JP6312189B2 - Sliding member and manufacturing method of sliding member - Google Patents

Sliding member and manufacturing method of sliding member Download PDF

Info

Publication number
JP6312189B2
JP6312189B2 JP2013052313A JP2013052313A JP6312189B2 JP 6312189 B2 JP6312189 B2 JP 6312189B2 JP 2013052313 A JP2013052313 A JP 2013052313A JP 2013052313 A JP2013052313 A JP 2013052313A JP 6312189 B2 JP6312189 B2 JP 6312189B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
sliding member
mass
sliding
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013052313A
Other languages
Japanese (ja)
Other versions
JP2013227658A (en
Inventor
理恵 鈴木
理恵 鈴木
鍛冶 俊彦
俊彦 鍛冶
慎一郎 重住
慎一郎 重住
則行 川俣
則行 川俣
藤井 秀紀
秀紀 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Honda Motor Co Ltd
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Sumitomo Electric Sintered Alloy Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013052313A priority Critical patent/JP6312189B2/en
Publication of JP2013227658A publication Critical patent/JP2013227658A/en
Application granted granted Critical
Publication of JP6312189B2 publication Critical patent/JP6312189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、アルミニウム合金基焼結体からなる摺動部材とその製造方法に関するものである。特に、耐摩耗性に優れると共に、摺動部材と摺接する相手材の摩耗性(相手攻撃性)が低い摺動部材に関するものである。   The present invention relates to a sliding member made of an aluminum alloy-based sintered body and a manufacturing method thereof. In particular, the present invention relates to a sliding member that is excellent in wear resistance and has low wear resistance (partner aggression) of a mating member that is in sliding contact with the sliding member.

自動車、OA機器、家庭用電気製品といった種々の分野の機械部品に、焼結部材が利用されている。焼結部材は、強度や耐摩耗性といった機械的特性に優れる上、最終製品形状に近いものが製造できるため、複雑な三次元形状の製品の素材に適している。一方で、より軽量の素材による摺動部材が求められており、アルミニウム合金を用いた材料が提案されている。例えば、特許文献1には、アルミニウム合金に硬質粒子を添加して、強度と耐摩耗性の両立を狙いとした焼結アルミニウム合金が開示されている。この焼結アルミニウム合金は、Al-Zn-Mg-Cu系合金に所定量のアルミナやムライトの硬質粒子を含有した液相焼結アルミニウム合金である。   Sintered members are used for machine parts in various fields such as automobiles, office automation equipment, and household electrical appliances. Sintered members are excellent in mechanical properties such as strength and wear resistance, and can be manufactured in a shape close to the final product shape, and thus are suitable for materials of products having a complicated three-dimensional shape. On the other hand, a sliding member made of a lighter material has been demanded, and a material using an aluminum alloy has been proposed. For example, Patent Document 1 discloses a sintered aluminum alloy in which hard particles are added to an aluminum alloy so as to achieve both strength and wear resistance. This sintered aluminum alloy is a liquid phase sintered aluminum alloy containing a predetermined amount of hard particles of alumina or mullite in an Al—Zn—Mg—Cu alloy.

特開2009-242883号公報JP 2009-242883 A

しかし、上記焼結アルミニウム合金であっても、耐摩耗性と相手攻撃性の両立に関して更なる改善の余地がある。   However, even with the above sintered aluminum alloy, there is room for further improvement with regard to the compatibility between wear resistance and opponent attack.

本発明は、このような事情に鑑みてなされたもので、その目的の一つは、耐摩耗性が高く、かつ相手攻撃性が低い摺動部材とその製造方法を提供することにある。   The present invention has been made in view of such circumstances, and one of its purposes is to provide a sliding member having high wear resistance and low opponent attack and a method for manufacturing the same.

本発明者らは、アルミニウム合金に硬質粒子を添加した摺動部材の耐摩耗性の向上を図るため、特許文献1のAl-Zn-Mg-Cu系合金をAl-Si-Mg-Cu系合金に置換した摺動部材を検討した。その際、耐摩耗性を重視してAl-Si系合金におけるSi量を増量すると、析出したSi粒子の脱落が増え、相手攻撃性がより顕著に増大することが判明した。このことから、さらに相手攻撃性の要因について検討を行った。その結果、摺動部材を相手材と摺接させた際、硬質粒子がAl-Si-Mg-Cu系合金の金属相から脱落し、その硬質粒子が摺動部材と相手材との間に介在された状態で動かされることで、摺動部材・相手材共に摩耗されることが相手攻撃性を高める一因であるとの知見を得た。そこで、硬質粒子が脱落しても摺動部材と相手材との間に介在される状態を回避し易い摺動部材を検討し、本発明を完成するに至った。   In order to improve the wear resistance of a sliding member obtained by adding hard particles to an aluminum alloy, the inventors have changed the Al—Zn—Mg—Cu alloy of Patent Document 1 to an Al—Si—Mg—Cu alloy. The sliding member replaced with was examined. At that time, it was found that if the amount of Si in the Al-Si alloy was increased with emphasis on wear resistance, the amount of precipitated Si particles dropped off and the opponent attack increased significantly. Based on this, we investigated the factors of the opponent's aggression. As a result, when the sliding member is in sliding contact with the mating material, the hard particles fall off from the metal phase of the Al-Si-Mg-Cu alloy, and the hard particles are interposed between the sliding member and the mating material. As a result, it was found that wear of both the sliding member and the counterpart material is one factor that increases the opponent's aggressiveness. Accordingly, the present inventors have completed the present invention by studying a sliding member that can easily avoid a state where the hard particles fall between the sliding member and the counterpart material even if the hard particles fall off.

本発明の摺動部材は、Siの含有量が6質量%以上である高Siアルミニウム合金相と、Siの含有量が2質量%以下である低Siアルミニウム合金相と、非金属無機材料からなり、各アルミニウム合金相に分散される硬質粒子とを備える。   The sliding member of the present invention comprises a high Si aluminum alloy phase having a Si content of 6% by mass or more, a low Si aluminum alloy phase having a Si content of 2% by mass or less, and a nonmetallic inorganic material. And hard particles dispersed in each aluminum alloy phase.

この構成によれば、硬質粒子が金属相から脱落した場合でも、比較的柔らかい低Siアルミニウム合金相に脱落した硬質粒子が再度埋め込まれて保持され易い。そのため、摺動部材を相手材と摺接させた際、脱落した硬質粒子が両部材の間に介在された状態で動かされることを抑制し易く、摺動部材の相手攻撃性を低減することができる。また、金属相として比較的硬質の高Siアルミニウム合金相を備え、金属相に非金属無機材料の硬質粒子を分散させることで、摺動部材の強度の低下を抑制しつつ、耐摩耗性を高めることができる。そのため、本発明の摺動部材は、高い耐摩耗性と低い相手攻撃性とを両立することができる。   According to this configuration, even when the hard particles fall off from the metal phase, the hard particles dropped off in the relatively soft low-Si aluminum alloy phase are easily embedded again and held. Therefore, when the sliding member is brought into sliding contact with the mating member, it is easy to suppress the falling hard particles being moved between the two members, and the mating attack of the sliding member can be reduced. it can. In addition, a relatively hard high-Si aluminum alloy phase is provided as a metal phase, and hard particles of non-metallic inorganic material are dispersed in the metal phase, thereby suppressing the decrease in strength of the sliding member and improving the wear resistance. be able to. Therefore, the sliding member of the present invention can achieve both high wear resistance and low opponent attack.

本発明の摺動部材の一形態として、摺動部材の金属相に占める低Siアルミニウム合金相の含有量が10質量%以上60質量%以下であることが挙げられる。   As one form of the sliding member of the present invention, the content of the low Si aluminum alloy phase in the metal phase of the sliding member is 10% by mass or more and 60% by mass or less.

この構成によれば、低Siアルミニウム合金相の含有量を所定量とすることで、摺動部材の硬度を維持しつつ、相手攻撃性の低減をより効果的に実現できる。   According to this configuration, by setting the content of the low Si aluminum alloy phase to a predetermined amount, it is possible to more effectively realize a reduction in the opponent attack property while maintaining the hardness of the sliding member.

本発明の摺動部材の一形態として、硬質粒子の平均粒径は、低Siアルミニウム合金相の平均粒径よりも小さいことが挙げられる。   One form of the sliding member of the present invention is that the average particle size of the hard particles is smaller than the average particle size of the low Si aluminum alloy phase.

この構成によれば、低Siアルミニウム合金相の平均粒径よりも小さな平均粒径の硬質粒子を用いることで、低Siアルミニウム合金相で硬質粒子を保持し易くし、かつ硬質粒子が脱落しても再度低Siアルミニウム合金相で保持し易くできる。   According to this configuration, by using hard particles having an average particle size smaller than the average particle size of the low Si aluminum alloy phase, it is easy to hold the hard particles in the low Si aluminum alloy phase, and the hard particles fall off. However, it can be easily held in the low Si aluminum alloy phase again.

本発明の摺動部材の一形態として、硬質粒子の平均粒径が30μm以下であることが挙げられる。   One form of the sliding member of the present invention is that the average particle size of the hard particles is 30 μm or less.

この構成によれば、微細な硬質粒子を用いることで、耐摩耗性に優れる摺動部材とすることができる。   According to this structure, it can be set as the sliding member excellent in abrasion resistance by using a fine hard particle.

本発明の摺動部材の一形態として、硬質粒子の摺動部材に占める含有量が0.5質量%以上10質量%以下であることが挙げられる。   One form of the sliding member of the present invention is that the content of hard particles in the sliding member is 0.5% by mass or more and 10% by mass or less.

この構成によれば、硬質粒子の含有量を規定することで、他の焼結部材と同程度又はそれ以上の強度や硬度を有する摺動部材とでき、かつ相手攻撃性を適度に抑えた摺動部材とできる。   According to this configuration, by defining the content of the hard particles, a sliding member having a strength and hardness comparable to or higher than those of other sintered members can be obtained, and the other party's aggression can be moderately suppressed. Can be a moving member.

本発明の摺動部材の一形態として、高Siアルミニウム合金相がAl-Si-Mg-Cu系合金で構成されることが挙げられる。   One form of the sliding member of the present invention is that the high Si aluminum alloy phase is composed of an Al—Si—Mg—Cu alloy.

Al-Si-Mg-Cu系合金は硬度に優れ、金属相として用いることで、摺動部材の耐摩耗性を高めることに寄与する。   Al-Si-Mg-Cu alloy is excellent in hardness and contributes to improving the wear resistance of the sliding member by using it as a metal phase.

本発明の摺動部材の一形態として、非金属無機材料は、ビッカース硬度がHv800以上の材料であることが挙げられる。   As one form of the sliding member of the present invention, the nonmetallic inorganic material may be a material having a Vickers hardness of Hv800 or more.

硬質粒子の硬度を規定することで、耐摩耗性の高い摺動部材とすることができる。   By defining the hardness of the hard particles, a sliding member having high wear resistance can be obtained.

本発明の摺動部材の一形態として、非金属無機材料は、アルミナ又はムライトであることが挙げられる。   As one form of the sliding member of the present invention, the nonmetallic inorganic material may be alumina or mullite.

硬質粒子がアルミナであれば、特に耐摩耗性に優れ、かつ相手攻撃性が適度に低い摺動部材とすることができる。硬質粒子がムライトであれば、アルミナよりは若干劣るが耐摩耗性に優れ、かつ相手攻撃性が十分に低い摺動部材とすることができる。   If the hard particles are alumina, it is possible to obtain a sliding member that is particularly excellent in wear resistance and has a moderately low opponent attack property. If the hard particles are mullite, a sliding member that is slightly inferior to alumina but excellent in wear resistance and sufficiently low in attacking the other party can be obtained.

本発明の摺動部材の一形態として、以下の条件によりチップオンディスク式の摺動試験を行った際、試験前におけるチップの摺動面の表面粗さよりも、試験後におけるチップの摺動面の表面粗さの方が小さい形態が挙げられる。
チップ:本発明の摺動部材からなるチップ
ディスク:チップと同一材質のディスク
ディスクのチップ圧接箇所の周速:1.6m/sec
荷重と時間:30kgf×1時間
潤滑:油中
温度:室温
As one form of the sliding member of the present invention, when a chip-on-disk type sliding test is performed under the following conditions, the sliding surface of the chip after the test is more than the surface roughness of the sliding surface of the chip before the test. A form having a smaller surface roughness is mentioned.
Tip: Tip made of the sliding member of the present invention Disc: Disc made of the same material as the tip Peripheral speed of the tip pressure contact point of the disc: 1.6 m / sec
Load and time: 30 kgf x 1 hour Lubrication: In oil Temperature: Room temperature

この構成によれば、摺動試験前よりも摺動試験後の方が摺動面の表面粗さが小さくなるため、摺動部材を同一材質の相手材と摺動させた際、初期なじみが良好で、その後も、摺動部材・相手材共に摩耗の増加を抑制し易い。   According to this configuration, the surface roughness of the sliding surface is smaller after the sliding test than before the sliding test. Therefore, when the sliding member is slid with the counterpart material of the same material, initial familiarity is obtained. After that, it is easy to suppress an increase in wear for both the sliding member and the counterpart material.

本発明の摺動部材の製造方法は、次の準備工程、成形工程及び焼結工程を含む。
準備工程:Siの含有量が6質量%以上である高Siアルミニウム合金粉末と、実質的にSiを含有しない高純度アルミニウム粉末と、非金属無機材料の硬質粒子とを含む混合粉末を準備する。
成形工程:この混合粉末を成形して成形体とする。
焼結工程:この成形体を焼結して、Siの含有量が6質量%以上である高Siアルミニウム合金相、Siの含有量が2質量%以下である低Siアルミニウム合金相、及びこれら合金相に分散される硬質粒子を含む焼結体とする。
The manufacturing method of the sliding member of this invention includes the following preparatory process, a formation process, and a sintering process.
Preparation step: A mixed powder containing a high-Si aluminum alloy powder having a Si content of 6% by mass or more, a high-purity aluminum powder substantially containing no Si, and hard particles of a nonmetallic inorganic material is prepared.
Molding process: This mixed powder is molded into a molded body.
Sintering step: This compact is sintered, a high Si aluminum alloy phase having a Si content of 6% by mass or more, a low Si aluminum alloy phase having a Si content of 2% by mass or less, and these alloys A sintered body containing hard particles dispersed in a phase is used.

この方法によれば、本発明の摺動部材を得ることができる。   According to this method, the sliding member of the present invention can be obtained.

本発明の摺動部材の製造方法の一形態としては、成形体の焼結は、液相の出現温度にて行うことが挙げられる。   As one form of the manufacturing method of the sliding member of this invention, sintering of a molded object is mentioned at the appearance temperature of a liquid phase.

液相焼結することで、焼結体に含まれる空孔を少なくでき、より高密度の摺動部材を形成し易い。   By liquid phase sintering, the pores contained in the sintered body can be reduced, and a higher-density sliding member can be easily formed.

本発明の摺動部材によれば、耐摩耗性と低相手攻撃性を両立できる。また、本発明の摺動部材の製造方法によれば、本発明の摺動部材を容易に得ることができる。   According to the sliding member of the present invention, it is possible to achieve both wear resistance and low opponent attack. Moreover, according to the manufacturing method of the sliding member of this invention, the sliding member of this invention can be obtained easily.

摺動試験に用いるチップを示し、(A)は正面図、(B)は右側面図、(C)はチップの摩耗幅wの説明図である。The chip | tip used for a sliding test is shown, (A) is a front view, (B) is a right view, (C) is explanatory drawing of the wear width w of a chip | tip. 摺動試験の試験方法の説明図である。It is explanatory drawing of the test method of a sliding test. 摺動試験の結果を示すグラフである。It is a graph which shows the result of a sliding test. (A)は本発明の摺動部材に係る試料の摺動試験前の摺動面のSEM写真、(B)は摺動試験後の摺動面のSEM写真である。(A) is a SEM photograph of the sliding surface before the sliding test of the sample relating to the sliding member of the present invention, and (B) is an SEM photograph of the sliding surface after the sliding test. 摺動試験の前後における摺動面の表面粗さを示すグラフである。It is a graph which shows the surface roughness of the sliding surface before and behind a sliding test.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明の摺動部材は、高Siアルミニウム合金相、低Siアルミニウム合金相及び硬質粒子を備える。以下、摺動部材の構成要件について説明し、その後、その摺動部材の製造方法について説明する。   The sliding member of the present invention includes a high Si aluminum alloy phase, a low Si aluminum alloy phase, and hard particles. Hereinafter, the constituent requirements of the sliding member will be described, and then the manufacturing method of the sliding member will be described.

[摺動部材]
(高Siアルミニウム合金相)
<組成>
本発明の摺動部材の高Siアルミニウム合金相は、添加元素と残部がAl及び不純物からなるアルミニウム合金で構成され、Siを6質量%以上含有するAl-Si合金とする。母材の組成は適宜選択することができるが、特に、Al-Si-Mg-Cu系合金が好適に利用できる。Al-Si-Mg-Cu系合金は耐摩耗性に優れて好ましい。Al-Si-Mg-Cu系合金の具体的組成としては、質量%でSiを6〜18%、Mgを0.2〜1.0%、Cuを1.2〜3.0%含有し、残部がAl及び不純物からなるものが挙げられる。特に、Siは8〜15%含有されることが好ましい。母材中の添加元素は、アルミニウム中に固溶又は晶出、析出して存在する。母材の組成(元素及び含有量)は、例えば、SEM-EDXや発光分光分析方法などを利用することで測定できる。母材の組成は、原料となる母材粉末の組成により調整するとよい。
[Sliding member]
(High Si aluminum alloy phase)
<Composition>
The high-Si aluminum alloy phase of the sliding member of the present invention is an Al—Si alloy that is composed of an aluminum alloy composed of an additive element and the balance of Al and impurities, and contains 6 mass% or more of Si. The composition of the base material can be selected as appropriate. In particular, an Al—Si—Mg—Cu-based alloy can be suitably used. Al-Si-Mg-Cu alloys are preferred because of their excellent wear resistance. The specific composition of the Al-Si-Mg-Cu alloy is 6-18% Si, 0.2-1.0% Mg, 1.2-3.0% Cu, and the balance is Al and impurities. Is mentioned. In particular, Si is preferably contained in an amount of 8 to 15%. The additive element in the base material exists as a solid solution or crystallization and precipitation in aluminum. The composition (element and content) of the base material can be measured by using, for example, SEM-EDX or an emission spectroscopic analysis method. The composition of the base material may be adjusted according to the composition of the base material powder as a raw material.

<含有量>
摺動部材の金属相に占める高Siアルミニウム合金相の含有量は、40質量%以上90質量%以下が好ましい。下限値以上の高Siアルミニウム合金相を含有することで、硬度が高く耐摩耗性に優れる摺動部材とすることができる。さらには強度にも優れる摺動部材とすることができる。上限値以下の高Siアルミニウム合金相を含有することで、残部の金属相を低Siアルミニウム合金相とすることができ、相手攻撃性の低い摺動部材とすることができる。この含有量は摺動部材から硬質粒子を除いた材料を金属相とし、その金属相を100質量%としたときの高Siアルミニウム合金相の含有量である。
<Content>
The content of the high Si aluminum alloy phase in the metal phase of the sliding member is preferably 40% by mass or more and 90% by mass or less. By containing a high Si aluminum alloy phase that is not less than the lower limit, a sliding member having high hardness and excellent wear resistance can be obtained. Furthermore, it can be set as the sliding member which is excellent also in intensity | strength. By containing a high Si aluminum alloy phase that is less than or equal to the upper limit value, the remaining metal phase can be a low Si aluminum alloy phase, and a sliding member with low opponent attack can be obtained. This content is the content of the high Si aluminum alloy phase when the material obtained by removing the hard particles from the sliding member is the metal phase and the metal phase is 100% by mass.

<平均粒径>
高Siアルミニウム合金相の平均粒径は、45μm以上350μm以下程度が好ましい。この範囲の平均粒径とすることで、成形性、焼結性、製造性に優れる。この平均粒径は、原料粉末である高Siアルミニウム合金粉末の平均粒径と実質的に同一とみなすことができる。より好ましい平均粒径は、45μm以上100μm以下程度である。
<Average particle size>
The average particle size of the high Si aluminum alloy phase is preferably about 45 μm to 350 μm. By setting the average particle size within this range, the moldability, sinterability, and manufacturability are excellent. This average particle size can be regarded as substantially the same as the average particle size of the high-Si aluminum alloy powder that is the raw material powder. A more preferable average particle diameter is about 45 μm or more and 100 μm or less.

<その他>
なお、本発明の摺動部材は押出工程を経ていない焼結材であり、金属相(次述する低Siアルミニウム合金相も含む)の結晶粒子のアスペクト比(最大径と最小径との比)が小さい(5未満)。即ち、摺動部材の金属組織を調べることで、焼結により製造されたことが確認できる。また、本発明の摺動部材は溶製材とも異なる。溶製材には、非金属無機材料等の硬質粒子を分散させることが困難である。
<Others>
The sliding member of the present invention is a sintered material that has not undergone an extrusion process, and the aspect ratio (ratio between the maximum diameter and the minimum diameter) of the crystal grains of the metal phase (including the low Si aluminum alloy phase described below) Is small (less than 5). That is, by examining the metal structure of the sliding member, it can be confirmed that it has been manufactured by sintering. The sliding member of the present invention is also different from the melted material. It is difficult to disperse hard particles such as non-metallic inorganic materials in the melted material.

(低Siアルミニウム合金相)
<組成>
低Siアルミニウム合金相は、高Siアルミニウム合金相における添加元素とアルミニウムと不純物とからなる組成で構成される。後述するように、本発明の摺動部材は、Siの含有量が6質量%以上である高Siアルミニウム合金粉末と、実質的にSiを含有しない高純度アルミニウム粉末とを原料粉末に用いて製造される。このような原料粉末を含む成形体を焼結した際、高Siアルミニウム合金粉末の添加元素の一部は高純度アルミニウム粉末に拡散し、低Siアルミニウム合金相を生成する。高Siアルミニウム合金相に含まれる添加元素としては、Si、Mg、Cuなどが挙げられる。このうち、Siは焼結時に高純度アルミニウム粉末へ殆ど固溶しない。一方、MgやCuは焼結時に高純度アルミニウム粉末へ固溶し易い。そのため、低Siアルミニウム合金相は、Siの含有量は低いものの、MgやCuは高Siアルミニウム合金相におけるMgやCuの含有量に近い程度含まれることがある。低Siアルミニウム合金相におけるSiの含有量は、2質量%以下、好ましくは1質量%以下で、さらには0.5質量%以下、特に0.1質量%未満であり、実質的に含有されない場合もある。
(Low Si aluminum alloy phase)
<Composition>
The low Si aluminum alloy phase is composed of a composition comprising an additive element, aluminum and impurities in the high Si aluminum alloy phase. As will be described later, the sliding member of the present invention is manufactured by using, as a raw material powder, a high-Si aluminum alloy powder having a Si content of 6% by mass or more and a high-purity aluminum powder substantially containing no Si. Is done. When a compact including such a raw material powder is sintered, some of the additive elements of the high-Si aluminum alloy powder diffuse into the high-purity aluminum powder to produce a low-Si aluminum alloy phase. Examples of the additive element contained in the high Si aluminum alloy phase include Si, Mg, and Cu. Of these, Si hardly dissolves in high-purity aluminum powder during sintering. On the other hand, Mg and Cu are easily dissolved in high-purity aluminum powder during sintering. Therefore, although the low Si aluminum alloy phase has a low Si content, Mg and Cu may be contained to a degree close to the Mg and Cu content in the high Si aluminum alloy phase. The Si content in the low Si aluminum alloy phase is 2% by mass or less, preferably 1% by mass or less, further 0.5% by mass or less, particularly less than 0.1% by mass, and may not be substantially contained.

この低Siアルミニウム合金相は、焼結体の摺動部材中においても、高Siアルミニウム合金相とは区別できる状態で存在する。上述のように、低Siアルミニウム合金相は原料粉末に含まれる高Siアルミニウム合金粉末の添加元素が高純度アルミニウム粉末に拡散することで生成される。但し、高Siアルミニウム合金粉末のSiが高純度アルミニウム粉末に固溶される量は非常に微量であり、低Siアルミニウム合金相は高Siアルミニウム合金相と独立して存在する。この低Siアルミニウム合金相は、摺動部材をSEM-EDXによる面分析などにより分析することで確認できる。   This low Si aluminum alloy phase exists in a state where it can be distinguished from the high Si aluminum alloy phase even in the sliding member of the sintered body. As described above, the low Si aluminum alloy phase is generated by diffusion of the additive element of the high Si aluminum alloy powder contained in the raw material powder into the high purity aluminum powder. However, the amount of Si in the high Si aluminum alloy powder dissolved in the high purity aluminum powder is very small, and the low Si aluminum alloy phase exists independently of the high Si aluminum alloy phase. This low Si aluminum alloy phase can be confirmed by analyzing the sliding member by surface analysis using SEM-EDX.

<含有量>
摺動部材の金属相に占める低Siアルミニウム合金相の含有量は、10質量%以上60質量%以下が好ましい。下限値以上の低Siアルミニウム合金相を含有することで、相手攻撃性の低い摺動部材とすることができる。これは、摺動部材を相手材と摺接した際、摺動部材から脱落した硬質粒子を柔らかい低Siアルミニウム合金相が再度保持できるからであると考えられる。さらに、この低Siアルミニウム合金相は、摺動部材内において、硬質粒子を脱落し難くする保持機能も有すると考えられる。上限値以下の低Siアルミニウム合金相を含有することで、残部の金属相を高Siアルミニウム合金相とすることができ、硬度が高く耐摩耗性に優れる摺動部材とすることができ、摺動部材の強度の低下を抑制できる。この含有量も摺動部材から硬質粒子を除いた材料を金属相とし、その金属相を100質量%としたときの低Siアルミニウム合金相の含有量である。
<Content>
The content of the low Si aluminum alloy phase in the metal phase of the sliding member is preferably 10% by mass or more and 60% by mass or less. By containing a low Si aluminum alloy phase that is equal to or greater than the lower limit value, a sliding member with low opponent attack can be obtained. This is considered to be because when the sliding member is in sliding contact with the mating member, the soft low Si aluminum alloy phase can hold again the hard particles dropped from the sliding member. Furthermore, it is considered that this low Si aluminum alloy phase also has a holding function that makes it difficult for hard particles to fall off in the sliding member. By containing a low Si aluminum alloy phase below the upper limit, the remaining metal phase can be made into a high Si aluminum alloy phase, which can be a sliding member with high hardness and excellent wear resistance. A decrease in strength of the member can be suppressed. This content is also the content of the low Si aluminum alloy phase when the material obtained by removing the hard particles from the sliding member is the metal phase and the metal phase is 100% by mass.

<平均粒径>
低Siアルミニウム合金相の平均粒径は、高Siアルミニウム合金相と同様に、45μm以上350μm以下程度が好ましい。この下限値以上の平均粒径とすることで、合金成分が拡散し、強度が高い摺動部材を得ることができる。上限値以下の平均粒径とすることで、脱落した硬質粒子を保持しやすい摺動部材を得ることができる。この平均粒径も、原料粉末である高純度アルミニウム粉末の平均粒径と実質的に同一とみなすことができる。より好ましい平均粒径は、45μm以上100μm以下程度である。
<Average particle size>
The average particle size of the low Si aluminum alloy phase is preferably about 45 μm or more and 350 μm or less, like the high Si aluminum alloy phase. By setting the average particle size to be equal to or greater than the lower limit, the alloy component diffuses and a sliding member having high strength can be obtained. By setting the average particle size below the upper limit, it is possible to obtain a sliding member that easily holds the hard particles that have fallen off. This average particle diameter can also be regarded as substantially the same as the average particle diameter of the high-purity aluminum powder that is the raw material powder. A more preferable average particle diameter is about 45 μm or more and 100 μm or less.

<形状>
低Siアルミニウム合金相の粒子形状は、扁平状でアスペクト比の大きな場合が多い。低Siアルミニウム合金相は、摺動部材中の他の構成材料に比べて柔らかく、変形性に富むため、成形時の圧縮により変形し易いからである。具体的には、アスペクト比が1〜5程度であることが多い。
<Shape>
The particle shape of the low Si aluminum alloy phase is often flat and has a large aspect ratio. This is because the low Si aluminum alloy phase is softer and more deformable than the other constituent materials in the sliding member, and is thus easily deformed by compression during molding. Specifically, the aspect ratio is often about 1 to 5.

(硬質粒子)
<組成>
本発明の摺動部材は、上述した金属相に硬質粒子が分散されている。この硬質粒子の材質としては、非金属無機材料とする。非金属無機材料には、セラミックス、金属間化合物、ダイヤモンドなどが挙げられる。特に、化合物の非金属無機材料が好適に利用できる。より具体的な材質は、Si単体の他、アルミナ(Al2O3)、ムライト(アルミナと酸化ケイ素との化合物)、SiC、AlN、BNなどの化合物が挙げられる。中でも、アルミナを用いると金属相との反応性がよく、耐摩耗性に優れる摺動部材が得られ、ムライトを用いると相手攻撃性の低い摺動部材が得られる。これら各種の硬質粒子は、単一種であっても良いし、複数種を混合して摺動部材に含まれていても良い。摺動部材中の硬質粒子の組成(単体元素、化合物元素及び含有量)は、例えば、SEM-EDX、X線回折、化学分析などを利用することで測定できる。
(Hard particles)
<Composition>
In the sliding member of the present invention, hard particles are dispersed in the metal phase described above. The hard particles are made of a non-metallic inorganic material. Nonmetallic inorganic materials include ceramics, intermetallic compounds, diamond, and the like. In particular, non-metallic inorganic materials of compounds can be suitably used. More specific materials include compounds such as alumina (Al 2 O 3 ), mullite (a compound of alumina and silicon oxide), SiC, AlN, and BN in addition to Si alone. Among these, when alumina is used, a sliding member having good reactivity with the metal phase and excellent wear resistance can be obtained, and when mullite is used, a sliding member having low opponent attack can be obtained. These various hard particles may be of a single type, or may be mixed with a plurality of types and included in the sliding member. The composition of the hard particles in the sliding member (single element, compound element and content) can be measured by using, for example, SEM-EDX, X-ray diffraction, chemical analysis, and the like.

<含有量>
摺動部材に占める硬質粒子の含有量(複数種の硬質粒子を含有する場合、合計含有量)は、0.5質量%以上10質量%以下が好ましい。0.5質量%以上であると、他の焼結部材と同程度或いはそれ以上の耐摩耗性が得られ易く、さらには実用上十分な強度、硬度を有することができる。より好ましい下限値は1質量%以上である。硬質粒子の含有量は多いほど、耐摩耗性や硬度が向上する。但し、10質量%を超えると、強度が低下したり、相手材の摩耗や損傷が激しくなる。より好ましい上限値は5.0質量%以下、特に3.0質量%以下である。
<Content>
The content of hard particles in the sliding member (the total content when plural kinds of hard particles are contained) is preferably 0.5% by mass or more and 10% by mass or less. When it is 0.5% by mass or more, it is easy to obtain wear resistance comparable to or higher than that of other sintered members, and furthermore, it can have practically sufficient strength and hardness. A more preferred lower limit is 1% by mass or more. The greater the hard particle content, the better the wear resistance and hardness. However, if it exceeds 10% by mass, the strength decreases and the wear and damage of the counterpart material becomes severe. A more preferable upper limit value is 5.0% by mass or less, particularly 3.0% by mass or less.

<硬度>
硬質粒子の硬度は、Siよりも高硬度とする。特に、ビッカース硬度でHv800以上、さらにはHv1000以上、特にHv1500以上であることが好ましい。このような硬度の硬質粒子を用いることで、高硬度で耐摩耗性に優れる摺動部材とすることができる。例えば、アルミナはHv2600程度であり、ムライトはHv1150程度である。ビッカース硬度Hvの測定方法は、JIS Z 2244(2003)に基づく。
<Hardness>
The hardness of the hard particles is higher than that of Si. In particular, the Vickers hardness is preferably Hv 800 or more, more preferably Hv 1000 or more, and particularly preferably Hv 1500 or more. By using hard particles having such hardness, a sliding member having high hardness and excellent wear resistance can be obtained. For example, alumina is about Hv2600 and mullite is about Hv1150. The measuring method of Vickers hardness Hv is based on JIS Z 2244 (2003).

摺動部材の硬度は、硬質粒子の硬度が高いほど、或いは硬質粒子の含有量が多いほど高くなる傾向にある。   The hardness of the sliding member tends to increase as the hardness of the hard particles increases or as the content of the hard particles increases.

<粒径>
硬質粒子の平均粒径は、小さい方が引張強度の低下が抑えられる。硬質粒子の平均粒径が大き過ぎると脱落し易く、相手攻撃性が増す。この平均粒径は低Siアルミニウム合金相の平均粒径よりも小さいことが好ましい。このような微細な硬質粒子を用いることで、高強度で耐摩耗性に優れる摺動部材とでき、かつ相手材との摺接時に脱落した硬質粒子を再度低Siアルミニウム合金相に埋め込むように保持することで、相手攻撃性を効果的に抑制することができる。例えば、平均粒径を30μm以下とすることが好ましい。特に、硬質粒子の最大径が低Siアルミニウム合金相の平均粒径よりも小さいことが好ましい。このような最大径の規定により、脱落した硬質粒子をより一層低Siアルミニウム合金相に保持し易くできる。例えば、最大径を30μm以下とすることが好ましい。
<Particle size>
The smaller the average particle size of the hard particles, the lower the tensile strength. If the average particle size of the hard particles is too large, they will easily fall off and the opponent attack will increase. This average particle size is preferably smaller than the average particle size of the low Si aluminum alloy phase. By using such fine hard particles, it is possible to provide a sliding member with high strength and excellent wear resistance, and hold hard particles that have fallen off during sliding contact with the mating material so that they are embedded again in the low Si aluminum alloy phase. By doing so, the opponent aggression can be effectively suppressed. For example, the average particle size is preferably 30 μm or less. In particular, it is preferable that the maximum diameter of the hard particles is smaller than the average particle diameter of the low Si aluminum alloy phase. By defining the maximum diameter as described above, the dropped hard particles can be more easily retained in the low Si aluminum alloy phase. For example, the maximum diameter is preferably 30 μm or less.

より具体的な硬質粒子の平均粒径は、アルミナ粒子の場合、10μm以下が好ましく、1μm以上6μm以下がより好ましい。特に、最大径は10μm以下であることが好ましく、5μm以上10μm以下がより好ましい。上記範囲を満たす大きさのアルミナ粒子を上記特定の範囲で含有する場合、摺動部材の焼結性を高める効果がある。ムライト粒子の場合、平均粒径は、20μm以下が好ましく、1μm以上15μm以下がより好ましい。   More specifically, the average particle diameter of hard particles is preferably 10 μm or less, more preferably 1 μm or more and 6 μm or less in the case of alumina particles. In particular, the maximum diameter is preferably 10 μm or less, more preferably 5 μm or more and 10 μm or less. When the alumina particles having a size satisfying the above range are contained in the specific range, there is an effect of improving the sinterability of the sliding member. In the case of mullite particles, the average particle size is preferably 20 μm or less, more preferably 1 μm or more and 15 μm or less.

原料に用いる硬質粒子の粒度分布は、例えば、マイクロトラック法(レーザー回折・散乱式粒度分析法)で計測する。摺動部材中の硬質粒子の平均粒径、最大径は以下のように測定する。摺動部材の任意の断面を光学顕微鏡(100〜400倍)で観察し、この観察像を画像処理して、この断面中に存在する全ての硬質粒子の面積を測定する。各面積の円相当径を演算し、この円相当径を各粒子の直径とし、当該断面における最大の直径をこの断面の最大径とする。n=10個の断面について最大径を求め、10個の最大径の平均を硬質粒子の最大径とする。また、一つの断面における全ての粒子の直径の平均をとり、n=10個の断面について平均を求め、10個の直径の平均を更に平均したものを硬質粒子の平均粒径とする。   The particle size distribution of the hard particles used as the raw material is measured by, for example, a microtrack method (laser diffraction / scattering particle size analysis method). The average particle diameter and the maximum diameter of the hard particles in the sliding member are measured as follows. An arbitrary cross section of the sliding member is observed with an optical microscope (100 to 400 times), and this observation image is image-processed to measure the area of all hard particles present in the cross section. The equivalent circle diameter of each area is calculated, the equivalent circle diameter is defined as the diameter of each particle, and the maximum diameter in the cross section is defined as the maximum diameter of the cross section. The maximum diameter is obtained for n = 10 cross sections, and the average of the 10 maximum diameters is defined as the maximum diameter of the hard particles. Moreover, the average of all the particle diameters in one cross section is obtained, the average is obtained for n = 10 cross sections, and the average of the 10 diameters is further averaged to obtain the average particle diameter of the hard particles.

<形状>
硬質粒子の形状は、シャープエッジをもたないこと、言い換えれば可能な限り球形に近い方が好ましい。球形に近い硬質粒子又は角が角張っていない硬質粒子を用いることで、細長い粒子などを用いる場合に比べて相手攻撃性を低減できる。
<Shape>
The shape of the hard particles preferably has no sharp edge, in other words, is as close to a sphere as possible. By using hard particles close to a sphere or hard particles whose corners are not square, opponent attack can be reduced as compared to the case of using elongated particles.

[摺動部材の摺動特性]
本発明の摺動部材は、上述した摺動試験の前よりも後の方が摺動面の表面粗さが小さくなる傾向にある。そのため、摺動部材を同一材質の相手材と摺動させた際、初期なじみが良好で、両者の間の微細な隙間のばらつきを抑え易く、摺動部材・相手材共に摩耗の増加を抑制し易い。この表面粗さは、例えばJIS B0601 94における算術平均粗さRaにより評価する。試験後の摺動面の表面粗さは、試験前の摺動面の表面粗さに比べて50%以下、特に30%以下程度となることが好適である。一方、例えば溶製材は、試験前より後の方が摺動面の表面粗さが粗くなる傾向にある。これは、溶製材のSiは平均粒径が大きく、そのSiが脱落して孔が形成されたり、脱落したSiにより摺動部材・相手材共に摺動面が傷付けられるためであると考えられる。
[Sliding characteristics of sliding members]
In the sliding member of the present invention, the surface roughness of the sliding surface tends to be smaller after the sliding test than before. Therefore, when the sliding member is slid with the counterpart material of the same material, the initial familiarity is good, it is easy to suppress the fine gap variation between them, and the sliding member and the counterpart material suppress increase in wear. easy. This surface roughness is evaluated by, for example, arithmetic average roughness Ra in JIS B0601 94. The surface roughness of the sliding surface after the test is preferably 50% or less, particularly about 30% or less, compared to the surface roughness of the sliding surface before the test. On the other hand, for example, in the case of a melted material, the surface roughness of the sliding surface tends to be rougher before the test. This is thought to be because Si of the melted material has a large average particle size, and the Si drops off to form holes, or the sliding surfaces of both the sliding member and the counterpart material are damaged by the dropped Si.

[摺動部材の機械的特性]
本発明の摺動部材は、アルミニウム合金相よりも高硬度で微細な硬質粒子を含有することで、耐摩耗性に優れると共に、高強度である傾向にある。金属相の組成や製造方法にもよるが、本発明の摺動部材は、他の合金系に硬質粒子を添加する場合に比べて、強度低下が抑えられ、引張強度が150MPa以上を満たすことができる。また、硬度は、HRBで60以上を満たすことができる。
[Mechanical characteristics of sliding members]
Since the sliding member of the present invention contains hard particles finer and higher in hardness than the aluminum alloy phase, it tends to be excellent in wear resistance and high in strength. Although depending on the composition of the metal phase and the manufacturing method, the sliding member of the present invention can suppress a decrease in strength and satisfy the tensile strength of 150 MPa or more compared to the case where hard particles are added to other alloy systems. it can. The hardness can satisfy 60 or more in HRB.

[摺動部材の製造方法]
上記の摺動部材は、原料粉末の準備工程、成形工程、焼結工程を備え、必要に応じて、サイジング工程や熱処理工程を行うことで得られる。各工程の詳細は次の通りである。
[Sliding member manufacturing method]
Said sliding member is provided with the preparation process of a raw material powder, a formation process, and a sintering process, and is obtained by performing a sizing process and a heat treatment process as needed. Details of each step are as follows.

(準備工程)
準備工程では、摺動部材の原料粉末を用意する。この原料粉末には、Siを6質量%以上含有する高Siアルミニウム合金粉末(以下、Al合金粉末と呼ぶ)、実質的にSiを含有しない高純度アルミニウム粉末(以下、高純度Al粉末と呼ぶ)、及び硬質粒子が含まれる混合粉末を用いる。Al合金粉末は、摺動部材(焼結体)における高Siアルミニウム合金相と同様の添加元素で、高Siアルミニウム合金相の各添加元素の含有量よりも多い含有量の組成の粉末が利用できる。Al合金粉末の具体的組成としては、質量%でSiを6〜40%、Mgを0.2〜2.0%、Cuを1.2〜8.0%含有し、残部がAl及び不純物からなるものが挙げられる。より好ましいSiの含有量は8〜30%、さらに好ましいSiの含有量は17〜18%又は12〜13%である。Al合金の共晶点は、例えば、急冷凝固粉末の場合、Siの含有量が17〜18%近傍のときであり、溶製材粉末の場合、Siの含有量が12〜13%近傍のときである。共晶点付近はSiが最も微小に析出し易いため、Siの含有量を共晶点におけるSi含有量の近傍(±1%)とすれば、より相手攻撃性が低い摺動部材を得ることができる。高純度Al粉末は、代表的には純度97%以上のアルミニウムで構成され、例えば純度が99質量%以上の純アルミニウムが利用できる。さらにAl合金粉末は、Mgを0.03質量%以上2質量%以下含有してもよい。所定量のMgを含有することで、焼結性を高めることができる。この原料粉末の混合には、各粉末粒子の粉砕をできるだけ伴わないような混合方法とすることが好ましい。軟らかい高純度Al粉末を含有すると、上述した脱落硬質粒子の保持に加え、成形性に優れる。
(Preparation process)
In the preparation step, raw material powder for the sliding member is prepared. In this raw material powder, high Si aluminum alloy powder containing 6 mass% or more of Si (hereinafter referred to as Al alloy powder), high purity aluminum powder containing substantially no Si (hereinafter referred to as high purity Al powder) , And a mixed powder containing hard particles. The Al alloy powder is an additive element similar to the high Si aluminum alloy phase in the sliding member (sintered body), and a powder having a composition higher than the content of each additive element in the high Si aluminum alloy phase can be used. . The specific composition of the Al alloy powder includes, by mass, 6 to 40% Si, 0.2 to 2.0% Mg and 1.2 to 8.0% Cu, with the balance being Al and impurities. A more preferable Si content is 8 to 30%, and a still more preferable Si content is 17 to 18% or 12 to 13%. The eutectic point of the Al alloy is, for example, in the case of rapidly solidified powder when the Si content is around 17 to 18%, and in the case of the smelting powder, when the Si content is around 12 to 13%. is there. Near the eutectic point, Si is most likely to precipitate in the smallest amount, so if the Si content is close to the Si content at the eutectic point (± 1%), a sliding member with lower opponent attack can be obtained. Can do. The high-purity Al powder is typically composed of aluminum having a purity of 97% or more. For example, pure aluminum having a purity of 99% by mass or more can be used. Furthermore, the Al alloy powder may contain Mg in an amount of 0.03% by mass to 2% by mass. By containing a predetermined amount of Mg, the sinterability can be enhanced. The mixing of the raw material powders is preferably performed by a mixing method in which each powder particle is not pulverized as much as possible. When the soft high-purity Al powder is contained, in addition to the retention of the falling hard particles described above, the moldability is excellent.

原料に用いた硬質粒子は、摺動部材中に実質的にそのまま残存する。従って、摺動部材中の硬質粒子の含有量や大きさが所望の量や所望の大きさとなるように、原料となる硬質粒子の量や大きさを調整する。また、Al合金粉末や高純度Al粉末の粒径も、その粒径が摺動部材中でほぼ維持される。   The hard particles used as the raw material remain substantially intact in the sliding member. Therefore, the amount and size of the hard particles used as a raw material are adjusted so that the content and size of the hard particles in the sliding member become a desired amount and a desired size. Further, the particle diameters of the Al alloy powder and the high purity Al powder are substantially maintained in the sliding member.

(成形工程)
成形は、上述の混合粉末を金型に充填し、圧縮することで行う。例えば、冷間金型成形などの冷間の加圧成形が利用できる。成形圧力としては2〜10ton/cm2程度が挙げられる。この金型のキャビティの形状を調整することで、複雑形状の成形体を得ることもできる。
(Molding process)
Molding is performed by filling the above-mentioned mixed powder into a mold and compressing it. For example, cold pressure forming such as cold mold forming can be used. The molding pressure is about 2 to 10 ton / cm 2 . By adjusting the shape of the cavity of the mold, it is possible to obtain a molded body having a complicated shape.

(焼結工程)
得られた成形体の焼結は、液相出現温度で行えばよい。代表的な焼結条件は、窒素やアルゴンといった不活性雰囲気で、温度:550〜600℃、時間:0(規定温度到達と同時に降温開始)〜60分が挙げられる。この焼結工程により、Al合金粉末はSiを6質量%以上含有する高Siアルミニウム合金相となり、高純度Al粉末はAl合金粉末中の添加元素の一部が拡散されてSiの含有量が2質量%以下である低Siアルミニウム合金相となって、これら合金相に分散される硬質粒子を含む焼結体が得られる。
(Sintering process)
The obtained molded body may be sintered at the liquid phase appearance temperature. Typical sintering conditions include an inert atmosphere such as nitrogen or argon, temperature: 550 to 600 ° C., time: 0 (starting temperature decrease upon reaching specified temperature) to 60 minutes. By this sintering process, the Al alloy powder becomes a high-Si aluminum alloy phase containing 6 mass% or more of Si, and the high-purity Al powder diffuses part of the additive elements in the Al alloy powder and the Si content is 2 A low Si aluminum alloy phase having a mass% or less is obtained, and a sintered body containing hard particles dispersed in these alloy phases is obtained.

上述のように成形体を液相焼結すると、原料粉末間の空孔が液相により縮小され、固相焼結の焼結材に比べて空孔が少なく高密度の焼結体が得られる。また、液相の出現前における原料粉末間の空孔は凹凸の多い不規則な形状であるが、液相の出現後には空孔が丸みを帯びた形状になり易い。そのため、本発明の摺動部材を断面観察した場合、空孔は円形に近い形状のものが多い。   When the compact is sintered in the liquid phase as described above, the pores between the raw material powders are reduced by the liquid phase, resulting in a sintered body with fewer holes and higher density than the sintered material of solid-phase sintering. . In addition, the vacancies between the raw material powders before the appearance of the liquid phase are irregular shapes with many irregularities, but the vacancies tend to be rounded after the appearance of the liquid phase. For this reason, when the cross section of the sliding member of the present invention is observed, there are many holes having a shape close to a circle.

(サイジング工程)
得られた焼結体に適宜サイジングを施してもよい。サイジングは、熱間でも冷間でもよい。冷間サイジングは、寸法精度を向上させることができ、熱間サイジングは、強度を向上させることができる。
(Sizing process)
The obtained sintered body may be appropriately sized. Sizing may be hot or cold. Cold sizing can improve dimensional accuracy, and hot sizing can improve strength.

(熱処理工程)
焼結後、又はサイジング後、溶体化、時効の熱処理を適宜施してもよい。熱処理条件は、公知の条件を利用することができる。また、溶体化後にサイジングを施し、その後に時効することによって寸法精度を高めることができる。溶体化後の焼結体は軟質であるため、高精度にサイジングし易いためである。
(Heat treatment process)
After sintering or sizing, solution treatment and aging heat treatment may be appropriately performed. As heat treatment conditions, known conditions can be used. Moreover, sizing can be performed after solution treatment, and then aging can be performed to increase dimensional accuracy. This is because the sintered body after solution forming is soft and easy to size with high accuracy.

[試験例]
種々の硬質粒子を含む摺動部材の試料を作製し、その摺動特性を調べた。各試料は、原料粉末の準備→成形→焼結→冷間サイジング→熱処理という工程で作製した。各試料の製造条件は次の通りである。試料No.1〜No.6は、いずれも引張強度:150MPa以上、硬度:HRB60以上を満たしていた。
[Test example]
Samples of sliding members containing various hard particles were prepared and their sliding characteristics were examined. Each sample was produced in the process of preparation of raw material powder → molding → sintering → cold sizing → heat treatment. The manufacturing conditions for each sample are as follows. Samples No. 1 to No. 6 all satisfied tensile strength: 150 MPa or more and hardness: HRB 60 or more.

《試料No.1:Al-Si-Mg-Cu系合金+硬質粒子》
Al-18Si-3.25Cu-0.81Mg(単位:質量% 以下同様)の組成のAl-Si-Mg-Cu系合金粉末(高Siアルミニウム合金粉末)と、Al-0.5Mgの組成の高純度アルミニウム粉末と、アルミナ粉末とを用意する。Al-Si-Mg-Cu系合金粉末と高純度アルミニウム粉末の各平均粒径は50μm、アルミナ粉末は、平均粒径が2μm(最大径6μm)である。用意したAl-Si-Mg-Cu系合金粉末、高純度アルミニウム粉末、及びアルミナ粉末をそれぞれ混合させた混合粉末を作製する。Al-Si-Mg-Cu系合金粉末と高純度アルミニウム粉末の質量割合は80:20であり、この割合は、摺動部材の金属相に占める高Siアルミニウム合金相と低Siアルミニウム合金相の質量割合である。混合粉末に対してアルミナ粉末が1.0質量%となるように、上記金属粉末とアルミナ粉末とを混合する。得られた混合粉末を5ton/cm2の面圧で金型成形して成形体を作製した。続いて、この成形体を窒素雰囲気中で560±5℃×50分の焼結条件で液相焼結した。得られた焼結体に、490℃に加熱後、水冷して溶体化を施し、その後6ton/cm2の条件で冷間サイジングし、さらに175℃×7時間の時効を行って硬質粒子を含有する焼結Al-Si-Mg-Cu系合金の試料を作製した。
<< Sample No.1: Al-Si-Mg-Cu alloy + hard particles >>
Al-18Si-3.25Cu-0.81Mg (unit: mass%) The Al-Si-Mg-Cu alloy powder (high Si aluminum alloy powder) with the composition and high-purity aluminum powder with the composition Al-0.5Mg And alumina powder are prepared. Each of Al-Si-Mg-Cu alloy powder and high-purity aluminum powder has an average particle diameter of 50 μm, and alumina powder has an average particle diameter of 2 μm (maximum diameter 6 μm). A mixed powder is prepared by mixing the prepared Al-Si-Mg-Cu alloy powder, high-purity aluminum powder, and alumina powder. The mass ratio of Al-Si-Mg-Cu alloy powder and high-purity aluminum powder is 80:20, and this ratio is the mass of the high-Si aluminum alloy phase and low-Si aluminum alloy phase in the metal phase of the sliding member. It is a ratio. The metal powder and the alumina powder are mixed so that the alumina powder is 1.0 mass% with respect to the mixed powder. The obtained mixed powder was mold-molded at a surface pressure of 5 ton / cm 2 to produce a molded body. Subsequently, this compact was subjected to liquid phase sintering in a nitrogen atmosphere under sintering conditions of 560 ± 5 ° C. × 50 minutes. The obtained sintered body is heated to 490 ° C, then water-cooled to form a solution, and then cold-sized under the condition of 6 ton / cm 2 and further subjected to aging at 175 ° C x 7 hours to contain hard particles A sintered Al-Si-Mg-Cu alloy sample was prepared.

《試料No.2:Al-Si-Mg-Cu系合金+硬質粒子》
試料No.1の混合粉末に対するアルミナ粒子の含有量を3.0質量%とした点以外は試料No.1と同一の条件で硬質粒子を含有する焼結Al-Si-Mg-Cu系合金の試料を作製した。
<< Sample No.2: Al-Si-Mg-Cu alloy + hard particles >>
A sample of sintered Al-Si-Mg-Cu alloy containing hard particles under the same conditions as sample No. 1 except that the content of alumina particles in the mixed powder of sample No. 1 was 3.0% by mass Produced.

《試料No.3:Al-Si-Mg-Cu系合金+硬質粒子》
試料No.1の混合粉末において、Al-Si-Mg-Cu系合金粉末と高純度アルミニウム粉末の質量割合を70:30とした点以外は試料No.1と同一の条件で硬質粒子を含有する焼結Al-Si-Mg-Cu系合金の試料を作製した。
<< Sample No.3: Al-Si-Mg-Cu alloy + hard particles >>
The mixed powder of sample No. 1 contains hard particles under the same conditions as sample No. 1 except that the mass ratio of Al-Si-Mg-Cu alloy powder and high-purity aluminum powder was set to 70:30 A sample of sintered Al-Si-Mg-Cu alloy was prepared.

《試料No.4:Al-Si-Mg-Cu系合金+硬質粒子》
試料No.1の混合粉末において、Al-Si-Mg-Cu系合金粉末と高純度アルミニウム粉末の質量割合を60:40とした点以外は試料No.1と同一の条件で硬質粒子を含有する焼結Al-Si-Mg-Cu系合金の試料を作製した。
<< Sample No. 4: Al-Si-Mg-Cu alloy + hard particles >>
The mixed powder of sample No. 1 contains hard particles under the same conditions as sample No. 1 except that the mass ratio of Al-Si-Mg-Cu alloy powder and high-purity aluminum powder was 60:40 A sample of sintered Al-Si-Mg-Cu alloy was prepared.

《試料No.5:Al-Si-Mg-Cu系合金+硬質粒子》
試料No.1の混合粉末において、Al-Si-Mg-Cu系合金粉末と高純度アルミニウム粉末の質量割合を40:60とした点以外は試料No.1と同一の条件で硬質粒子を含有する焼結Al-Si-Mg-Cu系合金の試料を作製した。
<< Sample No.5: Al-Si-Mg-Cu alloy + hard particles >>
The mixed powder of sample No. 1 contains hard particles under the same conditions as sample No. 1 except that the mass ratio of Al-Si-Mg-Cu alloy powder and high-purity aluminum powder is 40:60 A sample of sintered Al-Si-Mg-Cu alloy was prepared.

《試料No.6:Al-Si-Mg-Cu系合金+硬質粒子》
試料No.1の混合粉末において、Al-Si-Mg-Cu系合金粉末と高純度アルミニウム粉末の質量割合を90:10とした点以外は試料No.1と同一の条件で硬質粒子を含有する焼結Al-Si-Mg-Cu系合金の試料を作製した。
<< Sample No.6: Al-Si-Mg-Cu alloy + hard particles >>
The mixed powder of sample No. 1 contains hard particles under the same conditions as sample No. 1 except that the mass ratio of Al-Si-Mg-Cu alloy powder and high-purity aluminum powder was 90:10 A sample of sintered Al-Si-Mg-Cu alloy was prepared.

《試料No.11:F-08C2》
市販の焼結部材(F-08C2)を用意した。この試料No.11の機械的特性は、硬度:HRB75、引張強さ:430MPaである。
<Sample No. 11: F-08C2>
A commercially available sintered member (F-08C2) was prepared. The mechanical properties of Sample No. 11 are hardness: HRB75 and tensile strength: 430 MPa.

《試料No.12:A390》
A390(17質量%のSiを含有する鋳物用Al-Si過共晶系合金)の溶製材の押出体を用意し、熱処理は試料No.1と同様の条件で行ってA390合金の試料を作製した。この試料No.12の機械的特性は、硬度:HRB80、引張強さ:390MPaである。
<Sample No. 12: A390>
Prepare an extruded product of A390 (Al-Si hypereutectic alloy for castings containing 17% by mass of Si) and heat treatment under the same conditions as sample No. 1 to prepare a sample of A390 alloy did. The mechanical properties of Sample No. 12 are hardness: HRB80 and tensile strength: 390 MPa.

《試料No.13:Al-Si-Mg-Cu系合金》
硬質粒子を含まない点を除いて試料No.1と同様の組成の混合粉末を同様の条件で成形体に成形した。この成形体を560±5℃×50分で焼結し、それ以降の冷間サイジング、熱処理は試料No.1と同様の条件で行って焼結Al-Si-Mg-Cu系合金の試料を作製した。この試料No.13の機械的特性は、硬度:HRB75、引張強さ:300MPaである。
<Sample No.13: Al-Si-Mg-Cu alloy>
A mixed powder having the same composition as Sample No. 1 was molded into a molded body under the same conditions except that it did not contain hard particles. This molded body was sintered at 560 ± 5 ° C x 50 minutes, and the subsequent cold sizing and heat treatment were performed under the same conditions as in sample No. 1 to prepare a sintered Al-Si-Mg-Cu alloy sample. Produced. The mechanical properties of Sample No. 13 are hardness: HRB75 and tensile strength: 300 MPa.

《試料No.14:Al-Si-Mg-Cu系合金+硬質粒子》
試料No.1の混合粉末において、Al-Si-Mg-Cu系合金粉末と高純度アルミニウム粉末の質量割合を20:80とした点以外は試料No.1と同一の条件で硬質粒子を含有する焼結Al-Si-Mg-Cu系合金の試料を作製した。この試料No.14の機械的特性は、硬度:HRB57、引張強さ:275MPaである。
<< Sample No.14: Al-Si-Mg-Cu alloy + hard particles >>
The mixed powder of sample No. 1 contains hard particles under the same conditions as sample No. 1 except that the mass ratio of Al-Si-Mg-Cu alloy powder and high-purity aluminum powder was 20:80 A sample of sintered Al-Si-Mg-Cu alloy was prepared. The mechanical properties of this sample No. 14 are hardness: HRB57, tensile strength: 275 MPa.

《試料No.15:Al-Si-Mg-Cu系合金+硬質粒子》
試料No.1の混合粉末において、高純度アルミニウム粉末を含まない点以外は試料No.1と同一の条件で硬質粒子を含有する焼結Al-Si-Mg-Cu系合金の試料を作製した。この試料No.15の機械的特性は、硬度:HRB78、引張強さ:257MPaである。
<< Sample No.15: Al-Si-Mg-Cu alloy + hard particles >>
A sample of sintered Al—Si—Mg—Cu alloy containing hard particles was prepared under the same conditions as in sample No. 1 except that the mixed powder of sample No. 1 did not contain high-purity aluminum powder. The mechanical properties of Sample No. 15 are hardness: HRB78 and tensile strength: 257 MPa.

(摺動試験)
上記の各材料からなる所定の形状のチップを作製し、チップオンディスク摩耗試験を行う。この試験の後、図1(C)に示すチップ10の摺動面における摩耗幅wを測定する。その結果を図3のグラフに示す。
(Sliding test)
A chip having a predetermined shape made of each of the above materials is manufactured, and a chip-on-disk wear test is performed. After this test, the wear width w on the sliding surface of the chip 10 shown in FIG. The result is shown in the graph of FIG.

《チップ形状》
摺動試験に用いるチップ10は、図1(A)、(B)に示す舌片状のブロックとした。このチップ10の一方の端面は摺動試験においてチップ10を保持する支持具が取り付けられる平面で、その支持具を挿入するための孔が形成され、他方の端面はディスクに対する摺動面で、円弧状の湾曲面で構成されている。このチップ10の寸法は次の通りである。
幅(図1(A)の上下距離):10mm
厚さ(図1(A)の左右距離):5mm
長さ(図1(B)の左右距離):10mm
摺動面の曲げ半径:5mm
《Chip shape》
The chip 10 used for the sliding test was a tongue-like block shown in FIGS. 1 (A) and 1 (B). One end surface of the chip 10 is a plane on which a support for holding the chip 10 is attached in the sliding test, and a hole for inserting the support is formed. The other end surface is a sliding surface with respect to the disk, and is circular. It consists of an arcuate curved surface. The dimensions of the chip 10 are as follows.
Width (up / down distance in Fig. 1 (A)): 10mm
Thickness (left / right distance in Fig. 1 (A)): 5mm
Length (left / right distance in Fig. 1 (B)): 10mm
Bending radius of sliding surface: 5mm

《摺動条件》
上記のチップ10を、図2に示すように、回転するディスク20に圧接し、チップの摩耗量を測定する。摺動条件は次の通りである。この摺動試験では、チップとディスクの材質を同一とした共摺性を評価しているため、チップとディスクの摩耗量は同程度となる。そのため、チップの摩耗量が少なければ、相手材であるディスクの摩耗量も少ないといえる。
ディスクの材質:チップと同一
ディスクのチップ圧接箇所の周速:1.6m/sec
圧接条件:30kgf×1時間
潤滑:油中
温度:室温
<Sliding conditions>
As shown in FIG. 2, the tip 10 is pressed against a rotating disk 20 and the wear amount of the tip is measured. The sliding conditions are as follows. In this sliding test, since the co-slidability with the same material of the chip and the disk is evaluated, the wear amount of the chip and the disk is almost the same. Therefore, if the wear amount of the chip is small, it can be said that the wear amount of the disk as the counterpart material is also small.
Disc material: Same as the tip Peripheral speed of the tip pressure contact point of the disc: 1.6m / sec
Pressure welding condition: 30kgf x 1 hour Lubrication: In oil Temperature: Room temperature

(表面粗さ測定)
試料No.2、12、13について上記摺動試験の前後における摺動面の表面粗さを測定した。具体的には、JIS B0601 94における算術平均粗さRaを測定した。その結果を図5のグラフに示す。このグラフは、試験前の摺動面の表面粗さを100%として、試験後の摺動面の表面粗さを相対値で示している。なお、摺動試験前の摺動面は、上述した時効後のチップのままの状態であり、研磨などは行っていない。この試験前の摺動面の表面粗さRaは0.35μm以下である。
(Surface roughness measurement)
For sample Nos. 2, 12, and 13, the surface roughness of the sliding surface before and after the sliding test was measured. Specifically, arithmetic average roughness Ra in JIS B0601 94 was measured. The results are shown in the graph of FIG. This graph shows the surface roughness of the sliding surface after the test as a relative value, assuming that the surface roughness of the sliding surface before the test is 100%. Note that the sliding surface before the sliding test is in the state of the chip after aging described above and is not polished. The surface roughness Ra of the sliding surface before this test is 0.35 μm or less.

(粒径測定)
各試料における高Siアルミニウム合金相と低Siアルミニウム合金相の平均粒径を測定した。樹脂に埋め込んだ各試料の断面を研磨し、その断面に対して倍率:150倍でSEM-EDXによる面分析を行う。試料断面の撮影画像から画像処理により高Siアルミニウム合金相と低Siアルミニウム合金相の各々の粒子を抽出し、次の手順により各々の平均粒径を求めた。各粒子の最大径を長径DL、長径DLに垂直な面の最大径を短径DSとし、個々の粒子の粒径rsを次式により求める。そして、10個の粒子について粒径rsの平均を演算して、その値を平均粒径rAVEとする。
個々の粒径rs=(長径DL×短径DS1/2
(Particle size measurement)
The average grain size of high Si aluminum alloy phase and low Si aluminum alloy phase in each sample was measured. The cross section of each sample embedded in the resin is polished, and surface analysis is performed on the cross section by SEM-EDX at a magnification of 150 times. The particles of the high Si aluminum alloy phase and the low Si aluminum alloy phase were extracted from the photographed image of the sample cross section by image processing, and the average particle size of each was determined by the following procedure. The maximum diameter of each particle is defined as the major axis D L , the maximum diameter of the surface perpendicular to the major axis D L is defined as the minor axis D S, and the particle size r s of each particle is obtained by Then, the average of the particle size r s is calculated for 10 particles, and the value is set as the average particle size r AVE .
Individual particle size r s = (major axis D L × minor axis D S ) 1/2

(結果)
《摺動面の状態》
図4(A)に摺動試験前の摺動面のSEM写真を、図4(B)に摺動試験後の摺動面のSEM写真を示す。この写真は、いずれも試料No.1の摺動面の写真である。この写真において、白い粒子がアルミナ粒子であり、その背景の灰色に見える箇所が金属相である。この写真ではわかり難いが、SEM-EDXによる面分析を行うことで、金属相は高Siアルミニウム合金相と低Siアルミニウム合金相の粒子状の各領域がまだらに存在することがわかる。さらに、摺動試験前の摺動面の写真(A)では、アルミナ粒子が金属相から突出しているのがわかるのに対し、摺動試験後の摺動面の写真(B)ではアルミナ粒子が金属相にめり込むように保持されていることがわかる。
(result)
<Sliding surface state>
FIG. 4A shows an SEM photograph of the sliding surface before the sliding test, and FIG. 4B shows an SEM photograph of the sliding surface after the sliding test. These photographs are all photographs of the sliding surface of Sample No. 1. In this photograph, white particles are alumina particles, and the gray portion of the background is the metal phase. Although it is difficult to understand in this photograph, surface analysis by SEM-EDX reveals that the metal phase is mottled in granular regions of high Si aluminum alloy phase and low Si aluminum alloy phase. Furthermore, in the photograph (A) of the sliding surface before the sliding test, it can be seen that the alumina particles protrude from the metal phase, whereas in the photograph (B) of the sliding surface after the sliding test, the alumina particles are It turns out that it hold | maintains so that it may dig into a metal phase.

また、図5に示すように、溶製材を押出した試料No.12(A390)は摺動試験前よりも摺動試験後の方が大幅に面粗度が粗くなっている。これは試料中のSiの平均粒径が大きいためであると考えられる。また、アルミナ粒子を添加していない試料No.13は、摺動試験前後の摺動面の面粗度が僅かに変化しているが、やはり摺動試験前よりも後の方が面粗度は粗くなっている。これに対し、アルミナ粒子を添加した試料No.2では、摺動試験前よりも後の面粗度の方が大幅に滑らかになっていることがわかる。具体的には、試験後の面粗度は試験前の面粗度の30%程度となっていることがわかる。   Further, as shown in FIG. 5, the surface roughness of Sample No. 12 (A390) obtained by extruding the melted material is significantly rougher after the sliding test than before the sliding test. This is presumably because the average particle size of Si in the sample is large. In Sample No. 13 to which no alumina particles were added, the surface roughness of the sliding surface before and after the sliding test was slightly changed, but the surface roughness after the sliding test was still slightly lower than before the sliding test. Is rough. In contrast, Sample No. 2 to which alumina particles were added shows that the surface roughness after the sliding test is much smoother than before the sliding test. Specifically, it can be seen that the surface roughness after the test is about 30% of the surface roughness before the test.

《金属相の粒径とSi含有量》
各試料における高Siアルミニウム合金相と低Siアルミニウム合金相の平均粒径は、いずれも高Siアルミニウム合金粉末と高純度アルミニウム粉末の平均粒径である50μmに近似した値であった。また、上記面分析の結果、試料No.1の焼結Al-Si-Mg-Cu系合金部材(摺動部材)において、高Siアルミニウム合金相のSi含有量は約15質量%であり、Al-Si-Mg-Cu系合金粉末のSi含有量よりも減少していた。一方、低Siアルミニウム合金相は0.1質量%未満の極微量のSiが含有されており、高純度アルミニウム粉末に対してAl-Si-Mg-Cu系合金粉末のSiが固溶したものと考えられる。その他、試料No.2〜No.6,No.13,No.14についても、面分析の結果、高Siアルミニウム合金相のSi含有量は、Al-Si-Mg-Cu系合金粉末のSi含有量よりも減少したのに対し、低Siアルミニウム合金相は、0.1質量%未満の極微量のSiが含有されていた。そのため、高Siアルミニウム合金相はAl-Si-Mg-Cu系合金粉末に由来して生成されるが、高純度アルミニウム粉末との混合割合によって、高純度アルミニウム粉末にAl-Si-Mg-Cu系合金粉末の添加元素が固溶していると考えられる。高Siアルミニウム合金相におけるSi含有量は、Al-Si-Mg-Cu系合金粉末と高純度アルミニウム粉末の質量割合を調整することで変えることができる。その結果を表1に示す。
《Metal phase particle size and Si content》
The average particle diameters of the high Si aluminum alloy phase and the low Si aluminum alloy phase in each sample were values close to 50 μm, which is the average particle diameter of the high Si aluminum alloy powder and the high purity aluminum powder. Further, as a result of the above surface analysis, in the sintered Al—Si—Mg—Cu based alloy member (sliding member) of sample No. 1, the Si content of the high Si aluminum alloy phase is about 15% by mass. -Si-Mg-Cu alloy powder had a lower Si content. On the other hand, the low Si aluminum alloy phase contains an extremely small amount of Si of less than 0.1% by mass, and it is considered that Si of the Al-Si-Mg-Cu alloy powder was dissolved in high purity aluminum powder. . In addition, as for the samples No.2 to No.6, No.13, and No.14, as a result of surface analysis, the Si content of the high-Si aluminum alloy phase was Si content of the Al-Si-Mg-Cu alloy powder. Whereas the amount was lower than the amount, the low Si aluminum alloy phase contained a trace amount of Si of less than 0.1% by mass. Therefore, the high Si aluminum alloy phase is derived from the Al-Si-Mg-Cu alloy powder, but depending on the mixing ratio with the high purity aluminum powder, the Al-Si-Mg-Cu system It is considered that the additive element of the alloy powder is in solid solution. The Si content in the high Si aluminum alloy phase can be changed by adjusting the mass ratio of the Al—Si—Mg—Cu alloy powder and the high purity aluminum powder. The results are shown in Table 1.

《摩耗量》
上記摺動試験の結果を表1及び図3に示す。表1及び図3のグラフに示すように、原料粉末においてAl-Si-Mg-Cu系合金粉末と高純度アルミニウム粉末とを質量割合40:60〜90:10で混合し、かつこの混合粉末に対してアルミナ粒子を含有した試料No.1〜No.6は、アルミナ粒子を含有しない試料No.13に比べて摩耗幅が小さくなっていることがわかる。特に、アルミナ粒子を3質量%含有する試料No.2は、市販の焼結部材の試料No.11に最も近い耐摩耗性を示している。また、原料粉末において、Al-Si-Mg-Cu系合金粉末の質量割合が少な過ぎる試料No.14は、高Siアルミニウム合金相のSi含有量が少ないため、摩耗幅が大きくなっていることがわかる。一方、原料粉末において、Al-Si-Mg-Cu系合金粉末のみ(高純度アルミニウム粉末を含まない)の試料No.15は、低Siアルミニウム合金相が生成されないため、摩耗幅が大きくなっていることがわかる。
《Abrasion amount》
The results of the sliding test are shown in Table 1 and FIG. As shown in the graphs of Table 1 and FIG. 3, in the raw material powder, Al—Si—Mg—Cu alloy powder and high-purity aluminum powder are mixed at a mass ratio of 40:60 to 90:10, and this mixed powder is mixed. In contrast, samples No. 1 to No. 6 containing alumina particles have a smaller wear width than sample No. 13 containing no alumina particles. In particular, Sample No. 2 containing 3% by mass of alumina particles shows the wear resistance closest to Sample No. 11 of a commercially available sintered member. Sample No. 14, in which the mass proportion of the Al-Si-Mg-Cu alloy powder is too small in the raw material powder, has a large wear width because the Si content of the high Si aluminum alloy phase is small. Recognize. On the other hand, in the raw material powder, sample No. 15 consisting only of Al-Si-Mg-Cu alloy powder (not including high-purity aluminum powder) has a large wear width because a low Si aluminum alloy phase is not generated. I understand that.

アルミナ粒子を含有しないアルミニウム合金の試料No.12(A390)は、最も摩耗幅が大きかった。   Sample No. 12 (A390) of aluminum alloy containing no alumina particles had the largest wear width.

《考察》
以上の結果から次のことが考察される。
(1)図4の写真から、高Siアルミニウム合金相と低Siアルミニウム合金相の金属相に硬質粒子を含む場合、耐摩耗性が改善されると共に、金属相から硬質粒子が脱落しても、この脱落粒子が低Siアルミニウム合金相に埋め込まれるように保持されるため、相手攻撃性が低減できると考えられる。
<Discussion>
The following is considered from the above results.
(1) From the photograph in FIG. 4, when hard particles are included in the metal phase of the high Si aluminum alloy phase and the low Si aluminum alloy phase, the wear resistance is improved and even if the hard particles fall off from the metal phase, Since these fallen particles are held so as to be embedded in the low Si aluminum alloy phase, it is considered that the opponent aggression can be reduced.

(2)図3のグラフより、高Siアルミニウム合金相と低Siアルミニウム合金相を備え、高Siアルミニウム合金相が特定範囲のSiを含有していることで、耐摩耗性が向上する傾向にある。さらに、硬質粒子の含有量を多くすることで、耐摩耗性が向上する傾向にある。   (2) From the graph of FIG. 3, it has a high Si aluminum alloy phase and a low Si aluminum alloy phase, and since the high Si aluminum alloy phase contains Si in a specific range, the wear resistance tends to be improved. . Furthermore, wear resistance tends to be improved by increasing the content of hard particles.

(3)図5のグラフより、高Siアルミニウム合金相と低Siアルミニウム合金相の金属相に硬質粒子を含む場合、摺動試験前よりも摺動試験後の方が面粗度は小さくなる傾向にある。   (3) From the graph in FIG. 5, when the high Si aluminum alloy phase and the low Si aluminum alloy phase contain hard particles, the surface roughness tends to be smaller after the sliding test than before the sliding test. It is in.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、高Siアルミニウム合金相の組成や硬質粒子の含有量を適宜変更することができる。   Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the composition of the high Si aluminum alloy phase and the content of hard particles can be changed as appropriate.

本発明の摺動部材は、十分な強度を備えると共に耐摩耗性に優れ、相手攻撃性が低く、かつ軽量化が望まれる種々の分野の製品素材として好適に利用することができる。本発明の摺動部材の製造方法は、本発明の摺動部材、特に複雑な三次元形状の摺動部材の製造に好適に利用することができる。   The sliding member of the present invention can be suitably used as a product material in various fields in which sufficient strength is provided, wear resistance is excellent, opponent attack is low, and weight reduction is desired. The manufacturing method of the sliding member of this invention can be utilized suitably for manufacture of the sliding member of this invention, especially a complicated three-dimensional shaped sliding member.

10 チップ 20 ディスク 10 chips 20 disks

Claims (6)

Siの含有量が6質量%以上であるAl−Si−Mg−Cu系合金で構成される高Siアルミニウム合金相と、
Siの含有量が2質量%以下である低Siアルミニウム合金相と、
前記各アルミニウム合金相に分散される硬質粒子とを備える摺動部材であって、
前記摺動部材の金属相に占める前記高Siアルミニウム合金相と前記低Siアルミニウム合金相との質量割合は、40:60〜90:10であり、
前記硬質粒子は、
Alからなり、
平均粒径が1μm以上6μm以下
最大径が10μm以下
前記摺動部材に占める含有量が0.5質量%以上3.0質量%以下であり、
以下の条件によりチップオンディスク式の摺動試験を行った際、試験後におけるチップの摺動面の表面粗さが、試験前におけるチップの摺動面の表面粗さの50%以下となる摺動部材。
チップ:前記摺動部材からなるチップ
ディスク:チップと同一材質のディスク
ディスクのチップ圧接箇所の周速:1.6m/sec
荷重と時間:30kgf×1時間
潤滑:油中
温度:室温
A high-Si aluminum alloy phase composed of an Al-Si-Mg-Cu-based alloy having a Si content of 6 mass% or more;
A low Si aluminum alloy phase having a Si content of 2% by mass or less;
A sliding member comprising hard particles dispersed in each aluminum alloy phase,
The mass ratio of the high Si aluminum alloy phase and the low Si aluminum alloy phase in the metal phase of the sliding member is 40:60 to 90:10,
The hard particles are
Made of Al 2 O 3 ,
The average particle size is 1 μm or more and 6 μm or less ,
The maximum diameter is 10 μm or less ,
The content occupying the sliding member Ri der 0.5 mass% to 3.0 mass%,
When a chip-on-disk type sliding test is performed under the following conditions, the surface roughness of the chip sliding surface after the test is 50% or less of the surface roughness of the chip sliding surface before the test. Moving member.
Chip: chip made of the sliding member
Disc: Disc made of the same material as the chip
Peripheral speed at the tip contact area of the disk: 1.6 m / sec
Load and time: 30 kgf x 1 hour
Lubrication: In oil
Temperature: room temperature
前記硬質粒子の平均粒径は、前記低Siアルミニウム合金相の平均粒径よりも小さい請求項1に記載の摺動部材。   The sliding member according to claim 1, wherein an average particle diameter of the hard particles is smaller than an average particle diameter of the low Si aluminum alloy phase. 前記高Siアルミニウム合金相は、Siの含有量が6〜18質量%である請求項1又は請求項2に記載の摺動部材。 The sliding member according to claim 1 or 2 , wherein the high Si aluminum alloy phase has a Si content of 6 to 18 mass%. Siの含有量が6質量%以上であるAl−Si−Mg−Cu系合金で構成される高Siアルミニウム合金粉末と、実質的にSiを含有しない高純度アルミニウム粉末と、Alからなる硬質粒子とを含む混合粉末を準備する工程と、
前記混合粉末を成形して成形体とする工程と、
前記成形体を焼結して、Siの含有量が6質量%以上であるAl−Si−Mg−Cu系合金で構成される高Siアルミニウム合金相、Siの含有量が2質量%以下である低Siアルミニウム合金相、及びこれら合金相に分散される硬質粒子を含む焼結体とする工程とを備え、
前記混合粉末を準備する工程では、
前記高Siアルミニウム合金粉末と前記高純度アルミニウム粉末とを質量割合で40:60〜90:10で混合し、
前記硬質粒子は、平均粒径を1μm以上6μm以下、最大径を10μm以下、前記混合粉末に占める含有量を0.5質量%以上3.0質量%以下とし、
前記焼結体から得られる摺動部材に対して、以下の条件によりチップオンディスク式の摺動試験を行った際、試験後におけるチップの摺動面の表面粗さが、試験前におけるチップの摺動面の表面粗さの50%以下となる摺動部材の製造方法。
チップ:前記摺動部材からなるチップ
ディスク:チップと同一材質のディスク
ディスクのチップ圧接箇所の周速:1.6m/sec
荷重と時間:30kgf×1時間
潤滑:油中
温度:室温
When configured high Si aluminum alloy powder in Al-Si-Mg-Cu alloy the Si content is 6 wt% or more, and high-purity aluminum powder containing substantially no Si, of Al 2 O 3 Preparing a mixed powder containing hard particles;
Forming the mixed powder into a molded body;
The compact is sintered, and a high Si aluminum alloy phase composed of an Al—Si—Mg—Cu based alloy having a Si content of 6% by mass or more, the Si content is 2% by mass or less. A step of forming a low Si aluminum alloy phase and a sintered body containing hard particles dispersed in the alloy phase;
In the step of preparing the mixed powder ,
The high Si aluminum alloy powder and the high purity aluminum powder are mixed at a mass ratio of 40:60 to 90:10,
Said hard particles have an average particle diameter of 1μm or more 6μm or less, under 10μm at the largest diameter, the content occupied in the mixed powder and 3.0 wt% or less than 0.5 wt%,
When a chip-on-disk type sliding test was performed on the sliding member obtained from the sintered body under the following conditions, the surface roughness of the sliding surface of the chip after the test was determined as follows. A manufacturing method of a sliding member that is 50% or less of the surface roughness of the sliding surface .
Chip: chip made of the sliding member
Disc: Disc made of the same material as the chip
Peripheral speed at the tip contact area of the disk: 1.6 m / sec
Load and time: 30 kgf x 1 hour
Lubrication: In oil
Temperature: room temperature
前記準備工程では、前記高Siアルミニウム合金粉末におけるSiの含有量を17〜18質量%又は12〜13質量%とする請求項に記載の摺動部材の製造方法。 The manufacturing method of the sliding member according to claim 4 which makes content of Si in said high Si aluminum alloy powder 17-18 mass% or 12-13 mass% in said preparatory process. 前記成形体の焼結は、液相の出現温度である550〜600℃×0〜60分の条件で行う請求項又は請求項に記載の摺動部材の製造方法。 The method for manufacturing a sliding member according to claim 4 or 5 , wherein the sintering of the molded body is performed under conditions of 550 to 600 ° C x 0 to 60 minutes, which is an appearance temperature of a liquid phase .
JP2013052313A 2012-03-30 2013-03-14 Sliding member and manufacturing method of sliding member Active JP6312189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052313A JP6312189B2 (en) 2012-03-30 2013-03-14 Sliding member and manufacturing method of sliding member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012079103 2012-03-30
JP2012079103 2012-03-30
JP2013052313A JP6312189B2 (en) 2012-03-30 2013-03-14 Sliding member and manufacturing method of sliding member

Publications (2)

Publication Number Publication Date
JP2013227658A JP2013227658A (en) 2013-11-07
JP6312189B2 true JP6312189B2 (en) 2018-04-18

Family

ID=49675565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052313A Active JP6312189B2 (en) 2012-03-30 2013-03-14 Sliding member and manufacturing method of sliding member

Country Status (1)

Country Link
JP (1) JP6312189B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132100B2 (en) 2013-09-27 2017-05-24 住友電工焼結合金株式会社 Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
US9551419B2 (en) * 2015-04-22 2017-01-24 Federal-Mogul Corporation Coated sliding element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625386B2 (en) * 1988-05-24 1994-04-06 昭和電工株式会社 Method for producing aluminum alloy powder and sintered body thereof
JPH02285044A (en) * 1989-04-26 1990-11-22 Mitsubishi Materials Corp Al-si series alloy powder forged member having excellent wear resistance and low thermal expansion coefficient
JPH03264636A (en) * 1990-03-13 1991-11-25 Mitsubishi Materials Corp Forged member of al-si alloy powder reduced in attack on mating member
JPH05156399A (en) * 1991-12-04 1993-06-22 Mitsubishi Materials Corp Al-si alloy excellent in toughness
JP3291551B2 (en) * 1993-12-28 2002-06-10 三菱マテリアル株式会社 Sintered aluminum alloy with excellent strength and wear resistance
JP3060022B2 (en) * 1994-12-21 2000-07-04 日立粉末冶金株式会社 Wear-resistant aluminum-based sintered alloy and method for producing the same
JP3057468B2 (en) * 1994-02-12 2000-06-26 日立粉末冶金株式会社 Wear-resistant aluminum-based sintered alloy and method for producing the same
JP3784858B2 (en) * 1995-06-22 2006-06-14 日立粉末冶金株式会社 Method for producing aluminum wear-resistant sintered alloy
JP5568818B2 (en) * 2008-03-31 2014-08-13 住友電工焼結合金株式会社 Liquid phase sintered aluminum alloy

Also Published As

Publication number Publication date
JP2013227658A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
KR102468099B1 (en) Method for manufacturing copper alloy and copper alloy
KR102205940B1 (en) Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
JP5568818B2 (en) Liquid phase sintered aluminum alloy
Sharma et al. Production of hybrid composite by a novel process and its physical comparison with single reinforced composites
JP6312189B2 (en) Sliding member and manufacturing method of sliding member
JPWO2003069001A1 (en) Magnesium-based composite material and method for producing the same
JP6360270B1 (en) Sintered friction material for brake
JP2018040034A (en) Mg-BASED COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME, AND SLIDING MEMBER
JP6315761B2 (en) Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
JP3940022B2 (en) Method for producing sintered aluminum alloy
JP6108273B2 (en) Oil pump rotor
JP2008075127A (en) Method of producing magnesium alloy
WO2023190873A1 (en) Sliding material
JP6380864B2 (en) Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
JP7266269B2 (en) Mg-based sintered composite material, manufacturing method thereof, and sliding member
JP5433916B2 (en) Cylinder sleeve alloy and cylinder sleeve using the same
JP5715678B2 (en) Magnesium matrix composite
JP7321601B1 (en) Magnesium alloy, magnesium alloy compact, method for producing the same, and magnesium alloy member
JP2014005544A (en) Liquid phase sintered aluminum alloy and method for producing liquid phase sintered aluminum alloy
WO2021215306A1 (en) Aluminum molded body and method for producing same
JP5437616B2 (en) Heat dissipation member and method for manufacturing heat dissipation member
JP2003119531A (en) Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof
Gowrishankar et al. Production and mechanical testing of aluminium alloy based hybrid metal matrix composite
WO2023101727A9 (en) Precipitation hardening powder metal composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150420

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20151125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180315

R150 Certificate of patent or registration of utility model

Ref document number: 6312189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250