を
構成した。側壁10aの側面と種結晶基板1の外周端面との距離は5mmとした。
この実施例1のHVPE装置を用いて、上記比較例1と同様の条件でサファイアの種結
晶基板1上にGaN層の成長を行った。低温成長GaNバッファ層と1050℃でのアン
ドープGaN層の成長時の各ラインの流量は上記比較例1と同じとした。ただし、種結晶
基板1周囲のパージガスgとして3slmの窒素を導入した点が、上記比較例1と異なる
Example 1
In order to suppress the growth of the high impurity concentration GaN crystal 2b that grows on the outer peripheral edge of the GaN crystal in Comparative Example 1, the tray 3 and the rotating shaft that support and rotate the seed crystal substrate 1 in the HVPE apparatus of FIG. The structural portion including the support shaft 13 is remodeled into the same structure as that shown in FIG. 4 to obtain the HVPE apparatus shown in FIG. That is, the HVPE apparatus shown in FIG. 10 has a structure in which the purge gas g can be introduced to the entire outer peripheral portion of the installation surface (mounting surface) 4 of the seed crystal substrate 1. In the HVPE apparatus of FIG. 10, the supply shaft 11 for supplying the rotary shaft 13 and the purge gas g.
Are rotated together.
Above the gas discharge port 19 for the annular purge gas g formed between the outer peripheral surface of the tray 3 and the inner peripheral surface of the side wall 10a, the side wall 10a is provided from the installation surface 4 to a height of 3 mm. The installation surface 4 of the tray 3 and the side surface of the side wall 10a constitute the inner surface of a crucible-shaped or shallow cup-shaped container. The distance between the side surface of the side wall 10a and the outer peripheral end surface of the seed crystal substrate 1 was 5 mm.
Using the HVPE apparatus of Example 1, a GaN layer was grown on the sapphire seed crystal substrate 1 under the same conditions as in Comparative Example 1 above. The flow rate of each line during the growth of the low-temperature grown GaN buffer layer and the undoped GaN layer at 1050 ° C. was the same as in Comparative Example 1 above. However, it differs from Comparative Example 1 in that 3 slm nitrogen was introduced as the purge gas g around the seed crystal substrate 1.

このようにして成長した様々な厚さのGaN層を有するエピタキシヤルウエハを、各G
aN層厚さについて20枚ずつ作製したときの、歩留、X線回折(XRD)測定による(
0002)回折の半値幅の平均値および(10−12)回折の半値幅の平均値を図8のバ
ツ印×で示す。従来方法を適用した図7のHVPE装置を用いた比較例1では、GaN層
厚が5μmを超えると歩留が急激に低下したが、実施例1の図10のHVPE装置による
GaN層成長では、GaN層の厚さが8μmまでは、ほぼ100%の歩留であった。実施
例1では、GaN層の厚さが8μmを超えると徐々に歩留は低下したが、その低下の度合
いは比較例1よりもずっと緩やかであり、20μmの厚さにおいてもなお15%の歩留が
得られた。また、比較例1では歩留が低下するGaN層の厚さが5〜6μmにおいて、最
小のXRD半値幅として(0002)回折では120秒、(10−12)回折では350
秒が得られた。これを超える厚さにおいてXRD半値幅が増加した。これに対して、実施
例1のHVPE装置によるGaN層では、15μmの厚まで半値幅が減少し続け、最小の
半値幅として(0002)回折では60秒、(10−12)回折では150秒が得られた

すなわち、実施例1の図1 0に示すHVPE装置を用いることにより、従来よりも厚
いGaN層を歩留良く成長でき、このようにして成長した厚いGaN層においては、従来
よりも改善した結晶性を得られるということが示された。
The epitaxial wafers having various thicknesses of GaN layers grown in this manner are used for each G.
Based on yield and X-ray diffraction (XRD) measurements when 20 aN layer thicknesses were produced (
The average value of the half width of (0002) diffraction and the average value of the half width of (10-12) diffraction are indicated by crosses in FIG. In Comparative Example 1 using the HVPE apparatus of FIG. 7 to which the conventional method was applied, the yield dropped sharply when the GaN layer thickness exceeded 5 μm, but in the GaN layer growth by the HVPE apparatus of FIG. The yield was almost 100% until the thickness of the GaN layer was 8 μm. In Example 1, when the thickness of the GaN layer exceeded 8 μm, the yield gradually decreased, but the degree of the decrease was much slower than that of Comparative Example 1, and even at a thickness of 20 μm, the yield was still 15%. A distillate was obtained. In Comparative Example 1, the minimum XRD half-value width is 120 seconds for (0002) diffraction and 350 for (10-12) diffraction when the thickness of the GaN layer where the yield decreases is 5 to 6 μm.
Seconds were obtained. In the thickness exceeding this, the XRD half-width increased. On the other hand, in the GaN layer by the HVPE apparatus of Example 1, the full width at half maximum continues to decrease to a thickness of 15 μm, and the minimum half width is 60 seconds for (0002) diffraction and 150 seconds for (10-12) diffraction. Obtained.
That is, by using the HVPE apparatus shown in FIG. 10 of Example 1, a thicker GaN layer can be grown with a higher yield, and the thicker GaN layer thus grown has improved crystallinity over the conventional one. It was shown that

実施例1のHVPE装置によるGaN層の断面を、蛍光顕微鏡により観察した結果を図
12に模式的に示す。比較例1の図9の場合と同様に、C面f1上のGaN結晶2aとC
面f1から傾いた面f2上のGaN結晶2bとで色の違いは見られることもあったが、その
場合でもC面から傾いた面f2の法線方向d2に成長したGaN結晶2bの厚さは非常に薄
く、最大でもC面f1の法線方向d1で成長したGaN結晶2aの10分の1未満の厚さで
あった。すなわち、種結晶基板1の外周に窒素パージを行った結果、種結晶基板1の外周
部付近の成長原料が希釈されると共に、水素ガスやHClガスによるエッチング作用が強
まり、GaN結晶2の外周端部にあるC面から傾いた面上のGaN結晶2bの成長速度が
、C面上のGaN結晶2aの成長速度の10分の1未満となっているということである。
実施例1のGaN結晶2に対するマイクロラマン測定の結果、結晶2a、結晶2bのそれ
ぞれの不純物濃度は、比較例1と同様な不純物濃度であった。
以上の結果より、実施例1の図10のHVPE装置を用いたことにより、GaN結晶2
の外周部のC面から傾いた面上への高不純物濃度の結晶2bの成長が抑制され、クラック
が抑制されたと考えられる。また、この結果、クラックを防止しつつ厚くGaN層2を成
長できるようになったため、従来以上の結晶性の改善が達成されたのである。
The result of having observed the cross section of the GaN layer by the HVPE apparatus of Example 1 with the fluorescence microscope is typically shown in FIG. As in the case of FIG. 9 of Comparative Example 1, the GaN crystal 2a and C on the C plane f 1
There was also in the plane f 1 from a plane inclined f 2 on the GaN crystal 2b difference in color observed, the grown GaN crystal in the normal direction d 2 of the surface f 2 inclined from the C-plane Even then The thickness of 2b was very thin, and was at most less than 1/10 of the thickness of the GaN crystal 2a grown in the normal direction d 1 of the C plane f 1 . That is, as a result of performing nitrogen purge on the outer periphery of the seed crystal substrate 1, the growth raw material in the vicinity of the outer periphery of the seed crystal substrate 1 is diluted, and the etching action by hydrogen gas or HCl gas is strengthened. That is, the growth rate of the GaN crystal 2b on the surface inclined from the C plane is less than 1/10 of the growth rate of the GaN crystal 2a on the C plane.
As a result of micro-Raman measurement on the GaN crystal 2 of Example 1, the impurity concentration of each of the crystals 2a and 2b was the same as that of Comparative Example 1.
From the above results, by using the HVPE apparatus of FIG.
It is considered that the growth of the crystal 2b having a high impurity concentration on the surface inclined from the C-plane of the outer peripheral portion of the metal was suppressed, and cracks were suppressed. As a result, since the GaN layer 2 can be grown thick while preventing cracks, the crystallinity is improved more than before.

更に、実施例1の方法を用いると、サファイアの異種基板上にGaN層を成長し、成長
後にエピタキシヤルウエハを室温にまで冷やした際のエピタキシヤルウエハの曲率半径を
、比較例1よりも大きくできることが判明した。
サファイア基板上にGaN層を成長した場合には、GaN表面を上に向けた場合に、上
側に凸伏にエピタキシヤルウエハが反る。例えば、比較例1により直径2インチで350
μm厚のサファイア基板上にGaN層を8μm成長した場合には、その反り量(GaN表
面の中心と端部の高低差)はおよそ120μmであり、その際のウエハの曲率半径は2.
6m程度である。これを、実施例1の方法を用いると、同一のサファイア基板上にGaN
層を8μm成長した場合、反り量は50μmと小さくなり、曲率半径は6mと大きくなる
Further, when the method of Example 1 is used, the radius of curvature of the epitaxial wafer when a GaN layer is grown on a sapphire heterogeneous substrate and the epitaxial wafer is cooled to room temperature after growth is larger than that of Comparative Example 1. It turns out that you can.
When a GaN layer is grown on a sapphire substrate, when the GaN surface is directed upward, the epitaxial wafer is warped in an upwardly convex manner. For example, according to Comparative Example 1, the diameter is 2 inches and 350
When a GaN layer is grown on a sapphire substrate having a thickness of 8 μm, the amount of warpage (the difference in height between the center and end of the GaN surface) is about 120 μm, and the curvature radius of the wafer at that time is 2.
It is about 6m. When this is used in the method of Example 1, GaN is formed on the same sapphire substrate.
When the layer is grown by 8 μm, the amount of warpage is as small as 50 μm and the radius of curvature is as large as 6 m.

様々ひな厚さのサファイア基板上に様々な厚さのGaN層を成長し、比較検討したとこ
ろ、サファイア基板上のGaN層の曲率半径R(m)は、GaN層の厚さをt(μm)と
すると、係数Aを用いて、
R=A/t ……式(1)
と記述できることが明らかとなった。
When GaN layers with various thicknesses were grown on sapphire substrates with various thicknesses and compared, the radius of curvature R (m) of the GaN layer on the sapphire substrate was determined by changing the thickness of the GaN layer to t (μm) Then, using the coefficient A,
R = A / t Equation (1)
It became clear that it can be described.

つまり、本発明の製造方法により作製されたエピタキシャルウェハは、前述した式(2
)を満たし、曲率半径が大きく、反り量の小さいエピタキシヤルウエハとなる。上記のG
aN層の上に発光ダイオードやトランジスタ構造を形成し、これにフォトリソグラフィー
プロセスなどを施す場合に有利である。フォトグラフィープロセスにおいて、エピタキシ
ヤルウエハが大きく反っていると、エピタキシヤルウエハに転写する素子パターンの分解
能が劣化し、微細な素子を形成することが不可能となり、フォトリソグラフィー工程の歩
留が低下するなどの悪影響がある。
That is, the epitaxial wafer manufactured by the manufacturing method of the present invention is obtained by the above formula (2
), A radius of curvature is large, and an epitaxial wafer with a small amount of warpage is obtained. G above
This is advantageous when a light emitting diode or a transistor structure is formed on the aN layer and subjected to a photolithography process or the like. In the photolithography process, if the epitaxial wafer is greatly warped, the resolution of the element pattern transferred to the epitaxial wafer deteriorates, making it impossible to form fine elements, and the yield of the photolithography process is reduced. There are adverse effects such as.

(実施例2)
実施例2では、実施例1の方法において、サファイアの種結晶基板1外周部へのパージ
ガスgである上記窒素ガスの流量を、2.0slmから10slmの範囲で種々に変更し
て、実施例1と同様の実験を行った。
(Example 2)
In Example 2, in the method of Example 1, the flow rate of the nitrogen gas that is the purge gas g to the outer periphery of the sapphire seed crystal substrate 1 was variously changed in the range of 2.0 slm to 10 slm, and Example 1 was performed. The same experiment was conducted.

パージ窒素ガスの流量が2slm以上の場合には、エピタキシヤルウエハの歩留、Ga
Nの結晶性、エピタキシヤルウエハの曲率半径ともに実施例1の結果とほぼ同等の結果が
得られた。また、パージ窒素ガス流量が2〜5slmの間では、C面から傾いた面の成長
速度はC面上の成長速度の10分の1未満から0の範囲であった。このため、従来例のよ
うな外周部での応力の発生が抑制され、クラックの発生が抑制されたのである。
また、パージ窒素流量が6slm以上でも、実施例1とほぼ同等の結果が得られた。し
かしこの場合には、断面の蛍光顕微鏡の観察においてもC面から傾いた面上での成長は全
く見られなかった。この場合には、サファイア基板上の成長領域の広さが、パージ窒素ガ
ス流量5slmの場合よりも縮小しており、GaN成長層の端面では成長ではなくエッチ
グが生じていると判断された。エッチング速度は、C面上の成長速度と同等の成長速度か
ら10分の1の成長速度までの範囲であった。
このエッチング速度は、更に速くても歩留と結晶性の観点からは問題が無い。しかしな
がら、エッチング速度が速すぎると、最終的に得られる結晶の大きさが極端に小さくなる
ので、実用的にはエッチング速度は意図した成長面(C面)上の成長速度以下であるのが
望ましいと考える。
When the flow rate of purge nitrogen gas is 2 slm or more, the yield of epitaxial wafers, Ga
Both the crystallinity of N and the radius of curvature of the epitaxial wafer were almost the same as those of Example 1. Further, when the purge nitrogen gas flow rate was between 2 and 5 slm, the growth rate of the surface inclined from the C plane was in the range of less than 1/10 to 0 of the growth rate on the C plane. For this reason, generation | occurrence | production of the stress in an outer peripheral part like a prior art example was suppressed, and generation | occurrence | production of a crack was suppressed.
Further, even when the purge nitrogen flow rate was 6 slm or more, a result almost the same as that of Example 1 was obtained. In this case, however, no growth on the plane inclined from the C-plane was observed even when the cross-section was observed with a fluorescence microscope. In this case, the width of the growth region on the sapphire substrate was smaller than that in the case of the purge nitrogen gas flow rate of 5 slm, and it was determined that etching was generated on the end face of the GaN growth layer instead of growth. The etching rate ranged from a growth rate equivalent to the growth rate on the C-plane to a growth rate of 1/10.
Even if this etching rate is higher, there is no problem from the viewpoint of yield and crystallinity. However, if the etching rate is too high, the size of the finally obtained crystal becomes extremely small. Therefore, it is desirable that the etching rate is practically equal to or lower than the growth rate on the intended growth surface (C plane). I think.

ここで、パージ窒素ガス流量を増やした場合に、まずC面から傾いた面上の成長速度が
減少し、更にはエッチングが生じることの意味を考える。本実施例でのGaNの成長にお
いては、成長雰囲気に水素を含む。 GaNは高温では水素によりエッチングされること
が知られており、GaNが成長するということは、成長速度がエッチング速度を上回った
結果と考えられる。すなわち、本実施例の状況においては、GaNの成長を成長とエッチ
ングが共存する環境で行っており、エピタキシヤルウエハ外周部を窒素でパージし原料ガ
スを希釈することで、GaN結晶の外周部でのエッチング作用が強められ、成長速度の減
少やエッチングが観察されることになる。
上記のエッチングが、エピタキシヤルウエハ外周端部のGaN結晶にのみ作用すること
から、本実施例のパージ窒素ガスの流量の範囲では、エッチング作用はるつぼ状の容器の
側壁内面から距離が離れると急速に弱まるものと考えられる。
(参考例)
実施例2の製造方法において、パージ窒素ガスの流量を1slm以下とした場合、エピ
タキシヤルウエハの歩留、GaNの結晶性、エピタキシヤルウエハの曲率半径ともに比較
例1とほぼ同様の結果となった。
これは、パージガスgの流量が少なかったために、エピタキシャルウェハのC面から傾
いた面の法線方向の成長速度がC面上の成長速度の1/5以上となっており、C面から傾
いた面の法線方向に成長した不純物濃度の高い結晶部分がC面上の結晶の成長厚の1/1
0以上となったため、従来例と同様に外周部に応力が発生したのが原因と考えられる。よ
って、パージガスgは1slmよりも多いほうがよく、2slm以上が好適であることが
分かる。
Here, it is considered that when the purge nitrogen gas flow rate is increased, the growth rate on the plane inclined from the C plane is decreased, and further etching occurs. In the growth of GaN in this embodiment, hydrogen is included in the growth atmosphere. GaN is known to be etched by hydrogen at a high temperature, and the growth of GaN is considered to be a result of the growth rate exceeding the etching rate. That is, in the situation of this example, the growth of GaN is performed in an environment where growth and etching coexist, and the outer peripheral portion of the epitaxial wafer is purged with nitrogen to dilute the source gas, so that the outer peripheral portion of the GaN crystal is diluted. The etching action is strengthened, and a decrease in the growth rate and etching are observed.
Since the above etching acts only on the GaN crystal at the outer peripheral edge of the epitaxial wafer, the etching action is rapid when the distance from the inner surface of the side wall of the crucible container is increased within the range of the flow rate of the purge nitrogen gas in this embodiment. It seems to be weakened.
(Reference example)
In the manufacturing method of Example 2, when the flow rate of the purge nitrogen gas was 1 slm or less, the yield of the epitaxial wafer, the crystallinity of GaN, and the radius of curvature of the epitaxial wafer were almost the same as those in Comparative Example 1. .
This is because the growth rate in the normal direction of the plane inclined from the C plane of the epitaxial wafer is 1/5 or more of the growth rate on the C plane because the flow rate of the purge gas g is small. The crystal portion having a high impurity concentration grown in the normal direction of the plane is 1/1 of the crystal growth thickness on the C plane.
Since it became 0 or more, it is considered that the stress was generated in the outer peripheral portion as in the conventional example. Therefore, it is understood that the purge gas g is preferably larger than 1 slm, and preferably 2 slm or more.

(実施例3)
実施例3では、実施例2と同様の実験を、エピタキシヤルウエハ外周部へのパージガス
をアルゴン、ヘリウムに変えて行ったところ、実施例2とほぼ同様の結果が得られた。こ
の結果から、パージガスとしては、窒素、アルゴン、ヘリウム以外の不活性ガスを用いて
、本発明の効果が得られるものと考えられる。
(Example 3)
In Example 3, the same experiment as in Example 2 was performed by changing the purge gas to the outer peripheral portion of the epitaxial wafer to argon and helium, and almost the same result as in Example 2 was obtained. From this result, it is considered that the effect of the present invention can be obtained by using an inert gas other than nitrogen, argon or helium as the purge gas.

(実施例4)
実施例4では、実施例2と同様の実験を、エピタキシヤルウエハ外周部へのパージガス
を水素、塩素、塩化水素といったGaNをエッチングするガスを用いた。その結果、パー
ジガス流量の範囲は実施例2とは異なるが、C面から傾いた面上での成長速度をC面上の
成長速度の10分の1未満となるように適切にパージガス流量を調整することで、実施例
2と同様の結果が得られた。
また、実施例4の方法は、原料ガスとして供給するガスに含む水素の量を、実施例1〜
3の場合よりも減らせるという利点がある。このため、実施例1〜3よりも意図した成長
面におけるエッチング作用が減り、原料効率が向上するという利点がある。
Example 4
In Example 4, the same experiment as in Example 2 was performed using a gas for etching GaN such as hydrogen, chlorine, and hydrogen chloride as a purge gas to the outer peripheral portion of the epitaxial wafer. As a result, although the range of the purge gas flow rate is different from that of Example 2, the purge gas flow rate is appropriately adjusted so that the growth rate on the plane inclined from the C plane is less than 1/10 of the growth rate on the C plane. As a result, the same result as in Example 2 was obtained.
Moreover, the method of Example 4 uses the amount of hydrogen contained in the gas supplied as the raw material gas in Examples
There is an advantage that it can be reduced compared to the case of 3. For this reason, there is an advantage that the etching action on the growth surface intended as compared with Examples 1 to 3 is reduced and the raw material efficiency is improved.

(実施例5)
実施例5では、図7に示すHVPE装置のトレー3上に、高さ3mmの円筒状の金属製
のリングを追加して設置し、リングの内周面とトレー3の設置面4とによって、るつぼ形
状の容器の内面を構成した。上記リングの材質としてはTi(チタン)とし、成長前にH
VPE装置内でアンモニア2slm、水素8slm中で2時間窒化処理を施し、リングの
表面を窒化チタンに変えて結晶成長を行った。
このリングを追加したHVPE装置で、比較例1と同様の実験を行ったところ、実施例
1の場合と同様の歩留向上、結晶性改善、曲率半径増大の効果が得られた。また、この場
合には、C面から傾いた面に対するエッチングが生じており、そのエッチング速度はC面
上の成長速度の3分の1程度であった。
(Example 5)
In Example 5, a cylindrical metal ring having a height of 3 mm is additionally installed on the tray 3 of the HVPE apparatus shown in FIG. 7, and the inner peripheral surface of the ring and the installation surface 4 of the tray 3 The inner surface of the crucible-shaped container was constructed. The material of the ring is Ti (titanium) and H before growth.
In the VPE apparatus, nitriding treatment was performed in 2 slm of ammonia and 8 slm of hydrogen for 2 hours, and the surface of the ring was changed to titanium nitride to perform crystal growth.
When an experiment similar to that in Comparative Example 1 was performed using the HVPE apparatus to which this ring was added, the same effects of yield improvement, crystallinity improvement, and curvature radius increase as in Example 1 were obtained. In this case, etching occurs on the surface inclined from the C plane, and the etching rate is about one third of the growth rate on the C plane.

実施例5では、エピタキシヤルウエハ外周部へのパージガス供給がなかったが、パージ
ガス供給と同等の効果が得られたのは、容器の側壁を構成するリングの金属窒化物が触媒
となり、原料ガス中に含まれる水素が分解され強いエッチング作用を持つ原子状水素を発
生したためと考えられる。
同様の側壁として、例えば石英やカーボンのリングで構成した場合には、クラックは抑
制されなかった。また、金属窒化物のリングを用いた場合でも、原料ガス中の水素の総流
量を1slm以下とした時には、C面から傾いた面上の成長速度が速くなり、クラックが
生じた。以上の結果から、金属窒化物の存在と、ある程度の水素の量が必要であることが
示され、金属窒化物の触媒効果による原子状水素の発生によるエッチング作用の発現とい
う考えが裏付けられる。
また、原料ガス中の水素流量を2〜7slmの範囲で変えた場合には、実施例2のパー
ジガス流量を変えた場合と同様に、C面から傾いた面上での成長速度(エッチング速度)
が変化したが、成長速度としてはC面上の成長速度の10分の1未満であり、エッチング
速度としてはC面上の成長速度以下であり、この範囲においては、実施例1と同様の歩留
向上と結晶性の改善効果が見られた。
In Example 5, the purge gas was not supplied to the outer peripheral portion of the epitaxial wafer, but the same effect as the purge gas supply was obtained because the metal nitride of the ring constituting the side wall of the container became a catalyst, This is considered to be because atomic hydrogen having a strong etching action was generated by decomposing hydrogen contained in.
For example, when the side wall is formed of a ring made of quartz or carbon, cracks were not suppressed. Even when a metal nitride ring was used, when the total flow rate of hydrogen in the source gas was set to 1 slm or less, the growth rate on the plane inclined from the C plane increased and cracks occurred. From the above results, it is shown that the presence of metal nitride and a certain amount of hydrogen are necessary, and the idea of the expression of etching action due to generation of atomic hydrogen by the catalytic effect of metal nitride is supported.
When the hydrogen flow rate in the source gas is changed in the range of 2 to 7 slm, the growth rate (etching rate) on the surface inclined from the C plane is the same as when the purge gas flow rate in Example 2 is changed.
However, the growth rate is less than one-tenth of the growth rate on the C plane, and the etching rate is less than or equal to the growth rate on the C plane. The effect of improving the yield and improving the crystallinity was observed.

(実施例6)
実施例6では、実施例5と同様の実験を、容器側壁を構成するリングの金属材料をZr
、Nb、Ta、Cr、W、Mo、Niのいずれかとして行った。その結果、実施例5と同
様の結果が得られた。
(Example 6)
In Example 6, the same experiment as in Example 5 was performed, and the metal material of the ring constituting the container side wall was changed to Zr.
, Nb, Ta, Cr, W, Mo, or Ni. As a result, the same result as in Example 5 was obtained.

(実施例7)
実施例7では、実施例1〜6と同様の実験を、GaN層の最上部の2〜3μmの成長時
にエッチング/ドープライン24よりジクロロシラン(SiH2Cl2)を導入し、0.5
×1018/cm3〜5×1018/cm3の不純物濃度のn−GaN層を成長した。成長条件
により異なるバックグラウンドの不純物濃度(アンドープでの不純物濃度)と、ジクロロ
シランによるドープとを併用した成長である。この場合にも、実施例1〜6と同様の結果
を得た。
(Example 7)
In Example 7, the same experiment as in Examples 1 to 6 was performed, and dichlorosilane (SiH 2 Cl 2 ) was introduced from the etching / dope line 24 during the growth of 2 to 3 μm at the top of the GaN layer, and 0.5
An n-GaN layer having an impurity concentration of × 10 18 / cm 3 to 5 × 10 18 / cm 3 was grown. The background impurity concentration differs depending on the growth conditions (undoped impurity concentration) and dichlorosilane doping is used in combination. In this case, the same results as in Examples 1 to 6 were obtained.

(実施例8)
実施例8では、実施例1〜7同様の実験を、成長温度、ガス流量、成長速度、成長圧力
を様々に変えて行った。得られる歩留やXRD半値幅は上記実施例とは若干異なるものの
、GaN結晶外周部のC面から傾いた面の成長速度がC面の成長速度の10分の1未満で
有る場合に、歩留向上と結晶性の改善が見られるという実施例1〜7と同様の結果が得ら
れた。
また、これまでの実験全体を通じて、GaN成長層のGa極性のC面と、外周に発生す
るC面から傾いた面とのなす角度は、GaN結晶のM軸方向を向いた端部ではM面が形成
され90度となりやすく、それ以外の端部では図12に示すように、C面とC面から傾い
た面のなす角度が110度〜135度程度である傾斜した面が生じた。
(Example 8)
In Example 8, experiments similar to those in Examples 1 to 7 were performed by changing the growth temperature, gas flow rate, growth rate, and growth pressure in various ways. Although the yield and XRD half-value width obtained are slightly different from those in the above examples, the growth rate is less than one-tenth of the growth rate of the C-plane. The same results as in Examples 1 to 7 were obtained, indicating that the yield was improved and the crystallinity was improved.
Throughout the experiments so far, the angle formed between the Ga-polar C-plane of the GaN growth layer and the plane inclined from the C-plane generated on the outer periphery is the M-plane at the end of the GaN crystal facing the M-axis direction. The angle formed between the C plane and the plane inclined from the C plane was about 110 degrees to 135 degrees, as shown in FIG.

(実施例9)
実施例9では、実施例1〜8と同様の実験を、GaN結晶と側壁の距離を0.5〜20
mmの範囲で変化させて行った。上記の距離が1mmよりも小さい場合には、成長中に、
エピタキシヤルウエハのGaN結晶端面が容器側壁と接触する場合が生じた。この場合、
エピタキシヤルウエハ端面のGaN結晶と側壁が固着したのが原因で、成長中に応力が発
生し、クラックが発生しやすくなった。また、上記の距離が10mmよりも大きい場合に
は、エピタキシヤルウエハ端部のみに局所的にエッチング作用を加えることが難しくなり
、クラックを生じさせないような条件を選択すると、GaN層が成長する領域の縮小が顕
著に見られた。
以上より、GaN結晶と側壁との距離としては1〜10mmが適切と判断した。
Example 9
In Example 9, the same experiment as in Examples 1 to 8 was performed, and the distance between the GaN crystal and the side wall was changed to 0.5 to 20.
The change was made within the range of mm. If the above distance is less than 1 mm, during growth,
In some cases, the GaN crystal end face of the epitaxial wafer was in contact with the container side wall. in this case,
Due to the fact that the GaN crystal and the side wall of the end face of the epitaxial wafer were fixed, stress was generated during growth, and cracks were likely to occur. In addition, when the distance is larger than 10 mm, it becomes difficult to locally apply an etching action only to the edge portion of the epitaxial wafer. The reduction of was noticeable.
From the above, it was determined that 1 to 10 mm was appropriate as the distance between the GaN crystal and the side wall.

以上の実施例から、歩留良く厚くて結晶性の高い(XRD半値幅の狭い)GaN層を成
長するためには、側壁を持つるつぼ形状の容器内に種結晶基板を設置し、距離とともに弱
まるエッチング作用を持つ側壁とGaN結晶外周との距離を1〜10mmの範囲に維持し
、すなわち、るつぼ形状の容器の内面形状を概ね踏襲した形状のGaN結晶を、容器の内
面のうち成長開始時にGaNと接触していなかった部分と、成長の全期間を通じて接触せ
ずに成長することが重要であると結論付けられる。また、上記実施例により実現されるG
aN層の特徴としては、意図的に成長をおこなった面上(実施例では主にGa極性のC面
)の結晶の外周部にある不純物濃度の高い結晶部分の成長厚が、意図的に成長をおこなっ
た面上の結晶の成長厚の10分の1以上の厚さで持たないという点が特筆される。また、
上記実施例によるGaNエピタキシヤルウエハは、従来法よりも大きな曲率半径を持つ点
も、デバイス応用上は重要な利点である。
From the above examples, in order to grow a GaN layer with high yield and high crystallinity (a narrow XRD half width), a seed crystal substrate is placed in a crucible-shaped container having a side wall, and decreases with distance. The distance between the etching side wall and the outer periphery of the GaN crystal is maintained in the range of 1 to 10 mm, that is, the GaN crystal having a shape substantially following the inner shape of the crucible-shaped container is formed on the inner surface of the container at the start of growth. It can be concluded that it is important to grow without contact with the parts that were not in contact with the whole period of growth. In addition, G realized by the above embodiment
As a feature of the aN layer, the growth thickness of the crystal portion having a high impurity concentration in the outer peripheral portion of the crystal on the surface on which the growth is intentionally performed (mainly Ga-polar C-plane in the embodiment) is intentionally grown. Special mention is made of the fact that it does not have a thickness of 1/10 or more of the growth thickness of the crystal on the surface subjected to the above. Also,
The point that the GaN epitaxial wafer according to the above embodiment has a larger radius of curvature than the conventional method is also an important advantage in device application.

[実施例10及び比較例2]
実施例10及び比較例2では、上記特許文献3に記載のボイド形成剥離法(VAS法)
によるGaN自立基板の製作を行った。
[Example 10 and Comparative Example 2]
In Example 10 and Comparative Example 2, the void formation peeling method (VAS method) described in Patent Document 3 above.
A GaN free-standing substrate was manufactured.

(比較例2)
図13にVAS法の概要を示す。まず種結晶基板としてボイド基板40を準備した(図
13(a))。ボイド基板40は、サファイア基板41上に有機金属気相成長法(MOV
PE法)などで厚さ300nm程度のGaN薄膜を成長し、その表面にTi膜を蒸着し、
水素、アンモニア中で熱処理することで得られる。上記熱処理により、Ti膜を網目構造
のTiN層43に変換するとともに、GaN薄膜に多数のボイド44が形成されたボイド
含有GaN層43としたものである。
次に、ボイド基板40上に、HVPE法により厚くGaN層45を成長し(図13(b
))、その後、ボイド部分よりサファイア基板41を剥離して、GaN自立基板となるG
aN結晶(GaN単結晶)46を得た(図13(c))。
サファイア基板41としては、C面からA軸あるいはM軸方向、またはその間の方向に
0.05〜2°の範囲で傾斜した表面を持ち、厚さが300〜1500μm、直径が35
〜200mmのものを用いた。上記のボイド基板製作時のTiの厚さは5〜100nmと
した。
(Comparative Example 2)
FIG. 13 shows an outline of the VAS method. First, a void substrate 40 was prepared as a seed crystal substrate (FIG. 13A). The void substrate 40 is formed on the sapphire substrate 41 by metal organic chemical vapor deposition (MOV).
A GaN thin film having a thickness of about 300 nm is grown by a PE method, and a Ti film is deposited on the surface.
Obtained by heat treatment in hydrogen or ammonia. By the heat treatment, the Ti film is converted into a TiN layer 43 having a network structure, and a void-containing GaN layer 43 in which a large number of voids 44 are formed in the GaN thin film is obtained.
Next, a thick GaN layer 45 is grown on the void substrate 40 by the HVPE method (FIG. 13B
)) After that, the sapphire substrate 41 is peeled off from the void portion to form a GaN free-standing substrate.
An aN crystal (GaN single crystal) 46 was obtained (FIG. 13C).
The sapphire substrate 41 has a surface inclined in a range of 0.05 to 2 ° in the direction of the A-axis or M-axis from the C-plane or in the direction therebetween, the thickness is 300 to 1500 μm, and the diameter is 35
The one of ~ 200 mm was used. The thickness of Ti at the time of manufacturing the void substrate was set to 5 to 100 nm.

HVPE成長の条件としては、例えば、基板温度800〜1200℃、圧力10kPa
〜120kPaで、30〜1000μm/時の成長速度とし、上記ボイド基板40上に、
35〜200mm径で50μm〜10mm厚のGaN単結晶を製作した。成長装置として
は、図7に示すHVPE装置を用いた。各ラインの流量は以下の範囲とした。III族ライ
ン25からHClを25〜1000ccm、水素を2slmに加え、窒素をIII族ライン
25の総流量が3slmとなる流量とした。V族ライン23からアンモニアを1〜2sl
mと水素を1slmに加えて、窒素をV族ライン23の総流量が3slmとなる流量とし
た。また、エッチング/ドープライン24からは水素を3slm流した。
As conditions for the HVPE growth, for example, the substrate temperature is 800 to 1200 ° C., and the pressure is 10 kPa.
With a growth rate of 30 to 1000 μm / hour at ˜120 kPa, on the void substrate 40,
A GaN single crystal having a diameter of 35 to 200 mm and a thickness of 50 μm to 10 mm was manufactured. As the growth apparatus, the HVPE apparatus shown in FIG. 7 was used. The flow rate of each line was in the following range. From group III line 25, HCl was added to 25 to 1000 ccm and hydrogen was added to 2 slm, and nitrogen was adjusted to a total flow rate of 3 slm. 1 to 2 sl of ammonia from group V line 23
m and hydrogen were added to 1 slm, and nitrogen was adjusted to a flow rate at which the total flow rate of the group V line 23 was 3 slm. Further, 3 slm of hydrogen was passed from the etching / dope line 24.

ボイド基板上に形成されるGaN単結晶の転位密度は、ボイド基板製作時のTiの厚さ
で決定される。Ti膜が薄いほど、ボイド基板のMOVPE成長したボイド含有GaN層
43中の転位がその上に形成される厚いGaN単結晶45に伝播されやすいため、高転位
密度となる。Ti膜厚が5〜100nmの範囲で得られるGaN単結晶の転位密度は、1
×104/cm2〜1×108/cm2の範囲である。
また、得られたGaN結晶は、成長終了後にいずれも表面にピットがほとんど無い鏡面
であった。このGaN結晶中の電子濃度としては、アンドープ成長あるいは成長中に添加
するジクロロシランの流量を調整して、1×1015/cm3〜5×1018/cm3の範囲と
した。
The dislocation density of the GaN single crystal formed on the void substrate is determined by the thickness of Ti when the void substrate is manufactured. The thinner the Ti film, the higher the dislocation density because dislocations in the void-containing GaN layer 43 grown by MOVPE on the void substrate are more easily propagated to the thick GaN single crystal 45 formed thereon. The dislocation density of the GaN single crystal obtained when the Ti film thickness is 5 to 100 nm is 1
In the range of × 10 4 / cm 2 ~1 × 10 8 / cm 2.
The obtained GaN crystals were mirror surfaces with almost no pits on the surface after the growth was completed. The electron concentration in the GaN crystal was adjusted to 1 × 10 15 / cm 3 to 5 × 10 18 / cm 3 by adjusting the flow rate of undoped growth or dichlorosilane added during growth.

これらの各種条件の組み合わせにより、50μm〜10mm厚のGaN結晶(GaN層
)を成長した場合の歩留(同条件で20枚成長した際の不良ではない割合、5mm以上の
長さのクラックが生じると不良と定義した)の成長厚依存性を図14の丸印○に示す。歩
留は、キャリア濃度や転位密度にはほとんど依存せず、GaN結晶の厚さのみに強く依存
した。GaN結晶の厚さが100μm以下の場合、100%近い歩留が得られたが、Ga
N結晶の厚さが100μmを超えると歩留は急激に減少し、800μmを超える厚さのG
aN自立基板(GaN結晶)の歩留は10%未満であった。
The combination of these various conditions yields a yield of GaN crystals (GaN layer) with a thickness of 50 μm to 10 mm (a non-defective ratio when 20 pieces are grown under the same conditions), and a crack with a length of 5 mm or more is generated. The growth thickness dependence of the defect defined as defective is indicated by a circle ○ in FIG. The yield hardly depended on the carrier concentration or the dislocation density, but strongly depended only on the thickness of the GaN crystal. When the thickness of the GaN crystal was 100 μm or less, a yield of nearly 100% was obtained.
When the thickness of the N crystal exceeds 100 μm, the yield decreases rapidly, and the thickness of G exceeds 800 μm.
The yield of the aN free-standing substrate (GaN crystal) was less than 10%.

これらのGaN自立基板(GaN結晶)の断面を蛍光顕微鏡で観測したところ、図9に
示す様に比較例1と同様な異なる色の領域がGaN自立基板の端部に観測され、側面に垂
直な方向の成長速度は主面に垂直な成長速度の1/10以上であった。これらの各部分の
GaN結晶をマイクロラマン法で調査したころ、自立基板(GaN結晶)端部の傾いた面
上に成長したGaN結晶と、Ga極性のC面上に成長したGaN結晶では不純物濃度が異
なり、C面上のGaN結晶では0.5×1018/cm3〜5×1018/cm3程度のn型で
あったのが、C面から傾いた面で成長したGaN結晶では同じn型ではあるものの、その
2倍以上の1×1019/cm3〜5×1019/c m3という極めて高い不純物濃度となって
いた。
When cross sections of these GaN free-standing substrates (GaN crystals) were observed with a fluorescence microscope, regions of different colors similar to those of Comparative Example 1 were observed at the end portions of the GaN free-standing substrates as shown in FIG. The growth rate in the direction was 1/10 or more of the growth rate perpendicular to the main surface. When the GaN crystal in each of these parts was investigated by the micro-Raman method, the impurity concentration in the GaN crystal grown on the inclined surface of the free-standing substrate (GaN crystal) end and the GaN crystal grown on the Ga-polar C-plane However, the GaN crystal on the C plane had an n-type of about 0.5 × 10 18 / cm 3 to 5 × 10 18 / cm 3 , but the same for the GaN crystal grown on the plane inclined from the C plane. although the n-type, has been a very high impurity concentration of 1 × 10 19 / cm 3 ~5 × 10 19 / c m 3 of more than twice.

(実施例10)
一方、実施例10では、実施例5と同様に図7のトレー3上に触媒となる金属窒化物の
リングを設置したHVPE装置、あるいは図10に示すHVPE装置を用い、実施例1〜
9などと同様に、種結晶基板であるボイド基板40外周に、希釈ガス、エッチングガスあ
るいは水素ガスを導入する本発明の方法により、実施例1〜9と同様に、C面から傾いた
面のGaN結晶の成長速度を、C面のGaN結晶の成長速度の10分の1未満とした場合
には、図14のバツ印×に示す様に歩留は劇的に向上した。GaN層の厚さが1500μ
mまでは、ほぼ100%の歩留が得られ、最も厚い10mmの場合にも10%の歩留を維
持していた。
(Example 10)
On the other hand, in Example 10, as in Example 5, an HVPE apparatus in which a metal nitride ring serving as a catalyst was installed on the tray 3 in FIG. 7 or an HVPE apparatus shown in FIG.
In the same manner as in Examples 1 to 9, the surface of the surface inclined from the C plane is obtained by the method of the present invention in which dilution gas, etching gas or hydrogen gas is introduced into the outer periphery of the void substrate 40 which is a seed crystal substrate. When the growth rate of the GaN crystal was set to be less than 1/10 of the growth rate of the C-plane GaN crystal, the yield was dramatically improved as shown by the crosses x in FIG. The thickness of the GaN layer is 1500μ
Up to m, a yield of almost 100% was obtained, and the yield of 10% was maintained even with the thickest 10 mm.

ただし、上記の結果はGaN層4 5の表面が容器側壁の高さよりも低い位置にある場
合に限った話であり、GaN層45の成長表面が側壁の高さよりも高くなった場合には、
歩留が急激に低下した。これは、GaN層45の表面が側壁よりも高くなると、GaN結
晶の外周部でのエッチング作用が弱まり、外周部での成長が生じるために応力が発生した
ためである。また、GaN結晶45と側壁との距離が1mmよりも小さい場合にも、側壁
とGaN結晶が固着しクラックが発生し、歩留が悪化した。GaN結晶45と側壁の距離
が10mmよりも広い場合には、歩留低下は生じないものの、エッチング作用を端面のみ
に局在させることが困難となり、GaN結晶の成長領域が大幅に縮小してしまった。
また、実施例8でも述べたように、GaN成長層のGa極性のC面と、外周に発生する
C面から傾いた面とのなす角度は、GaN結晶のM軸方向を向いた端部ではM面が形成さ
れ90度となりやすく、それ以外の端部では図12に示すように、C面とC面から傾いた
面のなす角度が110度〜135度程度である傾斜した面が生じやすかった。しかし、成
長条件を適切に選ぶことで、外周全体でこの角度を90度とすることも可能である。
However, the above result is limited to the case where the surface of the GaN layer 45 is at a position lower than the height of the side wall of the container, and when the growth surface of the GaN layer 45 is higher than the height of the side wall,
Yield dropped sharply. This is because when the surface of the GaN layer 45 is higher than the side wall, the etching action at the outer peripheral portion of the GaN crystal is weakened, and stress is generated because growth occurs at the outer peripheral portion. In addition, when the distance between the GaN crystal 45 and the side wall is smaller than 1 mm, the side wall and the GaN crystal are fixed, cracks are generated, and the yield is deteriorated. When the distance between the GaN crystal 45 and the side wall is larger than 10 mm, the yield does not decrease, but it becomes difficult to localize the etching action only on the end face, and the growth region of the GaN crystal is greatly reduced. It was.
Further, as described in Example 8, the angle formed between the Ga-polar C-plane of the GaN growth layer and the plane inclined from the C-plane generated on the outer periphery is the end portion of the GaN crystal facing the M-axis direction. The M plane is formed and tends to be 90 degrees, and at the other end, as shown in FIG. 12, an inclined plane with an angle between the C plane and the plane inclined from the C plane of about 110 to 135 degrees is likely to occur. It was. However, this angle can be set to 90 degrees on the entire outer periphery by appropriately selecting the growth conditions.

実施例10及び比較例2から、歩留良く厚いGaN自立基板を得るためには、側壁を持
つるつぼ形状の容器内に種結晶基板を設置し、距離とともに弱まるエッチング作用を持つ
側壁と基板外周の距離を1〜10mmの範囲に維持し、すなわち、るつぼの内面形状を概
ね踏襲した形状のGaN結晶を、容器内面のうち成長開始時に種結晶基板と接触していな
かった部分と、成長の全期間を通じて接触せずに成長することが重要であると結論付けら
れる。また、本実施例により実現されるGaN自立基板の特徴としては、GaN自立基板
の外周部にC面上の結晶より高い不純物濃度の結晶部分の成長厚が、C面上の結晶の成長
厚の10分の1以上の厚さで持たないという点が特筆される。
In order to obtain a thick GaN free-standing substrate with good yield from Example 10 and Comparative Example 2, the seed crystal substrate is placed in a crucible-shaped container having a side wall, and the side wall and the outer periphery of the substrate having an etching action that weakens with distance. Maintaining the distance in the range of 1 to 10 mm, that is, the portion of the inner surface of the vessel that did not contact the seed crystal substrate at the start of growth of the GaN crystal having a shape generally following the inner shape of the crucible, and the entire growth period It is concluded that it is important to grow without contact through. Further, as a feature of the GaN free-standing substrate realized by the present embodiment, the growth thickness of the crystal portion having a higher impurity concentration than the crystal on the C plane on the outer periphery of the GaN free-standing substrate It is worth mentioning that it does not have a thickness of 1/10 or more.

[実施例11及び比較例3]
一般的に、VAS法を含む各種の手法により異種基板上に実現されるGaN自立基板は
、成長中のGaN結晶には厚さ方向に、例えば108/cm2から105/cm2までという
大幅な転位密度の低減が生じる。この転位密度の低減に伴いGaN結晶中には残留歪が導
入されるため、このような異種基板上に成長したGaN自立基板には多くの場合、歪が残
留した状態となっている。典型的には、C面を表面とするGaN自立基板の場合、成長直
後にはC面が2〜4mの曲率半径を持つことになる。
この歪の存在が、実施例10の図8などに示すように、本発明の方法を用いた場合にお
いてさえも、GaN成長厚が1500μmを超えるとクラックの発生により歩留が低下す
る原因となっている。
このような残留歪は、VAS法などにより得られるGaN自立基板の裏面を研磨して除
去することで大幅に低減できる。例えば、1500μm厚のGaN自立基板を成長後に裏
面を1000μm除去すると、成長直後に2〜4mであったC面の曲率半径は10m以上
にまで増大する。このような裏面を研磨したGaN自立基板を種結晶とすると、残留応力
が極めて小さくなるため、異種基板上の成長では不可能なほど厚いGaN層を成長できる
と期待できる。
[Example 11 and Comparative Example 3]
In general, a GaN free-standing substrate realized on a heterogeneous substrate by various methods including the VAS method has a thickness direction of 10 8 / cm 2 to 10 5 / cm 2 for a growing GaN crystal. A significant reduction in dislocation density occurs. Residual strain is introduced into the GaN crystal as the dislocation density is reduced. Therefore, in many cases, strain remains in a GaN free-standing substrate grown on such a heterogeneous substrate. Typically, in the case of a GaN free-standing substrate having a C-plane as a surface, the C-plane has a radius of curvature of 2 to 4 m immediately after growth.
As shown in FIG. 8 of Example 10 and the like, the presence of this strain causes the yield to decrease due to the generation of cracks when the GaN growth thickness exceeds 1500 μm even when the method of the present invention is used. ing.
Such residual strain can be greatly reduced by polishing and removing the back surface of the GaN free-standing substrate obtained by the VAS method or the like. For example, if the back surface is removed by 1000 μm after growing a 1500 μm-thick GaN free-standing substrate, the radius of curvature of the C-plane that was 2 to 4 m immediately after the growth increases to 10 m or more. If such a GaN free-standing substrate whose back surface is polished is used as a seed crystal, the residual stress becomes extremely small, and it can be expected that a GaN layer that is too thick to grow on a heterogeneous substrate is impossible.

(比較例3)
比較例3では、実施例1 0において本発明の方法で、VAS法により成長した150
0μm厚のGaN自立基板の裏面(N極性のC面)を1000μm研磨し、更に表面側(
Ga極性のC面)を100μm研磨し平坦度を高めた400μm厚のGaN自立基板を種
結晶として用いた。そして、このGaN自立基板のGa極性側の表面にHVPE法により
GaN層を成長した。
種結晶となるGaN基板としては、表面がGa極性のC面からA軸あるいはM軸方向、
あるいはその中間の方向に0.05〜2゜の範囲で傾斜した表面を持ち、厚さが400m
m、直径が35〜200mmのものを用いた。典型的な転位密度としては1×106/c
2であった。
(Comparative Example 3)
In Comparative Example 3, 150 grown according to the method of the present invention in Example 10 by the VAS method was used.
The back surface (N-polar C surface) of a 0 μm-thick GaN free-standing substrate is polished by 1000 μm, and the front surface side (
A 400 μm-thick GaN free-standing substrate with 100 μm polished (Ga-polar C-plane) to improve flatness was used as a seed crystal. Then, a GaN layer was grown on the Ga polar side surface of the GaN free-standing substrate by the HVPE method.
As a GaN substrate to be a seed crystal, the surface is Ga-polar C-plane to A-axis or M-axis direction,
Or it has a surface inclined in the range of 0.05 to 2 ° in the middle direction, and the thickness is 400m
m and a diameter of 35-200 mm were used. Typical dislocation density is 1 × 10 6 / c
m 2 .

HVPE成長の条件としては、例えば、基板温度800〜1200℃、圧力10kPa
〜120kPaで、30〜1000μm/時の成長速度とし、50μm〜100mm厚の
GaN単結晶を製作した。成長装置としては、図7に示すHVPE装置を用いた。各ライ
ンの流量は以下の範囲とした。III族ライン25からHClを25〜1000ccm、水
素を2slmに加え、窒素をIII族ライン25の総流量が3slmとなる流量とした。V
族ライン23からアンモニアを1〜2slmと水素を1slmに加えて、窒素をV族ライ
ン23の総流量が3slmとなる流量とした。また、エッチング/ドープライン24から
は水素を3slm流した。
また、ここで用いたGaN単結晶(種結晶)は、VAS法による成長終了後にいずれも
表面にピットがほとんど無い鏡面であった。GaN結晶中の電子濃度としては、アンドー
プ成長あるいは成長中に添加するジクロロシランの流量を調整して、1×1015/cm3
〜5×1018/cm3のものを準備した。
As conditions for the HVPE growth, for example, the substrate temperature is 800 to 1200 ° C., and the pressure is 10 kPa.
A GaN single crystal having a thickness of 50 μm to 100 mm was manufactured at a growth rate of 30 to 1000 μm / hour at −120 kPa. As the growth apparatus, the HVPE apparatus shown in FIG. 7 was used. The flow rate of each line was in the following range. From group III line 25, HCl was added to 25 to 1000 ccm and hydrogen was added to 2 slm, and nitrogen was adjusted to a total flow rate of 3 slm. V
From the group line 23, ammonia was added to 1 to 2 slm and hydrogen was added to 1 slm, and nitrogen was adjusted to a flow rate at which the total flow rate of the group V line 23 was 3 slm. Further, 3 slm of hydrogen was passed from the etching / dope line 24.
The GaN single crystal (seed crystal) used here was a mirror surface with almost no pits on the surface after the growth by the VAS method. The electron concentration in the GaN crystal is 1 × 10 15 / cm 3 by adjusting the flow rate of undoped growth or dichlorosilane added during growth.
The thing of -5 * 10 < 18 > / cm < 3 > was prepared.

これらの各種条件の組み合わせにより、50μm〜100mm厚のGaN結晶(GaN
層)を成長した場合の歩留(5mm以上の長さのクラックが生じると不良)の成長厚依存
性を図15の丸印○に示す。この場合にも、歩留は、キャリア濃度や転位密度にはほとん
ど依存せず、GaN結晶の厚さのみに強く依存した。VAS法によるGaN結晶(種結晶
基板)上に新たに成長したGaN結晶の厚さが500μm以下の場合、100%近い歩留
が得られたが、GaN結晶の成長層の厚さが1mmを超えると歩留は急激に減少し、10
mmを超える厚さのGaN自立基板(GaN結晶)の歩留は10%未満であった。
By combining these various conditions, a GaN crystal having a thickness of 50 μm to 100 mm (GaN
The circle thickness (circle) in FIG. 15 shows the growth thickness dependence of the yield (defect when a crack with a length of 5 mm or more occurs) when the layer is grown. Also in this case, the yield hardly depends on the carrier concentration or the dislocation density, but strongly depends only on the thickness of the GaN crystal. When the thickness of the GaN crystal newly grown on the GaN crystal (seed crystal substrate) by the VAS method is 500 μm or less, a yield of nearly 100% was obtained, but the thickness of the growth layer of the GaN crystal exceeds 1 mm. Yield decreases rapidly, 10
The yield of a GaN free-standing substrate (GaN crystal) with a thickness exceeding mm was less than 10%.

これらのGaN自立基板の断面を蛍光顕微鏡で観測したところ、図2に模式的に示す様
に、図9と同様な異なる色の領域が端部に観測され、それぞれの面に垂直な方向の成長速
度はほぼ同等であった。これらの各部分をマイクロラマン法で調査したころ、ウエハ端部
の傾いた面上に成長した結晶と、Ga極性のC面上に成長した結晶では不純物濃度が異な
り、C面上の結晶では0.5×1018/cm3〜5×1018/cm3程度のn型であったの
が、C面から傾いた面で成長した結晶では同じn型ではあるものの、その2倍以上の1×
1019/cm3〜5×1019/cm3という極めて高い不純物濃度となっていた。
When cross sections of these GaN free-standing substrates were observed with a fluorescence microscope, as schematically shown in FIG. 2, regions of different colors similar to those in FIG. 9 were observed at the ends, and growth in directions perpendicular to the respective surfaces was observed. The speed was almost the same. When these portions were investigated by the micro-Raman method, the impurity concentration was different between the crystal grown on the inclined surface of the wafer edge and the crystal grown on the Ga-polar C-plane, and 0 for the crystal on the C-plane. Although the n-type is about 5 × 10 18 / cm 3 to 5 × 10 18 / cm 3, the crystal grown on the plane inclined from the C-plane is the same n-type, but more than twice that 1 ×
The impurity concentration was extremely high, 10 19 / cm 3 to 5 × 10 19 / cm 3 .

(実施例11)
一方、実施例11では、実施例5と同様に図7のトレー3上に触媒となる金属窒化物の
リングを設置したHVPE装置、あるいは図10に示すHVPE装置を用い、実施例1〜
9などと同様に、種結晶基板であるGaN基板の外周に、希釈ガス、エッチングガスある
いは水素ガスを導入する本発明の方法によりGaN結晶の成長を行った。C面から傾いた
面の成長速度を実施例1〜9と同様に意図した成長面の成長速度の10分の1未満とした
場合には、図15のバツ印×に示す様に歩留は劇的に向上した。VAS法によるGaN結
晶(種結晶基板)上に新たに成長したGaN結晶の厚さが5mmまでほぼ100%の歩留
が維持され、このGaN結晶の成長層の厚さが100mmの場合でもなお50%の歩留が
維持された。
(Example 11)
On the other hand, in Example 11, as in Example 5, the HVPE apparatus in which a metal nitride ring serving as a catalyst was installed on the tray 3 in FIG. 7 or the HVPE apparatus shown in FIG.
Similarly to 9 and the like, a GaN crystal was grown by the method of the present invention in which a dilution gas, an etching gas or a hydrogen gas was introduced into the outer periphery of the GaN substrate which is a seed crystal substrate. When the growth rate of the plane inclined from the C plane is less than 1/10 of the growth rate of the intended growth plane in the same manner as in Examples 1 to 9, the yield is as shown by a cross mark x in FIG. Dramatically improved. A yield of almost 100% is maintained until the thickness of the newly grown GaN crystal on the GaN crystal (seed crystal substrate) by the VAS method is 5 mm. Even when the thickness of the growth layer of this GaN crystal is 100 mm, it is still % Yield was maintained.

図16に、実施例11を用いGaN自立基板を種結晶として成長したGaN自立基板の
外周端部の断面を蛍光顕微鏡で観察した結果を模式的に示す。端面の高不純物濃度の結晶
2bは存在するものの、その量は少なく、結晶2bの成長速度は最大でもC面上の結晶2
aの成長速度の10分の1未満と見積もられた。また、GaN結晶2の成長厚が薄い場合
には、結晶成長に伴い端部にC面から傾いた結晶面f2が生じるため、C面f1の面積が徐
々に縮小していた。しかしながら、C面f1が縮小し続けることはなく、GaN結晶2を
ある程度(最大でも2mm程度)厚く成長し、端面と側壁の距離がある値となった後は、
端面がC面に対して90度の垂直な面f3を成したまま、C面の形状と面積を一定に保ち
つつ成長が進行した。これは、端面と容器側壁の内面との距離が広がることにより、側壁
側からのエッチング作用が弱まり、端面での成長とエッチングが釣り合ったために生じる
現象である。
FIG. 16 schematically shows a result of observing a cross section of an outer peripheral end portion of a GaN free-standing substrate grown using the GaN free-standing substrate as a seed crystal using Example 11 with a fluorescence microscope. Although there is a crystal 2b having a high impurity concentration on the end face, the amount of the crystal 2b is small, and the crystal 2b has a maximum growth rate of the crystal 2b on the C plane.
It was estimated to be less than 1/10 of the growth rate of a. In addition, when the growth thickness of the GaN crystal 2 is thin, a crystal plane f 2 inclined from the C plane is generated at the end as the crystal grows, so that the area of the C plane f 1 is gradually reduced. However, the C-plane f 1 does not continue to shrink, and after the GaN crystal 2 is grown to a certain extent (about 2 mm at the maximum) and the distance between the end face and the side wall becomes a certain value,
Growth proceeded while maintaining the shape and area of the C surface constant, with the end surface forming a surface f 3 perpendicular to the C surface at 90 degrees. This is a phenomenon that occurs when the distance between the end surface and the inner surface of the side wall of the container is increased, the etching action from the side wall is weakened, and the growth and etching at the end surface are balanced.

ただし、上記の結果はC面で成長するGaN結晶2aの表面が容器の側壁の高さよりも
低い位置にある場合に限った話であり、GaN結晶2aの成長表面が側壁の高さよりも高
くなった場合には、歩留が急激に低下した。これは、GaN結晶2a表面が側壁よりも高
くなると、GaN結晶2の外周部でのエッチング作用が弱まり、外周部での結晶成長が生
じるために応力が発生したためである。また、GaN結晶と側壁との距離が1mmよりも
小さい場合にも、側壁とGaN結晶が固着しクラックが発生し、歩留が悪化した。GaN
結晶と側壁の距離が10mmよりも広い場合には、歩留低下は生じないものの、エッチン
グ作用を端面のみに局在させることが困難となり、GaN結晶の成長領域が大幅に縮小し
てしまった。
However, the above result is a story only when the surface of the GaN crystal 2a growing on the C plane is at a position lower than the height of the side wall of the container, and the growth surface of the GaN crystal 2a becomes higher than the height of the side wall. The yield dropped sharply. This is because when the surface of the GaN crystal 2a is higher than the side wall, the etching action at the outer peripheral portion of the GaN crystal 2 is weakened, and stress is generated because crystal growth occurs at the outer peripheral portion. In addition, even when the distance between the GaN crystal and the side wall was smaller than 1 mm, the side wall and the GaN crystal were fixed, cracks were generated, and the yield deteriorated. GaN
When the distance between the crystal and the side wall is larger than 10 mm, the yield does not decrease, but it becomes difficult to localize the etching action only on the end face, and the growth region of the GaN crystal is greatly reduced.

実施例11及び比較例3から、歩留良く厚いGaN自立基板を得るためには、種結晶と
して窒化物半導体自立基板を用いた場合においても、側壁を持つるつぼ形状の容器内に種
結晶基板を設置し、距離とともに弱まるエッチング作用を持つ側壁とGaN結晶外周との
距離を1〜10mmの範囲に維持し、すなわち、容器の内面形状を概ね踏襲した形状のG
aN結晶を、容器内面のうち成長開始時に種結晶基板と接触していなかった部分と、成長
の全期間を通じて接触せずに成長することが重要であると結論付けられる。また、本実施
例により実現されるGaN自立基板の特徴としては、GaN自立基板の外周部にC面上の
結晶より高い不純物濃度の結晶部分の成長厚が、C面上の結晶の成長厚の10分の1以上
の厚さで持たないという点が特筆される。
In order to obtain a thick GaN free-standing substrate with good yield from Example 11 and Comparative Example 3, even when a nitride semiconductor free-standing substrate is used as a seed crystal, the seed crystal substrate is placed in a crucible-shaped container having a side wall. It is installed, and the distance between the side wall having an etching action that weakens with distance and the outer periphery of the GaN crystal is maintained in the range of 1 to 10 mm, that is, G having a shape substantially following the inner surface shape of the container.
It is concluded that it is important to grow the aN crystal without contacting the portion of the inner surface of the vessel that was not in contact with the seed crystal substrate at the start of growth throughout the entire growth period. Further, as a feature of the GaN free-standing substrate realized by the present embodiment, the growth thickness of the crystal portion having a higher impurity concentration than the crystal on the C plane on the outer periphery of the GaN free-standing substrate It is worth mentioning that it does not have a thickness of 1/10 or more.

(実施例12)
実施例11において、GaN成長厚が5mmを超える場合に歩留が低下したのは、種結
晶基板として用いたGaN自立基板に僅かながら歪が残留しているためである。そこで、
実施例12では、成長中にGaN結晶の外周端面ばかりではなく、歪の残留する種結晶基
板のGaN自立基板の裏面にもエッチング作用を加えることで、更なる歩留の向上を試み
た。
(Example 12)
In Example 11, the yield decreased when the GaN growth thickness exceeded 5 mm because a slight strain remained on the GaN free-standing substrate used as the seed crystal substrate. there,
In Example 12, not only the outer peripheral end face of the GaN crystal during the growth but also the back surface of the GaN free-standing substrate of the seed crystal substrate where the strain remained was added to try to further improve the yield.

実施例12で用いた方法としては、実施例11と同様の方法において、種結晶基板の裏
面に高さ1〜2mmの石英製、カーボン製、あるいは、金属窒化物のブロック(上記実施
形態の図6に示すようなブロック17)を設置し、種結晶基板を設置面(例えば容器の底
面)より浮かし、種結晶基板の裏面にもエッチング作用が生じるようにした。例えば、設
置面の中心にもパージガスの出口を設け、そこから水素、塩素、塩化水素などのエッチン
グ性のガスを導入する方法や、設置面を金属窒化物とし、原料ガスに水素を添加するなど
の方法を用いた。
The method used in Example 12 is the same method as in Example 11, except that the back surface of the seed crystal substrate is made of quartz, carbon, or metal nitride having a height of 1 to 2 mm (the figure of the above embodiment). The block 17) as shown in FIG. 6 is installed, the seed crystal substrate is floated from the installation surface (for example, the bottom surface of the container), and an etching action is also generated on the back surface of the seed crystal substrate. For example, a purge gas outlet is also provided at the center of the installation surface, and an etching gas such as hydrogen, chlorine, or hydrogen chloride is introduced from there, or the installation surface is made of metal nitride, and hydrogen is added to the source gas. The method of was used.

これらの方法による種結晶基板の裏面のエッチング速度は、温度や、成長雰囲気、成長
圧力、パージガス流量などにより変化したが、エッチング速度がGa極性のC面の成長速
度の100分の1以上の場合に、実施例11よりも高い歩留を得ることができた。歩留は
裏面のエッチング速度が高まると上昇したが、裏面のエッチング速度がGa極性のC面の
成長速度の20分の1以上では一定となった。
図17に裏面のエッチング速度がGa極性のC面の成長速度の20分の1の場合の、歩
留とGaN成長層の厚さの関係を示す。 GaN成長の厚さが100mmの場合でもなお
90%の高い歩留を維持している。
The etching rate of the back surface of the seed crystal substrate by these methods changed depending on the temperature, growth atmosphere, growth pressure, purge gas flow rate, etc., but the etching rate was 1/100 or more of the growth rate of Ga-polar C-plane In addition, a higher yield than Example 11 could be obtained. The yield increased as the back surface etching rate increased, but became constant when the back surface etching rate was 1/20 or more of the growth rate of the Ga-polar C-plane.
FIG. 17 shows the relationship between the yield and the thickness of the GaN growth layer when the back surface etching rate is 1/20 of the growth rate of the Ga-polar C-plane. Even when the GaN growth thickness is 100 mm, a high yield of 90% is still maintained.

(実施例13)
実施例13では、実施例11、12と同様の実験を、Ga極性のC面ではなく、N極性
のC面を成長面としてGaNを成長させてGaN自立基板を作製した。
この場合、従来のHVPE装置を用いた場合には、GaN結晶の端面は図16とは逆の
傾きを持ち、成長に従いC面が拡大する。このためN面成長によるGaN自立基板の成長
は、より大口径のGaN基板を実現するためには非常に有効な手法である。
しかしながら、従来のHVPE装置を用いた場合には、N面成長においても、Ga面成
長と同様に、端面での成長結晶による応力が発生し、高い歩留を得るのは困難であった。
(Example 13)
In Example 13, the same experiment as in Examples 11 and 12 was carried out to grow GaN using the N-polar C-plane as the growth surface instead of the Ga-polar C-plane to produce a GaN free-standing substrate.
In this case, when a conventional HVPE apparatus is used, the end face of the GaN crystal has an inclination opposite to that in FIG. 16, and the C plane expands as the growth proceeds. For this reason, the growth of a GaN free-standing substrate by N-plane growth is a very effective method for realizing a larger-diameter GaN substrate.
However, when the conventional HVPE apparatus is used, in the N-plane growth, stress is generated by the grown crystal on the end face as in the Ga-plane growth, and it is difficult to obtain a high yield.

しかし、本発明の方法を用いることにより、N面成長においても実施例11、12と同
様に高い歩留でGaN自立基板の作製が可能であることが確認された。更に、この場合、
N面の拡大傾向とエッチング作用が釣り合うことで、円筒状の容器形状を踏襲したN面の
面積が一定のままGaN結晶が成長した、円柱状の自立基板を得ることができた。このよ
うな自立基板は、これをスライスすることにより一定の径のウエハを効率良く生産できる
ため、工業的に非常に有用な形態である。
However, by using the method of the present invention, it was confirmed that a GaN free-standing substrate can be produced with a high yield in the N-plane growth as in Examples 11 and 12. Furthermore, in this case
By balancing the N-plane expansion tendency and the etching action, it was possible to obtain a cylindrical free-standing substrate in which the GaN crystal was grown while the area of the N-plane following the cylindrical container shape was constant. Such a free-standing substrate is an industrially very useful form because a wafer having a certain diameter can be efficiently produced by slicing the substrate.

また、特にN面成長においては、例えば、図5に示す上記実施形態のように、容器12
の側壁12aの側面と種結晶基板1が載置される容器12の底壁12bの載置面15との
なす角度θが90度より大きく135度以下の範囲とし、側壁12aの側面が開口部に向
けて開くようにすることで、GaN結晶2の端部にエッチング作用を施しつつ、かつ、種
結晶基板1よりN面の面積を拡大することが可能となる。
容器の側面と容器の載置面とのなす角度θが135度より大きい場合には、GaN結晶
端部に出易い結晶面が135度以下の角度を持つため、GaN層の成長とともに、容器側
面とGaN結晶の外周端部の距離が増加し、GaN結晶の外周端部にGaN成長が生じ、
このGaN成長によりクラックが発生し易くなり、従来法と同等の結果しか得られない。
この角度θが135度以下の場合には、容器側面とGaN結晶外周端部の距離は、Ga
N結晶端部への成長とエッチングが釣り合う距離に一定に保たれやすいため、GaN結晶
の外周端部の成長速度はほぼ0に保たれ、クラックの発生が抑制される。特に、角度θが
120度以下の場合には、これより小さな角度を成す安定なGaNの結晶面が少ないため
、より高い成長歩留を得ることができ、図14や図17に示す上記実施例の結果とほぼ同
じ結果が得られる。
Particularly in the N-plane growth, for example, as in the above-described embodiment shown in FIG.
The angle θ formed by the side surface of the side wall 12a and the mounting surface 15 of the bottom wall 12b of the container 12 on which the seed crystal substrate 1 is mounted is in the range of 90 degrees to 135 degrees, and the side surface of the side wall 12a is the opening. By opening it toward, it is possible to enlarge the area of the N plane from the seed crystal substrate 1 while performing etching on the end of the GaN crystal 2.
When the angle θ formed between the side surface of the container and the mounting surface of the container is larger than 135 degrees, the crystal plane that tends to come out at the edge of the GaN crystal has an angle of 135 degrees or less. The distance between the outer peripheral edge of the GaN crystal and the GaN crystal grows at the outer peripheral edge of the GaN crystal,
This GaN growth makes it easy for cracks to occur, and only results equivalent to the conventional method can be obtained.
When this angle θ is 135 degrees or less, the distance between the container side surface and the outer peripheral edge of the GaN crystal is Ga
Since the distance between the growth to the N crystal edge and the etching is easily kept constant, the growth rate of the outer peripheral edge of the GaN crystal is kept almost zero, and the generation of cracks is suppressed. In particular, when the angle θ is 120 degrees or less, since there are few stable GaN crystal planes having an angle smaller than this, a higher growth yield can be obtained, and the above-described embodiments shown in FIGS. The result is almost the same as the result of.

次に、本発明の変形例を以下に述べる。
(変形例1)
変形例1では、実施例1〜9と同様の実験を、サファイア基板の径を50〜200mm
、サファイア基板の表面(主表面)をGa極性のC面から0.1〜2度の範囲でA軸、M
軸あるいはその中間の方向に傾いた面や、A面、M面、R面やその他の半極性面や、それ
らの面の微傾斜面などとした場合にも行ったが、実施例1〜9とほぼ同様の結果が得られ
た。
Next, modifications of the present invention will be described below.
(Modification 1)
In Modification 1, the same experiment as in Examples 1 to 9 was performed, and the diameter of the sapphire substrate was 50 to 200 mm.
The surface (main surface) of the sapphire substrate is A axis, M within the range of 0.1 to 2 degrees from the Ga-polar C-plane.
Examples 1 to 9 were also performed in the case of a surface inclined in the direction of the axis or in the middle thereof, the A surface, the M surface, the R surface, other semipolar surfaces, or a slightly inclined surface of these surfaces. And almost the same result was obtained.

(変形例2)
変形例2では、変形例1と同様の実験を、サファイア基板を、SiC基板、Si基板に
変更して行ったが、変形例1と同様の効果が確認された。
(Modification 2)
In Modification 2, the same experiment as in Modification 1 was performed by changing the sapphire substrate to an SiC substrate and an Si substrate, but the same effect as in Modification 1 was confirmed.

(変形例3)
変形例3では、実施例1〜9と同様の実験を、バッファ層を低温成長GaNバッファ層
から、低温成長AlNバッファ層、高温成長AlNバッファ層に変えて行った。各バッフ
ァ層の厚さは10nm〜2μmの間であった。いずれの場合においても、実施例1〜9と
同様の結果が得られた。
(Modification 3)
In Modification 3, the same experiment as in Examples 1 to 9 was performed by changing the buffer layer from the low temperature growth GaN buffer layer to the low temperature growth AlN buffer layer and the high temperature growth AlN buffer layer. The thickness of each buffer layer was between 10 nm and 2 μm. In any case, the same results as in Examples 1 to 9 were obtained.

(変形例4)
変形例4では、実施例1〜9と同様の実験を、種結晶基板の上面に凹凸加工を施した種
結晶基板を用いて行った。凹凸加工の形状としては、凸部の高さが0.1〜2μm、間隔
が1〜10μm、形状が椀形、円錐型、三角錐形〜六角錐形の多角錐形、およびこれらの
頂上に平坦部を有する形状などを用いた。また凸部の配置としては、三角格子状あるいは
四角格子状の格子の目の位置に配置し、格子の辺がA軸あるいはM軸を向くものを用いた
。これらの凹凸加工を施した種結晶基板を用いた窒化物半導体層を下地として、発光素子
を形成すると、平坦な種結晶基板上を用いた場合の発光素子よりも光取出し効率が向上す
るという利点がある。
変形例4のいずれの場合においても、本発明の窒化物半導体結晶の製造方法を適用した
場合、実施例1〜9と同様の効果が得られた。
(Modification 4)
In Modification 4, the same experiment as in Examples 1 to 9 was performed using a seed crystal substrate in which the top surface of the seed crystal substrate was subjected to uneven processing. As the shape of the concavo-convex processing, the height of the convex portion is 0.1 to 2 μm, the interval is 1 to 10 μm, the shape is a bowl shape, a conical shape, a triangular pyramid shape to a hexagonal pyramid shape, and the top thereof A shape having a flat portion was used. In addition, as the arrangement of the convex portions, the ones arranged at the positions of the meshes of a triangular lattice shape or a quadrangular lattice shape and the sides of the lattice face the A axis or the M axis were used. Advantages of forming a light-emitting element with a nitride semiconductor layer using a seed crystal substrate subjected to these irregularities as a base is higher in light extraction efficiency than a light-emitting element when using a flat seed crystal substrate There is.
In any case of Modification 4, when the method for producing a nitride semiconductor crystal of the present invention was applied, the same effects as in Examples 1 to 9 were obtained.

(変形例5)
変形例5では、実施例10〜1 3と同様の実験をA面、M面、R面やその他の半極性
面や、それらの微傾斜面などとした場合にも行ったが、実施例10〜13とほぼ同様の結
果が得られた。
(Modification 5)
In the modified example 5, the same experiment as in the examples 10 to 13 was performed for the A plane, the M plane, the R plane, other semipolar planes, and their slightly inclined planes. Similar results to those of ˜13 were obtained.

(変形例6)
本発明の窒化物半導体結晶の製造方法の原理は、成長方法としては、HVPE法に限ら
ず、MOVPE法、安熱合成法、Naフラックス法に変えた場合においても適用可能であ
る。
(Modification 6)
The principle of the method for producing a nitride semiconductor crystal of the present invention is applicable not only to the HVPE method but also to the MOVPE method, the low temperature synthesis method, and the Na flux method as the growth method.

(変形例7)
本発明の窒化物半導体結晶の製造方法は、GaN以外の窒化物半導体材料、例えば、A
lN、InN、BNや、GaNを合むこれらの材料の混晶に対しても適用可能である。
(Modification 7)
The method for producing a nitride semiconductor crystal according to the present invention includes a nitride semiconductor material other than GaN, for example, A
The present invention is also applicable to mixed crystals of these materials including lN, InN, BN, and GaN.

(変形例8)
本発明の窒化物半導体結晶の製造方法の原理は、窒化物半導体以外の半導体や、半導体
以外の結晶性の材料に関しても適用可能である。
(Modification 8)
The principle of the method for producing a nitride semiconductor crystal of the present invention can be applied to a semiconductor other than a nitride semiconductor or a crystalline material other than a semiconductor.

(変形例9)
本発明の方法は、図7、図10に示すような縦型配置の結晶成長装置(HVPE装置、
MOVPE装置)ばかりではなく、図18に示す水平フロー配置のMOVPE装置、HV
PE装置にも適用可能である。すなわち、図18に示すように、矩形筒体状のリアクター
(成長炉)50を水平の配置し、リアクター50の底壁の開口部に、側壁51aを有する
容器51を設け、容器51内にはトレー3を容器51の底壁51bから隔てて設置する。
底壁51bにはエッチング作用を持つガスgを供給する供給管53が接続されており、供
給管53を貫通させて回転軸52が設けられている。トレー3は回転軸52上に回転自在
に支持され、リアクター50の外周部にはピーク(図示せず)が設けられている。原料ガ
スGは、リアクター50内を一端から他端へと水平に流れ、トレー3上に設置された種結
晶基板1上で結晶が成長する。一方、供給管52から容器51内に供給されたガスgは、
トレー3との底壁10bとの間を、トレー3に沿って放射状に流れ、トレー3の外周面と
側壁10aの内周面との隙間から流出する。
また、本発明の方法は、例えば、サセプタ上の同一円周上に沿って複数の種結晶基板を
配置し、サセプタ上の複数の種結晶基板を自公転させ、サセプタの中心部からサセプタに
沿って放射状に各種結晶基板に原料ガスを流す結晶成長装置、すなわち中心吹出し自公転
型の多数枚チャージ型の結晶成長装置にも適用可能である。
更には、図7、図10、図18のような成長面が上を向くフェースアップ型の配置ばか
りではなく、成長面が下側を向くフェースダウン型の配置や、成長面が鉛直方向や斜め傾
斜した方向を向く結晶成長装置に対しても、種結晶基板の保持方法を工夫することで適用
可能である。ただし、種結晶基板の裏面をエッチングする場合には、種結晶基板を全てエ
ッチングしてしまうと、成長開始時の位置から結晶がずれたり、落下したりするので、裏
面のエッチング量をある程度の量に抑える必要がある。
(Modification 9)
The method of the present invention is a vertical growth crystal growth apparatus (HVPE apparatus, as shown in FIGS. 7 and 10).
MOVPE apparatus with a horizontal flow arrangement shown in FIG.
It can also be applied to PE equipment. That is, as shown in FIG. 18, a rectangular cylindrical reactor (growth furnace) 50 is horizontally arranged, and a container 51 having a side wall 51 a is provided at the opening of the bottom wall of the reactor 50. The tray 3 is set apart from the bottom wall 51 b of the container 51.
A supply pipe 53 for supplying a gas g having an etching action is connected to the bottom wall 51b, and a rotating shaft 52 is provided through the supply pipe 53. The tray 3 is rotatably supported on the rotating shaft 52, and a peak (not shown) is provided on the outer peripheral portion of the reactor 50. The source gas G flows horizontally in the reactor 50 from one end to the other, and crystals grow on the seed crystal substrate 1 installed on the tray 3. On the other hand, the gas g supplied from the supply pipe 52 into the container 51 is
It flows radially along the tray 3 between the tray 3 and the bottom wall 10b, and flows out from the gap between the outer peripheral surface of the tray 3 and the inner peripheral surface of the side wall 10a.
In the method of the present invention, for example, a plurality of seed crystal substrates are arranged along the same circumference on the susceptor, and the plurality of seed crystal substrates on the susceptor are rotated and revolved along the susceptor from the center of the susceptor. The present invention can also be applied to a crystal growth apparatus in which a source gas is allowed to flow radially on various crystal substrates, that is, a center blowing autorevolution type multi-charge type crystal growth apparatus.
Further, not only the face-up type arrangement in which the growth surface faces upward as shown in FIGS. 7, 10, and 18, but also the face-down type arrangement in which the growth surface faces downward, The present invention can also be applied to a crystal growth apparatus that faces an inclined direction by devising a method for holding the seed crystal substrate. However, when etching the back surface of the seed crystal substrate, if all the seed crystal substrate is etched, the crystal will be displaced or dropped from the position at the start of growth. It is necessary to keep it down.

1 種結晶基板(異種基板または窒化物半導体自立基板)
2 窒化物半導体結晶(GaN結晶)
2a C面で成長する窒化物半導体結晶
2b C面から傾いた面で成長する窒化物半導体結晶
3 トレー
4 載置面(設置面)
5、10、12 容器
5a、10a、12a 側壁
5b、10b、12b 底壁
6、14 側面
7、15 底面
8 窒化物半導体結晶の外周端部
9 意図して成長する面(C面)
11、18 パージガスの供給管
17 ブロック
1 C面
2 C面から傾いた面
G 原料ガス
g パージガス(エッチング作用を持つガス)
1 Seed crystal substrate (dissimilar substrate or nitride semiconductor free-standing substrate)
2 Nitride semiconductor crystal (GaN crystal)
2a Nitride semiconductor crystal grown on C plane 2b Nitride semiconductor crystal grown on plane inclined from C plane 3 Tray 4 Placement surface (installation surface)
5, 10, 12 Container 5a, 10a, 12a Side wall 5b, 10b, 12b Bottom wall 6, 14 Side surface 7, 15 Bottom surface 8 Peripheral edge of nitride semiconductor crystal 9 Plane surface (C surface)
11, 18 Purge gas supply pipe 17 Block f 1 C surface f 2 Surface inclined from C surface G Raw material gas g Purge gas (gas having etching action)

Claims (8)

種結晶基板上に窒化物半導体結晶を成長する窒化物半導体結晶の製造方法であって、前記窒化物半導体結晶の成長中に、前記種結晶基板の外周端部にエッチング作用を加えながら、前記窒化物半導体結晶を成長させるものであり、
前記種結晶基板の外側を取り囲む側壁を有する容器内に前記種結晶基板を設置し、
触媒の作用によりエッチング種を発生する物質を原料ガスに付加して供給しつつ前記窒化物半導体結晶の成長を行い、前記窒化物半導体結晶と接触しない前記容器の内面の少なくとも一部を前記触媒の作用を有する触媒物質とすることで、前記窒化物半導体結晶のウェハ外周部に局所的に前記エッチング作用が発現される
窒化物半導体結晶の製造方法。
A nitride semiconductor crystal manufacturing method for growing a nitride semiconductor crystal on a seed crystal substrate, wherein the nitride semiconductor crystal is grown while an etching action is applied to an outer peripheral end portion of the seed crystal substrate during the growth of the nitride semiconductor crystal. To grow a semiconductor crystal ,
Placing the seed crystal substrate in a container having a side wall surrounding the outside of the seed crystal substrate;
The nitride semiconductor crystal is grown while supplying a material that generates etching species by the action of the catalyst to the source gas, and at least a part of the inner surface of the vessel not in contact with the nitride semiconductor crystal is formed on the catalyst. A method for producing a nitride semiconductor crystal, in which the etching action is locally exhibited on the wafer outer periphery of the nitride semiconductor crystal by using a catalytic substance having an action .
前記窒化物半導体結晶と接触しない前記容器の内面が、前記側壁の側面を含む
請求項1に記載の窒化物半導体結晶の製造方法。
The inner surface of the container not in contact with the nitride semiconductor crystal includes a side surface of the side wall.
The method for producing a nitride semiconductor crystal according to claim 1 .
前記窒化物半導体結晶と接触しない前記容器の内面の部分付近の環境が、前記側壁の側面からの距離とともに前記エッチング作用が弱まる環境にあ
請求項1または2に記載の窒化物半導体結晶の製造方法。
Environment around the portion of the inner surface of said container that is not in contact with the nitride semiconductor crystal, Ru environment near where the etching action weakens with distance from the side surface of the side wall
The method for producing a nitride semiconductor crystal according to claim 1 .
前記触媒の作用によりエッチング種を発生する物質が、水素ガスである
請求項1から3のいずれか1項に記載の窒化物半導体結晶の製造方法。
The substance that generates etching species by the action of the catalyst is hydrogen gas.
The method for producing a nitride semiconductor crystal according to any one of claims 1 to 3 .
前記触媒の作用を有する触媒物質が、金属または金属の窒化物であ
請求項1から4のいずれか1項に記載の窒化物半導体結晶の製造方法。
Catalyst material having the action of said catalyst, Ru nitride der metals or metal
The method for producing a nitride semiconductor crystal according to claim 1 .
前記金属が、Ti、Zr、Nb、Ta、Cr、W、Mo、Niのいずれかである
請求項5に記載の窒化物半導体結晶の製造方法。
The metal is any one of Ti, Zr, Nb, Ta, Cr, W, Mo, and Ni.
The method for producing a nitride semiconductor crystal according to claim 5 .
前記窒化物半導体結晶と接触しない前記容器のエッチング作用が生じる内面と前記窒化物半導体結晶との距離が、結晶成長開始から終了までの期間、1〜10mmの範囲にある
請求項1から6のいずれか1項に記載の窒化物半導体結晶の製造方法。
The distance between the inner surface of the etching action of the container that is not in contact with the nitride semiconductor crystal is generated and the nitride semiconductor crystal, the period to the end from the crystal growth starting in the range of 1~10mm
The manufacturing method of the nitride semiconductor crystal of any one of Claim 1 to 6 .
前記側壁の側面と前記種結晶基板が載置される前記容器の載置面とのなす角度が90度より大きく135度以下の範囲にあって、前記容器内部の断面がその開口部側に向けて拡大した形状であり、
前記窒化物半導体結晶が窒素面を成長面としてその径を拡大しつつ成長する
請求項2から7のいずれか1項に記載の窒化物半導体結晶の製造方法。
The angle formed between the side surface of the side wall and the placement surface of the container on which the seed crystal substrate is placed is in the range of greater than 90 degrees and less than or equal to 135 degrees, and the cross section inside the container is directed toward the opening side. Expanded shape,
The nitride semiconductor crystal is grown while expanding its diameter and nitrogen surface as a growth surface
The method for producing a nitride semiconductor crystal according to claim 2 .
JP2017110457A 2011-09-12 2017-06-02 Method for manufacturing nitride semiconductor crystal Active JP6318290B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011198104 2011-09-12
JP2011198104 2011-09-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016086458A Division JP6248135B2 (en) 2011-09-12 2016-04-22 Method for manufacturing nitride semiconductor crystal

Publications (2)

Publication Number Publication Date
JP2017193486A JP2017193486A (en) 2017-10-26
JP6318290B2 true JP6318290B2 (en) 2018-04-25

Family

ID=56897357

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016086458A Active JP6248135B2 (en) 2011-09-12 2016-04-22 Method for manufacturing nitride semiconductor crystal
JP2017110457A Active JP6318290B2 (en) 2011-09-12 2017-06-02 Method for manufacturing nitride semiconductor crystal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016086458A Active JP6248135B2 (en) 2011-09-12 2016-04-22 Method for manufacturing nitride semiconductor crystal

Country Status (1)

Country Link
JP (2) JP6248135B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109423690B (en) 2017-08-21 2022-09-16 株式会社Flosfia Method for manufacturing crystalline film
US11479876B2 (en) 2018-08-09 2022-10-25 Shin-Etsu Chemical Co., Ltd. Method for producing GaN laminate substrate having front surface which is Ga polarity surface
CN115074824B (en) * 2021-11-19 2023-04-28 北京大学 Method for preparing gallium nitride monocrystal substrate by utilizing edge metal mask technology
WO2023119916A1 (en) * 2021-12-21 2023-06-29 信越半導体株式会社 Nitride semiconductor substrate and method for manufacturing nitride semiconductor substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579344B2 (en) * 2000-11-15 2004-10-20 日本碍子株式会社 Method and apparatus for manufacturing group IIIV nitride film
JP4991116B2 (en) * 2004-02-13 2012-08-01 フライベルゲル・コンパウンド・マテリアルズ・ゲーエムベーハー Method for producing crack-free group III nitride semiconductor material
KR100718118B1 (en) * 2006-06-01 2007-05-14 삼성코닝 주식회사 Method and apparatus for growth of crack-free gan bulk crystal
JP5444607B2 (en) * 2007-10-31 2014-03-19 株式会社Sumco Epitaxial film forming apparatus susceptor, epitaxial film forming apparatus, and epitaxial wafer manufacturing method
JP2009256154A (en) * 2008-04-21 2009-11-05 Nippon Telegr & Teleph Corp <Ntt> Substrate for growing semiconductor crystal and semiconductor crystal
JP2010222232A (en) * 2009-02-26 2010-10-07 Kyocera Corp Single crystal body, single crystal substrate, and production method and production apparatus of single crystal body
JP2010226023A (en) * 2009-03-25 2010-10-07 Sumitomo Electric Ind Ltd Method of manufacturing substrate product having nitride based compound semiconductor layer on support substrate, and method of manufacturing semiconductor device
JP2011011942A (en) * 2009-07-01 2011-01-20 Hitachi Kokusai Electric Inc Apparatus and method for producing crystal
JP2013026314A (en) * 2011-07-19 2013-02-04 Hitachi Cable Ltd Manufacturing method of nitride semiconductor substrate

Also Published As

Publication number Publication date
JP2017193486A (en) 2017-10-26
JP2016166129A (en) 2016-09-15
JP6248135B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6026188B2 (en) Method for manufacturing nitride semiconductor crystal
JP4537484B2 (en) Growth method using nanostructure adaptive layer and HVPE for producing high quality compound semiconductor material
JP6318290B2 (en) Method for manufacturing nitride semiconductor crystal
WO2016140074A1 (en) Method for manufacturing group-iii nitride semiconductor crystal substrate
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP4603386B2 (en) Method for producing silicon carbide single crystal
WO2007133512A2 (en) Methods and materials for growing iii-nitride semiconductor compounds containing aluminum
JP2018093112A (en) Method for manufacturing nitride semiconductor template, nitride semiconductor template, and nitride semiconductor device
JP4915282B2 (en) Base substrate for group III nitride semiconductor growth and method for growing group III nitride semiconductor
JP6704386B2 (en) Nitride semiconductor template, manufacturing method thereof, and epitaxial wafer
JP2014118323A (en) Production method of nitride semiconductor crystal of group 13 metal in periodic table, and nitride semiconductor crystal of group 13 metal in periodic table
JP6669157B2 (en) C-plane GaN substrate
JP5045955B2 (en) Group III nitride semiconductor free-standing substrate
JP2007223821A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, and production methods therefor
JP5120285B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP2006052097A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method for manufacturing the ingot
JP4600146B2 (en) Manufacturing method of nitride semiconductor substrate
JP2005223126A (en) Substrate for forming single crystal, group iii nitride single crystal, and preparation method of same
JP4867981B2 (en) GaN crystal growth method
JP2005203418A (en) Nitride compound semiconductor substrate and its manufacturing method
Yamaguchi et al. Growth of Highly Crystalline GaN at High Growth Rate by Trihalide Vapor‐Phase Epitaxy
JP4612403B2 (en) Method for manufacturing group III nitride semiconductor free-standing substrate
JP2020182002A (en) Nitride semiconductor template and nitride semiconductor device
JP2006321705A (en) METHOD FOR MANUFACTURING AlN SINGLE CRYSTAL FILM

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6318290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350