JP6306973B2 - High fluidity retention type low exothermic grout composition - Google Patents

High fluidity retention type low exothermic grout composition Download PDF

Info

Publication number
JP6306973B2
JP6306973B2 JP2014160065A JP2014160065A JP6306973B2 JP 6306973 B2 JP6306973 B2 JP 6306973B2 JP 2014160065 A JP2014160065 A JP 2014160065A JP 2014160065 A JP2014160065 A JP 2014160065A JP 6306973 B2 JP6306973 B2 JP 6306973B2
Authority
JP
Japan
Prior art keywords
mass
parts
grout
high fluidity
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014160065A
Other languages
Japanese (ja)
Other versions
JP2016037407A (en
Inventor
昌範 柴垣
昌範 柴垣
中原 和彦
和彦 中原
浩 丸田
浩 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2014160065A priority Critical patent/JP6306973B2/en
Publication of JP2016037407A publication Critical patent/JP2016037407A/en
Application granted granted Critical
Publication of JP6306973B2 publication Critical patent/JP6306973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、高流動性を長時間保持し、かつ低発熱性のグラウト組成物に関する。   The present invention relates to a grout composition that retains high fluidity for a long time and has low heat generation.

炭鉱等の廃坑、防空壕、廃棄された地下用水路、地下の採石場跡等の地下空洞への充填、水槽や各種構築物等の構築や補修において、セメント系のグラウト材が使用されることがある。セメント系グラウト材を打設する箇所の容積が大きいと、グラウト材の発熱による温度上昇を抑えるために、細かく何回にも分けてグラウト材を打設しなければならず、時間が要するとともに、打ち継ぎが多数生じてしまうために一体性の点で問題があった。
そこで、低熱ポルトランドセメントおよびカルシウムサルフォアルミネート系膨張材を含む水硬性無機粉体、オキシカルボン酸及び/又はオキシカルボン酸塩、炭酸アルカリ、炭酸水素アルカリ及び硫酸アルカリ化合物から選ばれる少なくとも1種、乾燥収縮低減剤、及び細骨材を含有するグラウト材組成物(特許文献1)、並びにセメント、カルシウムアルミノフェライト系膨張材とカルシウムサルフォアルミネート系膨張材からなる膨張材、収縮低減剤、繊維、減水剤、発泡物質、及び細骨材を含有するグラウト組成物(特許文献2)が、低発熱性のグラウト材として提案されている。
Cement-type grout materials may be used in abandoned mines such as coal mines, air defense fences, discarded underground irrigation channels, filling underground cavities such as underground quarries, and building and repairing water tanks and various structures. If the volume of the place where the cement grout material is placed is large, in order to suppress the temperature rise due to the heat generated by the grout material, the grout material must be placed in several times, which takes time. Since many joints occur, there is a problem in terms of unity.
Therefore, at least one selected from hydraulic inorganic powder containing low heat Portland cement and calcium sulfoaluminate-based expansion material, oxycarboxylic acid and / or oxycarboxylate, alkali carbonate, alkali hydrogen carbonate and alkali sulfate compound, A grout material composition containing a dry shrinkage reducing agent and fine aggregate (Patent Document 1), and an expansion material comprising a cement, a calcium aluminoferrite-based expansion material and a calcium sulfoaluminate-based expansion material, a shrinkage reduction agent, and a fiber A grout composition (Patent Document 2) containing a water reducing agent, a foaming substance, and a fine aggregate has been proposed as a low exothermic grout material.

特開2007−254183号公報JP 2007-254183 A 特開2008−247677号公報JP 2008-247777 A

しかしながら、前記従来の低発熱性グラウト材の充填可能な流動性、すなわち可使時間は長いもので2時間程度であった。従って、従来の低発熱性のグラウト材を用いて大きな又は長い地下空洞等へ充填すると、空洞等の端部まで充填できないことやグラウト材を打ち継ぐことにより打ち継ぎが生じてしまうことがある。未充填部や打ち継ぎがあると、一体性の点で問題がある。例えば、未充填部や打ち継ぎ部は水が流れ易く、即ち水道(みずみち)となるため、地下水等が空洞に流れ込むとその水を止めることはできない。また、これまでの低発熱性のグラウト材を用い2時間を越えて充填作業を行うと、グラウトポンプやホース内でグラウト材が詰まる虞が高かった。   However, the fluidity that can be filled with the conventional low heat-generating grout material, that is, the pot life is long and is about 2 hours. Accordingly, when a large or long underground cavity or the like is filled using a conventional low heat-generating grout material, the end of the cavity or the like cannot be filled, and the grout material may be overcast. If there are unfilled parts or joints, there is a problem in terms of unity. For example, water easily flows through unfilled portions and jointed portions, that is, water supply (water), and therefore, when groundwater or the like flows into a cavity, the water cannot be stopped. In addition, when the filling operation is performed over 2 hours using the conventional low heat generation grout material, there is a high possibility that the grout material is clogged in the grout pump or the hose.

従って、本発明の課題は、充填可能な高い流動性を数時間以上保持し、材料分離抵抗性に優れた低発熱性のグラウト材が得られるグラウト組成物を提供することにある。   Accordingly, an object of the present invention is to provide a grout composition that maintains a high fluidity that can be filled for several hours or more and that provides a low exothermic grout material excellent in material separation resistance.

そこで本発明者は、上記課題を解決すべく種々検討した結果、ポルトランドセメント、骨材、ポゾラン、増粘剤、分散剤を含有し、結合材に対しセメント、シリカフューム及び/又はメタカオリン、並びに該シリカフューム及びメタカオリン以外のポゾランを特定割合で混和し、さらにポルトランドセメントに対し、ポリカルボン酸系セメント分散剤とメラミンスルホン酸系分散剤を併用し、特定割合で混和することにより、水中不分離性グラウト組成物の混練物(グラウト材)が充填可能な高い流動性を数時間以上保持することができ、且つ材料分離抵抗性があり、低発熱性を有することを見出し本発明を完成させた。   Accordingly, as a result of various studies to solve the above problems, the present inventor contains Portland cement, aggregate, pozzolana, a thickener, and a dispersant. The binder is cement, silica fume and / or metakaolin, and the silica fume. And non-metakaolin pozzolans in specific proportions, and in addition to Portland cement, polycarboxylic acid-based cement dispersants and melamine sulfonic acid-based dispersants are used in combination at specific proportions, resulting in an inseparable grout composition in water. The present invention was completed by finding that the high fluidity that can be filled with the kneaded product (grouting material) of the product can be maintained for several hours or more, the material has separation resistance, and has low heat generation.

すなわち、本発明は、以下の〔1〕〜〔3〕の高流動保持型低発熱性グラウト組成物を提供するものである。
〔1〕ポルトランドセメント及びポゾランを含む結合材と、骨材と、増粘剤と、分散剤とを含有するグラウト組成物であって、
結合材100質量部に対しポルトランドセメントを40〜65質量部、シリカフューム及び/又はメタカオリンを3〜15質量部、シリカフューム及びメタカオリン以外のポゾランを20〜50質量部含有し、
ポルトランドセメント100質量部に対しポリカルボン酸系分散剤を0.2〜1.2質量部、メラミンスルホン酸系分散剤を1〜6質量部含有することを特徴とする高流動性保持型低発熱性グラウト組成物。
〔2〕結合材100質量部に対し25〜45質量部の水で混練する〔1〕記載の高流動保持型低発熱性グラウト組成物。
〔3〕前記増粘剤の使用量が混練時の水100質量部に対し0.05〜0.25質量部である〔1〕又は〔2〕記載の高流動保持型低発熱性グラウト組成物。
That is, the present invention provides the following high flow retention type low exothermic grout compositions [1] to [3].
[1] A grout composition containing a binder containing Portland cement and pozzolana, an aggregate, a thickener, and a dispersant,
40 to 65 parts by mass of Portland cement, 3 to 15 parts by mass of silica fume and / or metakaolin, and 20 to 50 parts by mass of pozzolan other than silica fume and metakaolin with respect to 100 parts by mass of the binder,
High fluidity retention type low heat generation characterized by containing 0.2 to 1.2 parts by mass of polycarboxylic acid type dispersant and 1 to 6 parts by mass of melamine sulfonic acid type dispersant with respect to 100 parts by mass of Portland cement Grouting composition.
[2] The high fluidity retention type low exothermic grout composition according to [1], which is kneaded with 25 to 45 parts by mass of water with respect to 100 parts by mass of the binder.
[3] The high fluidity retention type low exothermic grout composition according to [1] or [2], wherein the amount of the thickener used is 0.05 to 0.25 parts by mass with respect to 100 parts by mass of water during kneading. .

本発明によれば、混練物が充填可能な高い流動性を8時間以上保持することができ、材料分離抵抗性があり且つ低発熱性を有する高流動保持型低発熱性グラウト組成物が得られる。より詳しくは、混練直後から数時間以上、好ましくは8時間以上200mm以上のJIS静置フロー値で充填可能な高い流動性を保持し、ブリーディング率が2%以下で材料分離抵抗性に優れ、且つ温度上昇量が小さい高流動保持型低発熱性グラウト組成物が得られる。本発明によれば、充填可能な高い流動性を8時間以上保持することができ、材料分離抵抗性があり、且つ低発熱性を有するグラウト材(高流動保持型の低発熱性グラウト材)が得られるため、充填作業に数時間以上、場合によっては8時間以上の長時間を要する大きな又は長い地下空洞等へ充填してもグラウトポンプやホース内でグラウト材が詰まることなく、また、細かく何回にも分けてグラウト材を打設することなく一度に充填することもできる。また、未充填部や打ち継ぎ部を生じさせず施工できるため、地下水等の湧水が空洞に流れ込んだとしても水道(みずみち)とならず、その水を止めることができる。   According to the present invention, the high fluidity that can be filled in the kneaded material can be maintained for 8 hours or more, and a high fluidity retention type low exothermic grout composition having material separation resistance and low exothermic property can be obtained. . More specifically, it maintains high fluidity that can be filled with a JIS static flow value of several hours or more, preferably 8 hours or more and 200 mm or more immediately after kneading, has a bleeding rate of 2% or less, and is excellent in material separation resistance, and A highly fluid retention type low exothermic grout composition having a small temperature rise is obtained. According to the present invention, a grout material (high flow retention type low heat generation grout material) that can maintain high fluidity that can be filled for 8 hours or more, has material separation resistance, and has low heat generation properties. Therefore, even when filling large or long underground cavities that require a long time of several hours or more, sometimes 8 hours or more for filling work, the grout material will not clog in the grout pump or hose. It is also possible to fill the grout material at once without placing grout material. Moreover, since it can construct without producing an unfilled part and a joint part, even if spring water, such as groundwater, flows into a cavity, it does not become water supply (mizumizu), but the water can be stopped.

発熱性測定結果を示す。The exothermic measurement results are shown.

本発明の高流動性保持型低発熱性グラウト組成物は、ポルトランドセメント及びポゾランを含む結合材と、骨材と、増粘剤と、分散剤とを含有するグラウト組成物であって、
結合材100質量部に対しポルトランドセメントを40〜65質量部、シリカフューム及び/又はメタカオリンを3〜15質量部、シリカフューム及びメタカオリン以外のポゾランを20〜50質量部含有し、
ポルトランドセメント100質量部に対しポリカルボン酸系分散剤を0.2〜1.2質量部、メラミンスルホン酸系分散剤を1〜6質量部含有することを特徴とする。
A high fluidity retention type low exothermic grout composition of the present invention is a grout composition containing a binder containing Portland cement and pozzolana, an aggregate, a thickener, and a dispersant.
40 to 65 parts by mass of Portland cement, 3 to 15 parts by mass of silica fume and / or metakaolin, and 20 to 50 parts by mass of pozzolan other than silica fume and metakaolin with respect to 100 parts by mass of the binder,
It contains 0.2 to 1.2 parts by mass of a polycarboxylic acid dispersant and 1 to 6 parts by mass of a melamine sulfonic acid dispersant with respect to 100 parts by mass of Portland cement.

本発明における結合材は、石膏を含むセメント、シリカフューム及びメタカオリンを含むポゾラン、膨張材、高炉スラグ粉末等の潜在水硬性物質を含むものである。   The binder in the present invention includes a latent hydraulic substance such as cement containing gypsum, pozzolanic containing silica fume and metakaolin, expansion material, and blast furnace slag powder.

本発明で使用するポルトランドセメントは、特に限定されず、普通、早強、中庸熱、低熱等の各種ポルトランドセメントが使用でき、これらの一種又は二種以上の使用が可能である。超早強ポルトランドセメントは、急硬性を有するため、ワーカビリティーを損ない、長い可使時間を確保することが難しく、長期強度発現性の効果も損なうため好ましくない。高流動性を損なわず且つ、高流動性を長時間保持し、水和発熱を抑制する点から、本発明で使用するポルトランドセメントとしては、普通ポルトランドセメント、中庸熱ポルトランドセメント及び低熱ポルトランドセメントから選ばれる1種又は2種以上が好ましい。   The Portland cement used in the present invention is not particularly limited, and various Portland cements such as normal, early strength, moderate heat, and low heat can be used, and one or more of these can be used. Super early-strength Portland cement is not preferable because it has rapid hardening, impairs workability, makes it difficult to secure a long pot life, and also impairs the effect of long-term strength development. Portland cement used in the present invention is selected from ordinary Portland cement, moderately heated Portland cement and low heat Portland cement from the viewpoint of maintaining high fluidity for a long time and suppressing hydration heat generation without impairing high fluidity. One type or two or more types are preferred.

本発明は、結合材100質量部に対しポルトランドセメントを40〜65質量部含有することが、水和熱抑制や圧縮強度発現性の点から必要であり、40質量部未満では、圧縮強度発現性に劣しく好ましくなく、65質量部を超えると、低発熱性を確保することができないので好ましくない。好ましいポルトランドセメント量は、水和熱を抑制できるのでグラウト材の温度上昇量を小さくすることができ且つ高い強度が得られることから、結合材100質量部に対し45〜65質量部、より好ましくは47〜64質量部とする。   In the present invention, it is necessary to contain 40 to 65 parts by mass of Portland cement with respect to 100 parts by mass of the binder, from the viewpoints of suppressing heat of hydration and expressing compressive strength. It is not preferable because it is inferior to 65 parts by mass, and low exothermic properties cannot be secured. The preferable amount of Portland cement is 45 to 65 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the binder because the heat of hydration can be suppressed and the temperature rise of the grout material can be reduced and high strength can be obtained. 47 to 64 parts by mass.

本発明で使用するポゾランとは、それ自体は水硬性を持たないがポルトランドセメント等の水和反応によって生成する水酸化カルシウムと反応してカルシウムシリケート系水和物を生成する物質を云い、フライアッシュ、シリカフューム、メタカオリン等の粘土鉱物の焼成物、人工ゼオライト、もみ殻灰や藁焼成灰等のイネ科植物に代表されるケイ酸植物(ケイ素集積植物)の焼成灰、シリカダスト、シリカゾル、沈降シリカ、パルプスラッジ焼却灰、下水汚泥焼却灰、廃ガラス粉末などの人工ポゾランと、珪藻土、オパール質シリカ、麦飯石、珪化木粉末、カオリン鉱物の未焼成物、天然ゼオライト、パイロフェライト、シラスや白土、火山灰に起因する天然ポゾランが挙げられる。   The pozzolan used in the present invention refers to a substance that does not have hydraulic properties per se but reacts with calcium hydroxide produced by a hydration reaction such as Portland cement to produce a calcium silicate hydrate. Fired ash of clay minerals such as silica fume, metakaolin, artificial zeolite, ash of silicic acid plants (silicon-accumulating plants) such as rice husk ash and firewood ash, silica dust, silica sol, precipitated silica , Artificial pozzolans such as pulp sludge incineration ash, sewage sludge incineration ash, waste glass powder, and diatomaceous earth, opal silica, barley stone, silicified wood powder, uncalcined kaolin mineral, natural zeolite, pyroferrite, shirasu and white clay, A natural pozzolana that originates from volcanic ash.

本発明においては、ポゾランとして、シリカフューム及び/又はメタカオリンと、シリカフューム及びメタカオリン以外のポゾランを特定量含有する。ここで、ポゾランは、粒径60μm未満の微粉末を用いるのが好ましく、粒径30μm未満の微粉末を用いるのがより好ましい。
本発明におけるシリカフューム及び/又はメタカオリンは、例えば、シリカフューム、メタカオリンを単独で用いてもよいし、シリカフュームとメタカオリンを併用してもよい。また、シリカフューム及びメタカオリンはそれぞれ2種以上用いてもよい。これらの微粉末のうち、金属シリコンやシリコン合金を電気炉で製造するときに発生する非晶質SiO2の微粉末であるシリカフュームが材料分離抵抗性や強度増進効果に優れることから好ましく、BET比表面積8〜15m2/g程度とした低BETシリカフュームが耐風化性に優れ、高い流動性が安定して得易いことからより好ましい。
In the present invention, the pozzolan contains silica fume and / or metakaolin and a specific amount of pozzolan other than silica fume and metakaolin. Here, the pozzolan preferably uses a fine powder having a particle size of less than 60 μm, more preferably a fine powder having a particle size of less than 30 μm.
As the silica fume and / or metakaolin in the present invention, for example, silica fume and metakaolin may be used alone, or silica fume and metakaolin may be used in combination. Two or more types of silica fume and metakaolin may be used. Of these fine powders, silica fume, which is a fine powder of amorphous SiO 2 generated when metal silicon or a silicon alloy is produced in an electric furnace, is preferable because of its excellent material separation resistance and strength enhancement effect. A low BET silica fume having a surface area of about 8 to 15 m 2 / g is more preferable because it is excellent in weathering resistance and can easily obtain high fluidity stably.

本発明においては、結合材100質量部に対しシリカフューム及び/又はメタカオリンを3〜15質量部含有することが、材料分離抵抗性の点から好ましく、3質量部未満では材料分離抵抗性に劣り、15質量部を超えると水を加えて高速ハンドミキサー(回転数1000rpm程度のもの)により練り混ぜた場合になじみ性が劣り、即ち初期の練混ぜ性能が著しく劣り練混ぜが不充分となり、高流動性が得られないので好ましくない。材料分離が起こり難く且つ高い流動性が得られ易いことから、より好ましいシリカフューム及び/又はメタカオリンの微粉末の量は結合材100質量部に対し5〜10質量部とする。   In the present invention, it is preferable to contain 3 to 15 parts by mass of silica fume and / or metakaolin with respect to 100 parts by mass of the binder from the viewpoint of material separation resistance, and if it is less than 3 parts by mass, the material separation resistance is inferior. When it exceeds the mass part, when water is added and kneaded with a high-speed hand mixer (having a rotation speed of about 1000 rpm), the conformability is inferior, that is, the initial kneading performance is remarkably inferior and the kneading becomes insufficient, resulting in high fluidity. Is not preferable. Since material separation hardly occurs and high fluidity is easily obtained, the more preferable amount of silica fume and / or fine powder of metakaolin is 5 to 10 parts by mass with respect to 100 parts by mass of the binder.

一方、シリカフューム及びメタカオリン以外のポゾランとしては、フライアッシュ、高炉スラグ、もみ殻灰、シラス、白土、火山灰に起因する突然ポラゾンが挙げられる。なかでも、フライアッシュは、水和熱抑制の効果やワーカビリティーの改善効果、セメント中の遊離石灰とフライアッシュ中のシリカやアルミナ等が結合し、不溶性の物質を作りモルタルの組織を緻密にし、その水密性及び強度が増し経時とともに著しく効果を発揮する点で好ましい。より好ましいフライアッシュとしては、品質及び効果が安定していることから、JIS A6201−2008「コンクリート用フライアッシュの品質規定」に規定しているものを使用する。高流動性及び長期圧縮強度の改善効果の点から、フライアッシュI種またはII種が最も好ましい。フライアッシュの粉末度は、BET比表面積2000〜7000cm2/gが好ましく、3000〜5000cm2/gがより好ましい。 On the other hand, examples of pozzolans other than silica fume and metakaolin include sudden polazone caused by fly ash, blast furnace slag, rice husk ash, shirasu, white clay, and volcanic ash. Among them, fly ash is an effect of suppressing heat of hydration and improving workability, and free lime in cement and silica, alumina, etc. in fly ash are combined to form an insoluble substance and make the mortar structure dense. This is preferable in that the water tightness and strength increase and the effect is remarkably exhibited with time. As a more preferred fly ash, the one specified in JIS A6201-2008 “Quality regulation of fly ash for concrete” is used because the quality and effect are stable. From the viewpoint of improving the high fluidity and long-term compressive strength, fly ash type I or type II is most preferable. Fineness of the fly ash is preferably a BET specific surface area 2000~7000cm 2 / g, 3000~5000cm 2 / g is more preferable.

本発明においては、結合材100質量部に対し前記シリカフューム及びメタカオリン以外のポゾランを20〜50質量部含有することが、低発熱性で且つ長い可使時間を確保する点から必要で、20質量部未満では低発熱性で且つ長い可使時間を確保することが難しく、50質量部を超えると、材料分離抵抗性が乏しくなり、ブリーディングが発生する虞があり、また、圧縮強度発現性が大きく遅延又は低下するので好ましくない。好ましい前記シリカフューム及びメタカオリン以外の微粉末以外のポゾラン量は結合材100質量部に対し25〜45質量部、より好ましくは29〜45質量部である。   In the present invention, it is necessary to contain 20 to 50 parts by mass of pozzolan other than the silica fume and metakaolin with respect to 100 parts by mass of the binder from the viewpoint of ensuring low heat generation and a long pot life, and 20 parts by mass. If it is less than 50 parts by weight, it is difficult to ensure a long pot life, and if it exceeds 50 parts by mass, the material separation resistance will be poor, bleeding may occur, and the compressive strength development will be greatly delayed. Or it is not preferable because it decreases. The amount of pozzolanes other than the fine powder other than the silica fume and metakaolin is preferably 25 to 45 parts by mass, more preferably 29 to 45 parts by mass with respect to 100 parts by mass of the binder.

本発明の高流動保持型低発熱性グラウト組成物は、高流動性で且つ、8時間以上の長い可使時間を確保させ、材料分離抵抗性を発揮させるため、グラウトのフレッシュ性状は粘性を高め、且つ、練り上り直後のフロー値を250mm以上、練り上り後から6時間経過後も200mm以上の高流動性を保持させるため、異なる2種類以上のセメント分散剤(以下単に「分散剤」と云うことがある。)を併用する。また、本発明におけるセメント分散剤とは、減水剤、高性能減水剤、高性能AE減水剤、流動化剤を含む意味である。   The high fluidity retention type low exothermic grout composition of the present invention has high fluidity, ensures a long pot life of 8 hours or more, and exhibits material separation resistance. Therefore, the fresh properties of grout increase the viscosity. In order to maintain a high fluidity of 250 mm or more immediately after kneading and 200 mm or more after 6 hours from kneading, two or more different cement dispersants (hereinafter simply referred to as “dispersing agents”). May be used together. In addition, the cement dispersant in the present invention is meant to include a water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, and a fluidizing agent.

本発明で使用する分散剤は、本グラウト組成物を水とともに高速ハンドミキサーにて容易に攪拌でき得るなじみ性を確保する点及び高流動性を長い時間確保する点、材料分離抵抗性を改善する点から、ポリカルボン酸系分散剤(ポリカルボン酸高分子,ポリカルボン酸高分子化合物と架橋高分子を主成分とする分散剤等)とメラミンスルホン酸系分散剤(メラミンスルホン酸と変性リグニン,変性メチロースメラミン縮合物と水溶性特殊高分子を主成分とする分散剤等)を併用する。ポリカルボン酸系分散剤としては、例えば、SKWイ―ストアジア社製「MELFLUX AP101F」、「MELFLUX PP100F」、「MELFLUX PP200F」、日本シーカ社製「シーカメント1100NT」、「シーカメント1100NTR」、花王社製「マイティ21P」、太平洋マテリアル社製「コアフローNF100」、「コアフローNF200」等が挙げられ、メラミンスルホン酸系分散剤としては、例えば、日産化学社製「スーパーメラミン」、フローリック社製「フローリックMS」、BASFジャパン社製「メルメントF4000」、「メルメントF10M」、「メルメントF245」等が挙げられる。   The dispersant used in the present invention improves the material separation resistance, the point of ensuring the conformability so that the present grout composition can be easily stirred with water by a high-speed hand mixer, the point of ensuring high fluidity for a long time, and the like. In view of the above, polycarboxylic acid-based dispersants (polycarboxylic acid polymers, dispersants mainly composed of polycarboxylic acid polymer compounds and cross-linked polymers) and melamine sulfonic acid-based dispersants (melamine sulfonic acid and modified lignin, A modified methylose melamine condensate and a dispersant mainly composed of a water-soluble special polymer are used in combination. Examples of the polycarboxylic acid-based dispersing agent include “MELFLUX AP101F”, “MELFLUX PP100F”, “MELFLUX PP200F” manufactured by SKW East Asia, “SECAMENT 1100NT”, “SEICAMENT 1100NTR” manufactured by Kao Corporation, and Kao Corporation. “Mighty 21P”, “Core Flow NF100”, “Core Flow NF200” manufactured by Taiheiyo Material Co., Ltd. and the like. Examples of the melamine sulfonic acid dispersant include “Super Melamine” manufactured by Nissan Chemical Co., Ltd. MS ", BASF Japan" Melment F4000 "," Melment F10M "," Melment F245 "and the like.

本発明で使用する分散剤は、高流動性を長い時間保持させるために、遅効性分散剤が好ましい。遅効性分散剤とは、30℃の恒温室内において、JIS R 5201「セメントの物理試験方法」に規定される標準砂1350g、普通ポルトランドセメント1350g、水405gに、高速ハンドミキサー(回転数1000rpm、攪拌羽根直径100mm)で内径180mm、深さ210mmの金属製円筒容器内に全材料投入後90秒間練り混ぜた直後のJIS R 5201「セメントの物理試験方法」11.フロー試験に準じて測定したフロー値(落下運動無し)(以下、「JIS静置フロー値」という。)が250mm〜300mmとなる量の当該分散剤を配合し、上記方法で高速ハンドミキサーにより練り混ぜ、練り混ぜから15分後のJIS静置フロー値が練り混ぜ直後のJIS静置フロー値よりも同じ値又は大きな値となる分散剤をいう。   The dispersant used in the present invention is preferably a slow-acting dispersant in order to maintain high fluidity for a long time. The slow-acting dispersant is a high-speed hand mixer (rotation speed 1000 rpm, stirring) in standard sand 1350 g, ordinary Portland cement 1350 g and water 405 g prescribed in JIS R 5201 “Cement physical test method” in a constant temperature room at 30 ° C. 10. JIS R 5201 “Cement physical test method” immediately after mixing for 90 seconds after all materials are put into a metal cylindrical container having a blade diameter of 100 mm and an inner diameter of 180 mm and a depth of 210 mm. The dispersant is blended in an amount such that the flow value measured according to the flow test (no drop motion) (hereinafter referred to as “JIS static flow value”) is 250 mm to 300 mm, and kneaded by the above method using a high-speed hand mixer. A dispersing agent in which the JIS stationary flow value 15 minutes after mixing and kneading becomes the same value or larger than the JIS stationary flow value immediately after mixing.

本発明においては、セメント100質量部に対し、ポリカルボン酸系分散剤を0.2〜1.2質量部含有する。0.2質量部未満では高流動で且つ長い可使時間を確保すことが難しく、1.2質量部を超えると材料分離抵抗性に劣り、ブリーディングが多く発生するので好ましくない。より好ましいポリカルボン酸系分散剤の含有量は、高い流動性が得られ且つ充填可能な高い流動性を8時間以上確保することができることから、セメント100質量部に対し0.4〜1.0質量部、さらに好ましくは0.5〜0.9質量部である。   In this invention, 0.2-1.2 mass parts of polycarboxylic acid type dispersing agents are contained with respect to 100 mass parts of cement. If it is less than 0.2 parts by mass, it is difficult to ensure a high flow and a long pot life, and if it exceeds 1.2 parts by mass, the material separation resistance is inferior and bleeding is often generated. The more preferable content of the polycarboxylic acid dispersant is 0.4 to 1.0 with respect to 100 parts by mass of cement because high fluidity can be obtained and high fluidity that can be filled can be secured for 8 hours or more. Part by mass, more preferably 0.5 to 0.9 part by mass.

本発明においては、セメント100質量部に対し、メラミンスルホン酸系分散剤を1〜6質量部含有する。1質量部未満では高流動で且つ長い可使時間を確保すことが難しく、6質量部を超えると材料分離抵抗性に劣り、ブリーディングが多く発生するので好ましくない。好ましいメラミンスルホン酸系分散剤の含有量は、高い流動性が得られ且つ充填可能な高い流動性を8時間以上確保することができることから、セメント100質量部に対し2〜5質量部、より好ましくは2〜4質量部、さらに好ましくは2.5〜4質量部である。   In this invention, 1-6 mass parts of melamine sulfonic acid type dispersing agents are contained with respect to 100 mass parts of cement. If it is less than 1 part by mass, it is difficult to ensure a high flow and a long pot life, and if it exceeds 6 parts by mass, the material separation resistance is inferior and bleeding is often generated. The preferable content of the melamine sulfonic acid-based dispersant is 2 to 5 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of cement, because high fluidity can be obtained and high fluidity that can be filled can be secured for 8 hours or more. Is 2-4 parts by mass, more preferably 2.5-4 parts by mass.

本発明で使用する増粘剤は、水溶性のセルロース系増粘剤、アクリル系増粘剤、グアーガム系増粘剤が使用でき、これらの一種又は二種以上の使用が可能であるが、ブリーディングを招く凝結遅延の影響が生じない程度の少量で、材料分離することなく高い流動性が得やすいことより、水溶性セルロースが好ましい。水溶性セルロースとしては、セルロース系高分子化合物、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の水溶性セルロースエーテルが好ましい例として例示できるが、特に限定されない。   As the thickener used in the present invention, a water-soluble cellulose thickener, an acrylic thickener, and a guar gum thickener can be used, and one or more of these can be used. Water-soluble cellulose is preferable because it is easy to obtain high fluidity without separating the material in a small amount so as not to cause the influence of the setting delay that leads to water. Examples of water-soluble cellulose include cellulose-based polymer compounds such as water-soluble cellulose ethers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose, but are not particularly limited.

本発明においては、セメント100質量部に対し増粘剤を0.03〜0.3質量部含有することが材料分離抵抗性の点から好ましく、温度によっては、0.03質量部未満では材料分離抵抗性が劣り、0.3質量部を超えると高流動性が得られ難いので好ましくない。より好ましい増粘剤の量は0.06〜0.12質量部である。   In the present invention, it is preferable that 0.03-0.3 parts by mass of a thickener is contained with respect to 100 parts by mass of cement from the viewpoint of material separation resistance, and depending on the temperature, material separation is less than 0.03 parts by mass. When the resistance is inferior and exceeds 0.3 parts by mass, it is difficult to obtain high fluidity. A more preferable amount of the thickener is 0.06 to 0.12 parts by mass.

本発明で使用する骨材として、例えば、川砂、陸砂、海砂、砕砂、珪砂、川砂利、陸砂利、砕石、人工骨材などを用いることができる。なお、骨材の種類は限定されないが、吸水率の大きい軽量骨材は好ましくない。また、グラウトのポンプ圧送性の観点から骨材の粒度は5mm以下の骨材、即ち細骨材が本発明で使用する骨材として好ましい。   As aggregates used in the present invention, for example, river sand, land sand, sea sand, crushed sand, quartz sand, river gravel, land gravel, crushed stone, artificial aggregate and the like can be used. In addition, although the kind of aggregate is not limited, a lightweight aggregate with a large water absorption rate is not preferable. Further, from the viewpoint of pumpability of grout, an aggregate having a particle size of 5 mm or less, that is, a fine aggregate is preferable as the aggregate used in the present invention.

本発明に使用する骨材は、結合材100質量部に対し90〜160質量部とすることが高流動で且つ長い可使時間を確保し、水和熱を抑制する点から好ましく、より好ましくは110〜140質量部である。   The aggregate used in the present invention is preferably 90 to 160 parts by mass with respect to 100 parts by mass of the binder from the viewpoint of ensuring a high fluidity and a long pot life and suppressing heat of hydration, more preferably 110 to 140 parts by mass.

本発明の高流動保持型低発熱性グラウト組成物は、高流動性、材料分離抵抗性、ブリーディング防止の点から、結合材100質量部に対し25〜45質量部の水で混練することが好ましく、より好ましくは、30〜40質量部の水で混練する。   The high fluidity retention type low exothermic grout composition of the present invention is preferably kneaded with 25 to 45 parts by mass of water with respect to 100 parts by mass of the binder from the viewpoint of high fluidity, material separation resistance and bleeding prevention. More preferably, it is kneaded with 30 to 40 parts by mass of water.

本発明の高流動保持型低発熱性グラウト組成物は、材料分離抵抗性及び高流動性保持の点から、増粘剤の使用量が混練時の水100質量部に対し0.05〜0.25質量部質量部であることが好ましく、より好ましくは、0.1〜0.2質量部とする。   In the high fluidity retention type low exothermic grout composition of the present invention, the use amount of the thickener is 0.05-0. It is preferable that it is 25 mass parts mass part, More preferably, you may be 0.1-0.2 mass part.

本発明には、本発明の効果を損なわない範囲で、更に、膨張材、発泡剤、収縮低減剤、消泡剤、防錆剤等の上記以外の混和材料から選ばれる1種又は2種以上を含有することができる。好ましくは、寸法安定性を得る観点で膨張材及び/又は発泡剤を含有する。本発明における膨張材とは、水和生成物の結晶により嵩体積が大きくなるものを云い、例えばエトリンガイトの結晶生成により膨張するエトリンガイト系膨張材、水酸化カルシウムの結晶生成により膨張する石灰系膨張材、エトリンガイトと水酸化カルシウムの結晶生成により膨張するエトリンガイト・石灰複合系膨張材等が挙げられ、本発明に用いる膨張材としては遊離生石灰を有効成分とする生石灰系膨張材、カルシウムサルホアルミネート等のエトリンガイト生成物質を有効成分とするエトリンガイト系膨張材、遊離生石灰とエトリンガイト生成物質のエトリンガイト・石灰複合系膨張材が好ましい例として挙げられる。また、発泡剤としては、金属粉末や過酸化物質等が好ましい例として挙げられる。膨張材を含有するときは、結合材100質量部に対し1.0〜3.0質量部とすることが好ましく、発泡剤を含有するときは結合材100質量部に対し0.0006〜0.01質量部とすることが好ましい。   In the present invention, as long as the effects of the present invention are not impaired, one or more selected from admixtures other than the above, such as an expanding material, a foaming agent, a shrinkage reducing agent, an antifoaming agent, and a rust inhibitor. Can be contained. Preferably, an expansion material and / or a foaming agent are contained from the viewpoint of obtaining dimensional stability. The expansion material in the present invention refers to a material whose bulk volume increases due to hydrated product crystals, for example, an ettringite-based expansion material that expands due to ettringite crystal formation, or a lime-based expansion material that expands due to calcium hydroxide crystal formation. , An ettringite / lime composite expansion material that expands by crystal formation of ettringite and calcium hydroxide, etc., and the expansion material used in the present invention includes a quick lime expansion material containing free quick lime as an active ingredient, calcium sulfoaluminate, etc. Preferred examples include an ettringite-based expansion material containing an ettringite-producing substance as an active ingredient, and an ettringite / lime composite expansion material of free quick lime and an ettringite-generating substance. Moreover, as a foaming agent, a metal powder, a peroxide substance, etc. are mentioned as a preferable example. When it contains an expansion material, it is preferably 1.0 to 3.0 parts by mass with respect to 100 parts by mass of the binder, and when it contains a foaming agent, it is 0.0006 to 0.000 with respect to 100 parts by mass of the binder. It is preferable to be 01 parts by mass.

本発明のグラウト組成物は、地下空洞への充填、各種構築物等の構築や補修に用いるのが好ましく、例えば前記組成物に水を加えて混練し、施工し難く長時間作業を要する地下空洞や50L以上の容量の充填箇所を有する構築物等にグラウトポンプやホースを用いて充填して使用するのが好ましい。   The grout composition of the present invention is preferably used for filling in underground cavities, building and repairing various structures, etc., for example, adding water to the composition and kneading it, It is preferable to fill and use a structure having a filling portion with a capacity of 50 L or more using a grout pump or a hose.

以下、本発明の実施例を比較例と共に示すが、本発明は、実施例に限られたものではない。   Examples of the present invention will be described below together with comparative examples, but the present invention is not limited to the examples.

〔実施例1・比較例1〕
使用材料を表1に示す。表1の材料を用い、結合材100質量部に対し、石灰石砂と硅砂を1:3の割合で混合した骨材を123質量部、不溶性無機微粉末(シリカフューム)を6.2質量部、膨張材を1.4質量部、発泡剤を0.002質量部、消泡剤0.18質量部、普通セメント47.4〜63.4質量部、シリカフューム及びメタカオリン以外のポゾラン(FA)29〜45質量部、該セメント100質量部に対し、ポリカルボン酸系分散剤0.5〜0.8質量部、メラミンスルホン酸系分散剤2.7〜4.0質量部、増粘剤0.1質量部となる配合割合でヘンシェルミキサーを使用し、乾式混合することで本発明品の高流動保持型低発熱性グラウト組成物を5種類作製した。参考品のグラウト組成物として、結合材100質量部に対し、普通セメントが40質量部未満のもの及び65質量部を超えるもの、シリカフューム以外のポゾランが20質量部未満のもの及び50質量部を超えるもの、普通セメント100質量部に対し、ポリカルボン酸系分散剤が0.2質量部未満のもの及び1.2質量部を超えるもの、メラミンスルホン酸系分散剤が1質量部未満のもの及び6質量部を超えるものを作製した。作製したグラウト組成物を表2に示す。
[Example 1 and Comparative Example 1]
The materials used are shown in Table 1. Using the materials in Table 1, 123 parts by mass of aggregate obtained by mixing limestone sand and cinnabar sand at a ratio of 1: 3, and 6.2 parts by mass of insoluble inorganic fine powder (silica fume) with respect to 100 parts by mass of the binder. 1.4 parts by mass of material, 0.002 parts by mass of foaming agent, 0.18 parts by mass of defoaming agent, 47.4-63.4 parts by mass of ordinary cement, and pozzolan (FA) 29-45 other than silica fume and metakaolin 0.5 parts by weight of polycarboxylic acid dispersant, 2.7 to 4.0 parts by weight of melamine sulfonic acid dispersant, 0.1 part by weight of thickener with respect to 100 parts by weight of the cement Using a Henschel mixer at a blending ratio of parts, dry mixing was performed to produce five types of high fluidity retention type low exothermic grout compositions of the present invention. The grout composition of the reference product is based on 100 parts by mass of the binder, with ordinary cement being less than 40 parts by mass and exceeding 65 parts by mass, and pozzolan other than silica fume being less than 20 parts by mass and exceeding 50 parts by mass. The amount of the polycarboxylic acid-based dispersant is less than 0.2 parts by weight and the amount of the melamine sulfonic acid-based dispersant is less than 1 part by weight, The thing exceeding a mass part was produced. The prepared grout composition is shown in Table 2.

Figure 0006306973
Figure 0006306973

Figure 0006306973
Figure 0006306973

作製したグラウト組成物を結合材100質量部に対し、37.2〜44質量部の水で、ハンドミキサー(回転数1000rpm、羽根直径100mm)を用いて20℃環境下で2分間練り混ぜ、混練物(グラウトモルタル、即ちグラウト材)を13種類作製した。作製したグラウトモルタルの流動性及び高流動保持時間(テーブルフロー値)、材料分離抵抗性(ブリーディング率)、並びに圧縮強度を確認した。   The prepared grout composition is kneaded with 37.2 to 44 parts by mass of water for 100 parts by mass of the binder in a 20 ° C. environment for 2 minutes using a hand mixer (rotation speed: 1000 rpm, blade diameter: 100 mm). Thirteen kinds of products (grouting mortar, that is, grout material) were produced. The fluidity and high fluid retention time (table flow value), material separation resistance (bleeding rate), and compressive strength of the prepared grout mortar were confirmed.

作製したグラウトモルタルの評価試験方法を以下に示す。
〔流動性及び高流動保持試験〕
JIS R 5201「セメントの物理試験方法」11.「フロー試験」(ただし、15打の落下運動は行わず、引き抜きフローとする)に準じて、テーブルフロー値(JIS静置フロー値)を測定した。高流動性の指標は、練り上り直後(混練直後)のフロー値が250mm以上とし、高流動保持性の指標は、練り上り直後から8時間経過後のテーブルフロー値が200mm以上のものを○(良好)、200mm未満のものを×(不良)とした。また、テーブルフロー値の測定は、20℃環境下で実施し、フローコーンを引き抜き後のテーブルフロー値とした。尚、経時変化後の測定は、ハンドミキサーにて5秒間再撹拌後に行った。
The evaluation test method of the produced grout mortar is shown below.
[Flowability and high fluidity retention test]
10. JIS R 5201 “Physical test method for cement” The table flow value (JIS static flow value) was measured in accordance with the “flow test” (however, the dropping movement of 15 strokes was not performed and the drawing flow was used). The high fluidity index is that the flow value immediately after kneading (immediately after kneading) is 250 mm or more, and the high fluidity retention index is that the table flow value after 200 hours is 200 mm or more immediately after kneading. (Good) and less than 200 mm were evaluated as x (defect). Moreover, the measurement of the table flow value was implemented in a 20 degreeC environment, and it was set as the table flow value after extracting a flow cone. In addition, the measurement after a time-dependent change was performed after re-stirring for 5 seconds with the hand mixer.

〔ブリーディング試験〕
JIS A 1123:2012「コンクリートのブリーディング試験方法」に準じて測定した。材料分離抵抗性の指標は、NEXCO構造物施工管理要領.無収縮モルタルの品質基準である、ブリーディング率2%以下を「良好」と評価した。
[Bleeding test]
Measured according to JIS A 1123: 2012 “Concrete Bleeding Test Method”. The index of material separation resistance is the NEXCO structure construction management guidelines. Bleeding rate of 2% or less, which is the quality standard of non-shrink mortar, was evaluated as “good”.

〔圧縮強度試験〕
JIS A 1108「コンクリートの圧縮強度試験方法」に準じ、材齢28日における圧縮強度を測定した。尚、供試体の寸法は、直径50mm、高さ100mmとした。圧縮強度発現性の指標は、NEXCO構造物施工管理要領.無収縮モルタルの品質基準である、材齢28日45N/mm2以上を「良好」と評価した。
[Compressive strength test]
In accordance with JIS A 1108 “Method for testing compressive strength of concrete”, the compressive strength at the age of 28 days was measured. The dimensions of the specimen were 50 mm in diameter and 100 mm in height. The index of compressive strength is NEXCO structure construction management guidelines. A quality standard of non-shrinking mortar, which was 45 N / mm 2 or more at 28 days of age, was evaluated as “good”.

グラウトモルタルの流動性及び高流動保持試験、並びにブリーディング試験の結果を表3に示す。本発明の実施例は、何れも練り上り直後のテーブルフロー値が287〜307mmと高いフロー値で、高流動性を備えており、且つ練り上りから8時間経過後のテーブルフロー値も241mm以上の高フロー値であり、練り上りから8時間経過後においても200mm以上のテーブルフロー値(JIS静置フロー値)を示すことから十分な高流動保持時間を確保することが確認された。つまり、本発明品のグラウト組成物は何れも高流動保持型低発熱性グラウト組成物であった。また、何れの本発明品のグラウト組成物もブリーディング率も0.22%以下で良好な材料分離抵抗性を示した。
一方で、該結合材100質量部中にポルトランドセメントが72質量部である比較例1−1、シリカフューム及びメタカオリン以外のポゾランが5質量部である比較例1−2、セメント100質量部に対しポリカルボン酸系分散剤が0.1質量部である比較例1−3、メラミンスルホン酸系分散剤が0.2質量部である比較例1−5のグラウト組成物は、何れも、練り上り直後のテーブルフロー値は250mm以上有するものの、4時間経過後にはテーブルフロー値が150mm以下となり、高流動保持性が十分ではなかった。また、セメント100質量部に対し、ポリカルボン酸系分散剤が3.2質量部である比較例1−4、メラミンスルホン酸系分散剤が7.2質量部である比較例1−6のグラウト組成物は、何れも、練り上り直後のテーブルフロー値が300mm以上と高い流動性を示すものの、2%以上のブリーディングが発生し、材料分離抵抗性に劣ることが確認された。
Table 3 shows the results of the flowability and high flow retention tests of the grout mortar and the bleeding test. In the examples of the present invention, the table flow value immediately after kneading is a high flow value of 287 to 307 mm, high fluidity is provided, and the table flow value after 8 hours from kneading is also 241 mm or more. Since it is a high flow value and shows a table flow value (JIS static flow value) of 200 mm or more even after 8 hours have passed since kneading, it was confirmed that a sufficiently high flow retention time was secured. That is, all of the grout compositions of the present invention were high fluidity retention type low exothermic grout compositions. In addition, any of the grout compositions of the present invention exhibited a good material separation resistance at a bleeding rate of 0.22% or less.
On the other hand, in 100 parts by mass of the binder, Comparative Example 1-1 in which Portland cement is 72 parts by mass, Comparative Example 1-2 in which pozzolan other than silica fume and metakaolin is 5 parts by mass, The grout compositions of Comparative Example 1-3 in which the carboxylic acid dispersant is 0.1 part by mass and Comparative Example 1-5 in which the melamine sulfonic acid dispersant is 0.2 part by mass are both immediately after kneading. However, after 4 hours, the table flow value became 150 mm or less, and the high fluidity retention was not sufficient. The grout of Comparative Example 1-4 in which the polycarboxylic acid dispersant is 3.2 parts by mass and Comparative Example 1-6 in which the melamine sulfonic acid dispersant is 7.2 parts by mass with respect to 100 parts by mass of the cement. Although all the compositions showed high fluidity with a table flow value immediately after kneading of 300 mm or more, bleeding of 2% or more occurred, and it was confirmed that the composition was inferior in material separation resistance.

Figure 0006306973
Figure 0006306973

圧縮強度測定結果を表4に示す。本発明の実施例に当たるグラウト組成物は、材齢28日の圧縮強度が47.1〜55.8N/mm2であり、良好な強度発現性が確認された。
結合材100質量部中にセメントが31質量部である比較例1−7(参考品1のグラウト組成物)、シリカフューム及びメタカオリン以外のポゾランが58質量部である比較例1−8(参考品4のグラウト組成物)は、何れも、材齢28日の圧縮強度が40N/mm2未満の低強度を示した。
Table 4 shows the compression strength measurement results. The grout compositions corresponding to the examples of the present invention had a compressive strength of 47.1 to 55.8 N / mm 2 on the 28th day of the age, and good strength development was confirmed.
Comparative Example 1-7 in which cement is 31 parts by mass in 100 parts by mass of binder (grouting composition of Reference Product 1), Comparative Example 1-8 in which pozzolan other than silica fume and metakaolin is 58 parts by mass (Reference Product 4) All of the grout compositions) exhibited a low strength with a compressive strength of 28 days of age less than 40 N / mm 2 .

Figure 0006306973
Figure 0006306973

〔実施例2・比較例2〕
表1の材料を用い、セメントとして普通セメントと早強セメントを併用したもの、普通セメントと低熱セメントを併用したもの、及び低熱セメントのみのものを用い、結合材100質量部に対し、石灰石砂と硅砂を1:3の割合で混合した骨材を130質量部、不溶性無機微粉末(シリカフューム)を7.2質量部、膨張材を1.8質量部、発泡剤を0.002質量部、上記セメントを49〜65質量部、シリカフューム及びメタカオリン以外のポゾラン(FA)26〜42質量部、セメント100質量部に対し、ポリカルボン酸系分散剤を0.7〜0.9質量部、メラミンスルホン酸系分散剤を2.4〜4.3質量部、増粘剤を0.15質量部となる配合割合で三井ヘンシェルミキサーを使用し、乾式混合することで本発明品の高流動保持型低発熱性グラウト組成物を5種類作製した。参考品として、結合材100質量部に対し、ポルトランドセメントが40質量部未満のもの(参考品9)及び65質量部を超えるもの(参考品10及び11)、シリカフューム及びメタカオリン以外のポゾランが20質量部未満のもの(参考品11)及び50質量部を超えるもの(参考品12)、セメント100質量部に対し、ポリカルボン酸系分散剤が0.2質量部未満のもの(参考品13)及び1.2質量部を超えるもの(参考品12及び14)、メラミンスルホン酸系分散剤が1質量部未満のもの(参考品15)及び6質量部を超えるもの(参考品16)のグラウト組成物を作製した。作製したグラウト組成物を表5に示す。
[Example 2 and Comparative Example 2]
Using the materials shown in Table 1, a combination of ordinary cement and early strong cement, a combination of ordinary cement and low heat cement, and only low heat cement as cement, and 100 parts by mass of binder with limestone sand 130 parts by mass of aggregate mixed with cinnabar at a ratio of 1: 3, 7.2 parts by mass of insoluble inorganic fine powder (silica fume), 1.8 parts by mass of expansion material, 0.002 parts by mass of foaming agent, 49-65 parts by mass of cement, 26-42 parts by mass of pozzolan (FA) other than silica fume and metakaolin, and 100 parts by mass of cement, 0.7-0.9 parts by mass of polycarboxylic acid dispersant, melamine sulfonic acid High fluidity retention of the product of the present invention by dry mixing using a Mitsui Henschel mixer at a blending ratio of 2.4 to 4.3 parts by weight of the system dispersant and 0.15 parts by weight of the thickener Low heat build-grout composition was five produced. As a reference product, Portland cement is less than 40 parts by mass (reference product 9) and more than 65 parts by mass (reference products 10 and 11), and 20 mass of pozzolans other than silica fume and metakaolin with respect to 100 parts by mass of the binder. Less than 50 parts by weight (reference product 11), more than 50 parts by weight (reference product 12), 100 parts by weight of cement, and less than 0.2 parts by weight of polycarboxylic acid dispersant (reference product 13) and A grout composition having a content exceeding 1.2 parts by mass (reference products 12 and 14), a melamine sulfonic acid dispersant less than 1 part by mass (reference product 15) and a compound having more than 6 parts by mass (reference product 16). Was made. The prepared grout composition is shown in Table 5.

Figure 0006306973
Figure 0006306973

作製したグラウト組成物を結合材100質量部に対し、表5に示した37〜43質量部の水で、ハンドミキサー(回転数1000rpm、羽根直径100mm)を用いて20℃環境下で2分間練り混ぜ、混練物(グラウトモルタル、グラウト材)を13種類作製した。実施例1と同様に、作製したグラウトモルタルの流動性及び高流動保持時間(テーブルフロー値)、材料分離抵抗性(ブリーディング率)、圧縮強度を確認した。   The prepared grout composition is kneaded for 2 minutes in an environment of 20 ° C. using a hand mixer (rotation speed: 1000 rpm, blade diameter: 100 mm) with 37 to 43 parts by mass of water shown in Table 5 with respect to 100 parts by mass of the binder. 13 kinds of kneaded materials (grouting mortar, grout material) were prepared by mixing. In the same manner as in Example 1, the fluidity and high fluidity retention time (table flow value), material separation resistance (bleeding rate), and compressive strength of the prepared grout mortar were confirmed.

グラウトモルタルの流動性及び高流動保持時間、ブリーディング測定結果を表6に示す。本発明の実施例は、何れも練り上り直後のテーブルフロー値が297〜317mmと高いフロー値で、高流動性を備えており、且つ練り上りから8時間経過後のテーブルフロー値も224mm以上の高フロー値であり、練り上りから8時間経過後においても200mm以上のテーブルフロー値(JIS静置フロー値)を示すことから十分な高流動保持時間を確保することが確認された。つまり、本発明品のグラウト組成物は何れも高流動保持型低発熱性グラウト組成物であった。また、何れの本発明品のグラウト組成物もブリーディング率も0.24%以下で良好な材料分離抵抗性を示した。
一方で、結合材100質量部中にポルトランドセメントが71質量部である比較例2−1(参考品10)、シリカフューム及びメタカオリン以外のポゾランが11質量部である比較例2−2(参考品11)、セメント100質量部に対しポリカルボン酸系分散剤が0.1質量部である比較例2−3(参考品13)、メラミンスルホン酸系分散剤が0.2質量部である比較例2−4(参考品15)は、何れも、4時間経過後にはテーブルフロー値が150mm以下となった。また、セメント100質量部に対し、メラミンスルホン酸系分散剤が7.2質量部である比較例2−5(参考品16)は、練り上り直後のテーブルフロー値が300mm以上と高流動性であるものの、4%以上のブリーディングが発生し、材料分離抵抗性に劣ることが確認された。
Table 6 shows the flowability, high fluid retention time, and bleeding measurement results of grout mortar. In all the embodiments of the present invention, the table flow value immediately after kneading is a high flow value of 297 to 317 mm, has high fluidity, and the table flow value after 8 hours from kneading is also 224 mm or more. Since it is a high flow value and shows a table flow value (JIS static flow value) of 200 mm or more even after 8 hours have passed since kneading, it was confirmed that a sufficiently high flow retention time was secured. That is, all of the grout compositions of the present invention were high fluidity retention type low exothermic grout compositions. In addition, any of the grout compositions of the present invention exhibited a good material separation resistance at a bleeding rate of 0.24% or less.
On the other hand, Comparative Example 2-1 (reference product 10) in which Portland cement is 71 parts by mass in 100 parts by mass of the binder, Comparative Example 2-2 (reference product 11) in which pozzolan other than silica fume and metakaolin is 11 parts by mass. ), Comparative Example 2-3 (reference product 13) in which the polycarboxylic acid dispersant is 0.1 part by mass with respect to 100 parts by mass of cement, and Comparative Example 2 in which the melamine sulfonic acid dispersant is 0.2 part by mass -4 (reference product 15) had a table flow value of 150 mm or less after 4 hours. Moreover, Comparative Example 2-5 (Reference Product 16) in which the melamine sulfonic acid dispersant is 7.2 parts by mass with respect to 100 parts by mass of cement has a table flow value of 300 mm or more immediately after kneading and high fluidity. However, it was confirmed that bleeding of 4% or more occurred and the material separation resistance was inferior.

Figure 0006306973
Figure 0006306973

圧縮強度測定結果を表7に示す。本発明の実施例に当たるグラウト組成物は、材齢28日の圧縮強度が45.1〜57.4N/mm2であり、良好な強度発現性が確認された。
結合材100質量部中にポルトランドセメントが28質量部である比較例2−6(参考品9)、シリカフューム及びメタカオリン以外のポゾランが56質量部である比較例2−7(参考品12)、セメント100質量部に対しポリカルボン酸系分散剤が3.0質量部である比較例2−8(参考品14)は、何れも、材齢28日の圧縮強度が45N/mm2未満で本発明の実施例に当たるグラウト組成物と比べて低い強度を示した。
The compressive strength measurement results are shown in Table 7. The grout composition which corresponds to the example of the present invention has a compressive strength of 45.1 to 57.4 N / mm 2 on the 28th day of age, and good strength development was confirmed.
Comparative Example 2-6 (reference product 9) in which Portland cement is 28 parts by mass in 100 parts by mass of binder, Comparative Example 2-7 (reference product 12), in which pozzolan other than silica fume and metakaolin is 56 parts by mass, cement In Comparative Example 2-8 (reference product 14) in which the polycarboxylic acid dispersant is 3.0 parts by mass with respect to 100 parts by mass, the compressive strength at 28 days of age is less than 45 N / mm 2 , and the present invention. The strength was lower than that of the grout composition corresponding to this example.

Figure 0006306973
Figure 0006306973

〔実施例3・比較例3〕
上記の試験結果から優れていると思われる本発明品2及び3のグラウト組成物と、参考として市販の低発熱型無収縮グラウト(プレッミックスモルタル)を用いて、発熱性試験を実施した。測定方法を以下に示す。
[Example 3 and Comparative Example 3]
The exothermic test was carried out using the grout compositions of the present invention products 2 and 3, which are considered to be excellent from the above test results, and a commercially available low-heat generation type non-shrink grout (premix mortar) as a reference. The measuring method is shown below.

〔発熱性試験〕
(内寸210×140×130mm)発泡スチロール容器の中心部位に熱伝対を設置し、練り混ぜたグラウトモルタルを擦りきり上面まで充填し、蓋をし、密封してデータロガーにより、簡易温度上昇量を測定した。
充填したグラウトモルタルの中心部位の温度Tを充填直後から連続的に測定し、充填直後のグラウトモルタルの中心部の温度(T0)と、グラウトモルタルの中心部の経時温度(T1)から、下記式(1)により、簡易温度上昇量(dT)を求めた。
[Exothermic test]
(Inner dimensions: 210 x 140 x 130 mm) Install a thermocouple at the center of the polystyrene foam container, rub the ground grout mortar, fill up to the top, cover, seal, and use a data logger to increase the temperature easily. Was measured.
The temperature T of the center part of the filled grout mortar is continuously measured immediately after filling, and the temperature (T 0 ) of the center part of the grout mortar immediately after filling and the time-dependent temperature (T 1 ) of the center part of the grout mortar, The simple temperature rise (dT) was determined from the following formula (1).

(数1)
dT=T1−T0 ・・・・・・ (1)
(Equation 1)
dT = T 1 −T 0 (1)

発熱性測定結果を図1に示す。本発明の実施例に当たるグラウト組成物の簡易温度上昇量の最大値は、本発明品2が15.4℃、本発明品3が13.7℃と低く、最高温度到達時間もグラウト充填から24〜26時間経過後であり、十分な低発熱性状が確認された。
一方、市販の低発熱性型無収縮グラウトは、簡易温度上昇量の最大値が50.7℃と高く、また、最高温度到達時間もモルタル充填から8時間後と早く、発熱性に劣る結果を示した。
The exothermic measurement results are shown in FIG. The maximum value of the simple temperature rise amount of the grout composition corresponding to the examples of the present invention is as low as 15.4 ° C. for the product 2 of the present invention and 13.7 ° C. for the product 3 of the present invention. After a lapse of ˜26 hours, a sufficiently low exothermic property was confirmed.
On the other hand, the commercially available low exothermic type non-shrink grout has a high maximum temperature rise of 50.7 ° C, and the maximum temperature arrival time is as early as 8 hours after mortar filling, indicating that the exothermic property is inferior. Indicated.

本発明の高流動保持型低発熱性グラウト組成物は、地下水等が溜まっている大きな又は長い地下空洞等へ、且つ長時間作業(8時間以上)を伴う箇所に用いることができる。また、長距離圧送後に空洞等の端部まで充填できない個所やグラウト材を打ち継ぐことにより打ち継ぎが生じてしまう個所にグラウトポンプやホース内でグラウト材が詰まることなく、また、細かく何回にも分けてグラウト材を打設することなくして未充填部を充填する目的として使用できる。   The high fluidity retention type low exothermic grout composition of the present invention can be used for a large or long underground cavity or the like in which groundwater or the like is accumulated, and in a place that requires a long time operation (8 hours or more). In addition, the grout material is not clogged in the grout pump or the hose at the place where the end of the cavity or the like that cannot be filled to the end of the cavity after long-distance pumping, or the place where the grout material is handed over, and how many times it is fine. It can also be used for the purpose of filling the unfilled part without placing a grout material.

Claims (3)

ポルトランドセメント及びポゾランを含む結合材と、骨材と、増粘剤と、分散剤とを含有するグラウト組成物であって、
結合材100質量部に対しポルトランドセメントを40〜65質量部、シリカフューム及び/又はメタカオリンを3〜15質量部、シリカフューム及びメタカオリン以外のポゾランを20〜50質量部含有し、
ポルトランドセメント100質量部に対しポリカルボン酸系分散剤を0.2〜1.2質量部、メラミンスルホン酸系分散剤を1〜6質量部含有することを特徴とする高流動性保持型低発熱性グラウト組成物。
A grout composition comprising a binder comprising Portland cement and pozzolana, an aggregate, a thickener, and a dispersant,
40 to 65 parts by mass of Portland cement, 3 to 15 parts by mass of silica fume and / or metakaolin, and 20 to 50 parts by mass of pozzolan other than silica fume and metakaolin with respect to 100 parts by mass of the binder,
High fluidity retention type low heat generation characterized by containing 0.2 to 1.2 parts by mass of polycarboxylic acid type dispersant and 1 to 6 parts by mass of melamine sulfonic acid type dispersant with respect to 100 parts by mass of Portland cement Grouting composition.
結合材100質量部に対し25〜45質量部の水で混練する請求項1記載の高流動保持型低発熱性グラウト組成物。   The high fluidity retention type low exothermic grout composition of Claim 1 knead | mixed with 25-45 mass parts water with respect to 100 mass parts of binders. 前記増粘剤の使用量が混練時の水100質量部に対し0.05〜0.25質量部である請求項1又は2記載の高流動保持型低発熱性グラウト組成物。   The high flow retention type low exothermic grout composition according to claim 1 or 2, wherein the thickener is used in an amount of 0.05 to 0.25 parts by mass with respect to 100 parts by mass of water during kneading.
JP2014160065A 2014-08-06 2014-08-06 High fluidity retention type low exothermic grout composition Active JP6306973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160065A JP6306973B2 (en) 2014-08-06 2014-08-06 High fluidity retention type low exothermic grout composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014160065A JP6306973B2 (en) 2014-08-06 2014-08-06 High fluidity retention type low exothermic grout composition

Publications (2)

Publication Number Publication Date
JP2016037407A JP2016037407A (en) 2016-03-22
JP6306973B2 true JP6306973B2 (en) 2018-04-04

Family

ID=55528818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160065A Active JP6306973B2 (en) 2014-08-06 2014-08-06 High fluidity retention type low exothermic grout composition

Country Status (1)

Country Link
JP (1) JP6306973B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267802B2 (en) * 2019-03-27 2023-05-02 太平洋マテリアル株式会社 Polymer cement grout mortar for filling repair
CN113860835B (en) * 2021-10-09 2022-09-09 山西潞安晋安矿业工程有限责任公司 High-strength powder reinforcing material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273761B2 (en) * 2005-12-12 2013-08-28 太平洋マテリアル株式会社 High durability cross-section repair material
CN101535207A (en) * 2006-11-17 2009-09-16 电气化学工业株式会社 Cement mortar composition for grout and grout mortar obtained from the same
JP2011201126A (en) * 2010-03-25 2011-10-13 Sumitomo Osaka Cement Co Ltd Method of manufacturing uncured cement composition
JP5936949B2 (en) * 2012-08-15 2016-06-22 デンカ株式会社 Underwater inseparable concrete
US9346712B2 (en) * 2012-10-18 2016-05-24 Dow Global Technologies Llc Mortar with hydroxyethyl methyl cellulose for self-compacting concrete

Also Published As

Publication number Publication date
JP2016037407A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP6404629B2 (en) High fluidity retention type underwater non-separable grout composition
JP4502298B2 (en) Cement composition and acid resistant cement / concrete using the same
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
JP2006131488A (en) Acid resistant grout composition
JP2004345898A (en) Grout composition
JP2018100204A (en) Method of producing cement composition
JP6891041B2 (en) Fast-strength ultra-high-strength grout composition
JP6306973B2 (en) High fluidity retention type low exothermic grout composition
JP2011136863A (en) Superhigh strength grout composition
JP2003119066A (en) Self-filling mortar composition
JP6509671B2 (en) Submersible concrete composition in water and its cured product
JP6296600B2 (en) Premix grout composition
JP5110774B2 (en) High fluidity admixture
JP4718969B2 (en) Foaming agent, non-shrink grout composition, and non-shrink grout material using the same
JP7103893B2 (en) Insoluble mortar composition in water and its mortar
JP2009149457A (en) Antiwashout underwater cement-based packing composition and antiwashout underwater cement mortar
JP6482861B2 (en) Inseparable mortar composition in water
JP6959151B2 (en) Mortar composition and mortar
JP6626363B2 (en) Non-shrink grout composition
JP6300365B2 (en) Underwater inseparable fast-hardening concrete and method for producing the same
JP6400426B2 (en) Underwater inseparable concrete composition and cured body thereof
JPH02252645A (en) Mortar material
JP2017165628A (en) Quick hardening grout composition
JP2022116529A (en) High-strength underwater inseparable mortar composition for high-temperature environments and mortar using the same
JP2005194168A (en) Cement admixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180309

R150 Certificate of patent or registration of utility model

Ref document number: 6306973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250