JP6305869B2 - 建設機械用エンジン制御装置 - Google Patents

建設機械用エンジン制御装置 Download PDF

Info

Publication number
JP6305869B2
JP6305869B2 JP2014166580A JP2014166580A JP6305869B2 JP 6305869 B2 JP6305869 B2 JP 6305869B2 JP 2014166580 A JP2014166580 A JP 2014166580A JP 2014166580 A JP2014166580 A JP 2014166580A JP 6305869 B2 JP6305869 B2 JP 6305869B2
Authority
JP
Japan
Prior art keywords
engine
load
value
engine load
load factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014166580A
Other languages
English (en)
Other versions
JP2016041924A (ja
Inventor
佐藤 真也
真也 佐藤
星野 雅俊
雅俊 星野
石川 広二
広二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2014166580A priority Critical patent/JP6305869B2/ja
Priority to PCT/JP2015/054186 priority patent/WO2016027480A1/ja
Publication of JP2016041924A publication Critical patent/JP2016041924A/ja
Application granted granted Critical
Publication of JP6305869B2 publication Critical patent/JP6305869B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明はエンジンで油圧ポンプを駆動する建設機械のエンジン制御装置に関する。
建設機械である油圧ショベルは、一般に、内燃機関であるエンジン(主にディーゼルエンジン)を駆動源とする油圧ポンプによって圧油を生成し、圧油によって走行モータや旋回モータ、油圧シリンダ等の油圧アクチュエータを駆動することで、油圧ショベルにおける所望の動作(走行動作、旋回動作、掘削動作など)を行う。
エンジンは油圧ショベルにおける油圧ポンプ駆動の原動力であるが、油圧ショベルのエンジンはその作業の性質上トラック等の車両のエンジンと比較して高負荷運転で利用され、しかも高負荷運転の頻度が高い。
例えば、特開2010−121373号公報には、油圧ショベルのエンジン負荷の低減を図った技術が開示されている。当該文献では、ポンプの動力源としてエンジンの他にアシストモータを追加し(所謂ハイブリッド動力構成とし)、要求される油圧ポンプ動力負荷を直流成分と交流成分に分離し、直流成分をエンジンに、交流成分をモータに負担させることで、エンジンへの急激な負荷変動を抑制し、エンジンへの負担を緩和するものである。
特開2010−121373号公報
油圧ショベルとトラック等の車両とでは、エンジンの利用形態が全く異なり、その結果、必然的にエンジンの設計思想も異なってくる。そのため、仮に上記文献の技術を適用したとしても、車両用のエンジンに特段の仕様変更を加えずに油圧ショベルのエンジンとして流用することは難しい。そこで、通常は、(1)油圧ショベル専用に高負荷運転を前提にしたエンジンを設計するか、または(2)車両用エンジンに高負荷運転に耐え得るような仕様変更を加えてエンジン各部を強化する必要がある。
そのため、油圧ショベルのエンジン製造に関して、上記(2)の方法を用いることなく、車両用のエンジンに特段の仕様変更を加えずに油圧ショベルのエンジンとして流用することが可能となれば、油圧ショベルをはじめとする建設機械の製造コストを大幅に削減する1つの手段たり得る。
この点に関連して、上記文献の方式では、過渡的なエンジン負荷は低減できるものの、定常的なエンジン負荷の低減については考慮されていない。つまり、当該文献の技術は、従来と同様に油圧ショベルにおける高負荷運転の継続(定常的なエンジン負荷)を許容するものであり、その頻度や継続時間を低減することに関しては考慮されていない。したがって、油圧ショベルのエンジンとして車両用のエンジンを流用可能にする程度まではエンジン負荷は低減できず、依然として上記(1)または(2)の方法で油圧ショベル用のエンジンを用意する必要がある。つまり、エンジン開発に多大な工数および費用が掛かるという問題は依然として解決できない。
本発明の目的は、建設機械のエンジンよりも低負荷で常用され、量産体制が確立された価格の低廉なエンジン(例えば、車両用エンジン)を、特段の仕様変更を加えることなく建設機械で利用可能にすることにある。
上記目的を達成するために、本発明に係る建設機械用エンジン制御装置は、油圧ポンプを駆動するエンジンと、当該エンジンの負荷に関連するパラメータの時間変化の傾向を示すエンジン負荷指標値を演算する負荷指標演算部と、前記エンジンの出力を調整する出力調整部とを備え、前記エンジンの回転数および負荷によって規定される前記エンジンの運転領域には、無負荷から全負荷までの領域からなる第1運転領域と、当該第1運転領域内に含まれ当該第1運転領域より狭い第2運転領域とが設定されており、前記出力調整部は、前記エンジン負荷指標値が前記第2運転領域内に収まるように、前記エンジンの出力を調整することを特徴とする。
本発明によれば、エンジンが高負荷運転される頻度および時間を低減できるので、建設機械のエンジンよりも低負荷で常用されるエンジンを、特段の仕様変更を加えることなく建設機械で利用することが可能となり、建設機械の製造コストを削減できる。
油圧ショベルの外観を示す図(第1実施形態)。 油圧ショベルのシステム構成を示す図(第1実施形態)。 エンジン周辺のシステム構成を示す図(第1実施形態)。 エンジン負荷制御に関する基本な考え方を示す図(第1実施形態)。 エンジン負荷制御におけるエンジン負荷率基準値設定に関する考え方を示す図(第1実施形態)。 エンジン負荷制御非実施時のタイムチャートを示す図。 エンジン負荷制御実施時のタイムチャートを示す図(第1実施形態)。 エンジン周辺の制御ロジック構成を示す図(第1実施形態)。 エンジン負荷制御に関する制御フローチャートを示す図(第1実施形態)。 油圧ショベルのシステム構成を示す図(第1実施形態)。 エンジン周辺のシステム構成を示す図(第1実施形態)。 エンジン負荷制御非実施時のタイムチャートを示す図。 エンジン負荷制御実施時のタイムチャートを示す図(第1実施形態)。 エンジン周辺の制御ロジック構成を示す図(第1実施形態)。 エンジン負荷制御に関する制御フローチャートを示す図(第1実施形態)。 車両用エンジンと油圧ショベル用エンジンの負荷率分布の違いを示す図。
本発明の実施の形態を説明する前に、まず、本発明の実施の形態に係るエンジン制御装置および建設機械に含まれる主な特徴について説明する。
(1)後述する本実施の形態に係る建設機械用エンジン制御装置は、油圧ポンプを駆動するエンジンと、当該エンジンの負荷に関連するパラメータの時間変化の傾向を示すエンジン負荷指標値を演算する負荷指標演算部(例えば、後述のエンジン負荷率移動平均値演算部504)と、前記エンジンの出力を調整する出力調整部(例えば、後述のエンジンコントロールユニット103)とを備え、前記エンジンの回転数および負荷によって規定される前記エンジンの運転領域には、無負荷から全負荷までの領域からなる第1運転領域と、当該第1運転領域内に含まれ当該第1運転領域より狭い第2運転領域とが設定されており、前記出力調整部は、前記エンジン負荷指標値が前記第2運転領域内に収まるように、前記エンジンの出力を調整することを特徴とする。
建設機械に搭載されるエンジンの調達方法の1つには、建設機械以外の機械(例えば、トラックを含む車両)への搭載を前提としたエンジンであって、量産体制が確立されて価格の低廉なエンジンに対して、建設機械での頻繁な高負荷運転にも耐え得るような仕様変更(エンジン強化)を加えた後に建設機械に搭載する方法がある。この方法に利用されるエンジンとしては、例えば、トラック等の車両用のエンジンがあるが、この種の車両におけるエンジン負荷率(或る回転数(図16中のN)での最大エンジントルク(全負荷)に対する実際のトルク(同図中のT)の割合)の分布は、図16に示すように最大トルク(全負荷)から比較的離れた下方の領域に集中する。これに対して、油圧ショベル(建設機械)におけるエンジン負荷率の分布は、図16に示すように最大トルクの近傍に集中する頻度が多く、車両で利用する場合と比較して高負荷頻度が高くエンジンに作用するストレスが大きい。そのため、上記方法のように車両用のエンジンをベースに油圧ショベルの開発を進める場合には、当該車両用エンジンに対して耐高負荷性能を付加する各種施策が必要であり、それ故に開発期間の長期化とコストの増加に繋がるという課題があった。
この種の課題に対して、上記のように、前記第1運転領域と前記第2運転領域を前記エンジンの運転領域として設定し、前記エンジンの負荷に関連するパラメータの時間変化の傾向を示す前記エンジン負荷指標値が前記第2運転領域内に収まるように前記エンジンの出力を調整する構成を建設機械用エンジン制御装置に採用すると、定常的なエンジン負荷は前記第1運転領域より狭い前記第2運転領域の輪郭線上およびその内側に制限されるので、全負荷に近い状態でエンジンが頻繁に利用される事態を回避できる。したがって、主として全負荷未満の所定の範囲の負荷での利用を前提に設計されたエンジンを建設機械に搭載しても、当該エンジンの運転領域を前記第2運転領域以内に限定することで、当該エンジンが当該所定の範囲を逸脱した高負荷で継続利用されることが回避されるので、当該エンジンの建設機械への流用が容易となり、建設機械用エンジンの製造コスト、ひいては建設機械の製造コストを大幅に削減できる。
本発明において、前記エンジンの負荷に関連するパラメータの時間変化の傾向を示す前記エンジン負荷指標値を制御に利用する主な趣旨は、エンジン負荷の瞬間的な変動(ミクロな変動)を捨象する一方で、エンジン負荷のマクロな変動に着目してエンジン負荷変化の傾向を把握するためである。このように前記パラメータの時間変化そのものではなく当該パラメータの時間変化の“傾向”を出力調整の判断基準にすると、エンジン負荷が瞬間的に前記第2運転領域の上限値を超えるような使い方は許容されるので、仕事量や操作性が顕著に低下することが抑制できる。
上記(1)における前記エンジン負荷指標値には、前記エンジンを無負荷から全負荷未満の所定の範囲で継続的に使用するために定めた前記第2運転領域の上限値である基準値(例えば、後述のエンジン負荷率基準値(トラック常用負荷率上限値))が設定されており、前記基準値は全負荷未満の値とすることが好ましい。これにより、主として全負荷未満の所定の範囲の負荷での利用(例えば前記第2運転領域での利用)を前提に設計されたエンジンを建設機械に搭載しても、当該エンジンの運転領域を前記第2運転領域以内に限定することで、当該エンジンが当該所定の範囲を逸脱した高負荷で継続利用されることが回避される。
上記(1)における前記エンジン負荷指標値の具体例としては、前記エンジンの負荷に関連するパラメータの時系列を累積した値を前記エンジン負荷指標値として利用するものがある。この場合の前記基準値としては、前記エンジンが前記所定の範囲における上限値で継続的に利用された場合の前記エンジン負荷指標値の累積値を参考にしつつ、時間増加に比例して増加する値(例えば当該値を時間増加とともに単調増加する時間の関数で定義する)となるように前記基準値を設定する方法がある。この場合、前記パラメータの時系列の累積値である前記エンジン負荷指標値が前記基準値以下に保持されるようにエンジン出力が調整される。
また、上記(1)における前記エンジン負荷指標値の他の具体例としては、前記エンジンの負荷に関連するパラメータの時系列に平滑化処理を施して得られる数値を前記エンジン負荷指標値として利用するものがある。この場合の前記基準値としては、前記エンジンが全負荷のときにおける前記パラメータの値未満の値を前記基準値として設定する方法がある。このように、平滑化処理を経て得られるエンジン負荷指標値が前記基準値以下に保持されるように前記エンジンの出力を調整する構成を建設機械用エンジン制御装置に採用すると、平滑化処理とエンジン出力調整の機能により、エンジン負荷が瞬間的に基準値を超えて増加することは許容されるものの、定常的なエンジン負荷は基準値以下(つまり全負荷の値未満)に制限されるので、全負荷に近い状態でエンジンが頻繁に利用される事態が発生することを回避できる(この場合については後述する各実施の形態で詳細に説明する)。
なお、平滑処理時に利用する時定数としては、エンジン負荷変動に伴うエンジン温度の応答性を考慮して、例えば、エンジン本体の熱時定数を利用することができる。また、平滑化処理の具体例としては、例えば、移動平均(例えば、単純移動平均、加重移動平均、累積移動平均)や、フィルタ処理(例えば、ローパスフィルタ処理)がある。
(2)上記(1)における「基準値」は、建設機械に搭載するエンジンの仕様に合わせて設定することが好ましく、当該エンジンが常用される負荷範囲(常用域)が概ね決まっている場合には当該負荷範囲の上限値に前記基準値を設定することが好ましい。このように前記基準値を設定すれば、常用される負荷範囲を逸脱してエンジンが利用されることが無くなるので、当該エンジンが建設機械での使用を前提としない思想の下で設計・製造されていたとしても、建設機械への流用が容易になる。なお、エンジンの常用域が概ね決まっているものとしては、トラック等をはじめとする車両がある。ただし、エンジンの常用域が決まっている場合でも、当該常用域の上限値未満の値であれば、その値を前記基準値として設定しても良い。
また、上記における「基準値」は、エンジン回転数に関わらず一定の値としても良いし、エンジン回転数ごとに変化させても良い。後者の場合の具体例としては、回転数ごとの最大エンジントルクを基準値設定の基準として、各回転数における最大エンジントルクの何割(例えば、7割)に対応するトルクを基準値として設定するものがある。図16の上段のように最大トルクが「上に凸」の曲線を描くときには、基準値は、当該最大トルクが描く曲線の下方に位置する上に凸の曲線を描くことになる。
(3)上記(1)における「前記エンジンの負荷に関連するパラメータ」としては、例えば、エンジントルク、エンジン回転数、エンジン吸気圧、エンジン筒内圧、燃料噴射量、ターボチャージャーにおけるタービン回転数、または、前記油圧ポンプの要求トルク等を含む、エンジン状態を示す種々のパラメータ(エンジン状態パラメータ)がある。これらパラメータの2つ以上を前記パラメータとして利用しても良いし、エンジン負荷を直接的または間接的に判断可能なパラメータであれば、他のものでも構わない。
上記(1)における「前記エンジンの負荷に関連するパラメータ」の他の具体例としては、エンジン負荷またはエンジン負荷率も利用可能である。エンジン負荷は、上記のエンジン状態パラメータの少なくとも1つから推定が可能であり、例えば、エンジントルク、燃料噴射量および油圧ポンプの要求トルクの少なくとも1つから推定が可能である。なお、上記におけるエンジン負荷率とは、その回転数におけるエンジン最大トルクに対するエンジントルクの割合を示す。
なお、「前記エンジンの負荷に関連するパラメータ」の取得手段としては、建設機械に搭載した各種センサの出力値からの取得、建設機械に搭載されたコンピュータ(マイコンを含む)の算出値や記憶値からの取得など種々の手段が可能である。例えば、上記エンジン状態パラメータのうち、エンジン回転数、エンジン吸気圧、エンジン筒内圧、タービン回転数などはセンサからの出力値から取得でき、例えば燃料噴射量はエンジンコントロールユニットにおける算出値が利用可能である。
以下、本発明の実施の形態について図面を用いて説明する。図1は、本発明の一実施形態に係わる油圧ショベル1(油圧建設機械、油圧作業機械)の外観図を示す。油圧ショベル1は、垂直方向にそれぞれ回動するブーム6、アーム7及びバケット8からなる多関節型のフロント作業装置(作業装置)2と、上部旋回体4及び下部走行体5からなる車体3とで構成され、フロント作業装置2のブーム6の基端(図中右端)は、上部旋回体4の前部に、垂直方向に対して回動可能に支持されている。
図2は、本発明の第1の実施の形態に係る油圧ショベル1の全体システム構成図である。なお、図2において、太い黒矢印は、油圧ポンプ24から各アクチュエータ31,42,9,10,11までの圧油の流れを示し、太い白矢印は、各アクチュエータ31,42,9,10,11からタンク26を経由してポンプ24までの戻り油の流れを示している。また、図2中の細い黒矢印は動力または電力の供給方向を示している。
図2から明らかなように、本実施の形態の油圧ショベルは、油圧ポンプ24の駆動源としてディーゼルエンジン21とモータ22を備えた所謂ハイブリッド型の油圧ショベルである。ディーゼルエンジン21とアシストモータ22と油圧ポンプ24は機械的に接続されており、油圧ポンプ24はエンジン21とアシストモータ22の軸出力を合算したもの(合計出力)によって駆動される。
また、アシストモータ22はバッテリ23に電気的に接続されており、モータ22の力行時にはバッテリ23から電力の供給を受けて油圧ポンプ24を駆動する。なお、所定の条件を満たした場合には、アシストモータ22は発電機として機能する。その際には、アシストモータ22は、エンジン21の軸出力によって駆動されて発電し、その発電時の電力をバッテリ(蓄電装置)23に蓄電する。
油圧ポンプ24では、作動油タンク26から送り込まれる作動油を圧縮して圧油とし、コントロールバルブ25に送り込む。コントロールバルブ25は、オペレータからの操作レバー(図示せず)を介した操作指令を基に、走行動作に必要な走行油圧モータ42への供給圧油、上部旋回体動作に必要な旋回油圧モータ31への供給圧油、作業装置2の動作に必要な油圧シリンダ9,10,11への供給圧油を分配し、不要な圧油については作動油タンク26に戻す機能を有する。
旋回油圧モータ31は、コントロールバルブ25から分配された圧油を動力源にし、旋回減速装置32および旋回歯車33を介して上部旋回体4を駆動する。走行油圧モータ42は、センタージョイント41を経由してコントロールバルブ25から送られる圧油でもって駆動され、走行減速装置43を介してクローラ44を駆動する。また、作業装置2(ブーム6、アーム7、バケット8)については、コントロールバルブ25から分配された圧油を基に、ブームシリンダ9、アームシリンダ10、バケットシリンダ11が駆動され、その結果ブーム6、アーム7およびバケット8のそれぞれがオペレータにより操作レバーを介して指示される所望の動作に従って制御される。
図3は、第1の実施の形態に係る油圧ショベル用のエンジンと、その周辺のシステム構成を示す図である。油圧ポンプ24には、油圧ポンプ24を駆動するための動力源として、出力シャフト305を介してディーゼルエンジン21とアシストモータ22が直結されており、アシストモータ22にはバッテリ23が電気的に接続されている。これらを制御するためのコントロールユニットとして、油圧ショベル1の中枢を司るコンピュータであるメインコントロールユニット101と、油圧ショベルの状態をオペレータに向けて表示する表示装置および当該表示装置への表示に係る処理を実行するコンピュータがユニット化されたモニターユニット102と、エンジン21を制御するコンピュータであるエンジンコントロールユニット103と、アシストモータ22を制御するコンピュータであるモータコントロールユニット104と、バッテリ23の状態監視等を行うコンピュータであるバッテリコントロールユニット105などが存在し、これらのコントロールユニット(コンピュータ)102,103,104,105は、メインコントロールユニット101を中心に、情報ネットワークによって相互に接続されている。
メインコントロールユニット101への動力制御関係の入力としては、エンジン21の始動や停止に関わるキースイッチ201と、オペレータがエンジン21の回転数を指定するためのエンジンコントロールダイヤル202と、油圧ショベル1の状況に応じてアイドル回転数を最適化するオートアイドルスイッチ203と、オペレータがエンジン21(エンジン12およびモータ22)の出力を調整するためのパワーモードスイッチ204と、走行動作、上部旋回体動作、作業装置動作を指示する操作レバーから出力される操作レバー信号205等がある。
また、周辺コントロールユニットからの情報として、エンジンコントロールユニット103からはエンジン21の運転状況や異常有無、モータコントロールユニット104からはアシストモータ22の運転状況や異常有無、バッテリコントロールユニット105からはバッテリ23の蓄電量や異常有無等の情報がメインコントロールユニット101に入力される。
メインコントロールユニット101における動力系の機能としては、前記入力情報を基に油圧ポンプ24の出力を制御する他、エンジン21とアシストモータ22の動力配分等の動力系上位マネジメントを実施し、この上位指令を受けて、エンジンコントロールユニット103とモータコントロールユニット104は、ディーゼルエンジン21とアシストモータ22をそれぞれ制御する。これによりメインコントロールユニット101とエンジンコントロールユニット103はディーゼルエンジン21の制御装置(エンジン制御装置)として機能する。
エンジン21は、エンジンコントロールユニット103からの目標燃料噴射量指令に基づいて燃料を噴射する燃料噴射装置301と、排気マニホールド302と、タービンを有するターボチャージャー303と、排気管304と、DPF装置401を備えている。
エンジン21の出力軸305には、エンジン回転数を検出するための回転センサ306が取り付けられており、回転センサ306は検出値をエンジンコントロールユニット103に出力している。過給圧センサ307はターボチャージャー(過給器)303の過給圧を検出し、エンジンコントロールユニット103に出力している。
DPF装置401は、酸化触媒403と、PM捕集フィルタ403を備えている。酸化触媒403とPM捕集フィルタ403の間には吸気温度センサ404が設置されており、PM捕集フィルタ403の前後差圧を検出するDPF差圧センサ405が設置されている。両センサ404,405の検出値は、エンジンコントロールユニット103に出力されている。
次に、本発明に係る油圧ショベル1で行われるエンジン負荷制御に関する基本的な考え方を図4に示す。図4では、エンジン21の負荷を、その時のエンジン回転数NにおけるエンジントルクTで示している。
本実施の形態では、エンジン21として、走行をメインの作業とする乗用車、貨物車(例えば、トラック等)などの車両用エンジンのうちトラック用エンジンを利用している。トラック用エンジンを含め、車両用エンジンは、通常、建設機械でのエンジンの使用と比較して低負荷で常用され、量産体制が確立されているため価格が低廉である。エンジン21は、油圧ポンプ24の定格出力に対応したトラック用エンジンをベースとし、油圧ポンプ24の負荷パターンの強弱に応じて動力制御の内容を切り換える。
本実施の形態で行うエンジン負荷制御の目的は、油圧ショベル運用時のエンジン負荷分布(図4ではエンジントルク分布)をトラック用エンジンの負荷分布に近づけることにあり、これによって安価なトラック用エンジンを、大きな仕様変更を行うこと無く、ショベル用エンジンとして搭載することが可能となる。
そこで、図4では、エンジン回転数とエンジントルクで規定される2次元のエンジン運転領域として第1運転領域R1および第2運転領域R2を設定した。第1運転領域R1は、無負荷(トルクゼロ)から全負荷(各回点数における最大エンジントルク)までの範囲に規定される油圧ショベルの通常の運転領域であり、各回転数における最大エンジントルク(全負荷)の集合によって描かれる線T1上の点および当該線T1より下方に位置する領域がこれに該当する。第2運転領域R2は、トラック用エンジンで常用される運転領域(常用域)を考慮して設定されており、第2運転領域R2は、無負荷から全負荷未満(T1未満)の所定の値(T2上の値)までの範囲に規定される運転領域であり、各回転数においてT1未満に設定された所定値の集合によって描かれる線T2上の点および当該線T2より下方に位置する領域がこれに該当する。これにより第2運転領域R2は第1運転領域R1に内包され、その面積は第1運転領域R1のものより狭くなっている。つまり、第2運転領域R2でエンジンを運転すれば、第1運転領域R1で運転した場合よりもエンジン負荷を継続的に低減できる。
トルク線T2は、各回転数におけるエンジン負荷基準値(詳細は後述)の集合であり、図4の例ではトラック常用域におけるエンジン負荷の上限値(トラック常用負荷上限値)に一致している。なお、トルク線T2は、トラック常用域に含まれるように設定すれば良く、図4の例のようにトラック常用負荷上限値と一致させる必要は必ずしも無い。さらに、図4の例におけるトルク線T2はトルク線T1を下方に概ね平行移動したような値に設定されているが、いずれの回転数においてもトルク線T2がトルク線T1の下方に位置すれば良く、図4の例だけに限らないものとする。以下に本実施の形態で行うエンジン負荷制御の具体的なロジックを示す。
(1)軽負荷パターン時
まず、油圧ポンプ24の負荷(油圧ポンプ吸収トルク)が小さく、エンジン21の平均負荷(エンジン負荷指標値)がトルク線T2上の値以下となる場合(第2運転領域R2に含まれる場合)には、「軽負荷パターン時」と判断し、図4中の下段右下の図に示すように第1運転領域R1内での通常のエンジン負荷制御を行い、油圧ポンプ吸収トルクに応じてエンジン負荷を制御する。このとき、第2運転領域R2内でエンジン負荷が制御され、エンジン21単独で油圧ポンプ吸収トルクの出力が可能であるため、モータ22によるアシストは行われない。
(2)高負荷連続運転時
次に、油圧ポンプ負荷が大きく、エンジン21の平均負荷(エンジン負荷指標値)がトルク線T2を超える場合には、「高負荷連続運転時」と判断し、図4中の下段上方に示すように、T2を超えるエンジン21への要求トルクに対し、第2運転領域R2の上限値であるエンジン負荷基準値T2のトルクレベルまでエンジントルクを制限する(減少させる)。そして、エンジントルクT1とT2の差分を補填するために、アシストモータ22にてトルクアシストを実施する。この場合、バッテリ23の蓄電量が少ない等の理由でモータ22が使用不可のときは、一時的(例えば、モータ22が使用可能になるまでの間)にエンジン単体運転に切り換える。
図4ではエンジン21の負荷をエンジントルクで示したが、図5以下の説明では、これに代えて、エンジン21の負荷を、まず、その時のエンジン回転数におけるエンジン最大トルクに対するエンジントルクの割合である「エンジン負荷率」で示す。そして、当該エンジン負荷率の時系列の単純移動平均(エンジン平均負荷率)をエンジン負荷を示す指標値(エンジン負荷指標値)として採用する。さらに、図4のエンジン負荷基準値に代えて、図5以下の説明では「エンジン負荷率基準値」を利用し、以下では、エンジン負荷指標値がエンジン負荷率基準値以下に保持されるようにエンジン負荷の制御(エンジン負荷制御)を行う場合について説明する。
まず、「エンジン負荷率基準値」の設定に関する考え方を、図5を用いて説明する。図5は、一般路におけるトラック用エンジンの動作点(エンジン回転数とエンジン負荷率の組み合わせ)の分布を示すものである。図中の直線「定格トルク」上では、エンジンは全負荷であり、エンジン負荷率は100%となる。
この図に示すように、トラックにおけるエンジンの負荷率分布は、ほぼ正規分布と見なすことができ、エンジン負荷率の平均値±2σの範囲内に、ほぼ集中して分布している。そこで、エンジン負荷率の平均値±2σの範囲をトラック用エンジンにおける常用域(負荷率常用域)と見なし、その上限値をエンジン負荷率基準値と設定する。前記エンジンの負荷率分布の上限値については、統計的にエンジン負荷率50〜70%の範囲で多く見られることから、エンジン負荷率70%以下を目安に設定するのが好ましい。なお、これをエンジン負荷で換言すると、エンジン全負荷の7割以下の負荷にエンジン負荷率基準値を設定することが目安となる。
次に、エンジン負荷制御の具体的な制御内容について、図6および図7に示すタイムチャートを用いて説明する。図6および図7に係る油圧ショベルにおいては、後述するエンジン回転数フィードバック制御によって、油圧ポンプ吸収トルクとエンジン駆動トルクが等しい関係が常時保たれており、油圧ポンプ吸収トルクがステップ状に変化した際には、エンジン駆動トルクも同期して追従するように構成されている。また、図6および図7では、油圧ポンプ負荷率の時系列の移動平均である油圧ポンプ負荷率移動平均値と、エンジン負荷率の時系列の移動平均であるエンジン負荷率移動平均値を太線で示し、油圧用ショベル用エンジンのベースであるトラック用エンジンの負荷率分布を基に定めたエンジン負荷率基準値を破線で示す。油圧ポンプ吸収トルクとエンジン駆動トルクのステップ状の変化に対して、太線の油圧ポンプ負荷率移動平均値とエンジン負荷率移動平均値はフィードバック制御及び平滑化処理により緩やかに応答している。
図6は、本発明の第1の実施の形態(図7参照)の比較対象として、エンジン負荷制御を実施しない場合における油圧ポンプ負荷率(油圧ポンプ吸収トルクを負荷率に換算したもの)とエンジン負荷率(エンジン駆動トルクを負荷率に換算したもの)のタイムチャートを示している。図6においてエンジン負荷率移動平均値とエンジン負荷率基準値との大小関係に注目すると、時刻T1〜T3、およびT5〜T8の区間において、エンジン負荷率移動平均値がエンジン負荷率基準値を上回っており、ベースエンジン(トラック用エンジン)の素性に対して、エンジン負荷が高い区間となる。
一方、図7は、第1の実施の形態に係るエンジン負荷制御を実施した際における、油圧ポンプ負荷率とエンジン負荷率のタイムチャートを示している。図6のエンジン負荷制御の非実施時と同様に、時刻T1にてエンジン負荷率移動平均値がエンジン負荷率基準値に到達するが、ここでエンジン負荷制御が機能してエンジントルクに制限を掛けることで、エンジン負荷率をエンジン負荷率基準値レベルまで低下させる。このエンジン負荷制御の結果によりエンジントルク(エンジンのアウトプット(出力))が低下したことで、要求されるポンプ吸収トルクに対して動力不足が生じるのを防ぐために、当該不足相当分の動力についてはアシストモータ22の出力で補填して(つまり、アシストモータ22によるエンジンアシストを実行して)、エンジン21とモータ22の合計出力が要求ポンプ吸収トルクを満たす協調制御を実施することにより、仕事量の低下や操作性の悪化を回避する。
ところで、本実施の形態では、アシストモータ22のエンジンアシストによりバッテリ23の蓄電量(SOC)が目標SOCを下回った場合に、油圧ポンプ負荷率およびエンジン負荷率がエンジン負荷率基準値を下回ったときには、アシストモータ22を力行モードから発電モードに切り替えて、エンジン21にてアシストモータ22を駆動することでバッテリ蓄電量を回復させている。そこで、図7では、時刻T2にて油圧ポンプ負荷率が減少した際にも、エンジン負荷率基準値を上限とする範囲内でエンジンを継続して駆動し、アシストモータ22にて発電を実施している(時刻T2〜T4)。具体的には、油圧ポンプ負荷率およびエンジン負荷率がエンジン負荷率基準値を下回る時刻T2で発電が開始され、油圧ポンプ負荷率およびエンジン負荷率がエンジン負荷率基準値を上回る時刻T4で発電が終了(中断)している。
その後、時刻T4からT7にかけて、負荷率の高い油圧ポンプ負荷が再度生じた際には、時刻T1からT2の処理と同様に、エンジン負荷率をエンジン負荷率基準値レベルまで低下させると共に、エンジントルクの不足分については、アシストモータ22でアシストさせて、エンジン21とモータ22による協調制御を実施する。
ところで、アシストモータ22によるエンジンアシストの実施可否は、バッテリ23の蓄電量を加味して判断される。本実施の形態では、アシストモータ22によるエンジンアシストによりバッテリ23蓄電量(SOC)が下限値まで低下した場合には(時刻T6)、アシストモータ22の駆動が不可となるため、時刻T6の時点でアシストモータ22の駆動を停止し、エンジン単独運転に切り替えている(時刻T6〜T7)。その後、時刻T2〜T4と同様に、バッテリ蓄電量を目標値に回復させる目的で、エンジン負荷率基準値を上限とする範囲内でエンジンを継続して駆動し、発電を実施する(時刻T7〜T9)。なお、ここでは、アシストモータ22によるエンジンアシストの実施の可否を決定するバッテリ充電量を「下限値」としたが、その他のSOCの値を基準にしてエンジンアシストの実施/不実施を決定しても良い。
次に、第1の実施の形態に係るエンジン負荷制御を実現するための制御ブロック概要を、図8を用いて説明する。本実施の形態に係る油圧ショベル1は、エンジン負荷制御に関わるコントロールユニットやアクチュエータとして、メインコントロールユニット101、モニターユニット102、エンジンコントロールユニット103、バッテリコントロールユニット105、モータコントロールユニット104、油圧ポンプ24等を備えている。
ここで、メインコントロールユニット101およびその周辺の演算ブロックについて説明する。メインコントロールユニット101は、目標エンジン回転数演算部501と、エンジン負荷率基準値演算部502と、エンジン負荷率演算部503と、エンジン負荷率移動平均値演算部504と、発電時モータ駆動トルク要求値演算部505と、油圧ポンプ吸収トルク要求値演算部506と、エンジントルク制限値演算部507と、モータアシストトルク基本値演算部508と、油圧ポンプ吸収トルク目標知演算部509を備えている。
目標エンジン回転数演算部501では、前述の図3で示したエンジンコントロールダイヤル202等の入力を基に目標エンジン回転数を演算し、演算結果をエンジンコントロールユニット103およびモータコントロールユニット104に対して送信する。また、エンジンコントロールユニット103は、受信した目標エンジン回転数と実際のエンジン回転数の差分を基に、エンジン回転数に関するフィードバック制御を実施し、エンジン回転数を目標値に保つ。また、モータコントロールユニット104においては、エンジントルクに制限が掛けられている場合等、上記エンジン回転数フィードバック制御のみではエンジン回転数が目標値に収束しない場合に、目標エンジン回転数と実際のエンジン回転数の差分を入力として決定したモータトルクによるフィードバック制御をアシストモータ22に対して並行して実施し、エンジン回転数の目標値への収束をアシストする。
エンジン負荷率基準値演算部502では、エンジンコントロールユニット103から入力されるエンジン状態を示す各種パラメータを基にエンジン負荷率基準値を演算する。例えば、エンジン負荷率基準値がエンジン回転数に応じて変化する値の場合には、その時刻におけるエンジン回転数を基にエンジン負荷率基準値を算出する。また、エンジン負荷率基準値が一定値の場合には一定の値をエンジントルク制限値演算部507に出力する。
エンジン負荷率演算部503では、エンジンコントロールユニット103から入力されるエンジン負荷に関連するパラメータ情報(例えば燃料噴射量等)を基にエンジン負荷率を演算する。例えば、燃料噴射量を入力してエンジントルクを推定し、エンジン回転数を入力して当該回転数における最大エンジントルクを算出し、当該最大エンジントルクに対する当該エンジントルクの割合がエンジン負荷率となる。
エンジン負荷率移動平均値演算部504では、エンジン負荷率演算部503で算出されるエンジン負荷率の時系列データに対して移動平均処理を行い、エンジン負荷率移動平均値(エンジン負荷指標値)を算出する。移動平均をとることによりエンジン負荷率の瞬間的な変動が捨象され、エンジン負荷率の変動傾向の把握が容易になる。
発電時モータ駆動トルク要求値演算部505では、バッテリコントロールユニット105から入力されるバッテリ23蓄電量(SOC)に関する情報等を基に、所望の蓄電量を目標にモータ発電を実施するにあたって必要なモータ駆動トルクを算出する。また、油圧ポンプ吸収トルク要求値演算部506では、図3に示した操作レバー信号情報205等を基に、油圧ポンプ24が所望の圧油を生成するのに必要な油圧ポンプ吸収トルク(油圧ポンプの要求トルク)を演算する。
エンジントルク制限値演算部507では、演算部502から入力されるエンジン負荷率基準値と演算部504から入力されるエンジン負荷率移動平均値の大小関係や、演算部505から入力される発電時モータ駆動トルク要求値、演算部506から入力される油圧ポンプ吸収トルク要求値などの情報を考慮してエンジントルク制限値を算出し、これをエンジンコントロールユニット103、モニターユニット102、モータアシストトルク基本値演算手段508に向けて送信する。なお、本実施の形態のエンジントルク制限値演算部507で実行される処理の具体的内容については図9を用いて詳述する。
エンジンコントロールユニット103は、エンジン21のアウトプット(出力)を調整する出力調整部として機能しており、フィードバック制御部103aと、トルク制限部103bを備えている。エンジン21のアウトプットは、例えば、エンジントルクとエンジン回転数の積に比例するエンジン出力や、エンジントルクで定量化できる。
本実施の形態のフィードバック制御部103aは、目標エンジン回転数と実際のエンジン回転数の差分が減少するようにフィードバック制御によりエンジントルクの目標値を決定する。そして、トルク制限部103bは、フィードバック制御部103aから入力されたエンジントルクの目標値がエンジントルク制限値演算部507から入力されたエンジントルク制限値以下であれば、当該エンジントルク目標値を目標燃料噴射量に換算してエンジン21に指令値を出力する。つまり、エンジン21のトルクはフィードバック制御部103aで決定された目標値に制御される。一方、フィードバック制御部103aからエンジントルク目標値がエンジントルク制限値を超える場合には、エンジントルク制限値を目標燃料噴射量に換算してエンジン21に指令値を出力する。つまり、この場合、エンジン21のトルクはエンジントルク制限値にまで低減して制御され、当初の目標値より小さい値となる。
モータアシストトルク基本値演算部508では、エンジントルク制限値と油圧ポンプ吸収トルク要求値との差分を基に、モータアシストトルク基本値を算出し、モータコントロールユニット104に向けて送信する。また、油圧ポンプ吸収トルク目標値演算部509では、演算部506からの油圧ポンプ吸収トルク要求値を基に油圧ポンプ吸収トルク目標値を算出し、油圧ポンプ24に向けて指令値を送信する。
次に、第1の実施の形態に係る油圧ショベルにより実行されるエンジン負荷制御ロジックの演算フローチャートについて、図9を用いて説明する。
演算ステップS601にて演算を開始後、演算ステップS602にて、エンジン負荷率基準値演算部502はエンジン負荷率基準値A(下記式1参照)を演算する。本実施の形態におけるエンジン負荷率基準値は1未満の値とし、例えば0.7とする。
A = ENGLD_RATIO_REF ・・・・・(1)
次に、演算ステップS603にて、エンジントルクB(下記式2参照)をエンジンコントロールユニット103より入手する。
B = ENGTRQ ・・・・・(2)
次に、演算ステップS604にて、最大エンジントルクC(下記式3参照)をエンジンコントロールユニット103より入手する。
C = ENGTRQ_MAX ・・・・・(3)
次に、演算ステップS605にて、エンジン負荷率演算部503は、エンジントルクBと最大エンジントルクCからエンジン負荷率D(下記式4参照)を演算する。
D = ENGLD_RATIO = B/C ・・・・・(4)
次に、演算ステップS606にて、エンジン負荷率移動平均値演算部504は、エンジ
ン負荷率Dの時系列に移動平均処理を行うことで、エンジン負荷率移動平均値E(下記式5参照)を演算する。
E = ENGLD_RATIO_AVE = average(D) ・・・・・(5)
次に、演算ステップS607にて、発電時モータ駆動トルク要求値演算部505は、バッテリコントロールユニット105から入手したバッテリSOC等を基に、発電時モータ駆動トルク要求値F(下記式6参照)を演算する。
F = REQ_GEN_ENGTRQ ・・・・・(6)
次に、演算ステップS608にて、油圧ポンプ吸収トルク要求値演算部506は、操作レバー信号等を基に、油圧ポンプ吸収トルク要求値G(下記式7参照)を演算する。
G = REQ_GEN_PMPTRQ ・・・・・(7)
次に、演算ステップS609にて、エンジントルク制限値演算部507は、発電時モータ駆動トルク要求値F、油圧ポンプ吸収トルク要求値G、および最大エンジントルクCから、エンジン負荷率要求値H(下記式8参照)を演算する。
H = (F+G)/C ・・・・・(8)
次に、演算ステップS611にて、本発明の特徴であるエンジン負荷制御の実行の必要性の有無を判定する。具体的には、エンジントルク制限値演算部507は、エンジン負荷率移動平均値Eおよびエンジン負荷率要求値Hが、それぞれエンジン負荷率基準値Aより高いか否かを判定し、エンジン負荷制御の実行の有無を判断する。
E ≧ A ・・・・・(9)
H ≧ A ・・・・・(10)
ここで、演算ステップS611にて、上記式(9)かつ(10)が非成立の場合(Noの場合)は演算ステップS631に移行する。一方、上記式(9)かつ(10)が成立の場合(Yesの場合)は、演算ステップS612に移行する。
演算ステップS612では、その時刻におけるバッテリSOC(I(下記式11参照))と、バッテリSOC下限しきい値(J(下記式12参照))をバッテリコントロールユニット105より入手する。
I = BAT_SOC ・・・・・(11)
J = BAT_SOC_SL ・・・・・(12)
次に、演算ステップS613にて、バッテリSOC(I)がバッテリSOC下限しきい値(J)よりも高いか否かを判定する。すなわち、アシストモータ22によるエンジンアシストが可能であるか否かを判定する。
I ≧ J ・・・・・(13)
ここで、演算ステップS613にて、演算式(13)が非成立の場合(Noの場合)は演算ステップS631に移行する。演算式(13)が成立の場合(Yesの場合)は、演算ステップS614に移行する。
演算ステップS614では、エンジントルク制限値演算部507は、エンジントルク制限値K(下記式14参照)を演算する。
K = C×A ・・・・・(14)
次に、演算ステップS615にて、モータアシストトルク基本値演算部508は、モータアシストトルク基本値L(下記式15参照)を演算する。つまり、油圧ポンプ吸収トルク要求値Gからエンジントルク制限値Kを減じた値をモータアシストトルク基本値Lとする。
L = G−K ・・・・・(15)
次に、演算ステップS616にて、油圧ポンプ吸収トルク目標値演算部509は、油圧ポンプ吸収トルク要求値Gを基に油圧ポンプ吸収トルク目標値M(下記式16参照)を演算する。
M = G ・・・・・(16)
次に、演算ステップS617にて、エンジンコントロールユニット103はエンジントルク制限値Kでエンジントルクを制御し、モータコントロールユニット104はモータアシストトルク基本値Lでモータトルクを制御し、これによりエンジントルク制限とモータアシストの協調制御が実施される。
次に、演算ステップS618にて、エンジントルク制限制御が実施されたことをモニターユニット102に送信し、モニターにその旨(例えば警告)を表示する。その後、演算ステップS631に移行し、当該制御周期に係るエンジン負荷制御を終了し、演算ステップS601に戻る。
なお、図9の例では、演算ステップS618においてエンジントルク制限が実行された旨を油圧ショベル1の運転室内のモニターに表示したが、これに合わせて又はこれに代えて、油圧ショベル1の外部に設置されたコンピュータに送信しても良い。当該コンピュータが、例えば油圧ショベル1のオーナーや管理会社に所有管理されている場合には、当該コンピュータ内にエンジントルク制限制御が実行された時間を記録することができるので、例えばオーナーや管理会社が当該油圧ショベルのメンテナンス時期の決定する際の指標等に活用できる。
以上説明したように、第1の実施の形態におけるエンジン負荷制御の内容としては、エンジン負荷率の移動平均値を常時演算し、そのエンジン負荷率移動平均値がエンジン負荷率基準値を超過した際には、エンジントルクを下げて、エンジン負荷率移動平均値をエンジン負荷率基準値レベルまで低下させると共に、要求される油圧ポンプ吸収トルクに対しての不足分については、アシストモータ22を駆動させ、エンジンとモータの協調制御を実施する。
これによって、ショベル運用時のエンジン負荷率がトラック用エンジン相当のエンジン負荷率に近づきエンジンへの負担が低減されるので、トラック用エンジンの流用が容易になる。さらに、油圧ショベルでのエンジン負荷率を、車両用エンジンと同等のレベルにまで低減してコントロールできれば、安価な汎用の車両用エンジンを大きな仕様変更を行うこと無く油圧ショベル用エンジンとして搭載することが可能となり、油圧ショベルの製造コストを大幅に削減できる。また、エンジントルク低下分をアシストモータ22のモータトルクで補うことによって、仕事量の低下や操作性の悪化を回避することが可能となる。
なお、エンジン21の負荷に関するパラメータは、上記で利用したエンジン負荷率に限らず、代替パラメータとして、エンジントルク、エンジン回転数、エンジン吸気圧、エンジン筒内圧、燃料噴射量、およびターボチャージャーにおけるタービン回転数等のエンジン状態を示す種々のパラメータ(エンジン状態パラメータ)のうち少なくとも1つのパラメータを利用しても良く、さらに、これらのパラメータの少なくとも1つから算出されるエンジン負荷に関連する計算値を利用しても良い。
また、エンジン負荷率の時系列に施した平滑化処理は、上記で利用した単純移動平均処理のみならず、累積移動平均を含む他の移動平均処理やローパスフィルタ処理を含むフィルタ処理などを使用しても良い。なお、その平滑化処理の際に時定数を利用する場合には、エンジン本体の熱時定数等を基に時定数を決定しても良い。
また、第1の実施の形態においては、トラック用エンジン負荷率常用域の上限値をエンジン負荷率基準値と設定したが、本値を基準にエンジンの健全性などに応じて可変としても良い。例えば、エンジン故障や燃料性状に関する異常が認められる際には、エンジン負荷率基準値をデフォルト値(上記説明の基準値)よりも下げるなどの対応をしても良い。
次に、本発明による第2の実施の形態を図10〜15を用いて説明する。第2の実施の形態の油圧ショベルは第1の実施の形態のハイブリッド型のものとは異なり、油圧ポンプの駆動源がエンジンのみの標準型油圧ショベルである。以下では、第1の実施の形態のハイブリッド型油圧ショベルとの相違点を中心にシステム構成を説明する。
図10は、第2の実施の形態における、油圧ショベル1の全体システム構成を示す図である。全体システム構成は第1の実施の形態とほぼ同じであるが、標準型油圧ショベルのため、図2に示す第1の実施の形態の構成図からアシストモータ22およびバッテリ23が除かれた構成となっている。
また、図11は、第2の実施の形態に係る油圧ショベル用エンジンと、その周辺のシステム構成を示す図である。こちらも図3に示す第1の実施の形態の構成図とほぼ同じ構成であるが、標準型油圧ショベルのため、ハイブリッド関連のデバイス(アシストモータ22、バッテリ23)およびコントロールユニット(モータコントロールユニット104、バッテリコントロールユニット105)が除かれている。
次に、第2の実施の形態における、エンジン負荷制御の具体的な制御内容について、図12および図13に示すタイムチャートを用いて説明する。図12は、本発明の第2の実施の形態(図13参照)の比較対象として、エンジン負荷制御を実施しない場合における油圧ポンプ負荷率とエンジン負荷率のタイムチャートを示している。エンジン負荷制御を実施しない場合には、時刻T1〜T3において、エンジン負荷率移動平均値がエンジン負荷率基準値を上回っており、エンジンへの負担が大きな区間となる。
一方、図13は、第2の実施の形態に係るエンジン負荷制御を実施した際における、油圧ポンプ負荷率とエンジン負荷率のタイムチャートを示している。第2の実施の形態では、エンジン負荷率移動平均値がエンジン負荷率基準値に到達する時刻T1からT2に掛けてエンジントルクに制限を掛けることで、エンジン負荷率をエンジン負荷率基準値レベルまで低下させるとともに、当該エンジントルクの制限と同期して油圧ポンプ吸収トルク(油圧ポンプ負荷率)をエンジン負荷率と同程度まで減少させる。
本制御によって、一時的に仕事量の低下が生じるが、エンジン負荷率移動平均値を所望の範囲内に収めることができると共に、油圧ポンプ吸収トルクがエンジントルクに対して過大な場合に発生するエンジンストールが回避されるので、最低限の操作性は確保できる。
次に、第2の実施の形態におけるメインコントロールユニット101及びその周辺の演算ブロックについて、図14を用いて説明する。図8に示した第1の実施の形態の演算ブロックとの相違点としては、外部コントロールユニットとして、モータコントロールユニット104、バッテリコントロールユニット105、およびモータアシストトルク基本値演算部508が除かれている。
油圧ポンプ吸収トルク目標値演算部509では、油圧ポンプ吸収トルク要求値演算部506から出力された油圧ポンプ吸収トルク要求値と、エンジントルク制限値演算部507から出力されたエンジントルク制限値を基に、エンジントルク制限に同期した油圧ポンプ吸収トルク制限における油圧ポンプ吸収トルク目標値を算出する。
次に、第2の実施の形態に係る油圧ショベルにより実行されるエンジン負荷制御ロジックの演算フローチャートについて、図15を用いて説明する。
演算ステップS601にて演算を開始後、演算ステップS602にて、エンジン負荷率基準値A(下記式21参照)を演算する。本実施の形態におけるエンジン負荷率基準値は1未満の値とし、例えば0.7とする。
A = ENGLD_RATIO_REF ・・・・・(21)
次に、演算ステップS603にて、エンジントルクB(下記式22参照)をエンジンコントロールユニット103より入手する。
B = ENGTRQ ・・・・・(22)
次に、演算ステップS604にて、最大エンジントルクC(下記式23参照)をエンジンコントロールユニット103より入手する。
C = ENGTRQ_MAX ・・・・・(23)
次に、演算ステップS605にて、エンジン負荷率演算部503は、エンジントルクBと最大エンジントルクCからエンジン負荷率D(下記式24参照)を演算する。
D = ENGLD_RATIO = B/C ・・・・・(24)
次に、演算ステップS606にて、エンジン負荷率移動平均値演算部504は、エンジン負荷率Dの時系列に移動平均処理を行うことで、エンジン負荷率移動平均値E(下記式25参照)を演算する。
E = ENGLD_RATIO_AVE = average(D) ・・・・・(25)
次に、演算ステップS608にて、油圧ポンプ吸収トルク要求値演算部506は、操作レバー信号等を基に、油圧ポンプ吸収トルク要求値G(下記式26参照)を演算する。
G = REQ_GEN_PMPTRQ ・・・・・(26)
次に、演算ステップS609にて、エンジントルク制限値演算部507は、油圧ポンプ吸収トルク要求値G、および最大エンジントルクCから、エンジン負荷率要求値H(下記式27参照)を演算する。
H = G/C ・・・・・(27)
次に、演算ステップS611にて、本発明の特徴であるエンジン負荷制御の実行の必要性の有無を判定する。具体的には、エンジントルク制限値演算部507は、エンジン負荷率移動平均値Eおよびエンジン負荷率要求値Hが、それぞれエンジン負荷率基準値Aより高いか否かを判定し、エンジン負荷制御の実行の有無を判断する。
E ≧ A ・・・・・(28)
H ≧ A ・・・・・(29)
ここで、演算ステップS611にて、上記式(28)かつ(29)が非成立の場合(Noの場合)は演算ステップS631に移行する。一方、上記式(28)かつ(29)が成立の場合(Yesの場合)は、演算ステップS621に移行する。
演算ステップS621にて、エンジントルク制限値演算部507は、エンジントルク制限値Kを演算する。具体的には、油圧ポンプ吸収トルクをトルク値Gから時間経過とともにエンジン負荷率基準値C×A相当の値まで除々に低減させた値とし、さらに具体的には下記式(30)にて算出する。
K = max(G×減少係数、C×A) ・・・・・(30)
次に、演算ステップS622にて、油圧ポンプ吸収トルク目標値演算部509は、エンジントルク制限値Kを基に、油圧ポンプ吸収トルク目標値M(下記式31参照)を演算する。
M = K ・・・・・(31)
次に、演算ステップS623にて、エンジンコントロールユニット103はエンジントルク制限値Kでエンジントルクを制御し、油圧ポンプ吸収トルク目標値演算部509は油圧ポンプ吸収トルク目標値Mで油圧ポンプ24を制御し、これによりエンジントルク制限と油圧ポンプ24の出力制限が実施される。
次に、演算ステップS624にて、エンジントルク制限制御が実施されたことをモニターユニット102に送信し、モニターにその旨(例えば警告)を表示する。その後、演算ステップS631に移行し、当該制御周期に係るエンジン負荷制御を終了し、演算ステップS601に戻る。
以上説明したように、第2の実施の形態におけるエンジン負荷制御の内容としては、エンジン負荷率の移動平均値を常時演算し、そのエンジン負荷率移動平均値がエンジン負荷率基準値を超過した際には、エンジントルクを下げて、エンジン負荷率移動平均値をエンジン負荷率基準値レベルまで低下させると共に、エンジントルクの制限と同期して油圧ポンプ吸収トルクを減少させる。
したがって、本実施の形態においても、操作性の悪化を回避しつつ、ショベル運用時のエンジン負荷率をトラック用エンジン相当のエンジン負荷率に近づけることができ、安価な汎用の車両用エンジンを、大きな仕様変更を行うこと無くショベル用エンジンとして搭載することが可能となる。
なお、上記の説明では、図9および図15の演算ステップS611において、エンジン負荷率移動平均値E(すなわち、エンジン負荷率の実値)およびエンジン負荷率要求値Hが、それぞれエンジン負荷率基準値Aより高いか否かを判定し、エンジン負荷制御の実行の有無を判断したが、エンジン負荷率の実値であるエンジン負荷率移動平均値Eのみがエンジン負荷率基準値Aより高いか否かを判定してエンジン負荷制御の実行の有無を判断しても本発明の効果は発揮される。ただし、上記の説明のように実値Eと要求値Hの双方が基準値Aより高いか否かを判定してエンジン負荷制御の実行の有無を判断すると、エンジン負荷(例えば、エンジントルク)にハンチングが発生することを防止できるというメリットがある。
また、上記の説明では、建設機械として油圧ショベルを例に挙げて説明したが、エンジンにより油圧ポンプを駆動して各種油圧アクチュエータを駆動するホイールローダを含む他の建設機械にも本発明は適用可能である。
また、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
また、上記のコンピュータに係る各構成や当該各構成の機能及び実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また、上記のコンピュータに係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで当該コンピュータの構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。
また、上記の各実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
1…油圧ショベル、2…作業装置、3…車体、4…上部旋回体、5…下部走行体、6…ブーム、7…アーム、8…バケット、9…ブームシリンダ、10…アームシリンダ、11…バケットシリンダ、21…ディーゼルエンジン、22…アシストモータ、23…バッテリ、24…油圧ポンプ、25…コントロールバルブ、26…作動油タンク、31…旋回油圧モータ、32…旋回減速装置、33…旋回歯車、41…センタージョイント、42…走行油圧モータ、43…走行減速装置、44…クローラ、101…メインコントロールユニット、102…モニターユニット、103…エンジンコントロールユニット、104…モータコントロールユニット、105…バッテリコントロールユニット、201…キースイッチ、202…エンジンコンロトールダイヤル、203…オートアイドルスイッチ、204…パワーモードスイッチ、205…操作レバー信号、301…燃料噴射装置、302…排気マニホールド、303…ターボチャージャー、304…排気管、305…出力シャフト、306…回転センサ、307…過給圧センサ、401…DPF装置、402…酸化触媒、403…PM捕集フィルタ、404…排気温度センサ、405…DPF差圧センサ、501…目標エンジン回転数演算部、502…エンジン負荷率基準値演算部、503…エンジン負荷率演算部、504…エンジン負荷率移動平均値演算部、505…発電時モータ駆動トルク要求値演算部、506…油圧ポンプ吸収トルク要求値演算部、507…エンジントルク制限値演算部、508…モータアシストトルク基本値演算部、509…油圧ポンプ吸収トルク目標値演算部

Claims (8)

  1. 油圧ポンプを駆動するエンジンと、
    当該エンジンの負荷に関連するパラメータの時間変化の傾向を示すエンジン負荷指標値を演算する負荷指標演算部と、
    前記エンジンの出力を調整する出力調整部とを備え、
    前記エンジンの回転数および負荷によって規定される前記エンジンの運転領域には、無負荷から全負荷までの領域からなる第1運転領域と、当該第1運転領域内に含まれ当該第1運転領域より狭い第2運転領域とが設定されており、
    前記エンジン負荷指標値は、前記エンジンの負荷に関連するパラメータの時系列に平滑化処理を施して得られるエンジン負荷率移動平均値であり、
    前記第2運転領域の上限値として、前記エンジンを全負荷未満の所定の範囲で継続的に使用するために定めたエンジン負荷率基準値が設定されており、
    前記エンジン負荷率基準値は、前記エンジンが全負荷のときにおける前記パラメータの値未満の値に設定されており、
    前記出力調整部は、前記エンジン負荷率移動平均値が前記エンジン負荷率基準値を超過した場合に、前記エンジンの負荷を前記エンジン負荷率基準値まで低下させるエンジン負荷制御を実行することを特徴とする建設機械用エンジン制御装置。
  2. 請求項に記載の建設機械用エンジン制御装置において、
    前記エンジンは、車両用に設計された車両用エンジンであり、
    前記エンジン負荷率基準値は、前記車両用エンジンの常用域における前記エンジン負荷指標値の上限値に設定されていることを特徴とする建設機械用エンジン制御装置。
  3. 請求項に記載の建設機械用エンジン制御装置において、
    前記エンジン負荷率基準値は、前記エンジンの負荷が全負荷の7割以下のときの値に設定されていることを特徴とする建設機械用エンジン制御装置。
  4. 請求項に記載の建設機械用エンジン制御装置において、
    前記エンジンの負荷に関連する前記パラメータは、エンジントルク、エンジン回転数、エンジン吸気圧、エンジン筒内圧、燃料噴射量、ターボチャージャーにおけるタービン回転数、前記油圧ポンプの要求トルク、エンジン負荷、およびエンジン負荷率のいずれかであることを特徴とする建設機械用エンジン制御装置。
  5. 請求項に記載の建設機械用エンジン制御装置において、
    前記平滑化処理は、移動平均またはフィルタ処理によって算出されることを特徴とする建設機械用エンジン制御装置。
  6. 請求項1に記載の建設機械用エンジン制御装置において、
    前記エンジンをアシストするモータをさらに備え、
    当該モータは、前記出力調整部による前記エンジン負荷制御によりエンジン出力が低下した場合に、当該エンジン出力低下分を補填することを特徴とする建設機械用エンジン制御装置。
  7. 請求項1に記載の建設機械用エンジン制御装置において、
    前記油圧ポンプは、前記出力調整部による前記エンジン負荷制御によりエンジン出力が低下した場合に、当該エンジン出力低下分に合わせて出力を低減することを特徴とする建設機械用エンジン制御装置。
  8. 請求項に記載の建設機械用エンジン制御装置において、
    前記モータへ供給される電力が蓄積される蓄電装置と、
    前記モータによる前記エンジンのアシストの実施可否は、前記蓄電装置の蓄電量を加味して判断されることを特徴とする建設機械用エンジン制御装置。
JP2014166580A 2014-08-19 2014-08-19 建設機械用エンジン制御装置 Active JP6305869B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014166580A JP6305869B2 (ja) 2014-08-19 2014-08-19 建設機械用エンジン制御装置
PCT/JP2015/054186 WO2016027480A1 (ja) 2014-08-19 2015-02-16 建設機械用エンジン制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014166580A JP6305869B2 (ja) 2014-08-19 2014-08-19 建設機械用エンジン制御装置

Publications (2)

Publication Number Publication Date
JP2016041924A JP2016041924A (ja) 2016-03-31
JP6305869B2 true JP6305869B2 (ja) 2018-04-04

Family

ID=55350440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014166580A Active JP6305869B2 (ja) 2014-08-19 2014-08-19 建設機械用エンジン制御装置

Country Status (2)

Country Link
JP (1) JP6305869B2 (ja)
WO (1) WO2016027480A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2833377T3 (es) * 2015-06-04 2021-06-15 Endomagnetics Ltd Materiales marcadores y formas de localizar un marcador magnético
JP6766731B2 (ja) * 2017-03-31 2020-10-14 コベルコ建機株式会社 故障検出装置
JP2020029790A (ja) * 2018-08-21 2020-02-27 ヤンマー株式会社 ハイブリッド建設機械
WO2023195736A1 (ko) * 2022-04-04 2023-10-12 현대두산인프라코어(주) 건설기계 및 이의 제어방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548501U (ja) * 1991-11-22 1993-06-25 日野自動車工業株式会社 油圧ショベル用内燃機関
JP3941257B2 (ja) * 1998-09-04 2007-07-04 いすゞ自動車株式会社 エンジン・油圧制御システム
JP2000274280A (ja) * 1999-03-24 2000-10-03 Kubota Corp 作業機用電子燃料噴射エンジン
JP2000274292A (ja) * 1999-03-24 2000-10-03 Kubota Corp 作業機用電子燃料噴射エンジン
JP4322499B2 (ja) * 2002-12-11 2009-09-02 日立建機株式会社 油圧建設機械のポンプトルク制御方法及び装置
KR101112136B1 (ko) * 2009-07-29 2012-02-22 볼보 컨스트럭션 이큅먼트 에이비 하이브리드식 건설기계의 제어시스템 및 방법
KR20130103305A (ko) * 2010-06-28 2013-09-23 볼보 컨스트럭션 이큅먼트 에이비 하이브리드식 굴삭기의 제어시스템
JP5250145B2 (ja) * 2012-08-07 2013-07-31 株式会社小松製作所 エンジンの制御装置

Also Published As

Publication number Publication date
JP2016041924A (ja) 2016-03-31
WO2016027480A1 (ja) 2016-02-25

Similar Documents

Publication Publication Date Title
US9255385B2 (en) Hybrid construction machine
JP6305869B2 (ja) 建設機械用エンジン制御装置
JP6122765B2 (ja) 作業機械
JP6255137B2 (ja) ハイブリッド建設機械の制御装置
KR101840247B1 (ko) 작업 기계의 기관 제어 장치, 작업 기계 및 작업 기계의 기관 제어 방법
US20150337521A1 (en) Construction machine
WO2012161276A1 (ja) 油圧作業機械
JP6091444B2 (ja) ハイブリッド建設機械
KR101714948B1 (ko) 건설 기계
WO2012157388A1 (ja) 作業機械のエンジン制御装置およびそのエンジン制御方法
JP2014009525A (ja) 油圧作業機械
KR101550328B1 (ko) 작업기계를 구동하기 위한 시스템 및 방법
JP5974014B2 (ja) ハイブリッド駆動式の油圧作業機械
US9273615B2 (en) Control device of internal combustion engine, work machine and control method of internal combustion engine
KR102174769B1 (ko) 하이브리드 작업 기계
JP6360054B2 (ja) ハイブリッド式作業機械
US20170203748A1 (en) Control device for hybrid work machine, hybrid work machine, and control method for hybrid work machine
KR101703484B1 (ko) 동력 제어 장치 및 이를 구비한 하이브리드 건설 기계
KR101955843B1 (ko) 하이브리드 건설 기계
JP2012025249A (ja) ハイブリッド型建設機械
JP2015101290A (ja) 産業車両
JP2012062661A (ja) 作業用車両のバッテリー監視装置
US20220340016A1 (en) Systems and methods for controlling engine speed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180307

R150 Certificate of patent or registration of utility model

Ref document number: 6305869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150