JP6313573B2 - Armature core manufacturing method and armature manufacturing method - Google Patents

Armature core manufacturing method and armature manufacturing method Download PDF

Info

Publication number
JP6313573B2
JP6313573B2 JP2013238074A JP2013238074A JP6313573B2 JP 6313573 B2 JP6313573 B2 JP 6313573B2 JP 2013238074 A JP2013238074 A JP 2013238074A JP 2013238074 A JP2013238074 A JP 2013238074A JP 6313573 B2 JP6313573 B2 JP 6313573B2
Authority
JP
Japan
Prior art keywords
core
divided
fitting
cores
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013238074A
Other languages
Japanese (ja)
Other versions
JP2015100167A (en
Inventor
鈴木 工
工 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2013238074A priority Critical patent/JP6313573B2/en
Publication of JP2015100167A publication Critical patent/JP2015100167A/en
Application granted granted Critical
Publication of JP6313573B2 publication Critical patent/JP6313573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、機子コアの製造方法及び電機子の製造方法に関する。 The present invention relates to a manufacturing method and a manufacturing method of an armature of the armature core.

下記特許文献1には、導電性の巻線が巻回されるティース部を有する分割コアを環状に配列させると共に、隣接する分割コア同士を係合させ、更にシャフトを軸心部に圧入させることによって構成された電機子コア(ステータコア)が開示されている。また、この分割コア同士は、各々の係合凹部と係合凸部とが係合されることによってステータコアの周方向に沿って連結されている。   In Patent Document 1 below, divided cores having teeth portions around which conductive windings are wound are annularly arranged, adjacent divided cores are engaged with each other, and a shaft is press-fitted into an axial center portion. The armature core (stator core) comprised by this is disclosed. In addition, the divided cores are connected along the circumferential direction of the stator core by engaging the engaging concave portions and the engaging convex portions.

特開2007−159170号公報JP 2007-159170 A

しかしながら、前述の係合凹部と係合凸部とを係合させると共にシャフトを軸心部に圧入させることによって構成された電機子コアでは、シャフトを圧入させる際に各々の分割コアが動き、その結果、完成後の電機子コアの真円度を低下させることが考えられる。   However, in the armature core configured by engaging the engaging concave portion and the engaging convex portion and press-fitting the shaft into the shaft center portion, each of the divided cores moves when the shaft is press-fitted. As a result, it is conceivable to reduce the roundness of the armature core after completion.

本発明は上記事実を考慮し、真円度の低下を抑制することができる機子コアの製造方法及び電機子の製造方法を得ることが目的である。 SUMMARY OF THE INVENTION In view of the above, it is an object to obtain a manufacturing method and a manufacturing method of an armature of the armature core collector capable of suppressing a decrease in roundness.

請求項1記載の電機子コアの製造方法は、径方向に延在されたティース部と、前記ティース部の径方向内側に設けられた連結部と、前記連結部の周方向一方側の端部に設けられた嵌合部と、前記連結部の周方向他方側の端部に設けられた被嵌合部と、を有する複数の分割コアを用い、一の前記分割コアの前記嵌合部を他の前記分割コアの前記被嵌合部に嵌合することによって前記複数の分割コアを環状に配列させる分割コア配列工程と、前記分割コアの一部を支持することによって該分割コアが周方向へ移動することを規制する支持面を有する支持冶具を用い、前記複数の分割コアを前記支持冶具にセットする冶具セット工程と、前記支持冶具に支持された状態の前記複数の分割コアの軸心部に芯部材を圧入することによって前記複数の分割コアを径方向外側へ放射状に移動させると共に前記複数の分割コアと前記芯部材とを一体化させる芯部材圧入工程と、を有する。 The manufacturing method of the armature core according to claim 1 includes a tooth portion extending in a radial direction, a connecting portion provided on a radially inner side of the tooth portion, and an end portion on one circumferential side of the connecting portion. A plurality of split cores having a fitting portion provided on the other end in the circumferential direction of the connecting portion, and the fitting portion of one of the split cores. A split core arrangement step of annularly arranging the plurality of split cores by fitting the mated portions of the other split cores, and the split cores in the circumferential direction by supporting a part of the split cores Using a support jig having a support surface that restricts movement to the jig, a jig setting step for setting the plurality of divided cores on the support jig, and axes of the plurality of divided cores supported by the support jig the plurality of divided by forcing the core member into parts Having a core member press-fitting step of integrating said core member and said plurality of divided cores is moved radially Hair radially outward.

請求項記載の電機子コアの製造方法によれば、分割コア配列工程を経ることによって、芯部材が圧入されるスペースが環状に配列された複数の分割コアの各々の連結部の周方向内側に形成される。次いで、冶具セット工程を経ることによって、複数の分割コアが支持冶具にセットされる。なお、複数の分割コアを支持冶具にセットしながら当該複数の分割コアを環状に配列することによって分割コア配列工程と冶具セット工程とを同時に完了させてもよい。次いで、芯部材圧入工程を経ることによって、複数の分割コアと芯部材とが一体化されて電機子コアが構成される。ここで、本製造方法では、分割コアの一部が支持冶具の支持面に支持された状態で、環状に配列された複数の分割コアの軸心部に芯部材が圧入される。これにより、芯部材の圧入による各々の分割コアの傾きを抑制することができ、ひいては、電機子コアの真円度の低下を抑制することができる。 According to the method for manufacturing an armature core according to claim 1, the inner side in the circumferential direction of each of the connecting portions of the plurality of divided cores in which the spaces into which the core members are press-fitted are annularly formed through the divided core arranging step. Formed. Next, a plurality of split cores are set on the support jig by performing a jig setting step. Note that the divided core arranging step and the jig setting step may be completed simultaneously by arranging the plurality of divided cores in a ring shape while setting the plurality of divided cores on the support jig. Next, through the core member press-fitting step, the plurality of split cores and the core member are integrated to form an armature core. Here, in this manufacturing method, the core member is press-fitted into the axial center portions of the plurality of split cores arranged in an annular shape in a state where a part of the split core is supported by the support surface of the support jig. Thereby, the inclination of each division | segmentation core by the press injection of a core member can be suppressed, and the fall of the roundness of an armature core can be suppressed by extension.

請求項記載の電機子コアの製造方法は、請求項記載の電機子コアの製造方法において、周方向に面が向けられていると共に前記ティース部と平行に延びる被支持面を有する前記分割コアと、前記被支持面が当接する前記支持面を有する前記支持冶具と、を用い、前記分割コア配列工程を行う。 The armature core manufacturing method according to claim 2 is the armature core manufacturing method according to claim 1, wherein the divided surface has a supported surface that is oriented in the circumferential direction and extends parallel to the teeth portion. The split core arraying step is performed using a core and the support jig having the support surface with which the supported surface abuts.

請求項記載の電機子コアの製造方法によれば、芯部材の圧入によって各々の分割コアがティース部と直交する方向に移動することを抑制することができ、ひいては、各々のティース部の位置ずれを抑制することができる。 According to the method for manufacturing an armature core according to claim 2, it is possible to suppress the movement of each divided core in a direction orthogonal to the teeth portion by press-fitting of the core member, and consequently the position of each tooth portion. Deviation can be suppressed.

請求項3記載の電機子の製造方法は、径方向に延在されたティース部と、前記ティース部の径方向内側に設けられた連結部と、前記連結部の周方向一方側の端部に設けられた嵌合部と、前記連結部の周方向他方側の端部に設けられた被嵌合部と、を有する複数の分割コアを用い、一の前記分割コアの前記嵌合部を他の前記分割コアの前記被嵌合部に嵌合することによって前記複数の分割コアを環状に配列させる分割コア配列工程と、前記複数の分割コアの各々の前記ティース部の回りに導電性の巻線を巻回することによって該ティース部の回りにコイルを形成する巻線巻回工程と、前記巻線巻回工程を経た後に、前記分割コアの一部を支持することによって該分割コアが周方向へ移動することを規制する支持面を有する支持冶具を用い、前記複数の分割コアを前記支持冶具にセットする冶具セット工程と、前記支持冶具に支持された状態の前記複数の分割コアの軸心部に芯部材を圧入することによって前記複数の分割コアを径方向外側へ放射状に移動させると共に前記複数の分割コアと前記芯部材とを一体化させる芯部材圧入工程と、を有する。 According to a third aspect of the present invention, there is provided an armature manufacturing method comprising: a tooth portion extending in a radial direction; a connecting portion provided on a radially inner side of the tooth portion; and an end portion on one circumferential side of the connecting portion. A plurality of split cores having a provided fitting portion and a fitted portion provided at an end on the other circumferential side of the connecting portion are used, and the fitting portion of one of the divided cores is replaced with another A split core arrangement step of annularly arranging the plurality of split cores by fitting the mated portions of the split cores, and conductive winding around the teeth portions of each of the plurality of split cores A winding winding step of forming a coil around the teeth portion by winding a wire, and after the winding winding step, supporting the part of the split core, Using a support jig having a support surface that restricts movement in the direction, A jig setting step of setting the number of division cores to the support jig, the radial direction of the plurality of divided cores by forcing the core member in the axial portion of the plurality of divided cores in a state of being supported by the supporting jig And a core member press-fitting step of moving radially outward and integrating the plurality of divided cores and the core member.

請求項記載の電機子の製造方法によれば、複数の分割コアと芯部材とが一体化される前に、複数の分割コアの各々のティース部に巻線を巻回することができるため、ティース部への巻線の巻回を容易に行うことができる。なお、分割コア配列工程を経た後に巻線巻回工程を経る工程順序としてもよいし、巻線巻回工程を経た後に分割コア配列工程を経る工程順序としてもよい。また、本製造方法によれば、分割コアの一部が支持冶具の支持面に支持された状態で、環状に配列された複数の分割コアの軸心部に芯部材が圧入される。これにより、芯部材の圧入による各々の分割コアの傾きを抑制することができ、ひいては、電機子の真円度の低下を抑制することができる。 According to the armature manufacturing method of the third aspect , the winding can be wound around each tooth portion of the plurality of divided cores before the plurality of divided cores and the core member are integrated. The winding of the winding around the teeth portion can be easily performed. In addition, it is good also as a process order which passes through a winding winding process after passing through a division | segmentation core arrangement | sequence process, and is good also as a process order which passes through a division | segmentation core arrangement | sequence process after passing through a winding winding process. Further, according to the present manufacturing method, the core member is press-fitted into the axial center portions of the plurality of divided cores arranged in an annular shape in a state where a part of the divided core is supported by the support surface of the support jig. Thereby, the inclination of each division | segmentation core by the press injection of a core member can be suppressed, and the fall of the roundness of an armature can be suppressed by extension.

本実施形態のステータコア及び当該ステータコアを含んで構成されたステータを示す斜視図である。It is a perspective view which shows the stator comprised including the stator core of this embodiment, and the said stator core. 本実施形態のステータコア及び当該ステータコアを含んで構成されたステータを示す平面図である。It is a top view which shows the stator comprised including the stator core of this embodiment, and the said stator core. 分割コアを示す斜視図である。It is a perspective view which shows a division | segmentation core. 分割コア構成片を示す平面図である。It is a top view which shows a division | segmentation core structural piece. 分割コア構成片の先端側を拡大して示す拡大平面図である。It is an enlarged plan view which expands and shows the front end side of a division | segmentation core structural piece. 嵌合凹部及び当該嵌合凹部に嵌合している嵌合凸部を示す拡大平面図である。It is an enlarged plan view which shows a fitting convex part fitted to the fitting concave part and the said fitting concave part. 環状に配列された複数の分割コアが支持冶具にセットされ、環状に配列された複数の分割コアの軸心部にシャフトが圧入される工程を示す平面図である。It is a top view which shows the process in which the some division | segmentation core arrange | positioned cyclically | annularly is set to a support jig, and a shaft is press-fitted in the axial center part of the some division | segmentation core arranged circularly. 支持冶具にセットされた分割コアを拡大して示す拡大平面図である。It is an enlarged plan view which expands and shows the division | segmentation core set to the support jig. 第1変形例に係る分割コアの先端側を拡大して示す拡大平面図である。It is an enlarged plan view which expands and shows the front end side of the split core which concerns on a 1st modification. 第2変形例に係る分割コアの先端側を拡大して示す拡大平面図である。It is an enlarged plan view which expands and shows the front end side of the split core which concerns on a 2nd modification. 第3変形例に係る分割コアの先端側及び第1変形例に係る支持冶具を示す拡大平面図である。It is an enlarged plan view which shows the support jig which concerns on the front end side of the split core which concerns on a 3rd modification, and a 1st modification. 第4変形例に係る分割コアの先端側及び第2変形例に係る支持冶具を示す拡大平面図である。It is an enlarged plan view which shows the support jig which concerns on the front end side of the division | segmentation core which concerns on a 4th modification, and a 2nd modification.

(電機子コアの構成)
図1〜図6を用いて本発明の実施形態に係る電機子コアについて説明する。なお、図中に適宜示す矢印Z方向、矢印R方向及び矢印C方向は、回転電機の軸方向、径方向及び周方向をそれぞれ示すものとする。また以下、単に軸方向、径方向、周方向を示す場合は、特に断りのない限り、回転電機の軸方向、径方向、周方向を示すものとする。
(Configuration of armature core)
The armature core which concerns on embodiment of this invention is demonstrated using FIGS. In addition, the arrow Z direction, the arrow R direction, and the arrow C direction that are appropriately shown in the drawing respectively indicate the axial direction, the radial direction, and the circumferential direction of the rotating electrical machine. In addition, hereinafter, when only the axial direction, the radial direction, and the circumferential direction are indicated, the axial direction, the radial direction, and the circumferential direction of the rotating electrical machine are indicated unless otherwise specified.

図1及び図2に示されるように、本実施形態の電機子コアとしてのステータコア10は、周方向に沿って複数(本実施形態では12個)の分割コア12が配列され、さらに円柱状に形成された芯部材としてのシャフト14が環状に配列された12個の分割コアの軸心部に圧入されることによって構成された分割構造とされている。   As shown in FIGS. 1 and 2, the stator core 10 as the armature core of the present embodiment has a plurality of (in the present embodiment, twelve) divided cores 12 arranged in the circumferential direction, and further in a cylindrical shape. The formed shaft 14 as a core member is formed into a divided structure formed by being press-fitted into the axial centers of 12 divided cores arranged in an annular shape.

図3に示されるように、分割コア12は、径方向に延在された分割コア構成片16が、軸方向に積層されることによって構成されており、図4に示されるように、分割コア12を構成する分割コア構成片16は、板状素材に打ち抜き加工(プレス加工)等が施されることによって成形されている。具体的には、分割コア構成片16は、径方向に延在された矩形状のティース部構成部18を備えている。また、分割コア構成片16は、ティース部構成部18の先端側(径方向外側)に連結されていると共に、周方向に延在された先端部構成部20を備えている。図5に示されるように、先端部構成部20の径方向外側の端は軸方向視で円弧状に形成されており、また先端部構成部20の周方向一方側の端面及び周方向他方側の端面は、それぞれティース部構成部18が延在する方向、即ち、径方向と略平行に形成された周方向端面S1とされている。さらに、図4に示されるように、分割コア構成片16は、ティース部構成部18の基端側(径方向内側)に連結されていると共に軸方向視で略扇状に形成された連結部構成部22を備えている。   As shown in FIG. 3, the split core 12 is configured by splitting the core split pieces 16 extending in the radial direction in the axial direction. As shown in FIG. 12 is formed by punching (pressing) a plate-shaped material. Specifically, the split core component piece 16 includes a rectangular tooth portion component 18 extending in the radial direction. The split core component piece 16 is connected to the distal end side (radially outer side) of the tooth portion constituting portion 18 and includes a distal end portion constituting portion 20 extending in the circumferential direction. As shown in FIG. 5, the radially outer end of the tip component 20 is formed in an arc shape when viewed in the axial direction, and the end surface on one circumferential side and the other circumferential side of the tip component 20 Each of the end faces is a circumferential end face S1 formed in a direction in which the teeth portion constituting portion 18 extends, that is, substantially parallel to the radial direction. Further, as shown in FIG. 4, the split core component piece 16 is connected to the base end side (radially inner side) of the teeth portion component portion 18 and is formed in a substantially fan shape when viewed in the axial direction. A portion 22 is provided.

また、連結部構成部22における周方向一方側の端部には、該方向に向けて突出する凸状部24が該連結部構成部22と一体に設けられている。また、この凸状部24は周方向一方側に向けて末広がりとなるように形成されている。   Further, a convex portion 24 that protrudes toward the one end in the circumferential direction of the connecting portion constituting portion 22 is provided integrally with the connecting portion constituting portion 22. Further, the convex portion 24 is formed so as to expand toward the one side in the circumferential direction.

また、連結部構成部22における周方向他方側の端部には、該方向に向けて開放された凹状部26が形成されている。この凹状部26は周方向他方側に向けて窄まるように形成されている。   Moreover, the recessed part 26 open | released toward this direction is formed in the edge part of the circumferential direction other side in the connection part structure part 22. As shown in FIG. The concave portion 26 is formed so as to be narrowed toward the other circumferential side.

図3に示されるように、以上説明した分割コア構成片16が軸方向に積層されて、積層された分割コア構成片16がかしめ部28を介して一体化されることによって、分割コア12が構成されている。前述のティース部構成部18が積層された部位は、導電性の巻線が巻回されるティース部30とされており、先端部構成部20が積層された部位は、図示しないロータのマグネットと対向して配置される先端部32とされている。また、先端部32の周方向の両端面は、すなわち、先端部構成部20の周方向端面S1は、それぞれ後述する支持冶具46に支持される被支持面S2とされている。   As shown in FIG. 3, the split core component pieces 16 described above are stacked in the axial direction, and the stacked split core component pieces 16 are integrated via the caulking portion 28, whereby the split core 12 is formed. It is configured. The portion where the above-described tooth portion constituting portion 18 is laminated is a tooth portion 30 around which a conductive winding is wound, and the portion where the tip portion constituting portion 20 is laminated is a rotor magnet (not shown). It is set as the front-end | tip part 32 arrange | positioned facing. Further, both end surfaces in the circumferential direction of the distal end portion 32, that is, the circumferential end surface S1 of the distal end portion configuring portion 20 are respectively supported surfaces S2 supported by a support jig 46 described later.

また、連結部構成部22が積層された部位は、シャフト14が圧入されるスペースを径方向内側に形成する連結部34とされている。   Moreover, the site | part on which the connection part structure part 22 was laminated | stacked is made into the connection part 34 which forms the space where the shaft 14 is press-fit in radial direction inner side.

さらに、凸状部24が積層された部位は嵌合部としての嵌合凸部36とされており、図6に示されるように、この嵌合凸部36の径方向外側の面及び径方向内側の面は、それぞれ嵌合凸部外側テーパ面A1及び嵌合凸部内側テーパ面A2とされている。   Further, the portion where the convex portion 24 is laminated is a fitting convex portion 36 as a fitting portion, and as shown in FIG. 6, the radially outer surface and radial direction of the fitting convex portion 36. The inner surfaces are respectively a fitting convex outer tapered surface A1 and a fitting convex inner tapered surface A2.

図3に示されるように、凹状部26が積層された部位は、他の分割コア12の嵌合凸部36が嵌合する被嵌合部としての嵌合凹部38とされており、図6に示されるように、この嵌合凹部38の径方向外側の面及び径方向内側の面は、それぞれ嵌合凹部外側テーパ面B1及び嵌合凹部内側テーパ面B2とされている。また、シャフト14が複数の分割コア12の軸心部に圧入された状態において、嵌合凸部外側テーパ面A1と嵌合凹部外側テーパ面B1とが接触すると共に嵌合凸部内側テーパ面A2と嵌合凹部内側テーパ面B2とが接触するようになっている。また、嵌合凸部外側テーパ面A1と嵌合凹部外側テーパ面B1との接触部を外側接触部C1とし、嵌合凸部内側テーパ面A2と嵌合凹部内側テーパ面B2との接触部を内側接触部C2とする。   As shown in FIG. 3, the portion where the concave portion 26 is laminated is a fitting concave portion 38 as a fitted portion into which the fitting convex portion 36 of the other divided core 12 is fitted. As shown in FIG. 4, the radially outer surface and the radially inner surface of the fitting recess 38 are a fitting recess outer tapered surface B1 and a fitting recess inner tapered surface B2, respectively. Further, in a state where the shaft 14 is press-fitted into the axial center portion of the plurality of split cores 12, the fitting convex outer tapered surface A1 and the fitting concave outer tapered surface B1 are in contact with each other and the fitting convex inner tapered surface A2 is in contact. And the fitting recess inner tapered surface B2 come into contact with each other. Further, a contact portion between the fitting convex portion outer tapered surface A1 and the fitting concave portion outer tapered surface B1 is defined as an outer contact portion C1, and a contact portion between the fitting convex portion inner tapered surface A2 and the fitting concave portion inner tapered surface B2 is defined. The inner contact portion C2.

図2及び図6に示されるように、本実施形態では、シャフト14が複数の分割コア12の軸心部に圧入された状態において、外側接触部C1及び内側接触部C2が、一の分割コア12のティース部30の中心線L1と、当該一の分割コア12に隣接する他の分割コア12のティース部30の中心線L2とを周方向に二等分する二等分線L3上に配置されるように嵌合凸部36及び嵌合凹部38の形状や位置が調整されている。   As shown in FIGS. 2 and 6, in this embodiment, the outer contact portion C <b> 1 and the inner contact portion C <b> 2 are one split core in a state where the shaft 14 is press-fitted into the axial center portion of the plurality of split cores 12. Arranged on a bisector L3 that bisects the center line L1 of the 12 tooth portions 30 and the center line L2 of the tooth portion 30 of the other split core 12 adjacent to the one split core 12 in the circumferential direction Thus, the shapes and positions of the fitting convex part 36 and the fitting concave part 38 are adjusted.

図3及び図6に示されるように、本実施形態では、嵌合凸部外側テーパ面A1と嵌合凸部内側テーパ面A2とのなす角度θ1が、嵌合凹部外側テーパ面B1と嵌合凹部内側テーパ面B2とのなす角度θ2よりも鈍角に設定されることによって、嵌合凸部36の突出方向の先端側が嵌合凹部38に当接するようになっている。   As shown in FIGS. 3 and 6, in this embodiment, the angle θ1 formed by the fitting convex outer taper surface A1 and the fitting convex inner taper surface A2 is the fitting concave outer taper surface B1. By setting an obtuse angle with respect to the angle θ2 formed with the concave inner tapered surface B2, the front end side in the protruding direction of the fitting convex portion 36 comes into contact with the fitting concave portion 38.

(電機子コアの製造方法)
次に、前述のステータコア10の製造方法について説明する。
(Manufacturing method of armature core)
Next, a method for manufacturing the above-described stator core 10 will be described.

図7に示されるように、先ず一の分割コア12の嵌合凸部36を他の分割コア12の嵌合凹部38に嵌合させることによって、複数の分割コア12を環状に配列させる(分割コア配列工程)。   As shown in FIG. 7, a plurality of divided cores 12 are arranged in an annular shape by first fitting fitting protrusions 36 of one divided core 12 into fitting recesses 38 of another divided core 12 (dividing). Core arrangement step).

次いで、上記分割コア配列工程を経ることによって環状に配列された分割コア12を支持冶具46にセットする(冶具セット工程)。   Next, the divided cores 12 arranged in an annular shape through the divided core arrangement step are set on the support jig 46 (jig setting step).

ここで、支持冶具46の構成について説明すると、この支持冶具46は厚肉円筒状に形成されたベース部48と、ベース部48の内周面から径方向内側に突出すると共に周方向に沿って等間隔に配置された複数(本実施形態では12個)の支持部50と、を備えている。図8に示されるように、一の支持部50の周方向一方側の端面及び当該一の支持部50と周方向に隣接する他の支持部50の周方向他方側の端面は、それぞれ分割コア12の先端部32の周方向への移動を規制する支持面S3とされている。一の支持部50の周方向一方側の支持面S3と先端部32の周方向他方側の被支持面S2とは略平行に延在しており、これと同様に、他の支持部50の周方向他方側の支持面S3と先端部32の周方向一方側の被支持面S2とは略平行に延在している。そして、先端部32の周方向他方側の被支持面S2が一の支持部50の周方向一方側の支持面S3に支持される(当接する)ことによって、また先端部32の周方向一方側の被支持面S2が他の支持部50の周方向他方側の支持面S3に支持される(当接する)ことによって、先端部32の周方向への移動が規制されるようになっている。   Here, the configuration of the support jig 46 will be described. The support jig 46 has a base portion 48 formed in a thick cylindrical shape, and protrudes radially inward from the inner peripheral surface of the base portion 48 along the circumferential direction. And a plurality (12 in this embodiment) of support portions 50 arranged at equal intervals. As shown in FIG. 8, the end surface on one side in the circumferential direction of one support portion 50 and the end surface on the other side in the circumferential direction of another support portion 50 adjacent to the one support portion 50 in the circumferential direction are divided cores, respectively. The support surface S <b> 3 restricts the movement of the 12 tip portions 32 in the circumferential direction. The support surface S3 on one side in the circumferential direction of one support portion 50 and the supported surface S2 on the other side in the circumferential direction of the tip portion 32 extend substantially in parallel. The support surface S3 on the other side in the circumferential direction and the supported surface S2 on the one side in the circumferential direction of the distal end portion 32 extend substantially in parallel. Then, the supported surface S2 on the other circumferential side of the tip portion 32 is supported (contacted) on the support surface S3 on the one circumferential direction side of the one support portion 50, and also on the one circumferential side of the tip portion 32. The supported surface S2 is supported (contacted) with the other support surface S3 of the other support portion 50 in the circumferential direction, so that the movement of the tip end portion 32 in the circumferential direction is restricted.

図7に示されるように、複数の分割コア12を支持冶具46にセットした状態で、即ち、複数の分割コア12が支持冶具46に支持された状態で、シャフト14を環状に配列された分割コア12の軸心部に圧入する(芯部材圧入工程)。これにより、各々の分割コア12はそれぞれ径方向外側に放射状に移動して、図6に示されるように、一の分割コア12の嵌合凸部36と他の分割コア12の嵌合凹部38とが外側接触部C1及び内側接触部C2の2箇所で接触する。また、一の分割コア12の嵌合凸部36と他の分割コア12の嵌合凹部38とが外側接触部C1及び内側接触部C2の2箇所で接触することによって、各々の分割コア12の連結部34の周方向への移動が規制される。   As shown in FIG. 7, in a state where the plurality of divided cores 12 are set on the support jig 46, that is, in a state where the plurality of divided cores 12 are supported by the support jig 46, the shaft 14 is divided in a ring shape. It press-fits into the axial center part of the core 12 (core member press-fit process). Thereby, each divided core 12 moves radially outward in the radial direction, and as shown in FIG. 6, the fitting convex part 36 of one divided core 12 and the fitting concave part 38 of the other divided core 12. Are in contact at two locations, the outer contact portion C1 and the inner contact portion C2. Moreover, the fitting convex part 36 of one division | segmentation core 12 and the fitting recessed part 38 of the other division | segmentation core 12 contact in two places, the outer side contact part C1 and the inner side contact part C2, and each division | segmentation core 12 of each division | segmentation core 12 is contacted. Movement of the connecting portion 34 in the circumferential direction is restricted.

以上の分割コア配列工程、冶具セット工程及び芯部材圧入工程を経てステータコア10が製造される。   The stator core 10 is manufactured through the divided core arrangement process, the jig setting process, and the core member press-fitting process.

(電機子の製造方法)
次に、前述のステータコア10を含んで構成された電機子としてのステータ40の製造方法について説明する。
(Manufacturing method of armature)
Next, a method for manufacturing the stator 40 as an armature including the above-described stator core 10 will be described.

図7に示されるように、本実施形態では、導電性の巻線42を複数の分割コア12の各々のティース部30に巻回することによって、各々のティース部30の回りにコイル44を形成する(巻線巻回工程)。この巻線巻回工程を経た後に、前述の分割コア配列工程、冶具セット工程及び芯部材圧入工程を経ることによってステータ40が構成される。   As shown in FIG. 7, in this embodiment, a coil 44 is formed around each tooth portion 30 by winding a conductive winding 42 around each tooth portion 30 of the plurality of split cores 12. (Winding winding process). After passing through this winding winding step, the stator 40 is configured by going through the above-described divided core arrangement step, jig setting step, and core member press-fitting step.

(本実施形態の作用並びに効果)
次に、本実施形態の作用並びに効果について説明する。
(Operation and effect of this embodiment)
Next, the operation and effect of this embodiment will be described.

図7及び図8に示されるように、本実施形態では、分割コア12の先端部32が支持冶具46の支持面S3に支持された状態で、環状に配列された複数の分割コア12の軸心部にシャフト14が圧入されることによってステータコア10が構成される。これにより、シャフト14の圧入による各々の分割コア12の傾きを抑制することができ、ひいては、ステータコア10及び当該ステータコア10を用いて構成されたステータ40の真円度の低下を抑制することができる。   As shown in FIG. 7 and FIG. 8, in the present embodiment, the shafts of the plurality of divided cores 12 arranged in an annular shape with the distal end portion 32 of the divided core 12 supported by the support surface S <b> 3 of the support jig 46. The stator core 10 is configured by press-fitting the shaft 14 into the center. Thereby, the inclination of each division | segmentation core 12 by the press injection of the shaft 14 can be suppressed, and by extension, the fall of the roundness of the stator 40 comprised using the stator core 10 and the said stator core 10 can be suppressed. .

なお、本実施形態では、分割コア配列工程を経た後に冶具セット工程を行う工程順序とした例について説明してきたが、本発明はこれに限定されず、例えば、複数の分割コア12を支持冶具46にセットしながら当該複数の分割コア12を環状に配列することによって分割コア配列工程と冶具セット工程とを同時に完了させてもよい。   In this embodiment, the example in which the jig setting process is performed after the divided core arrangement process has been described. However, the present invention is not limited to this, and for example, the plurality of divided cores 12 are supported by the support jig 46. The divided core arranging step and the jig setting step may be completed simultaneously by arranging the plurality of divided cores 12 in a ring shape while being set in the same manner.

また、本実施形態では、分割コア12の先端部32の周方向の両端に設けられた被支持面S2がティース部30と略平行に延在していると共に、この被支持面S2と支持冶具46に設けられた支持面S3とが、略平行に延在している。これにより、シャフト14の圧入によって各々の分割コア12がティース部30と直交する方向に移動することを抑制することができ、ひいては、各々のティース部30の位置ずれを抑制することができる。   Further, in the present embodiment, supported surfaces S2 provided at both ends in the circumferential direction of the distal end portion 32 of the split core 12 extend substantially parallel to the tooth portion 30, and the supported surface S2 and the supporting jig. The support surface S3 provided at 46 extends substantially in parallel. Thereby, it can suppress that each division | segmentation core 12 moves to the direction orthogonal to the teeth part 30 by press injection of the shaft 14, and can suppress the position shift of each teeth part 30 by extension.

また、本実施形態では、複数の分割コア12とシャフト14とが一体化される前に、複数の分割コア12の各々のティース部30に巻線42を巻回する工程順序とされているため、ティース部30への巻線42の巻回を容易に行うことができる。   In the present embodiment, since the plurality of split cores 12 and the shaft 14 are integrated with each other, the winding 42 is wound around each tooth portion 30 of the plurality of split cores 12. The winding 42 can be easily wound around the teeth portion 30.

なお、本実施形態では、巻線巻回工程を経た後に分割コア配列工程を経る工程順序とした例について説明してきたが、本発明はこれに限定されず、例えば、分割コア配列工程を経た後に巻線巻回工程を経る工程順序としてもよい。   In the present embodiment, the example in which the process sequence is performed through the divided core arrangement process after the winding winding process has been described, but the present invention is not limited to this, for example, after the divided core arrangement process. It is good also as a process order which passes through a coil | winding winding process.

また、本実施形態では、分割コア12の先端部32の両端を支持冶具46に支持させた例について説明してきたが、本発明はこれに限定されず、例えば、図9及び図10に示されるように、単一又は複数の溝部52を分割コア12の先端部32の径方向外側の部位に形成し、この溝部52の内縁(被支持面S2)を支持冶具に支持させることもできる。   Further, in the present embodiment, an example in which both ends of the distal end portion 32 of the split core 12 are supported by the support jig 46 has been described, but the present invention is not limited to this, and for example, shown in FIGS. 9 and 10. As described above, a single or a plurality of groove portions 52 may be formed at a radially outer portion of the distal end portion 32 of the split core 12, and the inner edge (supported surface S2) of the groove portion 52 may be supported by a support jig.

さらに、本実施形態では、各々の分割コア12の周方向への移動を支持冶具46によって規制した例について説明してきたが、本発明はこれに限定されず、例えば、図11及び図12に示されるように、各々の分割コア12の周方向への移動及び径方向への移動を規制する支持冶具54,56を用いることもできる。詳述すると、この支持冶具54,56は、厚肉円筒状に形成されたベース部58と、径方向内側の面が球面状に形成された支持ピン60と、有して構成されており、この支持ピン60はベース部58に形成された挿通孔62に挿通されている。また、分割コア12の先端部32の径方向外側の部位には、単一又は複数の切欠64が形成されており、この切欠64内に支持ピン60の径方向内側の端部が配置されて当該支持ピン60の径方向内側の面(支持面S3)が切欠64の内縁(被支持面S2)に当接することによって、各々の分割コア12の周方向への移動及び径方向への移動が規制されている。また、本実施形態では、油圧や弾性部材の弾性力によって、分割コア12の径方向への支持力が調整されている。   Furthermore, in this embodiment, although the example which controlled the movement to the circumferential direction of each division | segmentation core 12 with the support jig 46 was demonstrated, this invention is not limited to this, For example, it shows in FIG.11 and FIG.12. As described above, it is also possible to use support jigs 54 and 56 that restrict the movement of each divided core 12 in the circumferential direction and the movement in the radial direction. More specifically, the support jigs 54 and 56 are configured to include a base portion 58 formed in a thick cylindrical shape, and a support pin 60 formed in a spherical shape on a radially inner surface, The support pin 60 is inserted into an insertion hole 62 formed in the base portion 58. Further, a single or plural cutouts 64 are formed in the radially outer portion of the tip 32 of the split core 12, and the radially inner end of the support pin 60 is disposed in the cutout 64. The radially inner surface (support surface S3) of the support pin 60 abuts against the inner edge (supported surface S2) of the notch 64, so that each divided core 12 is moved in the circumferential direction and in the radial direction. It is regulated. In the present embodiment, the support force in the radial direction of the split core 12 is adjusted by the hydraulic pressure or the elastic force of the elastic member.

また、本発明は電機子コアとしてのロータコアの製造に適用することもできる。これにより、ロータコアの真円度の低下を抑制することができる。   The present invention can also be applied to manufacture of a rotor core as an armature core. Thereby, the fall of the roundness of a rotor core can be suppressed.

以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above, and various modifications other than the above can be implemented without departing from the spirit of the present invention. Of course.

10…ステータコア(電機子コア),12…分割コア,14…シャフト(芯部材),30…ティース部,34…連結部,36…嵌合凸部(嵌合部),38…嵌合凹部(被嵌合部),40…ステータ(電機子),42…巻線,44…コイル,46…支持冶具,54…支持冶具,56…支持冶具,S2…被支持面,S3…支持面 DESCRIPTION OF SYMBOLS 10 ... Stator core (armature core), 12 ... Split core, 14 ... Shaft (core member), 30 ... Teeth part, 34 ... Connection part, 36 ... Fitting convex part (fitting part), 38 ... Fitting concave part ( Fitting part), 40 ... stator (armature), 42 ... winding, 44 ... coil, 46 ... supporting jig, 54 ... supporting jig, 56 ... supporting jig, S2 ... supported surface, S3 ... supporting surface

Claims (3)

径方向に延在されたティース部と、前記ティース部の径方向内側に設けられた連結部と、前記連結部の周方向一方側の端部に設けられた嵌合部と、前記連結部の周方向他方側の端部に設けられた被嵌合部と、を有する複数の分割コアを用い、一の前記分割コアの前記嵌合部を他の前記分割コアの前記被嵌合部に嵌合することによって前記複数の分割コアを環状に配列させる分割コア配列工程と、
前記分割コアの一部を支持することによって該分割コアが周方向へ移動することを規制する支持面を有する支持冶具を用い、前記複数の分割コアを前記支持冶具にセットする冶具セット工程と、
前記支持冶具に支持された状態の前記複数の分割コアの軸心部に芯部材を圧入することによって前記複数の分割コアを径方向外側へ放射状に移動させると共に前記複数の分割コアと前記芯部材とを一体化させる芯部材圧入工程と、
を有する電機子コアの製造方法。
A teeth portion extending in the radial direction; a connecting portion provided on the radially inner side of the teeth portion; a fitting portion provided on an end portion on one circumferential side of the connecting portion; A plurality of split cores having a fitted portion provided at an end on the other side in the circumferential direction, and fitting the fitting portion of one of the divided cores into the fitted portion of the other divided core. A split core arrangement step of annularly arranging the plurality of split cores by combining,
Using a support jig having a support surface that regulates movement of the divided core in the circumferential direction by supporting a part of the divided core, and a jig setting step of setting the plurality of divided cores in the support jig;
The plurality of divided cores and the core member are moved radially outwardly by press-fitting a core member into an axial center portion of the plurality of divided cores supported by the support jig. A core member press-fitting step for integrating
The manufacturing method of the armature core which has.
周方向に面が向けられていると共に前記ティース部の径方向中心軸に対して平行に形成された被支持面を有する前記分割コアと、前記被支持面が当接する前記支持面を有する前記支持冶具と、を用い、前記分割コア配列工程を行う請求項1記載の電機子コアの製造方法。   The split core having a supported surface that is oriented in the circumferential direction and parallel to the radial center axis of the teeth portion, and the support having the support surface with which the supported surface abuts The armature core manufacturing method according to claim 1, wherein the split core arrangement step is performed using a jig. 径方向に延在されたティース部と、前記ティース部の径方向内側に設けられた連結部と、前記連結部の周方向一方側の端部に設けられた嵌合部と、前記連結部の周方向他方側の端部に設けられた被嵌合部と、を有する複数の分割コアを用い、一の前記分割コアの前記嵌合部を他の前記分割コアの前記被嵌合部に嵌合することによって前記複数の分割コアを環状に配列させる分割コア配列工程と、
前記複数の分割コアの各々の前記ティース部の回りに導電性の巻線を巻回することによって該ティース部の回りにコイルを形成する巻線巻回工程と、
前記巻線巻回工程を経た後に、前記分割コアの一部を支持することによって該分割コアが周方向へ移動することを規制する支持面を有する支持冶具を用い、前記複数の分割コアを前記支持冶具にセットする冶具セット工程と、
前記支持冶具に支持された状態の前記複数の分割コアの軸心部に芯部材を圧入することによって前記複数の分割コアを径方向外側へ放射状に移動させると共に前記複数の分割コアと前記芯部材とを一体化させる芯部材圧入工程と、
を有する電機子の製造方法。
A teeth portion extending in the radial direction; a connecting portion provided on the radially inner side of the teeth portion; a fitting portion provided on an end portion on one circumferential side of the connecting portion; A plurality of split cores having a fitted portion provided at an end on the other side in the circumferential direction, and fitting the fitting portion of one of the divided cores into the fitted portion of the other divided core. A split core arrangement step of annularly arranging the plurality of split cores by combining,
A winding winding step of forming a coil around the teeth portion by winding a conductive winding around the teeth portion of each of the plurality of divided cores;
After passing through the winding and winding step, by using a support jig having a support surface that regulates movement of the divided core in the circumferential direction by supporting a part of the divided core, the plurality of divided cores are A jig setting process for setting the support jig;
The plurality of divided cores and the core member are moved radially outwardly by press-fitting a core member into an axial center portion of the plurality of divided cores supported by the support jig. A core member press-fitting step for integrating
The manufacturing method of the armature which has.
JP2013238074A 2013-11-18 2013-11-18 Armature core manufacturing method and armature manufacturing method Active JP6313573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013238074A JP6313573B2 (en) 2013-11-18 2013-11-18 Armature core manufacturing method and armature manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238074A JP6313573B2 (en) 2013-11-18 2013-11-18 Armature core manufacturing method and armature manufacturing method

Publications (2)

Publication Number Publication Date
JP2015100167A JP2015100167A (en) 2015-05-28
JP6313573B2 true JP6313573B2 (en) 2018-04-18

Family

ID=53376483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238074A Active JP6313573B2 (en) 2013-11-18 2013-11-18 Armature core manufacturing method and armature manufacturing method

Country Status (1)

Country Link
JP (1) JP6313573B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477331B2 (en) * 2015-07-28 2019-03-06 株式会社デンソー Manufacturing method and manufacturing apparatus for stator core of rotating electrical machine
CN106341015B (en) * 2016-09-26 2020-09-04 威灵(芜湖)电机制造有限公司 Rotor and self-starting synchronous reluctance motor with same
CN106230152B (en) * 2016-09-26 2019-03-15 威灵(芜湖)电机制造有限公司 Rotor core component, rotor and self-starting permanent magnet synchronous motor
JP7435591B2 (en) * 2019-03-28 2024-02-21 ニデック株式会社 stator core

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936534B2 (en) * 2000-12-21 2007-06-27 株式会社日立製作所 Stator core and motor stator manufacturing method
JP4286829B2 (en) * 2005-03-24 2009-07-01 株式会社一宮電機 Manufacturing method of rotating machine
JP5172367B2 (en) * 2008-01-23 2013-03-27 三菱電機株式会社 Laminated core, laminated core manufacturing method, laminated core manufacturing apparatus, and stator
JP5505661B2 (en) * 2012-01-31 2014-05-28 株式会社富士通ゼネラル Manufacturing method of electric motor

Also Published As

Publication number Publication date
JP2015100167A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6313573B2 (en) Armature core manufacturing method and armature manufacturing method
JP6349140B2 (en) Rotor, rotor manufacturing method, and rotating electric machine provided with rotor
JP5391325B1 (en) Coil fixing device for fixing coil to electric motor, and electric motor provided with the coil fixing device
JP6084039B2 (en) Brushless motor
JP5682800B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP6200720B2 (en) Brushless motor and method for manufacturing brushless motor
JP2008131679A (en) Manufacturing method of stator, and stator
JP2007228720A (en) Core
JP6818476B2 (en) Stator iron core of rotary electric machine
JP2011188650A (en) Laminated core and manufacturing method for the same
JP2012023805A (en) Stator of electric motor and manufacturing method of the same
JP5296856B2 (en) Stator manufacturing method
KR101867973B1 (en) Rotor of Motor and motor having the same
JP2014050188A (en) Method of manufacturing stator
JP2012147547A (en) Stator for outer rotor type rotary electric machine
JP2015097457A (en) Armature core
JP6313572B2 (en) Armature core
JP5292134B2 (en) Stator and motor
JP7046265B2 (en) How to make an armature core, how to make an electric machine, and an electric machine
JP2014239601A (en) Stator, and stator manufacturing method
JP7209480B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
JP2013153575A (en) Laminated core of dynamo-electric machine, manufacturing method therefor, and armature of dynamo-electric machine
KR20130017176A (en) Rotor core of motor
JP2015023630A (en) Stator manufacturing method and stator
JP5907833B2 (en) Rotating electric machine stator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180323

R150 Certificate of patent or registration of utility model

Ref document number: 6313573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250