JP2009256154A - Substrate for growing semiconductor crystal and semiconductor crystal - Google Patents

Substrate for growing semiconductor crystal and semiconductor crystal Download PDF

Info

Publication number
JP2009256154A
JP2009256154A JP2008109857A JP2008109857A JP2009256154A JP 2009256154 A JP2009256154 A JP 2009256154A JP 2008109857 A JP2008109857 A JP 2008109857A JP 2008109857 A JP2008109857 A JP 2008109857A JP 2009256154 A JP2009256154 A JP 2009256154A
Authority
JP
Japan
Prior art keywords
semiconductor crystal
semiconductor
crystal growth
growth substrate
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008109857A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oda
康裕 小田
Noriyuki Watanabe
則之 渡邉
Takashi Kobayashi
隆 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008109857A priority Critical patent/JP2009256154A/en
Publication of JP2009256154A publication Critical patent/JP2009256154A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for growing a semiconductor crystal, on which a semiconductor layer with few crystal defects can be formed, and to provide a semiconductor crystal. <P>SOLUTION: A protective film 14 made of silicon nitride having a film thickness of 100 nm is formed in an outer circumference portion of a substrate body 11 for growing a semiconductor crystal, the substrate made of Si having (111) plane direction of crystal. That is, the protective film 14 is formed on the side face 12 of the substrate body 11 for growing a semiconductor crystal and in a portion from the outermost circumference to 2 mm inside on the surface 13 of the substrate body 11 for growing a semiconductor crystal. Further, a buffer layer 21 made of AlN is formed in a region where the protective film 14 is not formed, on the surface 13 of the substrate body 11 for growing a semiconductor crystal, and a semiconductor layer 22 comprising a GaN crystal having a film thickness of 3 μm is formed on the buffer layer 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は窒化物系化合物半導体結晶からなる半導体層を成長するための半導体結晶成長用基板および半導体結晶成長用基板に窒化物系化合物半導体結晶からなる半導体層を形成した半導体結晶に関するものである。   The present invention relates to a semiconductor crystal growth substrate for growing a semiconductor layer made of a nitride compound semiconductor crystal, and a semiconductor crystal in which a semiconductor layer made of a nitride compound semiconductor crystal is formed on the semiconductor crystal growth substrate.

窒化物系化合物半導体(たとえば、GaN、AlN、InN、BNおよびそれらの混晶)は、同材料で基板を作製することが困難であった。そのため、異種材料であるサファイア基板や炭化シリコン基板を用いて成膜が行われてきた。しかしながら、サファイア基板は熱伝導率が低いために発熱しやすい高出力型電子デバイス用途には向かず、また炭化シリコン基板は調達コストが非常に高いという問題があった。近年、それらの問題を回避するために、価格が安価で安定供給が見込め、かつ大口径化が進んでいる、Si(シリコン)基板を用いて窒化物系化合物半導体を成膜する試みがなされている。   Nitride-based compound semiconductors (for example, GaN, AlN, InN, BN, and mixed crystals thereof) have been difficult to produce a substrate using the same material. Therefore, film formation has been performed using a sapphire substrate or a silicon carbide substrate which is a different material. However, since the sapphire substrate has a low thermal conductivity, the sapphire substrate is not suitable for use in a high-power electronic device that easily generates heat, and the silicon carbide substrate has a problem that the procurement cost is very high. In recent years, in order to avoid these problems, attempts have been made to form nitride-based compound semiconductors using a Si (silicon) substrate, which is inexpensive, can be stably supplied, and has a large diameter. Yes.

Si基板上に窒化物系化合物半導体を成膜する際の課題は、Siと窒化物系化合物半導体とで熱膨張係数が異なり、一般に高温で成膜した後に降温すると、窒化物系化合物半導体に引っ張り歪みが加わるためにクラック(ひび割れ)が入りやすいことである。また、格子定数の差に起因する歪みも加わりやすい。加えて、Siは窒化物系化合物半導体を構成する元素のうち特にGa(ガリウム)と直接接触すると、Siがメルトバックエッチングしてしまい、Si基板の表面に反応物が析出してくる。この反応物の析出は、単にその領域での窒化物系化合物半導体の結晶成長を阻害するだけでなく、反応していない領域へもパーティクルをまき散らして、窒化物系化合物半導体の結晶欠陥を誘発する。これを防ぐ一つの方法として、Si基板の直上にAlN膜を成長して、GaとSi基板とが直接接触するのを防ぐというものがある。   The problem in forming a nitride compound semiconductor on a Si substrate is that the thermal expansion coefficient differs between Si and the nitride compound semiconductor. Generally, when the temperature is lowered after film formation at a high temperature, the nitride compound semiconductor is pulled. Since distortion is added, cracks are likely to occur. Further, distortion caused by the difference in lattice constant is also easily added. In addition, when Si is in direct contact with Ga (gallium) among elements constituting the nitride-based compound semiconductor, Si is melt-back etched, and a reactant is deposited on the surface of the Si substrate. This precipitation of the reactants not only inhibits the crystal growth of the nitride compound semiconductor in the region, but also scatters particles to the unreacted region to induce crystal defects in the nitride compound semiconductor. . One method for preventing this is to grow an AlN film directly on the Si substrate to prevent direct contact between Ga and the Si substrate.

図5は従来の基板に窒化物系化合物半導体結晶からなる半導体層を形成した半導体結晶を示す断面図である。図に示すように、Siからなる基板1上にAlNからなる中間層2が形成され、中間層2上にAlGaInN結晶からなる半導体層3が形成されている。   FIG. 5 is a sectional view showing a semiconductor crystal in which a semiconductor layer made of a nitride-based compound semiconductor crystal is formed on a conventional substrate. As shown in the drawing, an intermediate layer 2 made of AlN is formed on a substrate 1 made of Si, and a semiconductor layer 3 made of AlGaInN crystal is formed on the intermediate layer 2.

この半導体結晶においては、基板1と半導体層3との間に中間層2が形成されているから、半導体層3に発生する歪みを緩和することができ、また基板1の表面に反応物が析出するのをある程度防止することができる。
特許第3352712号公報
In this semiconductor crystal, since the intermediate layer 2 is formed between the substrate 1 and the semiconductor layer 3, the strain generated in the semiconductor layer 3 can be alleviated, and the reactant is deposited on the surface of the substrate 1. To some extent can be prevented.
Japanese Patent No. 3352712

しかしながら、上述した半導体結晶においては、基板1の外周部の半導体層3における成長層には歪みによる応力集中がかかるから、数mm程度のクラックが発生して、基板1に半導体層3のGaが侵入することがあり、加えて基板1の側面にはそもそも中間層2をエピタキシャル成長させるのが難しいので、基板1の外周部でのGaの反応を確実に抑えるのは難しかった。このため、基板1の表面に反応物が析出し、反応物が析出した領域での窒化物系化合物半導体の結晶成長が阻害されるとともに、反応物のパーティクルが反応していない領域にまき散らされ、半導体層3の結晶欠陥を誘発するから、半導体層3の結晶欠陥が多くなる。   However, in the semiconductor crystal described above, stress concentration due to strain is applied to the growth layer in the semiconductor layer 3 on the outer peripheral portion of the substrate 1, so that a crack of about several millimeters is generated, and Ga of the semiconductor layer 3 is formed on the substrate 1. In addition, since it is difficult to epitaxially grow the intermediate layer 2 on the side surface of the substrate 1 in the first place, it is difficult to reliably suppress the reaction of Ga at the outer peripheral portion of the substrate 1. For this reason, the reactant is deposited on the surface of the substrate 1, and the crystal growth of the nitride compound semiconductor in the region where the reactant is deposited is inhibited, and the particles of the reactant are scattered in the unreacted region. Since crystal defects in the semiconductor layer 3 are induced, the crystal defects in the semiconductor layer 3 increase.

本発明は、上述の課題を解決するためになされたものであり、結晶欠陥の少ない半導体層を形成することができる半導体結晶成長用基板、半導体結晶を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor crystal growth substrate and a semiconductor crystal that can form a semiconductor layer with few crystal defects.

この目的を達成するため、本発明においては、窒化物系化合物半導体結晶からなる半導体層を成長するための半導体結晶成長用基板において、Siからなる半導体結晶成長用基板本体の少なくとも側面に保護膜を形成する。   In order to achieve this object, in the present invention, in a semiconductor crystal growth substrate for growing a semiconductor layer made of a nitride compound semiconductor crystal, a protective film is formed on at least the side surface of the semiconductor crystal growth substrate body made of Si. Form.

この場合、上記半導体結晶成長用基板本体の上記保護膜に覆われている部位が上記半導体層の構成元素と反応しないようにしてもよい。   In this case, the portion of the semiconductor crystal growth substrate body covered with the protective film may not react with the constituent elements of the semiconductor layer.

これらの場合、上記半導体層の構成元素を、III族元素としてもよい。   In these cases, the constituent element of the semiconductor layer may be a group III element.

この場合、上記III族元素を、Gaとしてもよい。   In this case, the group III element may be Ga.

これらの場合、上記半導体結晶成長用基板本体の側面および表面の最外周から5mm以内の部分に上記保護膜を形成してもよい。   In these cases, the protective film may be formed on the side surface and the outermost periphery of the surface of the semiconductor crystal growth substrate body within 5 mm.

これらの場合、上記保護膜を、窒化シリコン、窒化アルミニウム、窒化チタン、窒化タングステン、酸化シリコン、酸化アルミニウムのいずれかから構成された膜としてもよい。   In these cases, the protective film may be a film made of any one of silicon nitride, aluminum nitride, titanium nitride, tungsten nitride, silicon oxide, and aluminum oxide.

また、半導体結晶成長用基板に窒化物系化合物半導体結晶からなる半導体層を形成した半導体結晶において、上記の半導体結晶成長用基板に、少なくともGaおよびNを含んだ上記窒化物系化合物半導体結晶からなる上記半導体層を形成する。   Further, in a semiconductor crystal in which a semiconductor layer made of a nitride compound semiconductor crystal is formed on a semiconductor crystal growth substrate, the semiconductor crystal growth substrate is made of the nitride compound semiconductor crystal containing at least Ga and N. The semiconductor layer is formed.

この場合、上記半導体層の層厚を0.5μm以上としてもよい。   In this case, the thickness of the semiconductor layer may be 0.5 μm or more.

本発明に係る半導体結晶成長用基板および半導体結晶においては、半導体結晶成長用基板本体に形成された保護膜によって、半導体層の窒化物系化合物半導体の構成元素と半導体結晶成長用基板とが化学反応するのを防止することができるから、半導体結晶成長用基板の外周部での意図しない反応物の生成を確実に抑えることができるので、結晶欠陥の少ない半導体層を形成することができる。   In the semiconductor crystal growth substrate and the semiconductor crystal according to the present invention, a chemical reaction occurs between the constituent elements of the nitride-based compound semiconductor of the semiconductor layer and the semiconductor crystal growth substrate by the protective film formed on the semiconductor crystal growth substrate body. Therefore, the generation of unintended reactants at the outer periphery of the semiconductor crystal growth substrate can be reliably suppressed, so that a semiconductor layer with few crystal defects can be formed.

図1は本発明に係る半導体結晶成長用基板を示す斜視図、図2は本発明に係る半導体結晶成長用基板の一部を示す断面図である。図に示すように、面方位が(111)であるSiからなる半導体結晶成長用基板本体11の外周部に膜厚が100nmの窒化シリコンからなる保護膜14が形成されている。すなわち、半導体結晶成長用基板本体11の側面12および半導体結晶成長用基板本体11の表面13の最外周から2mmまでの部分に保護膜14が形成されている。そして、半導体結晶成長用基板本体11の保護膜14に覆われている部位は半導体層22(説明後述)の構成元素と反応しない。   FIG. 1 is a perspective view showing a semiconductor crystal growth substrate according to the present invention, and FIG. 2 is a sectional view showing a part of the semiconductor crystal growth substrate according to the present invention. As shown in the figure, a protective film 14 made of silicon nitride having a film thickness of 100 nm is formed on the outer periphery of a semiconductor crystal growth substrate body 11 made of Si having a plane orientation of (111). That is, the protective film 14 is formed on the side surface 12 of the semiconductor crystal growth substrate body 11 and the surface 13 of the semiconductor crystal growth substrate body 11 from the outermost periphery to 2 mm. And the site | part covered with the protective film 14 of the board | substrate body 11 for semiconductor crystal growth does not react with the structural element of the semiconductor layer 22 (after-mentioned description).

図3は本発明に係る半導体結晶の一部を示す断面図である。図に示すように、図1、図2に示した半導体結晶成長用基板、すなわち半導体結晶成長用基板本体11の外周部に保護膜14が形成された半導体結晶成長用基板上にAlNからなるバッファ層21が形成されている。すなわち、半導体結晶成長用基板本体11の表面13の保護膜14が形成されていない領域上にバッファ層21が形成されている。また、バッファ層21上に膜厚が3μmのGaN結晶からなる半導体層22が形成されている。   FIG. 3 is a cross-sectional view showing a part of a semiconductor crystal according to the present invention. As shown in the figure, a buffer made of AlN is formed on the semiconductor crystal growth substrate shown in FIGS. 1 and 2, that is, the semiconductor crystal growth substrate in which the protective film 14 is formed on the outer periphery of the semiconductor crystal growth substrate body 11. Layer 21 is formed. That is, the buffer layer 21 is formed on a region of the surface 13 of the semiconductor crystal growth substrate body 11 where the protective film 14 is not formed. A semiconductor layer 22 made of GaN crystal having a thickness of 3 μm is formed on the buffer layer 21.

続いて、図3に示した半導体結晶の製造方法を図4により説明する。まず、図4(a)に示すように、半導体結晶成長用基板本体11の側面12を露出させた状態で、半導体結晶成長用基板本体11の側面12および表面13に熱CVDを用いて保護膜14を100nm成膜する。つぎに、図4(b)に示すように、フォトリソグラフィとフッ酸系エッチャントを用いて、半導体結晶成長用基板本体11の最外周から2mmより内側の保護膜14を剥離する。つぎに、レジストを剥離して有機洗浄を行ったのち、保護膜14を剥離しない程度にフッ酸溶液で再度洗浄し、清浄表面を得る。つぎに、MOCVD装置に洗浄済の半導体結晶成長用基板を装填し、水素雰囲気下で昇温してサーマルクリーニングを行う。つぎに、図4(c)に示すように、このサーマルクリーニングを行ったのち、半導体結晶成長用基板本体11上にバッファ層21を結晶成長する。つぎに、図4(d)に示すように、バッファ層21上に半導体層22を成長する。   Next, a method for manufacturing the semiconductor crystal shown in FIG. 3 will be described with reference to FIG. First, as shown in FIG. 4A, a protective film is formed on the side surface 12 and the surface 13 of the semiconductor crystal growth substrate body 11 using thermal CVD with the side surface 12 of the semiconductor crystal growth substrate body 11 exposed. 14 is deposited to a thickness of 100 nm. Next, as shown in FIG. 4B, the protective film 14 inside 2 mm from the outermost periphery of the semiconductor crystal growth substrate body 11 is peeled off using photolithography and a hydrofluoric acid etchant. Next, after the resist is peeled off and organic cleaning is performed, the surface is washed again with a hydrofluoric acid solution to the extent that the protective film 14 is not peeled off to obtain a clean surface. Next, a cleaned semiconductor crystal growth substrate is loaded into the MOCVD apparatus, and the temperature is raised in a hydrogen atmosphere to perform thermal cleaning. Next, as shown in FIG. 4C, after this thermal cleaning, the buffer layer 21 is grown on the semiconductor crystal growth substrate body 11. Next, as shown in FIG. 4D, a semiconductor layer 22 is grown on the buffer layer 21.

上述した半導体結晶成長用基板、半導体結晶においては、半導体結晶成長用基板本体11の外周部に形成された保護膜14によって半導体層22の構成元素と半導体結晶成長用基板本体11とが化学反応するのを防止することができるから、半導体結晶成長用基板本体11上に半導体層22を形成する際に、半導体結晶成長用基板本体11の外周部での意図しない反応物の生成を確実に抑えることができる。すなわち、半導体結晶成長用基板本体11の外周部にGaによる異常反応を生じさせることなく半導体層22を成膜することができる。このため、半導体層22の結晶成長が阻害されることがなく、また反応物のパーティクルが反応していない領域にまき散らされることがないから、反応物のパーティクルにより半導体層22の結晶欠陥が誘発されることがないので、結晶欠陥の少ない半導体層22を形成することができるため、半導体結晶の歩留りを向上させることができる。   In the semiconductor crystal growth substrate and semiconductor crystal described above, the constituent elements of the semiconductor layer 22 and the semiconductor crystal growth substrate body 11 chemically react with each other by the protective film 14 formed on the outer periphery of the semiconductor crystal growth substrate body 11. Therefore, when the semiconductor layer 22 is formed on the semiconductor crystal growth substrate body 11, the generation of unintended reactants on the outer periphery of the semiconductor crystal growth substrate body 11 is surely suppressed. Can do. That is, the semiconductor layer 22 can be formed without causing an abnormal reaction due to Ga on the outer periphery of the substrate body 11 for semiconductor crystal growth. For this reason, the crystal growth of the semiconductor layer 22 is not hindered, and the reactant particles are not scattered in the unreacted region, so that the crystal defects of the semiconductor layer 22 are induced by the reactant particles. Therefore, since the semiconductor layer 22 with few crystal defects can be formed, the yield of semiconductor crystals can be improved.

なお、上述した実施の形態においては、窒化物系化合物半導体結晶からなる半導体層がGaN結晶からなる半導体層22である場合について説明したが、半導体層の窒化物系化合物半導体結晶がAlGaN結晶、InGaN結晶、InN結晶等である場合にも、本発明を適用することができる。この場合、特にGaおよびNを含むAlGaN結晶、InGaN結晶で本発明の効果をより享受することができる。   In the above-described embodiment, the case where the semiconductor layer made of a nitride compound semiconductor crystal is the semiconductor layer 22 made of a GaN crystal has been described. However, the nitride compound semiconductor crystal of the semiconductor layer is an AlGaN crystal or InGaN. The present invention can also be applied to a crystal, InN crystal, or the like. In this case, the effects of the present invention can be more enjoyed particularly with AlGaN crystals and InGaN crystals containing Ga and N.

また、上述した実施の形態においては、窒化シリコンからなる保護膜14を形成したが、保護膜の材料は、半導体層の一般的な成長温度である1000℃以上の温度領域においても安定であり、また、半導体層22の構成元素もしくは成長原料と反応しない、もしくは反応しにくい材料であることが要求され、また形成プロセスが容易な物質であることが望ましい。そのような観点からは、保護膜の材料は、窒化シリコン、窒化アルミニウム、窒化チタン、窒化タングステン、酸化シリコン、酸化アルミニウム等が好適である。   In the above-described embodiment, the protective film 14 made of silicon nitride is formed. However, the material of the protective film is stable even in a temperature range of 1000 ° C. or higher, which is a general growth temperature of a semiconductor layer, In addition, the material is required to be a material that does not react or hardly reacts with the constituent elements or the growth raw material of the semiconductor layer 22, and is preferably a material that can be easily formed. From such a viewpoint, the material of the protective film is preferably silicon nitride, aluminum nitride, titanium nitride, tungsten nitride, silicon oxide, aluminum oxide, or the like.

また、上述した実施の形態においては、半導体結晶成長用基板本体11の表面13の最外周から2mmまでの部分に保護膜14を形成したが、保護膜の材料によっては、保護膜上で窒化物系化合物半導体の多結晶等が形成される可能性があるから、その影響を最小限にとどめるために、半導体結晶成長用基板本体の最外周から5mm以内の部分に保護膜を形成することが望ましい。   Further, in the above-described embodiment, the protective film 14 is formed on the portion from the outermost periphery of the surface 13 of the semiconductor crystal growth substrate body 11 to 2 mm. However, depending on the material of the protective film, the nitride is formed on the protective film. Since there is a possibility that a polycrystal of a compound compound semiconductor may be formed, it is desirable to form a protective film on a portion within 5 mm from the outermost periphery of the substrate body for semiconductor crystal growth in order to minimize the influence. .

また、上述実施の形態においては、半導体層22の膜厚を3μmとしたが、半導体層の膜厚が0.5μm以上の場合に本発明の効果をより享受することができる。   In the above-described embodiment, the thickness of the semiconductor layer 22 is 3 μm. However, when the thickness of the semiconductor layer is 0.5 μm or more, the effect of the present invention can be further enjoyed.

また、上述実施の形態においては、半導体結晶成長用基板本体11の外周部にCVDを用いて保護膜14を成膜したが、半導体結晶成長用基板本体11の外周部にスパッタ、SOG(Spin-on Glass)等を利用してリング状の保護膜を成膜してもよい。このとき、必ず半導体結晶成長用基板本体の側面を覆うことが重要である。   In the above-described embodiment, the protective film 14 is formed on the outer peripheral portion of the semiconductor crystal growth substrate body 11 using CVD. However, sputtering, SOG (Spin- On glass) or the like may be used to form a ring-shaped protective film. At this time, it is important to always cover the side surface of the substrate body for semiconductor crystal growth.

また、CVDやスパッタのように、非選択的に成膜するプロセスを使用して保護膜を成膜する場合は、上述のように、半導体結晶成長用基板本体11の表面13の全面に保護膜14を成膜してから、半導体層22を成長する領域の保護膜14を選択エッチングにて除去してもよいし、逆に、あらかじめフォトリソグラフィを用いて半導体結晶成長用基板本体11の表面13の半導体層22を成長させる領域を保護してから、保護膜14を成膜してもよい。さらに、SOG等の流動性のある物質を使用する場合は、通常通りスピンコータを利用して半導体結晶成長用基板本体11の表面13の全面に保護膜14を成膜してもよいが、半導体結晶成長用基板本体11の裏面から半導体結晶成長用基板本体11のハンドリングを行い、半導体結晶成長用基板本体11の側面部をコート剤に浸しながら回転させることで、半導体結晶成長用基板本体11の外周部のみ保護膜14をコートしてもよい。   Further, when the protective film is formed by using a non-selective film forming process such as CVD or sputtering, the protective film is formed on the entire surface 13 of the semiconductor crystal growth substrate body 11 as described above. After the film 14 is formed, the protective film 14 in the region where the semiconductor layer 22 is to be grown may be removed by selective etching. Conversely, the surface 13 of the semiconductor crystal growth substrate body 11 is previously used by photolithography. The protective film 14 may be formed after protecting the region where the semiconductor layer 22 is grown. Further, when a fluid material such as SOG is used, the protective film 14 may be formed on the entire surface 13 of the semiconductor crystal growth substrate body 11 using a spin coater as usual. The semiconductor crystal growth substrate body 11 is handled from the back surface of the growth substrate body 11 and rotated while immersing the side surface portion of the semiconductor crystal growth substrate body 11 in the coating agent. Only a portion of the protective film 14 may be coated.

また、バッファ層21、半導体層22の成長には、V族原料の窒素原子の供給に優れる有機金属気相エピタキシ(MOVPE)法が好適であるが、本発明の趣旨に反しない限りは分子線エピタキシ(MBE)法、ハロゲン化気相エピタキシ(HVPE)法等の結晶成長法を用いてもよい。   Further, for the growth of the buffer layer 21 and the semiconductor layer 22, a metal organic vapor phase epitaxy (MOVPE) method which is excellent in supplying nitrogen atoms as a group V raw material is suitable. A crystal growth method such as an epitaxy (MBE) method or a halogenated vapor phase epitaxy (HVPE) method may be used.

また、半導体結晶成長用基板本体11上に半導体層22を形成したとき、保護膜14を形成していない半導体結晶成長用基板本体11上に半導体層22の結晶が形成されるとともに、半導体結晶成長用基板本体11の周辺の保護膜14上に半導体層22の多結晶等が形成される場合がある。ただし、デバイス(素子)作製時の対象となるのは、半導体結晶成長用基板本体11の表面13の保護膜14が形成されていない領域上に形成された半導体層22の結晶であるため、保護膜14上の多結晶は形成されたままにしておいてもデバイス作製プロセスに影響を与えない。   In addition, when the semiconductor layer 22 is formed on the semiconductor crystal growth substrate body 11, crystals of the semiconductor layer 22 are formed on the semiconductor crystal growth substrate body 11 on which the protective film 14 is not formed. In some cases, a polycrystalline semiconductor layer 22 or the like is formed on the protective film 14 around the substrate main body 11. However, since a device (element) is a target, a crystal of the semiconductor layer 22 formed on a region where the protective film 14 of the surface 13 of the semiconductor crystal growth substrate body 11 is not formed is protected. Even if the polycrystal on the film 14 is left formed, it does not affect the device manufacturing process.

本発明に係る半導体結晶成長用基板を示す斜視図である。1 is a perspective view showing a semiconductor crystal growth substrate according to the present invention. 本発明に係る半導体結晶成長用基板の一部を示す断面図である。It is sectional drawing which shows a part of substrate for semiconductor crystal growth concerning this invention. 本発明に係る半導体結晶の一部を示す断面図である。It is sectional drawing which shows a part of semiconductor crystal concerning this invention. 図3に示した半導体結晶の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the semiconductor crystal shown in FIG. 従来の半導体結晶の一部を示す断面図である。It is sectional drawing which shows a part of conventional semiconductor crystal.

符号の説明Explanation of symbols

11…半導体結晶成長用基板本体
12…側面
13…表面
14…保護膜
21…バッファ層
22…半導体層
DESCRIPTION OF SYMBOLS 11 ... Substrate main body for semiconductor crystal growth 12 ... Side surface 13 ... Surface 14 ... Protective film 21 ... Buffer layer 22 ... Semiconductor layer

Claims (8)

窒化物系化合物半導体結晶からなる半導体層を成長するための半導体結晶成長用基板において、Siからなる半導体結晶成長用基板本体の少なくとも側面に保護膜を形成したことを特徴とする半導体結晶成長用基板。   A semiconductor crystal growth substrate for growing a semiconductor layer made of a nitride-based compound semiconductor crystal, wherein a protective film is formed on at least a side surface of the semiconductor crystal growth substrate body made of Si. . 上記半導体結晶成長用基板本体の上記保護膜に覆われている部位が上記半導体層の構成元素と反応しないことを特徴とする請求項1に記載の半導体結晶成長用基板。   2. The semiconductor crystal growth substrate according to claim 1, wherein a portion of the semiconductor crystal growth substrate body covered with the protective film does not react with a constituent element of the semiconductor layer. 上記半導体層の構成元素が、III族元素であることを特徴とする請求項1または2に記載の半導体結晶成長用基板。   3. The semiconductor crystal growth substrate according to claim 1, wherein the constituent element of the semiconductor layer is a group III element. 上記III族元素が、Gaであることを特徴とする請求項3に記載の半導体結晶成長用基板。   4. The semiconductor crystal growth substrate according to claim 3, wherein the group III element is Ga. 上記半導体結晶成長用基板本体の側面および表面の最外周から5mm以内の部分に上記保護膜を形成したことを特徴とする請求項1乃至4のいずれかに記載の半導体結晶成長用基板。   5. The semiconductor crystal growth substrate according to claim 1, wherein the protective film is formed in a portion within 5 mm from the outermost periphery of the side surface and the surface of the semiconductor crystal growth substrate main body. 上記保護膜が、窒化シリコン、窒化アルミニウム、窒化チタン、窒化タングステン、酸化シリコン、酸化アルミニウムのいずれかから構成された膜であることを特徴とする請求項1乃至5のいずれかに記載の半導体結晶成長用基板。   6. The semiconductor crystal according to claim 1, wherein the protective film is a film made of any one of silicon nitride, aluminum nitride, titanium nitride, tungsten nitride, silicon oxide, and aluminum oxide. Growth substrate. 半導体結晶成長用基板に窒化物系化合物半導体結晶からなる半導体層を形成した半導体結晶において、請求項1乃至6のいずれかに記載の上記半導体結晶成長用基板に、少なくともGaおよびNを含んだ窒化物系化合物半導体結晶からなる上記半導体層を形成したことを特徴とする半導体結晶。   7. A semiconductor crystal in which a semiconductor layer made of a nitride compound semiconductor crystal is formed on a semiconductor crystal growth substrate, wherein the semiconductor crystal growth substrate according to claim 1 is nitrided containing at least Ga and N. A semiconductor crystal comprising the semiconductor layer made of a physical compound semiconductor crystal. 上記半導体層の層厚が0.5μm以上であることを特徴とする請求項7に記載の半導体結晶。   The semiconductor crystal according to claim 7, wherein the semiconductor layer has a thickness of 0.5 μm or more.
JP2008109857A 2008-04-21 2008-04-21 Substrate for growing semiconductor crystal and semiconductor crystal Pending JP2009256154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109857A JP2009256154A (en) 2008-04-21 2008-04-21 Substrate for growing semiconductor crystal and semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109857A JP2009256154A (en) 2008-04-21 2008-04-21 Substrate for growing semiconductor crystal and semiconductor crystal

Publications (1)

Publication Number Publication Date
JP2009256154A true JP2009256154A (en) 2009-11-05

Family

ID=41384087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109857A Pending JP2009256154A (en) 2008-04-21 2008-04-21 Substrate for growing semiconductor crystal and semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2009256154A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055827A1 (en) 2009-11-09 2011-05-12 日東電工株式会社 Pressure-sensitive adhesive composition
JP2012036030A (en) * 2010-08-05 2012-02-23 Sanken Electric Co Ltd Method for manufacturing semiconductor wafer
CN103000684A (en) * 2011-09-16 2013-03-27 富士通株式会社 Semiconductor crystal substrate, manufacturing method of semiconductor crystal substrate, manufacturing method of semiconductor device, power unit, and amplifier
WO2013125185A1 (en) * 2012-02-20 2013-08-29 サンケン電気株式会社 Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
EP2779214A1 (en) * 2013-03-15 2014-09-17 Semiconductor Components Industries, LLC Semiconductor wafer with monocrystalline central region and polycrystalline edge region and process for forming thereof
JP2015018960A (en) * 2013-07-11 2015-01-29 三菱電機株式会社 Semiconductor device manufacturing method
US9006865B2 (en) 2010-06-25 2015-04-14 Dowa Electronics Materials Co., Ltd. Epitaxial growth substrate, semiconductor device, and epitaxial growth method
US9422638B2 (en) 2011-12-05 2016-08-23 Samsung Electronics Co., Ltd. Silicon substrate including an edge portion, epitaxial structure including the same, and method of manufacturing the silicon substrate
JP2017193486A (en) * 2011-09-12 2017-10-26 住友化学株式会社 Method for producing nitride semiconductor crystal, nitride semiconductor epitaxial wafer, and nitride semiconductor free-standing substrate
CN110663106A (en) * 2017-05-18 2020-01-07 株式会社迪思科 Protective sheet for use in processing wafers, processing system for wafers, and wafer and protective sheet assembly
WO2023002865A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Template substrate and manufacturing method and manufacturing apparatus thereof, semiconductor substrate and manufacturing method and manufacturing apparatus thereof, semiconductor device, and electronic device
WO2023026847A1 (en) * 2021-08-26 2023-03-02 信越半導体株式会社 Nitride semiconductor substrate and method for producing same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055827A1 (en) 2009-11-09 2011-05-12 日東電工株式会社 Pressure-sensitive adhesive composition
US9006865B2 (en) 2010-06-25 2015-04-14 Dowa Electronics Materials Co., Ltd. Epitaxial growth substrate, semiconductor device, and epitaxial growth method
US8652949B2 (en) 2010-08-05 2014-02-18 Sanken Electric Co., Ltd. Method of manufacturing semiconductor wafer
JP2012036030A (en) * 2010-08-05 2012-02-23 Sanken Electric Co Ltd Method for manufacturing semiconductor wafer
JP2017193486A (en) * 2011-09-12 2017-10-26 住友化学株式会社 Method for producing nitride semiconductor crystal, nitride semiconductor epitaxial wafer, and nitride semiconductor free-standing substrate
US9379230B2 (en) 2011-09-16 2016-06-28 Fujitsu Limited Semiconductor crystal substrate, manufacturing method of semiconductor crystal substrate, manufacturing method of semiconductor device, power unit, and amplifier
CN103000684A (en) * 2011-09-16 2013-03-27 富士通株式会社 Semiconductor crystal substrate, manufacturing method of semiconductor crystal substrate, manufacturing method of semiconductor device, power unit, and amplifier
EP2602810B1 (en) * 2011-12-05 2019-01-16 Samsung Electronics Co., Ltd. Silicon substrate, epitaxial structure including the same, and method of manufacturing the silicon substrate
US9422638B2 (en) 2011-12-05 2016-08-23 Samsung Electronics Co., Ltd. Silicon substrate including an edge portion, epitaxial structure including the same, and method of manufacturing the silicon substrate
WO2013125185A1 (en) * 2012-02-20 2013-08-29 サンケン電気株式会社 Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
CN104115258A (en) * 2012-02-20 2014-10-22 三垦电气株式会社 Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
JP2013171898A (en) * 2012-02-20 2013-09-02 Sanken Electric Co Ltd Epitaxial substrate and semiconductor device
US20140264368A1 (en) * 2013-03-15 2014-09-18 Semiconductor Components Industries, Llc Semiconductor Wafer and a Process of Forming the Same
US9245736B2 (en) * 2013-03-15 2016-01-26 Semiconductor Components Industries, Llc Process of forming a semiconductor wafer
CN104051504A (en) * 2013-03-15 2014-09-17 半导体元件工业有限责任公司 Semiconductor Wafer and a Process of Forming the Same
EP2779214A1 (en) * 2013-03-15 2014-09-17 Semiconductor Components Industries, LLC Semiconductor wafer with monocrystalline central region and polycrystalline edge region and process for forming thereof
US9842899B2 (en) 2013-03-15 2017-12-12 Semiconductor Components Industries, Llc Semiconductor wafer including a monocrystalline semiconductor layer spaced apart from a poly template layer
JP2015018960A (en) * 2013-07-11 2015-01-29 三菱電機株式会社 Semiconductor device manufacturing method
CN110663106A (en) * 2017-05-18 2020-01-07 株式会社迪思科 Protective sheet for use in processing wafers, processing system for wafers, and wafer and protective sheet assembly
CN110663106B (en) * 2017-05-18 2023-09-22 株式会社迪思科 Protective sheet for use in processing wafers, processing system for wafers, and combination of wafer and protective sheet
WO2023002865A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Template substrate and manufacturing method and manufacturing apparatus thereof, semiconductor substrate and manufacturing method and manufacturing apparatus thereof, semiconductor device, and electronic device
WO2023026847A1 (en) * 2021-08-26 2023-03-02 信越半導体株式会社 Nitride semiconductor substrate and method for producing same

Similar Documents

Publication Publication Date Title
JP2009256154A (en) Substrate for growing semiconductor crystal and semiconductor crystal
US8541292B2 (en) Group III nitride semiconductor epitaxial substrate and method for manufacturing the same
KR100523032B1 (en) Method of forming an epitaxially grown nitride-based compound semiconductor crystal substrate structure and the same substrate structure
KR101380717B1 (en) Semi-conductor substrate and method and masking layer for producing a free-standing semi-conductor substrate by means of hydride-gas phase epitaxy
US7407865B2 (en) Epitaxial growth method
US6924159B2 (en) Semiconductor substrate made of group III nitride, and process for manufacture thereof
EP1885918B1 (en) Methods of preparing controlled polarity group iii-nitride films
JP4741572B2 (en) Nitride semiconductor substrate and manufacturing method thereof
US20030155586A1 (en) Methods and devices using group III nitride compound semiconductor
US8148753B2 (en) Compound semiconductor substrate having multiple buffer layers
JP5244487B2 (en) Gallium nitride growth substrate and method for manufacturing gallium nitride substrate
JP2011084469A (en) METHOD AND INGOT FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE
JP2006232655A (en) Method for manufacturing nitride-based single crystal substrate and method for manufacturing nitride-based semiconductor light emitting element using the same
KR101878754B1 (en) Method of manufacturing large area gallium nitride substrate
JP5065625B2 (en) Manufacturing method of GaN single crystal substrate
JP2003113000A (en) Semiconductor epitaxial wafer and method for manufacturing the same
US10600645B2 (en) Manufacturing method of gallium nitride substrate
JP2000277435A (en) Growth method for garium nitride group compound semiconductor crystal and semiconductor crystal base material
JP2011216549A (en) METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR EPITAXIAL SUBSTRATE
JP2013227202A (en) Method for manufacturing semiconductor crystal of nitride of group 13 metal in periodic table and semiconductor light-emitting device using semiconductor crystal of nitride of group 13 metal in periodic obtained by the manufacturing method
JP6248359B2 (en) Semiconductor layer surface treatment method
US20150115277A1 (en) Episubstrates for Selective Area Growth of Group III-V Material and a Method for Fabricating a Group III-V Material on a Silicon Substrate
JP2007266157A (en) Method for manufacturing semiconductor single crystal substrate, and semiconductor device
JP3698061B2 (en) Nitride semiconductor substrate and growth method thereof
JP2013209271A (en) Manufacturing method of periodic table group 13 metal nitride semiconductor substrate, and groundwork substrate used for the manufacturing method