JP4718969B2 - Foaming agent, non-shrink grout composition, and non-shrink grout material using the same - Google Patents

Foaming agent, non-shrink grout composition, and non-shrink grout material using the same Download PDF

Info

Publication number
JP4718969B2
JP4718969B2 JP2005315635A JP2005315635A JP4718969B2 JP 4718969 B2 JP4718969 B2 JP 4718969B2 JP 2005315635 A JP2005315635 A JP 2005315635A JP 2005315635 A JP2005315635 A JP 2005315635A JP 4718969 B2 JP4718969 B2 JP 4718969B2
Authority
JP
Japan
Prior art keywords
grout
foaming agent
shrink grout
aluminum powder
shrink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005315635A
Other languages
Japanese (ja)
Other versions
JP2007119316A (en
Inventor
徹 八木
一裕 相澤
哲雄 大塚
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005315635A priority Critical patent/JP4718969B2/en
Publication of JP2007119316A publication Critical patent/JP2007119316A/en
Application granted granted Critical
Publication of JP4718969B2 publication Critical patent/JP4718969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、土木・建築業界において使用される発泡剤、無収縮グラウト組成物、及びそれを用いた無収縮グラウト材に関し、特に、長時間流動性を保持させた発泡剤、無収縮グラウト組成物、及びそれを用いた無収縮グラウト材に関する。   TECHNICAL FIELD The present invention relates to a foaming agent, a non-shrinkable grout composition used in the civil engineering / building industry, and a non-shrinkable grout material using the same, and more particularly to a foaming agent and a non-shrinkable grout composition that maintain fluidity for a long time. And a non-shrink grout material using the same.

従来から、グラウト材料としてはセメントに減水剤を加えたものが一般的であり、さらに、カルシウムサルフォアルミネート系膨張材又は石灰系膨張材や、ミルなどで機械的に粉砕したアルミニウム粉末等の発泡剤を添加し、無収縮グラウト材料とし、これらに、骨材を配合し、ペーストやモルタルとして土木、建築工事等に広く使用されている(特許文献1参照)。   Conventionally, grout materials generally include a cement with a water-reducing agent, and further include calcium sulfoaluminate-based expansion materials or lime-based expansion materials, aluminum powder mechanically pulverized with a mill, etc. A foaming agent is added to obtain non-shrinkable grout materials, and aggregates are blended in these materials, and they are widely used in civil engineering and construction work as pastes and mortars (see Patent Document 1).

そして、無収縮グラウト材料は、PCグラウト、プレパックドコンクリート用グラウト、トンネルやシールド裏込めグラウト、プレキャスト用グラウト、構造物の補修や補強注入グラウト、鉄筋継手グラウト、橋梁の支承下グラウト、軌道下グラウト、耐震鉄骨ブレース周辺枠グラウト、増設壁逆打ちグラウト、鋼板巻き立て工法用グラウト、及び原子力発電所格納容器下グラウトなど多岐にわたって使用されている。   Non-shrink grout materials include PC grouts, prepacked concrete grouts, tunnel and shield backfill grouts, precast grouts, structural repair and reinforcement infusion grouts, reinforced joint grouts, bridge bearing grouts, undertrack grouts It is used in a wide variety of fields, such as grouts around the frame of seismic steel braces, wall grouts for extension walls, grouts for the steel sheet winding method, and grouts under the containment vessel of nuclear power plants.

無収縮グラウト材料に要求される性能としては、無収縮であること、流動性が良いこと、ブリーディングや材料分離がないことなどがある。
また、既存鉄筋コンクリート造建築物の耐震改修設計指針では、耐震補強用圧入グラウトの圧縮強度は、材齢28日で30N/mm2以上としている(非特許文献1参照)。
The performance required for a non-shrink grout material includes no shrinkage, good fluidity, no bleeding and no material separation.
Moreover, in the seismic retrofit design guidelines for existing reinforced concrete buildings, the compressive strength of the seismic reinforcement press-fit grout is 30 N / mm 2 or more at the age of 28 days (see Non-Patent Document 1).

近年、土木・建築構造物に使用される無収縮グラウト材料に要求される性能が高度化してきており、流動性の保持性能の向上が求められている。流動性の保持性能の向上によって、施工時間の延長が可能となるだけでなく、従来は、施工現場で練混ぜていた無収縮グラウト材料を生コンプラントで練混ぜ、アジテータ車で配送し、数時間かけてのポンプ打設が可能となる。さらに、生コンプラント練りは、練混ぜ時に周辺への粉塵の飛散が防止され、環境負荷低減効果もある。   In recent years, the performance required for non-shrink grout materials used for civil engineering and building structures has been advanced, and improvement in fluidity retention performance has been demanded. Not only can the construction time be extended by improving the fluidity retention performance, but also the non-shrink grout material that was previously kneaded at the construction site is kneaded at the raw plant and delivered by agitator car for several hours. Over-pumping is possible. Further, the raw plant kneading prevents the dust from being scattered to the surroundings during the kneading, and has an effect of reducing the environmental load.

しかしながら、練混ぜ後2時間を超えて、長時間流動性を保持すると、モルタル中の骨材が沈降し、材料分離が発生するばかりでなく、発泡剤のアルミニウム粉末の発泡が終了し、その後、打設されたグラウトは無収縮性が得られない場合があった。   However, if the fluidity is maintained for a long time exceeding 2 hours after kneading, the aggregate in the mortar settles, and not only material separation occurs, but also the foaming of the aluminum powder of the foaming agent is completed, In some cases, the cast grout could not have no shrinkage.

また、ミルなどで機械的に粉砕したアルミニウム粉末は、鱗片状をしており、比表面積が大きく、反応性が大きく、発泡量が大きく、主に無収縮グラウト材や軽量気泡コンクリートの製造に用いられている。   In addition, aluminum powder mechanically pulverized with a mill has a scaly shape, large specific surface area, high reactivity, large foaming volume, and is mainly used for the production of non-shrinkable grout materials and lightweight cellular concrete. It has been.

一方、アトマイズ法で製造されたアルミニウム粉末は、ブレーキライニング、触媒、及び花火等に使用されているが、無収縮グラウト材の発泡剤として使用した例は見られない。   On the other hand, the aluminum powder produced by the atomizing method is used for brake lining, catalyst, fireworks, etc., but no examples of using it as a foaming agent for non-shrink grout materials are found.

特公昭48−009331公報Japanese Patent Publication No. 48-009331 2001年度改訂版 既存鉄筋コンクリート造建築物の耐震改修設計指針、財団法人日本建築防災協会発行、平成17年2月、194頁Revised version 2001 Guidelines for seismic retrofit design of existing reinforced concrete buildings, published by Japan Building Disaster Prevention Association, February 2005, page 194

本発明者は、前記課題を解決すべく種々検討を重ねた結果、特定の無収縮グラウト組成物を採用することにより、前記課題が解決できるとの知見を得て本発明を完成するに至った。   As a result of various studies to solve the above problems, the present inventor has obtained the knowledge that the above problems can be solved by adopting a specific non-shrink grout composition, and has completed the present invention. .

即ち、本発明は、セメント、膨張材、平均粒径が6〜50μmであるアトマイズ法で製造されたアルミニウム粉末からなる発泡剤、及び減水剤、さらに、増粘剤を含む配合物からなり、セメントと膨張材からなる結合材100部に対して、発泡剤が0.001〜0.01部、減水剤が0.05〜1部、増粘剤が0.05〜0.5部である無収縮グラウト組成物であり、該無収縮グラウト組成物、細骨材、及び水を含有してなる無収縮グラウト材である。 That is, the present invention, cement, expansive, average particle diameter blowing agent consisting of aluminum powder produced by an atomization method is 6~50Myuemu, and water reducing agent, further, Ri Do from a formulation comprising a thickener , A non-shrink grout composition having 0.001 to 0.01 part of foaming agent, 0.05 to 1 part of water reducing agent, and 0.05 to 0.5 part of thickening agent with respect to 100 parts of a binder composed of cement and an expanding material , A non-shrink grout material comprising a non-shrink grout composition, a fine aggregate, and water.

本発明の無収縮グラウト組成物を使用することにより、長時間流動性を保持させることができ、かつ、材料分離が発生せず、無収縮性を有したグラウト材を提供することができる。   By using the non-shrinkable grout composition of the present invention, it is possible to provide a grout material that can maintain fluidity for a long time, does not cause material separation, and has non-shrinkage.

以下、本発明を詳細に説明する。
本発明で使用する部や%は特に限定のない限り質量基準で示す。
また、本発明ではグラウト材とはグラウトモルタル、グラウトペーストのことを示す。
Hereinafter, the present invention will be described in detail.
Unless otherwise specified, the parts and% used in the present invention are shown on a mass basis.
In the present invention, the grout material refers to grout mortar and grout paste.

本発明では、アトマイズ法で製造された、平均粒経が50μm以下のアルミニウム粉末からなる発泡剤を使用するものであり、該発泡剤と、セメント、膨張材、及び減水剤を、さらに増粘剤を含有してなる無収縮グラウト組成物を、さらに必要に応じて細骨材を配合し、水と混練して無収縮グラウト材を調製するものである。   In the present invention, a foaming agent made of an aluminum powder having an average particle size of 50 μm or less manufactured by an atomizing method is used, and the foaming agent, cement, expansion material, and water reducing agent are further added to a thickener. A non-shrinking grout composition containing a non-shrinking grout material is prepared by further blending fine aggregate as necessary and kneading with water.

本発明では、無収縮グラウト組成物に用いる発泡剤として、アトマイズ法で製造されたアルミニウム粉末を用いる。   In this invention, the aluminum powder manufactured by the atomizing method is used as a foaming agent used for a non-shrink grout composition.

アルミニウム粉末の製造方法は現在大きく分けて、アルミニウムをスタンプミルやボールミルで機械的に粉化させる方法と、アルミニウムを地金から溶湯し、その溶湯に空気、水、又は不活性ガスのジェット流を吹きつけて溶湯を粉砕して液滴として凝固させたり高速で回転するディスク上に落下させて接線方向に剪断力を与えて破砕して微細粉を作るアトマイズ法とに分けられる。
機械的に粉化したアルミニウム粉末は鱗片状であり、アトマイズ法で製造されたアルミニウム粉末は粒状である。
本発明で使用するアルミニウム粉末は、アトマイズ法で製造されたアルミニウム粉末(以下、アトマイズアルミ粉という)であり、その平均粒経は50μm以下が好ましく、10〜25μmがより好ましい。50μmを超えると無収縮性を示さない場合がある。
また本発明では、アトマイズアルミ粉のほかに、機械的に粉化したアルミニウム粉末も本発明の目的を実質的に阻害しない範囲で併用することが可能である。
The production methods of aluminum powder are broadly divided into two methods: a method in which aluminum is mechanically pulverized with a stamp mill or a ball mill, and a method in which aluminum is melted from a metal and a jet stream of air, water, or inert gas is applied to the molten metal. The atomization method can be divided into atomizing methods in which the molten metal is pulverized by spraying and solidified as droplets or dropped onto a disk rotating at high speed and sheared in the tangential direction to crush and form fine powder.
The mechanically pulverized aluminum powder is scaly, and the aluminum powder produced by the atomization method is granular.
The aluminum powder used in the present invention is an aluminum powder produced by an atomizing method (hereinafter referred to as atomized aluminum powder), and the average particle size is preferably 50 μm or less, more preferably 10 to 25 μm. If it exceeds 50 μm, no shrinkage may be exhibited.
In the present invention, in addition to atomized aluminum powder, mechanically pulverized aluminum powder can be used in combination as long as the object of the present invention is not substantially impaired.

アトマイズアルミ粉からなる発泡剤の使用量は、セメントと膨張材からなる結合材100部に対して、0.001〜0.01部が好ましい。0.001部未満だと無収縮性が得られない場合があり、0.01部を超えると膨張量が大きく強度低下を起こす場合がある。   The amount of the foaming agent made of atomized aluminum powder is preferably 0.001 to 0.01 part with respect to 100 parts of the binder made of cement and expansion material. If it is less than 0.001 part, no shrinkage may be obtained, and if it exceeds 0.01 part, the amount of expansion may be large and the strength may be lowered.

本発明で使用するセメントとしては、普通、早強、中庸熱、及び低熱等の各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、シリカ、フライアッシュ、又は石灰石微粉等を混合した各種混合セメント、並びに、普通エコセメントなどが挙げられる。   As the cement used in the present invention, various portland cements such as ordinary, early strong, moderately hot, and low heat, various mixed cements obtained by mixing blast furnace slag, silica, fly ash, fine limestone powder, and the like with these portland cements, and Ordinary eco-cement.

本発明で使用する膨張材としては、カルシウムサルフォアルミネート系膨張材、カルシウムアルミノフェライト系膨張材、生石灰系膨張材、及び石膏系膨張材等が挙げられ、これらの一種又は二種以上を使用することが可能であり、これらのうち、流動性保持性能の面から、カルシウムアルミノフェライト系膨張材、生石灰系膨張材、及び石膏系膨張材が好ましい。
膨張材の粉末度は、ブレーン比表面積値(以下、ブレーン値という)で2,000〜10,000cm2/gが好ましく、3,000〜5,000cm2/gがより好ましい。2,000cm2/g未満ではブリーディングが生じやすい場合があり、10,000cm2/gを超えると流動性が悪くなる場合がある。
膨張材の使用量は、結合材100部中、3〜20部が好ましい。3部未満では膨張性状が得られにくい場合があり、20部を超えると膨張量が大きくなり、セメント硬化体の破壊に繋がる場合がある。
Examples of the expanded material used in the present invention include calcium sulfoaluminate-based expanded material, calcium aluminoferrite-based expanded material, quicklime-based expanded material, and gypsum-based expanded material, and one or more of these are used. Among these, from the viewpoint of fluidity retention performance, calcium aluminoferrite-based expansion materials, quicklime-based expansion materials, and gypsum-based expansion materials are preferable.
Fineness of expansion material, Blaine specific surface area value (hereinafter, referred to as Blaine value) is preferably 2,000~10,000cm 2 / g in, 3,000~5,000cm 2 / g is more preferable. If it is less than 2,000 cm 2 / g, bleeding may occur easily, and if it exceeds 10,000 cm 2 / g, fluidity may deteriorate.
The amount of the expansion material used is preferably 3 to 20 parts in 100 parts of the binder. If it is less than 3 parts, it may be difficult to obtain an expandable property, and if it exceeds 20 parts, the amount of expansion becomes large, which may lead to destruction of the cemented body.

本発明で使用する減水剤は、セメントに対する分散作用や空気連行性を有し流動性改善や強度増進するものの総称であり、具体的にはナフタレンスルホン酸系減水剤、メラミンスルホン酸系減水剤、リグニンスルホン酸系減水剤、及びポリカルボン酸系減水剤等の減水剤が挙げられ、これらのうち一種又は二種以上を使用することができる。これらのうち流動性の保持性からポリカルボン酸系減水剤がより好ましい。
減水剤の使用量は、結合材100部に対して、0.05〜1部が好ましく、0.2〜0.5部がより好ましい。0.05部未満だと流動性の保持性能が悪い場合があり、1部を超えると材料分離が発生する場合がある。
The water reducing agent used in the present invention is a general term for those having a dispersing action and air entrainment property on cement and improving fluidity and strength, specifically naphthalene sulfonic acid-based water reducing agent, melamine sulfonic acid-based water reducing agent, Water reducing agents such as a lignin sulfonic acid water reducing agent and a polycarboxylic acid water reducing agent can be mentioned, and one or more of these can be used. Of these, polycarboxylic acid-based water reducing agents are more preferred because of fluidity retention.
The amount of water reducing agent used is preferably 0.05 to 1 part, more preferably 0.2 to 0.5 part, based on 100 parts of the binder. If it is less than 0.05 part, fluidity retention performance may be poor, and if it exceeds 1 part, material separation may occur.

本発明では増粘剤を使用することが可能である。
増粘剤としては、ポリビニールアルコール系増粘剤、アクリル系増粘剤、及び水溶性セルロース系増粘剤等が挙げられ、これらのうち、水溶性セルロース系増粘剤は温度依存性が小さく好ましい。
増粘剤の使用量は、結合材100部に対して、0.05〜0.5部が好ましく、0.1〜0.3部がより好ましい。0.05部未満では材料分離抵抗性が充分でない場合があり、0.5部を超えると流動性を得るための水量が多くなり強度低下を起こす場合がある。
In the present invention, a thickener can be used.
Examples of the thickener include polyvinyl alcohol thickeners, acrylic thickeners, and water-soluble cellulose thickeners. Among these, the water-soluble cellulose thickener has a small temperature dependency. preferable.
The amount of the thickener used is preferably 0.05 to 0.5 part, more preferably 0.1 to 0.3 part with respect to 100 parts of the binder. If the amount is less than 0.05 part, the material separation resistance may not be sufficient.

また、本発明では、さらにオキシカルボン酸又はその塩、デキストリンやショ糖等の糖類、及び無機塩等の遅延性を有するものを併用することが可能である。   Moreover, in this invention, it is possible to use together oxycarboxylic acid or its salt, saccharides, such as dextrin and sucrose, and what has delay, such as inorganic salt.

本発明における細骨材としては、通常使用される珪砂、川砂、海砂、及び砕砂等が使用可能であり、結合材100部に対して、80〜250部が好ましい。80部未満ではひび割れ抵抗性が悪くなる場合があり、250部を超えると強度発現性が悪くなったり、分離抵抗性が低下する場合がある。   As the fine aggregate in the present invention, commonly used silica sand, river sand, sea sand, crushed sand, and the like can be used, and 80 to 250 parts are preferable with respect to 100 parts of the binder. If it is less than 80 parts, the crack resistance may be deteriorated, and if it exceeds 250 parts, the strength development may be deteriorated or the separation resistance may be lowered.

本発明で使用する練混ぜ水量は特に限定されるものではないが、通常、水/結合材比で30〜60%が好ましく、35〜55%がより好ましい。この範囲外では流動性が大きく低下したり、材料の分離抵抗性が低下したり、強度低下が起きる場合がある。   Although the amount of kneading water used in the present invention is not particularly limited, it is usually preferably 30 to 60%, more preferably 35 to 55% in terms of water / binder ratio. Outside this range, fluidity may be greatly reduced, material separation resistance may be reduced, and strength may be reduced.

また本発明ではさらに、石灰石微粉末、高炉スラグ微粉末、シリカフューム、フライアッシュ、消泡剤、防錆剤、防凍剤、収縮低減剤、ビニロンファイバー、炭素繊維、及びワラストナイト繊維等の繊維物質、ポリマーエマルジョン、並びに、ベントナイトなどの粘土鉱物のうちの一種又は二種以上を本発明の目的を実質的に阻害しない範囲で使用することが可能である。   Further, in the present invention, fiber materials such as limestone fine powder, blast furnace slag fine powder, silica fume, fly ash, antifoaming agent, rust inhibitor, antifreeze agent, shrinkage reducing agent, vinylon fiber, carbon fiber, and wollastonite fiber It is possible to use one or two or more of polymer emulsions and clay minerals such as bentonite as long as the object of the present invention is not substantially inhibited.

本発明の無収縮グラウト材の練混ぜに用いる機械は特に限定されるものではなく、例えば、ハンドミキサ、グラウトミキサ、簡易バッチャープラント、及び生コンプラントで使用しているミキサの使用が可能である。   The machine used for kneading the non-shrink grout material of the present invention is not particularly limited. For example, it is possible to use a mixer used in a hand mixer, a grout mixer, a simple batcher plant, and a green plant. .

以下、実験例を挙げて本発明を具体的に説明するが、本発明はこれら実験例に限定されるものでない。   Hereinafter, although an example of an experiment is given and the present invention is explained concretely, the present invention is not limited to these examples of experiment.

実験例1
セメント95部、膨張材5部、並びに、セメントと膨張材からなる結合材100部に対して、表1に示す発泡剤と増粘剤、減水剤0.3部、及び細骨材150部を混合しグラウト組成物を調製し、水/結合材比が46%となるように水を添加して、高速ハンドミキサを用いてグラウトモルタルを作製した。
作製したグラウトモルタルの流動性、体積膨張率、及び圧縮強度を評価した。結果を表1に併記する。
Experimental example 1
For 95 parts of cement, 5 parts of expansion material, and 100 parts of binder composed of cement and expansion material, the foaming agent and thickener shown in Table 1, 0.3 part of water reducing agent, and 150 parts of fine aggregate were mixed. A grout composition was prepared, water was added so that the water / binder ratio was 46%, and a grout mortar was prepared using a high-speed hand mixer.
The fluidity, volume expansion coefficient, and compressive strength of the produced grout mortar were evaluated. The results are also shown in Table 1.

<使用材料>
セメント :普通ポルトランドセメント、市販品
発泡剤A :アルミニウム粉末、機械粉化品、100メッシュパス、市販品
発泡剤B :アトマイズアルミ粉、平均粒経6μm、市販品
発泡剤C :アトマイズアルミ粉、平均粒経8μm、市販品
発泡剤D :アトマイズアルミ粉、平均粒経15μm、市販品
発泡剤E :アトマイズアルミ粉、平均粒経25μm、市販品
発泡剤F :アトマイズアルミ粉、平均粒経50μm、市販品
膨張材 :カルシウムアルミノフェライト系膨張材、ブレーン3,000cm2/g、市販品
増粘剤 :セルロース系増粘剤、市販品
減水剤 :ポリカルボン酸系、市販品
細骨材 :石灰石系砕砂、密度2.62g/cm2、4mm下品
<Materials used>
Cement: Ordinary Portland cement, commercial product foaming agent A: aluminum powder, mechanical powder, 100 mesh pass, commercial product foaming agent B: atomized aluminum powder, average particle size 6 μm, commercial product foaming agent C: atomized aluminum powder, average Commercial size foaming agent D: atomized aluminum powder, average grain size 15 μm, commercial product foaming agent E: atomized aluminum powder, average grain size 25 μm, commercial product foaming agent F: atomized aluminum powder, average grain size 50 μm, commercially available Product expansion material: Calcium aluminoferrite-based expansion material, Blaine 3,000cm 2 / g, Commercial product thickener: Cellulose-based thickener, Commercial product water reducing agent: Polycarboxylic acid-based, Commercial product fine aggregate: Limestone-based crushed sand, Density 2.62g / cm 2 , 4mm

<測定方法>
流動性 :JIS R5201-1997「セメントの物理試験方法」11.フロー試験で15回の落下運動を行わない静置フロー、練上がり2時間後に測定
体積膨張率:JSCE-F 533-1999「PCグラウトのブリーディング率および膨張率試験方法」4.膨張率試験方法により材齢1日の体積膨張率を測定した。ただし、試験器への型詰は練上り2時間後のモルタルを充填し基長とした。
圧縮強度 :JSCE-G 505-1999「円柱供試体を用いたモルタル又またはセメントペーストの圧縮強度試験方法」に準じ、材齢28日で測定
<Measurement method>
Fluidity: JIS R5201-1997 “Physical test method for cement” 11. Static flow without 15 drop motions in flow test, measured after 2 hours of kneading Volume expansion: JSCE-F 533-1999 “PC grout 4. Bleeding rate and expansion rate test method "4. Volume expansion rate for one day of age was measured by the expansion rate test method. However, the mold filling into the tester was filled with mortar after 2 hours of finishing and used as the base length.
Compressive strength: Measured at a material age of 28 days according to JSCE-G 505-1999 “Testing method for compressive strength of mortar or cement paste using cylindrical specimens”

実験例2
結合材100部に対して、発泡剤D0.005部、増粘剤0.15部、及び表2に示す減水剤とを用いて、練上り直後の流動性、材料分離抵抗性、体積膨張率、及び圧縮強度を評価したこと以外は実験例1と同様に行った。結果を表2に併記する。
Experimental example 2
Using 100 parts of the binder, 0.005 part of the foaming agent D, 0.15 part of the thickener, and the water reducing agent shown in Table 2, the fluidity immediately after kneading, the material separation resistance, the volume expansion coefficient, and The same procedure as in Experimental Example 1 was performed except that the compressive strength was evaluated. The results are also shown in Table 2.

<測定方法>
材料分離抵抗性:練上り後2時間静置し、容器底部への骨材の沈降の程度を触感で判定。良は材料分離なし、可は微小の材料分離が認められるが使用上問題がない、不可は材料分離有り。
<Measurement method>
Material separation resistance: Leave for 2 hours after kneading, and determine the degree of aggregate settling on the bottom of the container by tactile sensation. “Good” indicates no material separation, “Yes” indicates a minute material separation, but no problem in use. “No” indicates material separation.

実験例3
表3に示す水/結合材比と、結合材100部に対して、減水剤0.3部と表3に示す増粘剤を用いたこと以外は実験例2と同様に行った。結果を表3に併記する。
Experimental example 3
The experiment was performed in the same manner as in Experimental Example 2, except that 0.3 parts of the water reducing agent and the thickener shown in Table 3 were used for the water / binding material ratio shown in Table 3 and 100 parts of the binding material. The results are also shown in Table 3.

本発明の無収縮グラウト組成物を使用することにより、練混ぜ後2時間を超え長時間流動性を保持させたモルタル中でも材料分離が発生せず、無収縮性を有したグラウト材を提供することがでる。
そして本発明の無収縮グラウトはPCグラウト、プレパックドコンクリート用グラウト、トンネルやシールド裏込めグラウト、プレキャスト用グラウト、構造物の補修や補強注入グラウト、鉄筋継手グラウト、橋梁の支承下グラウト、軌道下グラウト、耐震鉄骨ブレース周辺枠グラウト、増設壁逆打ちグラウト、鋼板巻き立て工法用グラウト、及び原子力発電所格納容器下グラウトなど、土木および建築用途に広範に利用できる。
By using the non-shrink grout composition of the present invention, there is provided a grout material having no shrinkage without material separation even in a mortar that has been kept fluid for a long time after mixing for 2 hours. I get out.
And the non-shrink grout of the present invention includes PC grout, prepacked concrete grout, tunnel and shield backfill grout, precast grout, structural repair and reinforcement grout, reinforced joint grout, under bridge grout, undertrack grout It can be widely used in civil engineering and construction applications, such as grouting around the earthquake-resistant steel brace, grout for expansion of the back wall, grout for the steel plate winding method, and grout under the containment vessel of nuclear power plant.

Claims (2)

セメント、膨張材、平均粒径が6〜50μmであるアトマイズ法で製造されたアルミニウム粉末からなる発泡剤、及び減水剤、さらに、増粘剤を含む配合物からなり、セメントと膨張材からなる結合材100質量部に対して、発泡剤が0.001〜0.01質量部、減水剤が0.05〜1質量部、増粘剤が0.05〜0.5質量部である無収縮グラウト組成物。 Cement, expansive, average particle diameter of aluminum powder produced by an atomization method is 6~50μm foaming agent, and water reducing agent, further, Ri Do from a formulation containing a thickener, made of cement and expansive A non-shrink grout composition in which the foaming agent is 0.001 to 0.01 part by mass, the water reducing agent is 0.05 to 1 part by mass, and the thickener is 0.05 to 0.5 part by mass with respect to 100 parts by mass of the binder . 請求項1にに記載の無収縮グラウト組成物、細骨材、及び水を含有してなる無収縮グラウト材。 A non-shrink grout material comprising the non-shrink grout composition according to claim 1 , a fine aggregate, and water.
JP2005315635A 2005-10-31 2005-10-31 Foaming agent, non-shrink grout composition, and non-shrink grout material using the same Active JP4718969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315635A JP4718969B2 (en) 2005-10-31 2005-10-31 Foaming agent, non-shrink grout composition, and non-shrink grout material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315635A JP4718969B2 (en) 2005-10-31 2005-10-31 Foaming agent, non-shrink grout composition, and non-shrink grout material using the same

Publications (2)

Publication Number Publication Date
JP2007119316A JP2007119316A (en) 2007-05-17
JP4718969B2 true JP4718969B2 (en) 2011-07-06

Family

ID=38143548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315635A Active JP4718969B2 (en) 2005-10-31 2005-10-31 Foaming agent, non-shrink grout composition, and non-shrink grout material using the same

Country Status (1)

Country Link
JP (1) JP4718969B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009015520A1 (en) * 2007-08-02 2009-02-05 Basf Construction Chemicals (Shanghai) Co. Ltd Cement-based grout composition
JP5950099B2 (en) * 2012-05-30 2016-07-13 三菱マテリアル株式会社 Underwater non-separable non-shrink grout
EP4053089A1 (en) * 2013-08-15 2022-09-07 Sika Technology AG Air-entraining agents for mineral binder compositions
KR101582622B1 (en) 2013-11-13 2016-01-06 한국건설기술연구원 Non-shrinkage grout having function preventing tendon corrosion for prestressed concrete (psc) bridge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230455A (en) * 1988-03-10 1989-09-13 Osaka Cement Co Ltd Extremely quick-setting nonshrink grout material
JPH07232956A (en) * 1994-02-18 1995-09-05 Denki Kagaku Kogyo Kk Alumina cement composition
JPH08337455A (en) * 1995-06-07 1996-12-24 Maeda Seikan Kk Motor for packing
JPH0971450A (en) * 1995-09-06 1997-03-18 Kajima Corp Concrete for repairing and reinforcing constructed structure and its production
JPH1095652A (en) * 1996-09-17 1998-04-14 Nippon Cement Co Ltd Grouting composition
JP2004345898A (en) * 2003-05-22 2004-12-09 Nittetsu Cement Co Ltd Grout composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230455A (en) * 1988-03-10 1989-09-13 Osaka Cement Co Ltd Extremely quick-setting nonshrink grout material
JPH07232956A (en) * 1994-02-18 1995-09-05 Denki Kagaku Kogyo Kk Alumina cement composition
JPH08337455A (en) * 1995-06-07 1996-12-24 Maeda Seikan Kk Motor for packing
JPH0971450A (en) * 1995-09-06 1997-03-18 Kajima Corp Concrete for repairing and reinforcing constructed structure and its production
JPH1095652A (en) * 1996-09-17 1998-04-14 Nippon Cement Co Ltd Grouting composition
JP2004345898A (en) * 2003-05-22 2004-12-09 Nittetsu Cement Co Ltd Grout composition

Also Published As

Publication number Publication date
JP2007119316A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
JP5964345B2 (en) High flow lightweight mortar composition and high flow lightweight mortar using the same
JP6404629B2 (en) High fluidity retention type underwater non-separable grout composition
JP6284432B2 (en) High flow lightweight mortar composition and high flow lightweight mortar using the same
JP4538438B2 (en) Grout composition and grout material using the same
JP5333430B2 (en) Polymer cement grout material composition and grout material
JP4718969B2 (en) Foaming agent, non-shrink grout composition, and non-shrink grout material using the same
JP2011136863A (en) Superhigh strength grout composition
JP2007238745A (en) Grout composition and grout mortar using the same
JP2007320832A (en) Grout composition and grout mortar using the same
JP4976803B2 (en) Grout composition and grout material using the same
JP2008260672A (en) Hydraulic composition
JPH06293549A (en) Grout mortar composition
JP6296600B2 (en) Premix grout composition
JP5227161B2 (en) Cement admixture and cement composition
JP4976819B2 (en) Grout composition, grout mortar and grout method
JP4893083B2 (en) Hydraulic composition
JP6306973B2 (en) High fluidity retention type low exothermic grout composition
JP2017114692A (en) Underwater non-separable mortar composition
JP5368852B2 (en) Spraying material and spraying method using the same
JP2008230890A (en) Grout or mortar material
JP2007076944A (en) Method for producing self-compactable concrete
JP2007217212A (en) Quick-hardening cement concrete and its construction method
JP2004059403A (en) Cement composition
JP2000026150A (en) Grout material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R150 Certificate of patent or registration of utility model

Ref document number: 4718969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250