JP2008260672A - Hydraulic composition - Google Patents

Hydraulic composition Download PDF

Info

Publication number
JP2008260672A
JP2008260672A JP2007241359A JP2007241359A JP2008260672A JP 2008260672 A JP2008260672 A JP 2008260672A JP 2007241359 A JP2007241359 A JP 2007241359A JP 2007241359 A JP2007241359 A JP 2007241359A JP 2008260672 A JP2008260672 A JP 2008260672A
Authority
JP
Japan
Prior art keywords
mass
hydraulic composition
ferronickel slag
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007241359A
Other languages
Japanese (ja)
Other versions
JP5326247B2 (en
Inventor
Kazuya Arai
和也 新井
Yoshinobu Hirano
義信 平野
Yukihiko Okada
由紀彦 岡田
Masanori Oshima
将典 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007241359A priority Critical patent/JP5326247B2/en
Publication of JP2008260672A publication Critical patent/JP2008260672A/en
Application granted granted Critical
Publication of JP5326247B2 publication Critical patent/JP5326247B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic composition which exhibits excellent flowability, nonshrinking property, and strength after being hardened, in various grouting (injection) methods in the civil engineering and construction field without using mineral matter fine powders such as waste fly ash, blast furnace slag, or the like and spherical aggregate, and which has flowability enough to be suitably filled into a joint sleeve for joining reinforcing bar and nonshrinking property for firmly unifying a construction region and is excellent in strength characteristics of a hardened body, in particular in a construction method for joining precast reinforced concrete members at a field. <P>SOLUTION: The hydraulic composition contains cement and a fine aggregate containing a ferronickel slag, wherein the ferronickel slag is characterized by containing particles having a particle size of 0.075-2.4 mm of 80 mass% or more and particles having a particle size less than 0.075 mm of less than 10 mass% in 100 mass% ferronickel slag. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、各種土木建築構造物の補修や補強に用いられる、流動性および強度特性に優れたグラウト材に関する。
さらに、本発明は、コンクリート部材接合用異形鉄筋の継手用スリーブ空隙部の充填に用いられる、流動性および強度特性に優れたグラウト材とそのモルタル組成物及びその硬化体に関する。
The present invention relates to a grout material excellent in fluidity and strength characteristics, which is used for repairing and reinforcing various civil engineering structures.
Furthermore, the present invention relates to a grout material excellent in fluidity and strength characteristics, a mortar composition thereof, and a cured body thereof, which are used for filling a gap in a joint sleeve of a deformed reinforcing bar for joining concrete members.

建材の改良や進歩に伴う建物の高層化、技能工不足による建設工事の省力化などを目的とした、プレキャスト鉄筋コンクリート部材を現場で接合する工法が普及しつつある。このような工法に用いられる継手用スリーブの空隙部に充填するグラウト材として、特許文献1では、セメント、超微粉、膨張材、高性能減水剤、及び重量骨材を含有してなるグラウトモルタル組成物が開示されている。   Construction methods to join precast reinforced concrete members on site for the purpose of improving the building materials and increasing the number of buildings due to progress and saving labor in construction work due to a lack of skilled workers are becoming widespread. As a grout material to be filled in a gap portion of a joint sleeve used in such a construction method, Patent Document 1 discloses a grout mortar composition containing cement, ultrafine powder, an expansion material, a high-performance water reducing agent, and a heavy aggregate. Things are disclosed.

耐磨耗舗装用コンクリートブロックの製造方法として、特許文献2では、ポルトランドセメント、シリコンダスト、フェロニッケルスラグ、混練水を配合したコンクリートを振動形成してなる耐摩耗舗装用コンクリートブロックが開示されている。   As a method for producing a wear-resistant pavement concrete block, Patent Document 2 discloses a wear-resistant pavement concrete block formed by vibration-forming concrete mixed with Portland cement, silicon dust, ferronickel slag, and kneaded water. .

また、セメント、骨材、鉱物質微粉末及び水を用いるモルタル及びコンクリ−ト、中でも鉱物質微粉末を多量に用いるモルタル及びコンクリ−トにおいて微粒分の欠如した細骨材を混用することにより、これら各材料の配合量を適切に調整して、ワ−カビリテイに優れ、通常のモルタル及びコンクリ−トと同等以上の性能を有するモルタル及びコンクリ−トとして、特許文献3では、鉱物質微粉末及び微粒分の欠如した細骨材を用いることを特徴とするモルタル及びコンクリ−ト組成物が開示されている。 Also, by mixing mortar and concrete using cement, aggregate, fine mineral powder and water, especially fine aggregate lacking fine particles in mortar and concrete using a large amount of fine mineral powder, By appropriately adjusting the blending amount of each of these materials, as a mortar and concrete having excellent workability and equivalent or better performance than ordinary mortar and concrete, in Patent Document 3, A mortar and concrete composition characterized by using fine aggregates lacking fines is disclosed.

特開平6−293549号公報JP-A-6-293549 特開昭61−162601号公報JP-A 61-162601 特開平9−52744号公報Japanese Patent Laid-Open No. 9-52744

建設資材や建設工法の改良や進歩に伴う建築物の高層化や、技能工不足による建設工事の省力化等に対応して、プレキャスト鉄筋コンクリート部材を現場で接合する工法が実用化され、これに伴って鉄筋などの部材間を接合するための継手用スリーブに充填できる流動性、施工部位を強固に一体化できる低収縮性、高い硬化体強度が得られる強度特性など、これらの特性を高性能な領域でバランスよく併せ持つグラウト材が求められている。
本発明は、廃棄物であるフライアッシュや高炉スラグ微粉末等の鉱物質微粉末を使用せず、また球状の骨材を使用することなく、土木建築分野の各種グラウト(注入)工法で、優れた流動性、無収縮性、硬化体強度を発揮し、特に、プレキャスト鉄筋コンクリート部材を現場で接合する工法において、鉄筋を接合するための継手用スリーブに好適に充填できる流動性、施工部位を強固に一体化できる無収縮性、硬化体の強度特性に優れる水硬性組成物を提供することを目的とした。
In response to the improvement of construction materials and construction methods and the rise of buildings due to progress and the labor saving of construction work due to the lack of skilled workers, a method of joining precast reinforced concrete members on site has been put into practical use. These properties include high fluidity that can be used to fill joint sleeves for joining members such as rebars, low shrinkage that can tightly integrate construction sites, and strength properties that provide high strength of the cured product. Grout materials that have a good balance in the area are being sought.
The present invention is excellent in various grout (injection) construction methods in the field of civil engineering and construction without using fine mineral powder such as fly ash and blast furnace slag fine powder as waste, and without using spherical aggregate. Excellent fluidity, non-shrinkage, hardened body strength, especially in the method of joining precast reinforced concrete members on site, fluidity that can be suitably filled into a joint sleeve for joining reinforcing bars, and strengthening the construction site An object of the present invention is to provide a hydraulic composition that is excellent in non-shrinkability and strength properties of a cured product.

本発明者は、前記課題を解決すべく種々検討を重ねた結果、粗骨材は含まず、水硬性成分、フェロニッケルスラグ及び消泡剤を用いて、良好な流動特性、高い圧縮強度及び、高弾性特性が得られる水硬性組成物を見出して本発明を完成した。 As a result of various studies to solve the above problems, the present inventor does not include coarse aggregates, and uses hydraulic components, ferronickel slag and antifoaming agent, and has good flow characteristics, high compressive strength, and The present invention was completed by finding a hydraulic composition capable of obtaining high elastic properties.

すなわち、本発明の第一は、
セメントとフェロニッケルスラグを含む細骨材とを含有する水硬性組成物であって、
フェロニッケルスラグは、フェロニッケルスラグ100質量%中に粒径0.075〜2.4mmの粒子を80質量%以上含み、粒径0.075未満の粒子を10質量%未満含むことを特徴とする水硬性組成物である。
本発明の第二は、本発明の第一の水硬性組成物と水とを混練して得られる水硬性モルタル組成物である。
本発明の第三は、本発明の第一の水硬性組成物と水との配合物を硬化させて得られる水硬性モルタル組成物の硬化体である。
That is, the first of the present invention is
A hydraulic composition containing cement and fine aggregate containing ferronickel slag,
The ferronickel slag contains 80% by mass or more of particles having a particle size of 0.075 to 2.4 mm in 100% by mass of ferronickel slag, and contains less than 10% by mass of particles having a particle size of less than 0.075. It is a hydraulic composition.
The second of the present invention is a hydraulic mortar composition obtained by kneading the first hydraulic composition of the present invention and water.
3rd of this invention is the hardening body of the hydraulic mortar composition obtained by hardening the compound of the 1st hydraulic composition of this invention, and water.

本発明の水硬性組成物の好ましい態様を示し、これらは複数組み合わせることが出来る。
1)水硬性組成物は、さらに消泡剤を含むこと。
2)細骨材は、細骨材100質量%中にフェロニッケルスラグを70質量%以上含むこと。
3)フェロニッケルスラグは、フェロニッケルスラグ100質量%中、粒径0.15〜1.2mmの粒子を80質量%以上含み、粒径0.15未満の粒子を10質量%未満含むこと。
4)水硬性組成物と水とを混練して硬化させて得られる水硬性モルタル組成物硬化体の材齢28日の静弾性係数は、42.0kN/mm以上であること。
5)水硬性組成物は、さらに膨張材、流動化剤及び増粘剤から選ばれた少なくとも1種以上の成分を含むこと。
6)水硬性組成物は、コンクリート部材接合用異形鉄筋の継手用スリーブ空隙部の充填に使用されること。
The preferable aspect of the hydraulic composition of this invention is shown, These can be combined multiplely.
1) The hydraulic composition further contains an antifoaming agent.
2) The fine aggregate contains 70% by mass or more of ferronickel slag in 100% by mass of the fine aggregate.
3) Ferronickel slag contains 80% by mass or more of particles having a particle size of 0.15 to 1.2 mm and 100% by mass of ferronickel slag and contains less than 10% by mass of particles having a particle size of less than 0.15.
4) The static elastic modulus of 28 days of age of the cured hydraulic mortar composition obtained by kneading and curing the hydraulic composition and water is 42.0 kN / mm 2 or more.
5) The hydraulic composition further includes at least one component selected from an expanding agent, a fluidizing agent, and a thickener.
6) The hydraulic composition shall be used for filling the joint sleeve gap of the deformed reinforcing bar for joining concrete members.

本発明の水硬性組成物は、水硬性成分と特定の粒度構成を有するフェロニッケルスラグとを含むことにより、モルタル流動性に優れ、高強度・高弾性で、無収縮の硬化体を得ることができ、土木建築分野の各種注入工法で優れた特性を発揮するグラウト材として用いることができる。
さらに、本発明の水硬性組成物は、消泡剤を配合することにより、緻密なモルタル硬化体組織を形成して高強度で高弾性な硬化体を得ることができる。
特に、プレキャスト鉄筋コンクリート部材接合用異形鉄筋の継手用スリーブの空隙部に充填するグラウト材には、優れた流動特性・充填特性、高い圧縮強度及び高弾性な特性が要求されることから、この用途においては卓越した性能を発揮する。
The hydraulic composition of the present invention includes a hydraulic component and a ferronickel slag having a specific particle size configuration, so that a mortar fluidity, high strength, high elasticity, and a non-shrinkable cured body can be obtained. It can be used as a grout material that exhibits excellent properties in various pouring methods in the field of civil engineering and construction.
Furthermore, the hydraulic composition of this invention can form a precise | minute mortar hardening body structure | tissue by mix | blending an antifoamer, and can obtain a high intensity | strength and highly elastic hardening body.
In particular, the grout material that fills the voids of the jointed sleeves of deformed reinforcing bars for joining precast reinforced concrete members requires excellent flow characteristics, filling characteristics, high compressive strength, and high elastic characteristics. Exhibits outstanding performance.

水硬性成分としては特に限定されるものではなく、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、白色ポルトランドセメントなどのポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメントなどの混合セメント、アルミナセメントなどを用いることができる。
特に、建設工期の短縮のために短期間に良好な強度発現を必要とする場合には、早強ポルトランドセメントや超早強ポルトランドセメントを用いるのが好ましい。
There are no particular limitations on the hydraulic component, and ordinary Portland cement, early-strength Portland cement, super-early-strength Portland cement, moderately hot Portland cement, low heat Portland cement, white Portland cement and other Portland cement, blast furnace cement, fly ash Cement, mixed cement such as silica cement, alumina cement, or the like can be used.
In particular, when it is necessary to develop good strength in a short time for shortening the construction period, it is preferable to use early-strength Portland cement or ultra-early-strength Portland cement.

本発明の水硬性組成物は、水硬性成分100質量部に対し、細骨材を好ましくは30〜300質量部、さらに好ましくは50〜250質量部、より好ましくは80〜200質量部、特に好ましくは110〜180質量部を配合する。   In the hydraulic composition of the present invention, the fine aggregate is preferably 30 to 300 parts by mass, more preferably 50 to 250 parts by mass, more preferably 80 to 200 parts by mass, particularly preferably 100 parts by mass of the hydraulic component. Blends 110 to 180 parts by weight.

本発明に係る細骨材は、フェロニッケルスラグを含むものであり、細骨材100質量%中にフェロニッケルスラグが占める割合は、好ましくは70質量%以上、さらに好ましくは73質量%以上、より好ましくは76質量%以上、特に好ましくは80%以上である。
細骨材中にフェロニッケルスラグが占める割合が上記範囲にある場合、優れた圧縮強度と高い弾性率を有する水硬性組成物の硬化体が安定して得られる。
The fine aggregate according to the present invention contains ferronickel slag, and the proportion of ferronickel slag in 100% by mass of the fine aggregate is preferably 70% by mass or more, more preferably 73% by mass or more. Preferably it is 76 mass% or more, Most preferably, it is 80% or more.
When the proportion of ferronickel slag in the fine aggregate is in the above range, a cured product of a hydraulic composition having excellent compressive strength and high elastic modulus can be obtained stably.

本発明に係るフェロニッケルスラグは、シリカ(SiO2)とマグネシア(MgO)を主体とするエンステタイトを主たる鉱物組成とするものであり、フェロニッケルを製造する製造工程で発生するスラグを、徐冷、風砕、水砕法などによって加工して細骨材としたものである。
フェロニッケルスラグとしては、例えば、山川産業社製などの商品名:NEサンドなどを用いることができる。
The ferronickel slag according to the present invention is mainly composed of enestite mainly composed of silica (SiO2) and magnesia (MgO), and the slag generated in the production process for producing ferronickel is subjected to slow cooling, wind It is processed into fine aggregates by pulverization and water pulverization methods.
As the ferronickel slag, for example, trade name: NE Sand manufactured by Yamakawa Sangyo Co., Ltd. can be used.

本発明に用いるフェロニッケルスラグの粒径は、最大粒径が3mm以下のものを使用することができ、フェロニッケルスラグ100質量%中に、
好ましくは粒径0.075〜2.4mmの粒子を80質量%以上含むとともに、粒径0.075未満の粒子を10質量%未満含むもの、
さらに好ましくは粒径0.15〜2.4mmの粒子を80質量%以上含むとともに、粒径0.15mm未満の粒子を10質量%未満含むもの、
より好ましくは粒径0.15〜1.2mmの粒子を80質量%以上含むとともに、粒径0.15mm未満の粒子を10質量%未満含むもの、
特に好ましくは粒径0.3〜1.2mmの粒子を80質量%以上含むとともに、粒径0.3mm未満の粒子を10質量%未満含むものを好適に使用できる。
フェロニッケルスラグは、その粒径が2.4mmを超えるものを20質量%を超えて含む場合、鉄筋スリーブへの充填性が低下することがあるので好ましくなく、粒径が0.075mm未満のものを20質量%を超えて含む場合、良好な流動性を確保するのに必要な水量が増加して、その結果目標とする硬化体強度が得られなくなることがあるため好ましくない。
The particle size of the ferronickel slag used in the present invention can be one having a maximum particle size of 3 mm or less. In 100% by mass of the ferronickel slag,
Preferably containing 80% by mass or more of particles having a particle size of 0.075 to 2.4 mm and containing less than 10% by mass of particles having a particle size of less than 0.075,
More preferably containing 80% by mass or more of particles having a particle size of 0.15 to 2.4 mm and containing less than 10% by mass of particles having a particle size of less than 0.15 mm,
More preferably containing 80% by mass or more of particles having a particle size of 0.15 to 1.2 mm and containing less than 10% by mass of particles having a particle size of less than 0.15 mm,
Particularly preferably, particles having a particle size of 0.3 to 1.2 mm containing 80% by mass or more and particles having a particle size of less than 0.3 mm containing less than 10% by mass can be suitably used.
Ferro-nickel slag is not preferred if the particle size exceeds 20% by mass when the particle size exceeds 2.4 mm, since the filling property to the reinforcing steel sleeve may be lowered, and the particle size is less than 0.075 mm. When the content exceeds 20% by mass, the amount of water necessary to ensure good fluidity increases, and as a result, the target cured product strength may not be obtained, which is not preferable.

本発明に使用する細骨材には、フェロニッケルスラグのほかに、粒度が3mm以下の細砂を用いることができる。
細砂としては、特に限定されるものではなく、珪砂や石灰石砂等の砕石や砕砂を製造する過程で発生する微細粒の珪砂、石灰石砕砂を使用できる。
細砂の粒径は、前記のフェロニッケルスラグの好ましい粒径と同様に、細砂100質量%中に、
好ましくは粒径0.075〜2.4mmの粒子を80質量%以上含むとともに、粒径0.075未満の粒子を10質量%未満含むもの、
さらに好ましくは粒径0.15〜2.4mmの粒子を80質量%以上含むとともに、粒径0.15mm未満の粒子を10質量%未満含むもの、
より好ましくは粒径0.15〜1.2mmの粒子を80質量%以上含むとともに、粒径0.15mm未満の粒子を10質量%未満含むもの、
特に好ましくは粒径0.3〜1.2mmの粒子を80質量%以上含むとともに、粒径0.3mm未満の粒子を10質量%未満含むもの
を使用することができる。
As the fine aggregate used in the present invention, fine sand having a particle size of 3 mm or less can be used in addition to ferronickel slag.
The fine sand is not particularly limited, and fine-grained silica sand and limestone crushed sand generated in the process of producing crushed stone and crushed sand such as silica sand and limestone sand can be used.
The particle size of the fine sand is the same as the preferred particle size of the ferronickel slag, in 100% by mass of fine sand,
Preferably containing 80% by mass or more of particles having a particle size of 0.075 to 2.4 mm and containing less than 10% by mass of particles having a particle size of less than 0.075,
More preferably containing 80% by mass or more of particles having a particle size of 0.15 to 2.4 mm and containing less than 10% by mass of particles having a particle size of less than 0.15 mm,
More preferably containing 80% by mass or more of particles having a particle size of 0.15 to 1.2 mm and containing less than 10% by mass of particles having a particle size of less than 0.15 mm,
Particularly preferably, particles containing particles having a particle size of 0.3 to 1.2 mm are contained in an amount of 80% by mass or more and particles having a particle size of less than 0.3 mm are contained in an amount of less than 10% by mass.

本発明の水硬性組成物は、組織が緻密で優れた強度を有する硬化体を得るために、消泡剤を添加することが好ましい。
消泡剤は、シリコン系、アルコール系、ポリエーテル系などの合成物質、石油精製由来の鉱物油系又は植物由来の天然物質など、公知のものを用いることが出来る。特にポリエーテル系の消泡剤を好適に用いることができる。
消泡剤の添加量は、本発明の特性を損なわない範囲で一種又は二種以上を添加することができ、水硬性成分100質量部に対して、好ましくは0.005〜2質量部、さらに好ましくは0.01〜1.5質量部、より好ましくは0.025〜1質量部、特に0.05〜0.5質量部含むことが好ましい。
消泡剤を上記範囲で添加すると、消泡効果が良好で、さらにモルタル組成物の硬化体組織の緻密化による硬化体強度の向上効果が著しいため好ましい。
In the hydraulic composition of the present invention, it is preferable to add an antifoaming agent in order to obtain a cured body having a dense structure and excellent strength.
As the antifoaming agent, known materials such as synthetic materials such as silicon-based, alcohol-based and polyether-based materials, mineral oil-based materials derived from petroleum refining, and plant-derived natural materials can be used. In particular, a polyether-based antifoaming agent can be preferably used.
The amount of the antifoaming agent added can be one or more in a range not impairing the properties of the present invention, and is preferably 0.005 to 2 parts by mass with respect to 100 parts by mass of the hydraulic component. Preferably it is 0.01-1.5 mass parts, More preferably, it is 0.025-1 mass part, It is preferable to contain 0.05-0.5 mass part especially.
It is preferable to add an antifoaming agent in the above range because the defoaming effect is good and the effect of improving the strength of the cured product by densification of the cured product structure of the mortar composition is remarkable.

水硬性組成物は、細骨材のほかに、本発明の特性を損なわない範囲で必要に応じて、膨張材、石膏、流動化剤、増粘剤、凝結速度調整剤などの成分を少なくとも1種以上配合することができる。 In addition to the fine aggregate, the hydraulic composition contains at least one component such as an expanding material, gypsum, a fluidizing agent, a thickening agent, and a setting speed adjusting agent as long as the characteristics of the present invention are not impaired. More than one species can be blended.

本発明に係る膨張材は、モルタル組成物の硬化過程に起こる体積変化を補償し、継手用スリーブや異形鉄筋との密着性向上に有効である。
膨張材としては、アルミニウム粉、鉄粉等の金属系膨張材、カルシウムサルフォアルミネート系、石灰系などの無機系膨張材などの使用が好ましく、特に金属系膨張材と石灰系膨張材を併用して用いることが好ましい。
The expansion material according to the present invention compensates for the volume change that occurs during the curing process of the mortar composition, and is effective in improving the adhesion to the joint sleeve and the deformed reinforcing bar.
As the expansion material, it is preferable to use a metal expansion material such as aluminum powder or iron powder, an inorganic expansion material such as calcium sulfoaluminate or lime, and in particular, a combination of a metal expansion material and a lime expansion material. And preferably used.

金属系膨張材としては、比重が小さく反応性が高いことから、アルミニウム粉の使用が特に好ましい。アルミニウム粉は、JIS・K−5906「塗装用アルミニウム粉」の第2種に準ずるものが好適に使用できる。
金属系膨張材の添加量は、水硬性成分100質量部に対して、好ましくは0.0001〜0.01質量部、さらに好ましくは0.0002〜0.005質量部、より好ましくは0.0003〜0.004質量部、特に0.0005〜0.003質量部の範囲で用いることが好ましい。
As the metal-based expansion material, use of aluminum powder is particularly preferable because of its low specific gravity and high reactivity. As the aluminum powder, those conforming to the second type of JIS K-5906 “Aluminum powder for coating” can be preferably used.
The amount of the metal-based expansion material added is preferably 0.0001 to 0.01 parts by mass, more preferably 0.0002 to 0.005 parts by mass, and more preferably 0.0003 to 100 parts by mass of the hydraulic component. It is preferable to use in the range of ˜0.004 parts by mass, particularly 0.0005 to 0.003 parts by mass.

無機系膨張材は、カルシウムサルフォアルミネート系としては、アウイン、石灰系としては生石灰、生石灰−石膏系、仮焼ドロマイト等が挙げられ、これらから選ばれた少なくとも1種を使用できる。特に石灰系としては、生石灰、生石灰−石膏系が好ましい。
無機系膨張材の添加量は、水硬性成分100質量部に対して、好ましくは1〜40質量部、さらに好ましくは1.5〜30質量部、より好ましくは2〜25質量部、特に3〜20質量部を用いることが好ましい。
Examples of the inorganic expansion material include Auin as the calcium sulfoaluminate system, and quick lime, quick lime-gypsum system, calcined dolomite, and the like as the lime system, and at least one selected from these can be used. As the lime system, quick lime and quick lime-gypsum system are particularly preferable.
The added amount of the inorganic expansion material is preferably 1 to 40 parts by mass, more preferably 1.5 to 30 parts by mass, more preferably 2 to 25 parts by mass, and particularly 3 to 3 parts by mass with respect to 100 parts by mass of the hydraulic component. It is preferable to use 20 parts by mass.

水硬性組成物は必要に応じて石膏を配合することができる。
石膏としては、無水石膏、半水石膏、二水石膏等の石膏がその種類を問わず、一種又は二種以上の混合物として使用できる。
The hydraulic composition may contain gypsum as necessary.
As the gypsum, gypsum such as anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum can be used as one kind or a mixture of two or more kinds regardless of the kind.

本発明の水硬性組成物は、材料分離を抑制しつつ適度な流動性を確保し、硬化体の強度を高め、且つ、乾燥収縮を低減させるために、減水効果を合わせ持つ流動化剤を添加することが好ましい。
流動化剤としては、減水効果を合わせ持つ、メラミンスルホン酸のホルムアルデヒド縮合物、カゼイン、カゼインカルシウム、ポリエーテル系、ポリカルボン酸系、ポリカルボン酸ポリエーテル系等、市販のものがその種類を問わず使用できる。
流動化剤は、使用する水硬性成分に応じて、特性を損なわない範囲で一種又は二種以上を適宜添加することができ、水硬性成分100質量部に対し、好ましくは0.001〜5質量部、さらに好ましくは0.005〜4質量部、より好ましくは0.01〜3.5質量部、特に好ましくは0.1〜3質量部の範囲で使用する。
The hydraulic composition of the present invention is added with a fluidizing agent that has a water reducing effect in order to ensure appropriate fluidity while suppressing material separation, increase the strength of the cured product, and reduce drying shrinkage. It is preferable to do.
As the fluidizing agent, commercially available products such as formaldehyde condensate of melamine sulfonic acid, casein, calcium caseinate, polyether-based, polycarboxylic acid-based, polycarboxylic acid-polyether-based, which have a water reducing effect, can be used. Can be used without
According to the hydraulic component to be used, one or two or more fluidizing agents can be appropriately added as long as the characteristics are not impaired, and preferably 0.001 to 5 mass with respect to 100 parts by mass of the hydraulic component. Parts, more preferably 0.005 to 4 parts by mass, more preferably 0.01 to 3.5 parts by mass, particularly preferably 0.1 to 3 parts by mass.

増粘剤は、モルタル組成物の流動性を調整し、材料分離を抑制するために添加する。
増粘剤には、セルロース系、蛋白質系、ラテックス系、及び水溶性ポリマー系などを用いることが出来、特にセルロース系などを用いることが好ましい。
増粘剤の添加量は、本発明の特性を損なわない範囲で一種又は二種以上を添加することができ、水硬性成分100質量部に対して、好ましくは0.001〜2質量部、さらに好ましくは0.002〜1.5質量部、より好ましくは0.0025〜1質量部、特に0.005〜0.5質量部の範囲が好ましい。
A thickener is added in order to adjust the fluidity | liquidity of a mortar composition and to suppress material separation.
As the thickener, cellulose-based, protein-based, latex-based, water-soluble polymer-based and the like can be used, and cellulose-based is particularly preferable.
One or two or more thickeners can be added within a range that does not impair the characteristics of the present invention, and preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the hydraulic component. Preferably it is 0.002-1.5 mass parts, More preferably, it is 0.0025-1 mass part, Especially the range of 0.005-0.5 mass part is preferable.

本発明の水硬性組成物を構成する場合に、特に好適な成分構成は、ポルトランドセメント、フェロニッケルスラグを含む細骨材、消泡剤、流動化剤、増粘剤、無機系膨張材及び金属系膨張材を含むものである。 In the case of constituting the hydraulic composition of the present invention, particularly preferred component constitutions are Portland cement, fine aggregate containing ferronickel slag, antifoaming agent, fluidizing agent, thickener, inorganic expansion material and metal. It contains a system expansion material.

ポルトランドセメント、フェロニッケルスラグを含む細骨材、消泡剤、流動化剤、増粘剤、無機系膨張材及び金属系膨張材などを混合装置で混合し、水硬性組成物のプレミックス粉体を得ることができる。 Premix powder of hydraulic composition by mixing Portland cement, fine aggregate containing ferronickel slag, antifoaming agent, fluidizing agent, thickener, inorganic expansive agent and metallic expansive agent with a mixing device Can be obtained.

本発明の水硬性組成物のプレミックス粉体は、所定量の水と混合・攪拌して、スラリー組成物(モルタル組成物)を製造することができ、そのスラリー組成物(モルタル組成物)を硬化させて水硬性組成物の硬化体を得ることができる。 The premix powder of the hydraulic composition of the present invention can be mixed and stirred with a predetermined amount of water to produce a slurry composition (mortar composition). The slurry composition (mortar composition) It can be cured to obtain a cured body of the hydraulic composition.

本発明の水硬性組成物は、水の添加量を調整することにより、モルタル組成物の流動性、可使時間、材料分離などの性状を調整することができる。
本発明の水硬性組成物は、水と混練して
1)水硬性組成物と水とが、均一に混ざり合った状態になるまでの所要時間を液状化時間とし、液状化時間が、好ましくは60秒以下、さらに好ましくは50秒以下、より好ましくは40秒以下、特に好ましくは35秒以下で均一に混ざり合った混練物を得ることが出来、
2)モルタルフロー値が、好ましくは200mm以上、さらに好ましくは235mm以上のモルタル組成物を得ることが出来、
得られたモルタルを硬化させることにより、
3)圧縮強度(材齢28日)が、好ましくは110N/mm以上、さらに好ましくは120N/mm以上及び、
4)静弾性係数(材齢28日)が、好ましくは42.0kN/mm以上、さらに好ましくは43.0kN/mm以上の硬化体を得ることができる。
The hydraulic composition of the present invention can adjust properties such as fluidity, pot life, and material separation of the mortar composition by adjusting the amount of water added.
The hydraulic composition of the present invention is kneaded with water. 1) The time required until the hydraulic composition and water are uniformly mixed is defined as a liquefaction time, and the liquefaction time is preferably 60 seconds or less, more preferably 50 seconds or less, more preferably 40 seconds or less, particularly preferably 35 seconds or less, it is possible to obtain a kneaded mixture uniformly mixed,
2) A mortar composition having a mortar flow value of preferably 200 mm or more, more preferably 235 mm or more,
By curing the resulting mortar,
3) Compressive strength (material age 28 days) is preferably 110 N / mm 2 or more, more preferably 120 N / mm 2 or more, and
4) A cured product having a static elastic modulus (material age of 28 days) is preferably 42.0 kN / mm 2 or more, and more preferably 43.0 kN / mm 2 or more.

水の添加量は、本発明の流動特性および強度特性を損なわない範囲で添加でき、水硬性組成物100質量部に対し、好ましくは6〜36質量部、さらに好ましくは6.5〜33質量部、より好ましくは7〜30質量部、特に好ましくは7.5〜27質量部の範囲で添加することが好ましい。 The addition amount of water can be added within a range that does not impair the flow characteristics and strength characteristics of the present invention, and is preferably 6 to 36 parts by mass, more preferably 6.5 to 33 parts by mass with respect to 100 parts by mass of the hydraulic composition. More preferably, it is added in the range of 7 to 30 parts by mass, particularly preferably 7.5 to 27 parts by mass.

本発明の水硬性組成物は、流動性に優れたモルタル組成物、および、高強度・高弾性で無収縮のモルタル硬化体を得ることができ、土木建築分野でグラウト材として広く利用され、特にプレキャスト鉄筋コンクリート部材接合用異形鉄筋の継手用スリーブの空隙部に充填するグラウト材として好適に使用できる。 The hydraulic composition of the present invention can obtain a mortar composition excellent in fluidity and a mortar cured body having high strength, high elasticity and no shrinkage, and is widely used as a grout material in the field of civil engineering and construction. It can be suitably used as a grout material that fills the gaps of the joint sleeves of deformed reinforcing bars for joining precast reinforced concrete members.

以下、本発明を実施例に基づいてさらに詳細に説明する。但し、本発明は下記実施例により制限されるものでない。   Hereinafter, the present invention will be described in more detail based on examples. However, this invention is not restrict | limited by the following Example.

(特性の評価方法)
1)液状化時間(秒):
水硬性組成物と水とが均一に混ざり合った状態になるまでの時間を目視にて確認し、液状化時間(秒)とする。
2)フロー値(mm):
厚さ5mmのみがき板ガラスの上にJIS R 5201の凝結試験に定めるコーン(上端内径75mm、下端内径85mm、高さ40mm、内容積約200ml)を置き、練り混ぜたモルタル組成物を充填した後、コーンを引き上げる。広がりが静止した後、直角2方向の直径を測定し、その平均値をフロー値とする。
3)圧縮強度(N/mm):
試験体φ5×10cmを作製し、JIS・A−1108に記載の試験方法に準じて測定する。
4)静弾性係数(kN/mm):
試験体φ5×10cmを作製し、JIS・A−1149に記載の試験方法に準じて測定する。
(Characteristic evaluation method)
1) Liquefaction time (seconds):
The time until the hydraulic composition and water are uniformly mixed is visually confirmed to be the liquefaction time (seconds).
2) Flow value (mm):
After placing a cone defined in the condensation test of JIS R 5201 (top inner diameter 75 mm, lower end inner diameter 85 mm, height 40 mm, inner volume about 200 ml) on a 5 mm thick sheet glass, and filling the kneaded mortar composition, Raise the cone. After the spread has stopped, the diameters in two perpendicular directions are measured, and the average value is taken as the flow value.
3) Compressive strength (N / mm 2 ):
A test specimen φ5 × 10 cm is prepared and measured according to the test method described in JIS A-1108.
4) Static elastic modulus (kN / mm 2 ):
A test specimen φ5 × 10 cm is prepared and measured according to the test method described in JIS A-1149.

原料は以下のものを使用した。
1)水硬性成分:
・ポルトランドセメント(宇部早強ポルトランドセメント、ブレーン比表面積4500cm/g)。
2)フェロニッケルスラグ:
・細骨材A(山川産業社製、比重3.1)
・細骨材B(山川産業社製、比重3.1)
・細骨材C(山川産業社製、比重3.1)
・細骨材D(山川産業社製、比重3.1)
・混合品E(133質量部) : 細骨材A(86質量部)と細骨材B(47質量部)との混合物。
・混合品F(117質量部) : 細骨材A(77質量部)と細骨材B(40質量部)との混合物。
・混合品G(104質量部) : 細骨材A(69質量部)と細骨材B(35質量部)との混合物。
篩を用いて測定した細骨材A〜D及び混合品E〜Gの粒度構成を表3に示す。
3)細砂:
・混合品H(133質量部) : 新特5号珪砂(105質量部、宇部サンド工業製)と6号硅砂(28質量部、宇部サンド工業製)の混合物。
篩を用いて測定した混合砂Hの粒度構成を表3に示す。
5)混和材料:
・無機系膨張材:石灰系膨張材(太平洋マテリアル社製)。
・金属系膨張材:アルミニウム粉(粒度44μm以下を60質量%以上含有、大和金属粉工業社製、ALCファイン及びK−250の混合品)。
・流動化剤 :ポリカルボン酸系流動化剤(BASFポゾリス社製)。
・消泡剤 :ポリエーテル系消泡剤(サンノプコ社製)。
・増粘剤 :メチルセルロース系増粘剤(松本油脂社製)。
The following materials were used.
1) Hydraulic component:
Portland cement (Ube Hayashi Portland cement, Blaine specific surface area 4500 cm 2 / g).
2) Ferronickel slag:
・ Fine aggregate A (manufactured by Yamakawa Sangyo Co., Ltd., specific gravity 3.1)
-Fine aggregate B (Yamakawa Sangyo Co., Ltd., specific gravity 3.1)
-Fine aggregate C (Yamakawa Sangyo Co., Ltd., specific gravity 3.1)
-Fine aggregate D (manufactured by Yamakawa Sangyo Co., Ltd., specific gravity 3.1)
Mixture E (133 parts by mass): A mixture of fine aggregate A (86 parts by mass) and fine aggregate B (47 parts by mass).
Mixture F (117 parts by mass): A mixture of fine aggregate A (77 parts by mass) and fine aggregate B (40 parts by mass).
Mixture G (104 parts by mass): A mixture of fine aggregate A (69 parts by mass) and fine aggregate B (35 parts by mass).
Table 3 shows the particle size constitution of the fine aggregates A to D and the mixtures E to G measured using a sieve.
3) Fine sand:
Mixture H (133 parts by mass): A mixture of New No. 5 silica sand (105 parts by mass, Ube Sand Industries) and No. 6 cinnabar (28 parts by mass, Ube Sand Industries).
Table 3 shows the particle size composition of the mixed sand H measured using a sieve.
5) Admixture:
-Inorganic expansion material: Lime-based expansion material (manufactured by Taiheiyo Materials Co., Ltd.).
Metal-based expansion material: aluminum powder (containing a particle size of 44 μm or less, 60% by mass or more, manufactured by Daiwa Metal Powder Industry Co., Ltd., a mixture of ALC Fine and K-250).
-Fluidizing agent: Polycarboxylic acid-based fluidizing agent (BASF Pozzolith).
-Antifoaming agent: A polyether type antifoaming agent (manufactured by San Nopco).
-Thickener: Methylcellulose thickener (Matsumoto Yushi Co., Ltd.).

[実施例1〜7及び比較例1〜3]
表1及び表2に示す成分を、アイリッヒミキサを使用して混合し、表1及び表2に示すセメント、細骨材及び混和剤を含む水硬性組成物を得た。
[Examples 1-7 and Comparative Examples 1-3]
The components shown in Tables 1 and 2 were mixed using an Eirich mixer to obtain hydraulic compositions containing the cement, fine aggregate and admixture shown in Tables 1 and 2.

温度20℃、相対湿度65%の条件下で、水硬性組成物100質量部に対し、水11.2質量部を加え、ホバートミキサーを用いて、低速1分間、さらに高速2分間混練して、混練物を調製した。   Under the conditions of a temperature of 20 ° C. and a relative humidity of 65%, 11.2 parts by mass of water is added to 100 parts by mass of the hydraulic composition, and kneaded at a low speed of 1 minute, and further at a high speed of 2 minutes, A kneaded material was prepared.

得られた混練物の液状化時間及びフロー値、混練物の硬化体の圧縮強度及び静弾性係数を評価した結果を表1及び表2に示す。   Tables 1 and 2 show the results of evaluating the liquefaction time and flow value of the obtained kneaded product, the compressive strength and the static elastic modulus of the cured product of the kneaded product.

Figure 2008260672
Figure 2008260672

Figure 2008260672
Figure 2008260672

Figure 2008260672
Figure 2008260672

1)水硬性組成物の細骨材として、適正な粒度構成を有するフェロニッケルスラグを用いた実施例1〜実施例7は、細骨材に珪砂を用いた比較例2、比較例3と比較して、硬化体の圧縮強度の向上及び弾性率の向上が顕著である。
2)消泡剤を配合した実施例4、比較例2は、消泡剤を配合していない実施例7、比較例3と対比すると、硬化体の圧縮強度の向上が顕著である。
3)水硬性組成物の細骨材に粒度の異なるフェロニッケルスラグを用いた実施例1〜3及び比較例1では、フェロニッケルスラグの粒度が小さくなるにしたがって流動性を示すフロー値が小さくなる傾向を示し、75μm未満の粒子を14.04%含む細骨材Dを用いた比較例1では良好な流動性が得られなかった。また、スラリー調整時の液状化時間も90秒と長い時間を要した。
硬化体強度においても、実施例1〜3については、材齢28日で120N/mm以上、硬化体の静弾性係数においても材齢28日で43kN/mm以上が得られている。
4)水硬性組成物の細骨材の添加量を変化させた実施例4〜6において、細骨材量の最も少ない実施例6は、実施例5及び実施例4と比較して粉体量(セメント量)が相対的に多くなり、液状化までの時間が長くなる傾向を示した。細骨材の多い実施例5、実施例4は、硬化体の材齢28日の圧縮強度は実施例6と対比して若干低いものの120N/mm以上の高強度が得られており、弾性率においては43kN/mm以上の値を示した。
1) Examples 1 to 7 using ferronickel slag having an appropriate particle size configuration as a fine aggregate of a hydraulic composition are compared with Comparative Examples 2 and 3 using silica sand as a fine aggregate. And the improvement of the compressive strength of a hardening body and the improvement of an elastic modulus are remarkable.
2) In comparison with Example 7 and Comparative Example 3 in which Example 4 and Comparative Example 2 in which an antifoaming agent was blended were compared with Example 7 and Comparative Example 3 in which no defoaming agent was blended, the improvement in the compressive strength of the cured product was significant.
3) In Examples 1 to 3 and Comparative Example 1 in which ferronickel slag having different particle sizes is used for the fine aggregate of the hydraulic composition, the flow value indicating fluidity decreases as the particle size of the ferronickel slag decreases. In Comparative Example 1 using the fine aggregate D which showed a tendency and contained 14.04% of particles less than 75 μm, good fluidity could not be obtained. Moreover, the liquefaction time at the time of slurry preparation also required a long time of 90 seconds.
Also in the cured body strength, in Examples 1 to 3, 120 N / mm 2 or more was obtained at a material age of 28 days, and the static elastic modulus of the cured body was 43 kN / mm 2 or more at a material age of 28 days.
4) In Examples 4 to 6 in which the amount of the fine aggregate added to the hydraulic composition was changed, the amount of fine aggregate in Example 6 having the smallest amount of fine aggregate was higher than that in Examples 5 and 4. (Cement amount) was relatively increased, and the time until liquefaction tended to be longer. In Examples 5 and 4 with a large amount of fine aggregate, although the compressive strength of the hardened body at the age of 28 days is slightly lower than that of Example 6, a high strength of 120 N / mm 2 or more was obtained, and the elasticity The rate was 43 kN / mm 2 or more.

本発明の水硬性組成物は、水硬性成分とフェロニッケルスラグと消泡剤とを含むことにより、モルタルの流動性に優れ、高強度、高弾性率で、無収縮の硬化体を得ることができ、土木建築分野の各種注入工法で優れた特性を発揮するグラウト材として用いることができる。
特に、プレキャスト鉄筋コンクリート部材接合用異形鉄筋の継手用スリーブの空隙部に充填するグラウト材として優れた性能を有する。
By including a hydraulic component, ferronickel slag, and an antifoaming agent, the hydraulic composition of the present invention is excellent in mortar fluidity, and can obtain a high strength, high elastic modulus, non-shrinkable cured body. It can be used as a grout material that exhibits excellent properties in various pouring methods in the field of civil engineering and construction.
In particular, it has excellent performance as a grout material that fills the gaps of the joint sleeves of deformed reinforcing bars for joining precast reinforced concrete members.

Claims (9)

セメントとフェロニッケルスラグを含む細骨材とを含有する水硬性組成物であって、
フェロニッケルスラグは、フェロニッケルスラグ100質量%中に粒径0.075〜2.4mmの粒子を80質量%以上含み、粒径0.075未満の粒子を10質量%未満含むことを特徴とする水硬性組成物。
A hydraulic composition containing cement and fine aggregate containing ferronickel slag,
The ferronickel slag contains 80% by mass or more of particles having a particle size of 0.075 to 2.4 mm in 100% by mass of ferronickel slag, and contains less than 10% by mass of particles having a particle size of less than 0.075. Hydraulic composition.
水硬性組成物は、さらに消泡剤を含むことを特徴とする請求項1に記載の水硬性組成物。 The hydraulic composition according to claim 1, further comprising an antifoaming agent. 細骨材は、細骨材100質量%中にフェロニッケルスラグを70質量%以上含むことを特徴とする請求項1または請求項2に記載の水硬性組成物。 The hydraulic composition according to claim 1 or 2, wherein the fine aggregate contains 70 mass% or more of ferronickel slag in 100 mass% of the fine aggregate. フェロニッケルスラグは、フェロニッケルスラグ100質量%中、粒径0.15〜1.2mmの粒子を80質量%以上含み、粒径0.15未満の粒子を10質量%未満含むことを特徴とする請求項1〜3のいずれか1項に記載の水硬性組成物。 Ferronickel slag contains 80% by mass or more of particles having a particle diameter of 0.15 to 1.2 mm and less than 10% by mass of particles having a particle diameter of less than 0.15 in 100% by mass of ferronickel slag. The hydraulic composition according to any one of claims 1 to 3. 水硬性組成物と水とを混練して硬化させて得られる水硬性モルタル硬化体の材齢28日の静弾性係数が、42.0kN/mm以上であることを特徴とする請求項1〜4のいずれか1項に記載の水硬性組成物。 The hydroelastic mortar cured product obtained by kneading and curing a hydraulic composition and water has a static elastic modulus of 28 days of age of 42.0 kN / mm 2 or more. 5. The hydraulic composition according to any one of 4 above. 水硬性組成物は、さらに膨張材、流動化剤及び増粘剤から選ばれた少なくとも1種以上の成分を含むことを特徴とする請求項1〜5のいずれか1項に記載の水硬性組成物。 The hydraulic composition according to any one of claims 1 to 5, wherein the hydraulic composition further comprises at least one component selected from an expanding agent, a fluidizing agent, and a thickening agent. object. 水硬性組成物は、コンクリート部材接合用異形鉄筋の継手用スリーブ空隙部の充填に使用されることを特徴とする請求項1〜6のいずれか1項に記載の水硬性組成物。 The hydraulic composition according to any one of claims 1 to 6, wherein the hydraulic composition is used for filling a joint sleeve gap of a deformed reinforcing bar for joining concrete members. 請求項1〜7のいずれか1項に記載の水硬性組成物と水とを混練して得られる水硬性モルタル。 A hydraulic mortar obtained by kneading the hydraulic composition according to any one of claims 1 to 7 and water. 請求項1〜7のいずれか1項に記載の水硬性組成物と水との配合物を硬化させて得られる水硬性モルタル硬化体。 A hydraulic mortar cured body obtained by curing the blend of the hydraulic composition according to any one of claims 1 to 7 and water.
JP2007241359A 2007-03-19 2007-09-18 Hydraulic mortar Expired - Fee Related JP5326247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241359A JP5326247B2 (en) 2007-03-19 2007-09-18 Hydraulic mortar

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007069913 2007-03-19
JP2007069913 2007-03-19
JP2007241359A JP5326247B2 (en) 2007-03-19 2007-09-18 Hydraulic mortar

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012207078A Division JP5533967B2 (en) 2007-03-19 2012-09-20 Hydraulic composition, method for using hydraulic composition, method for producing hydraulic mortar, and method for producing hydraulic mortar cured body

Publications (2)

Publication Number Publication Date
JP2008260672A true JP2008260672A (en) 2008-10-30
JP5326247B2 JP5326247B2 (en) 2013-10-30

Family

ID=39983440

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007241359A Expired - Fee Related JP5326247B2 (en) 2007-03-19 2007-09-18 Hydraulic mortar
JP2012207078A Expired - Fee Related JP5533967B2 (en) 2007-03-19 2012-09-20 Hydraulic composition, method for using hydraulic composition, method for producing hydraulic mortar, and method for producing hydraulic mortar cured body

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012207078A Expired - Fee Related JP5533967B2 (en) 2007-03-19 2012-09-20 Hydraulic composition, method for using hydraulic composition, method for producing hydraulic mortar, and method for producing hydraulic mortar cured body

Country Status (1)

Country Link
JP (2) JP5326247B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144403A (en) * 2011-01-14 2012-08-02 Ohbayashi Corp High-strength mortar composition
JP2012171804A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp High strength mortar composition
JP5578261B1 (en) * 2013-08-23 2014-08-27 家庭化学工業株式会社 Mortar composition for anti-slip material and anti-slip material
KR20200113342A (en) * 2019-03-25 2020-10-07 (주)유성아이엔씨 Non-Shrink Grout Material
JP2021123515A (en) * 2020-02-04 2021-08-30 株式会社トクヤマ Production method of cement-based hardening body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108996975B (en) * 2018-09-17 2020-11-20 武汉源锦建材科技有限公司 Sleeve grouting material for negative temperature type steel bar connection and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132744A (en) * 1985-12-06 1987-06-16 住友金属鉱山株式会社 Manufacture of ferronickel slag for concrete aggregate
JPH08325047A (en) * 1995-04-06 1996-12-10 Takenaka Komuten Co Ltd Fine aggregate for high fluidity concrete
JPH0952744A (en) * 1995-08-09 1997-02-25 Chichibu Onoda Cement Corp Mortar and concrete composition
JP2001355315A (en) * 2000-06-14 2001-12-26 Mitsubishi Materials Corp Filler for reinforcing-bar joint and manufacturing method therefor
JP2004161550A (en) * 2002-11-14 2004-06-10 Sumitomo Osaka Cement Co Ltd Concrete

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132744A (en) * 1985-12-06 1987-06-16 住友金属鉱山株式会社 Manufacture of ferronickel slag for concrete aggregate
JPH08325047A (en) * 1995-04-06 1996-12-10 Takenaka Komuten Co Ltd Fine aggregate for high fluidity concrete
JPH0952744A (en) * 1995-08-09 1997-02-25 Chichibu Onoda Cement Corp Mortar and concrete composition
JP2001355315A (en) * 2000-06-14 2001-12-26 Mitsubishi Materials Corp Filler for reinforcing-bar joint and manufacturing method therefor
JP2004161550A (en) * 2002-11-14 2004-06-10 Sumitomo Osaka Cement Co Ltd Concrete

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144403A (en) * 2011-01-14 2012-08-02 Ohbayashi Corp High-strength mortar composition
JP2012171804A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp High strength mortar composition
JP5578261B1 (en) * 2013-08-23 2014-08-27 家庭化学工業株式会社 Mortar composition for anti-slip material and anti-slip material
KR20200113342A (en) * 2019-03-25 2020-10-07 (주)유성아이엔씨 Non-Shrink Grout Material
KR102240724B1 (en) 2019-03-25 2021-04-16 주식회사 하이콘코리아 Non-Shrink Grout Material
JP2021123515A (en) * 2020-02-04 2021-08-30 株式会社トクヤマ Production method of cement-based hardening body
JP7344148B2 (en) 2020-02-04 2023-09-13 株式会社トクヤマ Manufacturing method of cement-based hardened body

Also Published As

Publication number Publication date
JP5326247B2 (en) 2013-10-30
JP2012246221A (en) 2012-12-13
JP5533967B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP4502298B2 (en) Cement composition and acid resistant cement / concrete using the same
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
JP5533967B2 (en) Hydraulic composition, method for using hydraulic composition, method for producing hydraulic mortar, and method for producing hydraulic mortar cured body
JP6891041B2 (en) Fast-strength ultra-high-strength grout composition
JP4918801B2 (en) Hydraulic composition
TWI778211B (en) High-strength grouting material composition, high-strength grouting mortar using the same, and manufacturing method of high-strength grouting mortar
JP2007320832A (en) Grout composition and grout mortar using the same
JP2007153725A (en) Hydraulic composition, and mortar and hardened body thereof
JP6133596B2 (en) Expanded material and expanded concrete
JP4893083B2 (en) Hydraulic composition
JP5145918B2 (en) Underwater inseparable cement-based filling composition and underwater inseparable cement mortar
JP4718969B2 (en) Foaming agent, non-shrink grout composition, and non-shrink grout material using the same
JP6023488B2 (en) Paste composition
JP2011178604A (en) Cement-containing powder composition and hydraulic composition
JP5399969B2 (en) Slump loss reduction method for expanded concrete
JP2007106664A (en) Hydraulic composition
JP6591784B2 (en) Construction method for concrete floor structures
JP2022183463A (en) Low-shrinkage ultra-high strength grout composition and low-shrinkage ultra-high strength grout
JP2005119885A (en) High strength mortar composition
JP7058913B2 (en) Fast-hardening cement composition and fast-hardening mortar
JP5709046B2 (en) Cement composition
JP2007153724A (en) Hydraulic composition, and mortar and hardened body thereof
JP2004161531A (en) Rapid-hardening high-flow concrete
JP2014019586A (en) Paste composition and mortar composition
JP5863478B2 (en) Reinforcing bar joint filler and reinforcing joint filling method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees