JP6313578B2 - Zinc alloy powder for alkaline battery, method for producing the same, and alkaline battery using the same - Google Patents

Zinc alloy powder for alkaline battery, method for producing the same, and alkaline battery using the same Download PDF

Info

Publication number
JP6313578B2
JP6313578B2 JP2013246736A JP2013246736A JP6313578B2 JP 6313578 B2 JP6313578 B2 JP 6313578B2 JP 2013246736 A JP2013246736 A JP 2013246736A JP 2013246736 A JP2013246736 A JP 2013246736A JP 6313578 B2 JP6313578 B2 JP 6313578B2
Authority
JP
Japan
Prior art keywords
zinc alloy
alloy powder
alkaline battery
alkaline
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013246736A
Other languages
Japanese (ja)
Other versions
JP2015106449A (en
Inventor
渡辺 治彦
治彦 渡辺
徳昭 野上
徳昭 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2013246736A priority Critical patent/JP6313578B2/en
Publication of JP2015106449A publication Critical patent/JP2015106449A/en
Application granted granted Critical
Publication of JP6313578B2 publication Critical patent/JP6313578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、亜鉛合金粉の表面状態を最適化することによって、放電性能が高く、かつゲル粘度が低くて充填性に優れた、アルカリマンガン電池などのアルカリ電池用の亜鉛合金粉とその製造方法およびそれを用いたアルカリ電池に関するものである。 The present invention provides a zinc alloy powder for an alkaline battery such as an alkaline manganese battery, which has a high discharge performance, a low gel viscosity and an excellent filling property by optimizing the surface state of the zinc alloy powder, and a method for producing the same. And an alkaline battery using the same.

アルカリマンガン電池の用途は多岐にわたり、特性向上の要求がある。それに伴い電池の負極材として用いる亜鉛合金粉の特性向上が望まれていた。 There are various uses for alkaline manganese batteries, and there is a demand for improved characteristics. Accordingly, it has been desired to improve the properties of zinc alloy powder used as a negative electrode material for batteries.

特許文献1では、アトマイズ後の亜鉛合金末を不活性雰囲気中で熱処理する事で、かさ密度≧3.01g/cm3が得られ、放電前後の水素ガス発生量を低減したアルカリ電池用の亜鉛合金粉を開示している。 In Patent Document 1, zinc atom powder for alkaline batteries is obtained by heat treating the zinc alloy powder after atomization in an inert atmosphere to obtain a bulk density ≧ 3.01 g / cm 3 and reducing the amount of hydrogen gas generated before and after discharge. Is disclosed.

特開2006−40883号公報JP 2006-40883 A

従来の放電性能向上に加えて、電池を組立てる工程の生産性向上のために、負極ゲルの粘度の低下の必要があった。従って本発明の目的は、従来以上に放電性能を向上させ、かつ充填性に優れたゲル粘度を両立させたアルカリ電池用亜鉛合金粉とそれを用いたアルカリ電池を提供することにある。 In addition to the conventional improvement in discharge performance, it was necessary to reduce the viscosity of the negative electrode gel in order to improve the productivity in the process of assembling the battery. Accordingly, an object of the present invention is to provide a zinc alloy powder for an alkaline battery and an alkaline battery using the same, which have improved discharge performance and a gel viscosity excellent in filling properties.

本発明者らは上記課題の解決にむけて鋭意検討を重ねた結果、次の発明に至った。従来は、大きい粒子の空隙を小さい粒子が入ることで、表面積を増加させるという考え方であった。これに対し、大きい粒子同士のすべりを良くすることでかさ密度を向上させ、それにより放電特性を向上させるという着想を得た。また、表面を酸化させることで、ゲル粘度が低下することが分かり、これらを同時に得る方法を見出した。すなわち、亜鉛合金粉に酸素を含む気体中にて混合機を用いた混合処理を施す亜鉛合金粉の製造方法であり、嵩密度が3.0g/cm3以上かつ、酸素濃度が0.04%以上0.10%未満である亜鉛合金粉であり、その亜鉛合金粉を用いたアルカリ電池である。 As a result of intensive studies aimed at solving the above problems, the present inventors have reached the following invention. Conventionally, the idea was to increase the surface area by introducing small particles into the voids of large particles. On the other hand, the idea of improving the bulk density by improving the sliding of the large particles and thereby improving the discharge characteristics was obtained. In addition, it was found that the gel viscosity decreases by oxidizing the surface, and a method for obtaining these simultaneously was found. That is, the zinc alloy powder is a method for producing zinc alloy powder that is subjected to a mixing process using a mixer in a gas containing oxygen, and has a bulk density of 3.0 g / cm 3 or more and an oxygen concentration of 0.04% or more. The zinc alloy powder is less than 0.10%, and is an alkaline battery using the zinc alloy powder.

本製造方法では、微粉末が増えてガス発生量の増加が顕著となる場合があるため、粒径75μm以下の微粒粉を5%以下に減量するようにしても良い。 In this manufacturing method, fine powder may increase and the amount of gas generation may increase significantly. Therefore, the fine powder having a particle size of 75 μm or less may be reduced to 5% or less.

本発明に係る亜鉛合金粉は、放電特性を向上させると共に、低いゲル粘度となる亜鉛合金粉を提供することができる。 The zinc alloy powder according to the present invention can improve the discharge characteristics and provide a zinc alloy powder having a low gel viscosity.

図1は、本発明の実施例1における亜鉛合金粉のSEM写真である。FIG. 1 is an SEM photograph of zinc alloy powder in Example 1 of the present invention. 図2は、比較例1における亜鉛合金粉のSEM写真である。FIG. 2 is an SEM photograph of the zinc alloy powder in Comparative Example 1.

亜鉛合金粉は、電池の特性を向上するため、アルミニウム(Al)、ビスマス(Bi)、インジウム(In)、鉛(Pb)、カドミニウム(Cd)など種々の元素を亜鉛(Zn)に調合されている。亜鉛合金粉の組成は、粉全体としての組成として元素毎に含有量を表している。組成の分析は、粉全体から50g程度を分取して分析サンプルとし、ICP、化学分析法により組成値(質量%、ppm)を求める。なお、本発明において、特に記載がない場合での分析値の単位は、質量ppm、質量%である。 Zinc alloy powder is prepared by adding various elements such as aluminum (Al), bismuth (Bi), indium (In), lead (Pb), cadmium (Cd) to zinc (Zn) in order to improve battery characteristics. Yes. The composition of the zinc alloy powder represents the content for each element as the composition of the whole powder. In the analysis of the composition, about 50 g is taken from the whole powder to obtain an analysis sample, and the composition value (mass%, ppm) is obtained by ICP or chemical analysis. In addition, in this invention, the unit of the analysis value when there is no description in particular is mass ppm and mass%.

本発明における亜鉛合金組成は、Al、Bi及びInを含有する亜鉛合金が特に好ましい。さらには、50〜150ppmのAlと、50〜150ppmのBiと、150〜250ppmのInとを含み、10ppm以下のマグネシウム、鉄、銅、鉛、ニッケル、コバルト、マンガンの少なくともいずれか1つ以上の不可避不純物を含み、残部が亜鉛である亜鉛合金粉である。この組成らは、厳密なものではなく、Biの代わりに鉛の含有量を増やしても本発明と同等の効果が得られる可能性はある。不純物は他では、ガリウム、タリウム、マグネシウム、カルシウム、ストロンチウム、カドミウム、錫および鉛からなる群より選ばれた少なくとも1種以上の元素を0.1〜1ppm含有してもよい。微量に含まれる元素の影響は殆どないためである。 The zinc alloy composition in the present invention is particularly preferably a zinc alloy containing Al, Bi and In. Furthermore, it contains 50 to 150 ppm of Al, 50 to 150 ppm of Bi, and 150 to 250 ppm of In, and contains 10 ppm or less of at least one of magnesium, iron, copper, lead, nickel, cobalt, and manganese. A zinc alloy powder containing inevitable impurities and the balance being zinc. These compositions are not exact, and even if the lead content is increased instead of Bi, the same effects as the present invention may be obtained. Otherwise, the impurities may contain 0.1 to 1 ppm of at least one element selected from the group consisting of gallium, thallium, magnesium, calcium, strontium, cadmium, tin and lead. This is because there is almost no influence of an element contained in a trace amount.

本発明における亜鉛合金粉のかさ密度が3.0g/cm以上、より好ましくは3.1g/cm以上であることを特徴とする。従来に比べてかさ密度を高めたことにより、放電特性が向上する。 The bulk density of the zinc alloy powder in the present invention is 3.0 g / cm 3 or more, more preferably 3.1 g / cm 3 or more. By increasing the bulk density as compared with the prior art, the discharge characteristics are improved.

電池用の亜鉛合金粉は、ガスアトマイズ法等により製造されると、粉を形成する1つ1つの粒子は、多形状種となる。粒子形状は球状、針状、扁平状、棒状、他不定形である。球状は、粒子の長軸長と短軸長との軸比を長軸長/短軸長として2以下のものである、軸比が2以上のものを棒状とし、さらに粒子のいずれかの箇所に突起があるものを針状とする。扁平状は、棒状のものであり、粒子の断面において軸比が2以上のものである。これら球状、針状、扁平状、棒状の形状が複合された形状を不定形としてある。軸比の測定は、亜鉛合金粉を電子顕微鏡(SEM)で100倍以上にて拡大した画像により測定する。画像にある個々の粒子を平行な2線により粒子外縁を挟み、最長距離となる箇所の平行2線間の垂直距離(最短距離)を長軸長(μm)とし、この平行2線に垂直に交差する2線から、同様に粒子の外縁を挟み最長距離にて得た長さを短軸長(μm)とする。アルカリ電池に組み込まれた亜鉛合金粉は、アルカリ溶液、分散液等と混合された状態である。アルカリ電池の電位を得るため、化学反応が起きるような状態となっている。 When the zinc alloy powder for batteries is manufactured by a gas atomizing method or the like, each particle forming the powder becomes a polymorphic species. The particle shape is spherical, needle-like, flat, rod-like, or other irregular shape. Spherical shape has a long axis length / short axis length of 2 or less in the axial ratio between the major axis length and minor axis length of the particle, and has a rod ratio with an axial ratio of 2 or more, and any part of the particle If there is a protrusion on the needle, make it needle-shaped. The flat shape is a rod-like shape and has an axial ratio of 2 or more in the cross section of the particle. A shape obtained by combining these spherical, needle-like, flat, and rod-like shapes is an indeterminate shape. The axial ratio is measured by an image obtained by enlarging the zinc alloy powder with an electron microscope (SEM) at a magnification of 100 times or more. Each particle in the image is sandwiched between two parallel lines and the outer edge of the particle is sandwiched. The vertical distance (shortest distance) between the two parallel lines at the longest distance is defined as the long axis length (μm). Similarly, the length obtained from the two intersecting lines with the longest distance between the outer edges of the particles is defined as the short axis length (μm). The zinc alloy powder incorporated in the alkaline battery is in a state of being mixed with an alkaline solution, a dispersion liquid or the like. In order to obtain the potential of the alkaline battery, a chemical reaction occurs.

本発明における混合器とは、羽刃などの回転によるせん断力を用いず、充填物の自重と遠心力によるたたみ込み作用により、通常、混合に用いる装置をいう。本発明においては、混合の用途ではなく、強いせん断力により粒度分布が大きく変化することを回避しつつ、粉末同士が擦れることで、徐々に表面の凹凸が取れて滑らかとなり、かさ密度またはTAP密度を向上させるともに、表面を酸化させる。 The mixer in the present invention refers to a device that is usually used for mixing by the convolution action due to its own weight and centrifugal force without using the shearing force due to the rotation of a blade or the like. In the present invention, it is not intended to be used for mixing but avoids a large change in the particle size distribution due to a strong shearing force, and by rubbing the powders, the surface irregularities are gradually removed and smooth, and the bulk density or TAP density Improves the surface and oxidizes the surface.

混合器は、2つの円筒型容器がV字形に結合したV型混合器が最も好ましいが、他の同じ原理を用いる混合器を用いても良い。 The mixer is most preferably a V-type mixer in which two cylindrical containers are connected in a V-shape, but a mixer using the same principle may be used.

亜鉛合金粉を投入する混合器の容器の内壁は、亜鉛合金粉への不純物元素が混入しにくい材質であることが好ましく、例えば、ガラスなどが使用できる。 The inner wall of the container of the mixer into which the zinc alloy powder is charged is preferably made of a material in which an impurity element is not easily mixed into the zinc alloy powder. For example, glass or the like can be used.

混合器を用いて混合する時間、回転数、充填率は、容器の容積にも拠るが、例えば1時間〜20時間、5〜100rpm、5〜60%とすることができる。ただし、混合による発熱がない条件となるようにすることが好ましい。混合器の温度を測定し、例えば室温または30℃以下となるように制御することが好ましい。発熱が大きいと、酸化が亜鉛合金粉の内部まで進みすぎて、放電特性を悪化させる恐れがあるためである。 The mixing time using the mixer, the number of rotations, and the filling rate depend on the volume of the container, but can be set to, for example, 1 to 20 hours, 5 to 100 rpm, and 5 to 60%. However, it is preferable that the conditions are such that no heat is generated by mixing. It is preferable that the temperature of the mixer is measured and controlled so as to be, for example, room temperature or 30 ° C. or lower. This is because if the heat generation is large, the oxidation proceeds excessively to the inside of the zinc alloy powder, which may deteriorate the discharge characteristics.

混合時の雰囲気は、酸素を含む気体、すなわち、大気または窒素やアルゴンなどの気体と酸素との混合気体であれば良く、混合開始から酸素を含ませても、混合途中から酸素を含ませても良い。また、酸化を制御するために、水分量も制御することがより好ましい。 The atmosphere at the time of mixing may be a gas containing oxygen, that is, air or a mixed gas of oxygen and a gas such as nitrogen or argon. Even if oxygen is included from the start of mixing, oxygen is included in the middle of mixing. Also good. In order to control oxidation, it is more preferable to control the amount of water.

本発明における酸化濃度は、非拡散赤外吸収法により測定した値であり、0.04wt%以上0.10wt%未満であることが好ましい。0.04wt%未満では、ゲル粘度の低下効果が得られにくく、0.10wt%以上では、放電特性の悪化する恐れが高くなるためである。 The oxidation concentration in the present invention is a value measured by a non-diffusion infrared absorption method, and is preferably 0.04 wt% or more and less than 0.10 wt%. This is because if it is less than 0.04 wt%, it is difficult to obtain the effect of reducing the gel viscosity, and if it is 0.10 wt% or more, there is a high possibility that the discharge characteristics will deteriorate.

電池の放電により亜鉛合金粉は酸化していくため、電池に用いる亜鉛合金粉の酸化亜鉛の濃度(ZnO濃度)は電池を設計する際に有用である。本発明では、上記の非拡散赤外吸収法により測定した酸素濃度を、全てZnOとして換算してZnO濃度とした。厳密には、亜鉛合金粉の表面に多く存在するInやAlの酸化を考慮する必要があるが、その絶対量は少ないため、ZnO濃度とみなすこととする。 Since the zinc alloy powder is oxidized by the discharge of the battery, the zinc oxide concentration (ZnO concentration) of the zinc alloy powder used in the battery is useful when designing the battery. In the present invention, the oxygen concentration measured by the above non-diffusive infrared absorption method is all converted to ZnO and used as the ZnO concentration. Strictly speaking, it is necessary to consider the oxidation of In and Al present in large amounts on the surface of the zinc alloy powder, but since the absolute amount thereof is small, it is considered as the ZnO concentration.

本発明の混合器を用いた処理では、粉末同士が擦れることで微粒粉が発生し、微粒粉の粒度分布の上昇がみられる。この微粒粉が多くなりすぎるとガス発生速度が上昇するため、増加した微粒粉は減量することが好ましい。粒径75μm以下の微粒分を減量させる工程では、減量後の微粒粉の量を5%以下に落とすことが好ましい。0%とすることは篩を用いた粒度分布測定では困難であり、1%〜5%の間であることがより好ましい。 In the treatment using the mixer of the present invention, fine powder is generated by rubbing the powders, and the particle size distribution of the fine powder is increased. If the amount of fine powder increases excessively, the gas generation rate increases. Therefore, it is preferable to reduce the amount of fine powder that has increased. In the step of reducing the amount of fine particles having a particle size of 75 μm or less, it is preferable to reduce the amount of fine particles after the reduction to 5% or less. Setting it to 0% is difficult in the particle size distribution measurement using a sieve, and it is more preferably between 1% and 5%.

以下に実施例および比較例を記載し本発明をさらに具体的に示すが、本発明の技術的範囲はこれらの記載に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the technical scope of the present invention is not limited to these descriptions.

亜鉛合金粉についての評価法を先に述べる。亜鉛合金粉の粒度分布は、ふるいを用いて各篩い目を通過しなかった粉の質量により測定した。なお、ここで、200メッシュフルイのフルイ目を通過する粒径のもの、すなわち0.075mm以下の粒径のものを、−75μmと表記する。150メッシュフルイのフルイ目を通過するが、200メッシュフルイのフルイ目を通過しない粒径(200〜150メッシュ)のものを、75μmと表記する。150〜100メッシュを106μmと表記し、100〜65メッシュを150μmと表記し、65〜48メッシュを212μmと表記し、48〜35メッシュを300μmと表記する。35メッシュフルイのフルイ目を通過しない粒径のものを425μmと表記する。 An evaluation method for zinc alloy powder will be described first. The particle size distribution of the zinc alloy powder was measured by the mass of the powder that did not pass through each sieve using a sieve. In addition, the thing of the particle size which passes through the 200 mesh sieves, ie, the thing of the particle size of 0.075 mm or less, is described as -75 micrometers here. A particle having a particle diameter (200 to 150 mesh) that passes through a 150 mesh sieve but not through a 200 mesh sieve is denoted as 75 μm. 150 to 100 mesh is represented as 106 μm, 100 to 65 mesh is represented as 150 μm, 65 to 48 mesh is represented as 212 μm, and 48 to 35 mesh is represented as 300 μm. A particle size that does not pass through a 35 mesh sieve is denoted as 425 μm.

亜鉛合金粉のかさ密度はJIS Z2504により測定した。 The bulk density of the zinc alloy powder was measured according to JIS Z2504.

亜鉛合金粉のBET(比表面積、単位 m/g)は、窒素ガス置換法による、BET1点法による。 The BET (specific surface area, unit m 2 / g) of the zinc alloy powder is based on the BET 1-point method by the nitrogen gas replacement method.

亜鉛合金粉の酸素濃度(単位 質量%)は、酸素・窒素・水素分析装置(LECOジャパン製 ONH836)を用い、非拡散赤外吸収法により測定を行った。また、上記の測定による酸素濃度の値を、全て酸化亜鉛(ZnO)となったと仮定して酸化亜鉛重量に換算した値を、亜鉛合金粉のZnO濃度(単位 質量%)とした。 The oxygen concentration (unit mass%) of the zinc alloy powder was measured by a non-diffusion infrared absorption method using an oxygen / nitrogen / hydrogen analyzer (ONH836 manufactured by LECO Japan). Further, assuming that all the oxygen concentration values measured as described above were zinc oxide (ZnO), the value converted to the zinc oxide weight was defined as the ZnO concentration (unit mass%) of the zinc alloy powder.

各亜鉛合金粉を5gとり、40%KOH水溶液に3質量%の酸化亜鉛を溶解した液に浸し、図1に示す装置を用いて60℃で3日間保持して発生したガス量から、ガス発生速度(μl/g・day)を求めた。 Take 5 g of each zinc alloy powder, immerse it in a solution of 3% by weight zinc oxide in 40% KOH aqueous solution, and generate gas from the amount of gas generated by holding at 60 ° C. for 3 days using the apparatus shown in FIG. The rate (μl / g · day) was determined.

亜鉛合金粉を含むゲル状負極活物質のゲル粘度および放電特性の評価には、各亜鉛合金粉、ポリアクリル酸1質量%、酸化亜鉛を3質量%溶解させた40%KOH水溶液を混合してゲル状負極活物質としたものを使用した。 For evaluation of gel viscosity and discharge characteristics of a gelled negative electrode active material containing zinc alloy powder, each zinc alloy powder, 1% by mass of polyacrylic acid, and 40% KOH aqueous solution in which 3% by mass of zinc oxide were dissolved were mixed. A gelled negative electrode active material was used.

ゲル粘度の測定は、東機産業製の粘度計(TVB-10U)を用い、直径約7cm高さ約6cmの容器に上記のゲル状負極活物質(負極ゲル)を作成し、この容器を測定ステージ(T-BAR STAGE TS-20)に載せ、予め測定用のTバー(バーの長さ5cm)を負極ゲルに7mm程の深さに差し込んだ後、Tバーを5rpmで回転させながら測定ステージを一定のスピードで上昇させ、Tバーが負極ゲルの15mmの深さに達したところの粘度を計測した。測定温度は室温とした。 Gel viscosity is measured using a viscometer (TVB-10U) manufactured by Toki Sangyo Co., Ltd. The above gel-like negative electrode active material (negative electrode gel) is prepared in a container with a diameter of about 7 cm and a height of about 6 cm. Place on the stage (T-BAR STAGE TS-20), insert the T-bar for measurement (bar length 5cm) into the negative electrode gel to a depth of about 7mm, and then measure the stage while rotating the T-bar at 5rpm. Was increased at a constant speed, and the viscosity when the T bar reached a depth of 15 mm of the negative electrode gel was measured. The measurement temperature was room temperature.

放電特性を評価は、上記のゲル状負極活物質に対し、正極を二酸化マンガンとしてLR6型試作電池を作製して行った。この試作電池の重負荷放電(ハイレートパルス放電)性能を1.2A3秒間放電、7秒間休止で測定した。この電池を当初1.6Vであったところ、上記のとおり連続して繰り返し放電させて1.0 Vまでの放電時間を測定し、後述する比較例1の放電時間を100とした場合の相対値で表した。 The discharge characteristics were evaluated by preparing an LR6-type prototype battery using the positive electrode as manganese dioxide for the above gelled negative electrode active material. The heavy load discharge (high rate pulse discharge) performance of this prototype battery was measured with 1.2 A for 3 seconds of discharge and 7 seconds of rest. When this battery was initially 1.6 V, it was continuously discharged repeatedly as described above, the discharge time up to 1.0 V was measured, and the relative value when the discharge time of Comparative Example 1 described later was taken as 100. Expressed in

(実施例1)アルミニウム100ppm、ビスマス100ppmおよびインジウム200ppmと残部が亜鉛からなる組成の亜鉛合金を、500℃の温度で溶解した後、セラミックスノズルを用いて2〜4mmに細流化して滴下し、これに空気ガスにて圧縮空気を噴射させて噴霧を行い、亜鉛合金粉を得た。その後、この亜鉛合金粉2kgを、内容量2Lで容器内壁がガラス製のV型混合器内に入れ、50rpmで8時間回転させる混合処理を行い、実施例1の亜鉛合金粉を得た。なお、混合処理の容器内は室温、大気中とした。混合処理中において、混合器の容器の温度上昇はなかった。(実施例2)混合処理の時間を16時間とした以外は実施例1と同様にして実施例2の亜鉛合金粉を得た。(実施例3)実施例1の混合処理の後に、200メッシュのふるいを用いて篩い、粒径75μm以下の微粒子を減らす処理を追加して、実
施例3の亜鉛合金粉を得た。(実施例4)実施例2の混合処理の後に、200メッシュのふるいを用いて篩い、粒径75μm以下の微粒子を減らす処理を追加して、実施例4の亜鉛合金粉を得た。(比較例1)混合処理を行わなかった以外は実施例1と同様として、比較例1の亜鉛合金粉を得た。(比較例2)混合処理を行なわない比較例1について、200メッシュのふるいを用いて篩い、粒径75μm以下の微粒子を減らす処理を追加して、比較例2の亜鉛合金粉を得た。(比較例3)アルミニウム100ppm、ビスマス100ppmおよびインジウム200ppmと残部が亜鉛からなる組成の亜鉛合金を、500℃の温度で溶解した後、セラミックスノズルを用いて2〜4mmに細流化して滴下し、これに空気ガスにて圧縮空気を噴射させて噴霧を行い、亜鉛合金粉を得た。その後、この亜鉛合金粉0.5kgを、ポリエチレン製の袋に入れ、40℃、湿度80%の恒温恒湿器にて312時間による表面酸化処理を行ない、比較例3の亜鉛合金粉を得た。
(Example 1) A zinc alloy having a composition consisting of 100 ppm of aluminum, 100 ppm of bismuth and 200 ppm of indium and the balance of zinc and the balance of zinc was melted at a temperature of 500 ° C., and then trickled to 2 to 4 mm using a ceramic nozzle and dropped. Spraying was performed by injecting compressed air with air gas to obtain zinc alloy powder. Thereafter, 2 kg of this zinc alloy powder was placed in a V-type mixer having an internal volume of 2 L and a container inner wall made of glass, and subjected to a mixing process of rotating at 50 rpm for 8 hours to obtain the zinc alloy powder of Example 1. Note that the inside of the container for the mixing treatment was at room temperature and in the atmosphere. There was no temperature rise in the mixer vessel during the mixing process. (Example 2) A zinc alloy powder of Example 2 was obtained in the same manner as in Example 1 except that the mixing treatment time was 16 hours. (Example 3) After the mixing process of Example 1, a 200-mesh sieve was used to add a process of reducing fine particles having a particle size of 75 µm or less to obtain a zinc alloy powder of Example 3. (Example 4) After the mixing process of Example 2, a 200-mesh sieve was used to add a process of reducing fine particles having a particle size of 75 µm or less to obtain a zinc alloy powder of Example 4. (Comparative Example 1) A zinc alloy powder of Comparative Example 1 was obtained in the same manner as in Example 1 except that no mixing treatment was performed. (Comparative example 2) About the comparative example 1 which does not perform a mixing process, the process which sifts using a 200 mesh sieve and reduces the microparticles | fine-particles with a particle size of 75 micrometers or less was added, and the zinc alloy powder of the comparative example 2 was obtained. (Comparative Example 3) A zinc alloy having a composition consisting of 100 ppm of aluminum, 100 ppm of bismuth and 200 ppm of indium and the balance of zinc and the balance of zinc was melted at a temperature of 500 ° C., and then trickled to 2 to 4 mm using a ceramic nozzle and dropped. Spraying was performed by injecting compressed air with air gas to obtain zinc alloy powder. Thereafter, 0.5 kg of this zinc alloy powder was put in a polyethylene bag and subjected to surface oxidation treatment for 312 hours in a constant temperature and humidity chamber at 40 ° C. and 80% humidity to obtain the zinc alloy powder of Comparative Example 3. .

上記の実施例1,2,4および比較例1,3について、ふるいによる粒度分布の測定結果を表1に示す。 Table 1 shows the measurement results of the particle size distribution by sieving for Examples 1, 2, 4 and Comparative Examples 1, 3.

比較例1と実施例1、実施例2との比較から、V型混合器をもちいると、75μm以下の微粒粉の割合が増える以外は、粒度分布には大きな差は無いことがわかる。また、実施例2と実施例4の差から、200メッシュのふるいを用いて篩い、粒径75μm以下の微粒子を減らす処理により、粒径75μm以下の微粒子の割合を5%以下に減らすことが出来たことがわかる。 From the comparison between Comparative Example 1 and Example 1 and Example 2, it can be seen that when the V-type mixer is used, there is no significant difference in the particle size distribution except that the proportion of fine powder of 75 μm or less increases. Further, from the difference between Example 2 and Example 4, the ratio of fine particles having a particle size of 75 μm or less can be reduced to 5% or less by sieving using a 200 mesh sieve to reduce the fine particles having a particle size of 75 μm or less. I understand that.

上記の実施例および比較例について、各評価を行った結果を表2に示す。なお、ゲル粘度と放電特性については、比較例1を基準とした相対値(%)で表記した。 Table 2 shows the results of each evaluation performed on the above Examples and Comparative Examples. In addition, about the gel viscosity and the discharge characteristic, it described with the relative value (%) on the basis of the comparative example 1. FIG.

表2の結果から、実施例1〜4ではかさ密度を混合処理前の比較例1に比べて大きい3以上とすることができ、その結果、放電特性を2割向上させることができた。比較例3の結果から、表面の酸化はゲル粘度を低下させることが分かるところ、混合処理を用いると、かさ密度の向上と同時にZnO濃度および酸素濃度が増加した結果、ゲル粘度も低下させることが出来た。 From the results of Table 2, in Examples 1 to 4, the bulk density could be 3 or more, which was higher than that of Comparative Example 1 before the mixing treatment, and as a result, the discharge characteristics could be improved by 20%. From the results of Comparative Example 3, it can be seen that the oxidation of the surface reduces the gel viscosity. However, when the mixing treatment is used, the density of the ZnO and the oxygen concentration are increased at the same time as the bulk density is improved. done.

また、引用文献1〜3に記載のように、微粒子の存在が放電特性を向上させる場合もあるが、本発明の実施例2、実施例4のように混合処理後に微粒子を減らす場合には、微粒子を減量することにより、放電特性を低下させずに、ガス発生速度を低下させ、かつ、ゲル粘度も低下させることができることがわかった。 In addition, as described in the cited documents 1 to 3, the presence of the fine particles may improve the discharge characteristics, but when reducing the fine particles after the mixing treatment as in Example 2 and Example 4 of the present invention, It has been found that by reducing the amount of fine particles, the gas generation rate can be reduced and the gel viscosity can be reduced without reducing the discharge characteristics.

亜鉛合金粉の表面状態を調べるため、上記の実施例1と比較例1についてSEMを用いて表面観察を行なった。粒度分布の150メッシュフルイのフルイ目を通過するが、200メッシュフルイのフルイ目を通過しない粒径(粒度分布の75μm)の範囲の亜鉛合金粉について、500倍で観察した。実施例1のSEM像を図1、比較例1のSEM像を図2に示す。実施例1の方が比較例1に比べて、表面の模様が減っているように見えることから、表面が滑らかになったものと考えられる。 In order to investigate the surface state of the zinc alloy powder, the surface of Example 1 and Comparative Example 1 was observed using SEM. A zinc alloy powder having a particle size (75 μm of particle size distribution) that does not pass through a 150 mesh sieve sieve having a particle size distribution but passes through a 200 mesh sieve sieve was observed at 500 times. The SEM image of Example 1 is shown in FIG. 1, and the SEM image of Comparative Example 1 is shown in FIG. Since the surface of Example 1 seems to have a reduced surface pattern as compared with Comparative Example 1, it is considered that the surface became smooth.

さらに、亜鉛合金粉の表面からの酸化の深さを調べるため、上記の実施例1と比較例1についてオージェ測定装置を用いて、表面の直径10μmのエリアを深さ方向にArスパッタを用いて掘りながら分析を行なったところ、混合処理を行なっていない酸素濃度が0.015質量%の比較例1では、酸素が検出されたのは表面から34nmの深さまでであったが、混合処理を行なった酸素濃度が0.051質量%の実施例1では、酸素が検出されたのは表面から143nmの深さまでであった。比較例1では、表面から約17nmの深さまでの間にAlやInのピークが見られたが、実施例1ではそのピークは見られないため、実施例では表面のAlやInは内部に拡散されたと考えられる。 Further, in order to investigate the depth of oxidation from the surface of the zinc alloy powder, an Auger measuring apparatus was used for Example 1 and Comparative Example 1 above, and an area having a surface diameter of 10 μm was used in the depth direction using Ar sputtering. When the analysis was performed while digging, in Comparative Example 1 where the oxygen concentration was not 0.015% by mass, oxygen was detected up to a depth of 34 nm from the surface, but the mixing treatment was performed. In Example 1 where the oxygen concentration was 0.051% by mass, oxygen was detected from the surface to a depth of 143 nm. In Comparative Example 1, Al and In peaks were observed from the surface to a depth of about 17 nm. However, in Example 1, since the peaks were not observed, Al and In on the surface diffused inside. It is thought that it was done.

Claims (7)

嵩密度が3.1g/cm 以上かつ、酸素濃度が0.0質量%以上0.10質量%未満であることを特徴とするアルカリ電池用亜鉛合金粉。 2. Bulk density is 3. 1 g / cm 3 or more and a zinc alloy powder for alkaline batteries, wherein the oxygen concentration is less than 0.10 wt% 0.0 6% by weight or more. ZnO濃度が0.3質量%を超えることを特徴とする請求項1に記載のアルカリ電池用亜鉛合金粉。 The zinc alloy powder for alkaline batteries according to claim 1, wherein the ZnO concentration exceeds 0.3 mass%. 200メッシュの篩いを用いた粒度分布測定による粒径75μm以下の重量%が、5%以下である請求項1または2に記載のアルカリ電池用亜鉛合金粉。 3. The zinc alloy powder for alkaline batteries according to claim 1, wherein a weight percentage of a particle size of 75 μm or less by particle size distribution measurement using a 200 mesh sieve is 5% or less. Al、Bi及びInを含有する請求項1〜3のいずれかに記載のアルカリ電池用亜鉛合金粉。The zinc alloy powder for alkaline batteries according to any one of claims 1 to 3, comprising Al, Bi and In. 請求項1〜のいずれかに記載のアルカリ電池用亜鉛合金粉が負極活物質として含有されていることを特徴とするアルカリ電池。 An alkaline battery, wherein the zinc alloy powder for an alkaline battery according to any one of claims 1 to 4 is contained as a negative electrode active material. ガスアトマイズ法により製造したアルカリ電池用亜鉛合金粉に、酸素を含む気体中にて混合器を用いて表面酸化処理を行い、嵩密度が3.1g/cm 以上かつ、酸素濃度が0.06質量%以上0.10質量%未満のアルカリ電池用亜鉛合金粉を得ることを特徴とする、アルカリ電池用亜鉛合金粉の製造方法 Alkaline battery zinc alloy powder produced by gas atomization have rows surface oxidation treatment using a mixer at a gas containing oxygen, and a bulk density of 3.1 g / cm 3 or more, the oxygen concentration is 0.06 A method for producing a zinc alloy powder for an alkaline battery, comprising obtaining a zinc alloy powder for an alkaline battery having a mass percentage of less than 0.10 mass% . 前記混合器がV型混合器である請求項に記載のアルカリ電池用亜鉛合金粉の製造方法 The method for producing a zinc alloy powder for an alkaline battery according to claim 6 , wherein the mixer is a V-type mixer .
JP2013246736A 2013-11-28 2013-11-28 Zinc alloy powder for alkaline battery, method for producing the same, and alkaline battery using the same Active JP6313578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013246736A JP6313578B2 (en) 2013-11-28 2013-11-28 Zinc alloy powder for alkaline battery, method for producing the same, and alkaline battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013246736A JP6313578B2 (en) 2013-11-28 2013-11-28 Zinc alloy powder for alkaline battery, method for producing the same, and alkaline battery using the same

Publications (2)

Publication Number Publication Date
JP2015106449A JP2015106449A (en) 2015-06-08
JP6313578B2 true JP6313578B2 (en) 2018-04-18

Family

ID=53436463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013246736A Active JP6313578B2 (en) 2013-11-28 2013-11-28 Zinc alloy powder for alkaline battery, method for producing the same, and alkaline battery using the same

Country Status (1)

Country Link
JP (1) JP6313578B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110859A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline-zinc battery
JP3357918B2 (en) * 1996-01-19 2002-12-16 彦島製錬株式会社 Method for producing zinc powder for alkaline batteries

Also Published As

Publication number Publication date
JP2015106449A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
CA3024473C (en) Metal powder atomization manufacturing processes
JP5125202B2 (en) Method for producing Ni nanoparticles
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
JP2018501620A (en) Powders, electrodes and batteries containing such powders
JP6906072B2 (en) Method for producing cobalt compound-coated nickel hydroxide particles and cobalt compound-coated nickel hydroxide particles
EP3113259A1 (en) Negative electrode active substance material, negative electrode, and cell
US20160121279A1 (en) Device for producing polymer dispersion solution of core-shell structured silicon nanoparticles
JPWO2014097698A1 (en) Method for producing tungsten fine powder
WO2010101307A2 (en) Positive electrode active material and lithium secondary battery using same
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
JP2006278031A (en) Manufacturing method of cathode material for lithium secondary battery and cathode material for lithium secondary battery as well as cathode for lithium secondary battery and lithium secondary battery using the same
JP6313578B2 (en) Zinc alloy powder for alkaline battery, method for producing the same, and alkaline battery using the same
JP2014058712A (en) Method of producing tantalum particles
JP6412401B2 (en) Metal powder and method for producing the same
JP6242814B2 (en) Niobium capacitor anode chemical and method for producing the same
JP2000164220A (en) Electrode material for silver oxide battery
WO2018155399A1 (en) Alkaline storage battery negative electrode, production method for same, and alkaline storage battery
JP5312958B2 (en) Method for producing crystal agglomerated particles useful as active material for nickel positive electrode
JP2006222009A (en) Zinc alloy powder for alkaline battery and alkaline battery using this
JP6646922B2 (en) Method for producing metal-coated electrode active material, metal-coated electrode active material, and electrode
JPWO2019181538A1 (en) Alkaline battery
WO2014104177A1 (en) Chemical conversion body for niobium capacitor positive electrode, and production method therefor
JP2005206422A (en) High density lithium cobaltate and its producing method
JP2014170652A (en) Zinc alloy powder for alkaline battery and alkaline battery using the same
JP2010132944A (en) Method for producing nickel powder, and nickel powder obtained by the production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161017

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180323

R150 Certificate of patent or registration of utility model

Ref document number: 6313578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250