JP6304919B2 - Komatsuna calcium increase method by light - Google Patents

Komatsuna calcium increase method by light Download PDF

Info

Publication number
JP6304919B2
JP6304919B2 JP2012089240A JP2012089240A JP6304919B2 JP 6304919 B2 JP6304919 B2 JP 6304919B2 JP 2012089240 A JP2012089240 A JP 2012089240A JP 2012089240 A JP2012089240 A JP 2012089240A JP 6304919 B2 JP6304919 B2 JP 6304919B2
Authority
JP
Japan
Prior art keywords
komatsuna
calcium
cultivation
led
calcium content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012089240A
Other languages
Japanese (ja)
Other versions
JP2013215145A (en
Inventor
一義 北▲崎▼
一義 北▲崎▼
和博 庄子
和博 庄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2012089240A priority Critical patent/JP6304919B2/en
Publication of JP2013215145A publication Critical patent/JP2013215145A/en
Application granted granted Critical
Publication of JP6304919B2 publication Critical patent/JP6304919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、光によるコマツナのカルシウム増大方法に関する。さらに詳述すると、本発明は、人工光源を利用して外部から区画された栽培空間内で植物の栽培を行う植物栽培施設にてコマツナを栽培するに際し、コマツナのカルシウム含量を増大させてカルシウム強化コマツナを得るのに好適な栽培方法に関する。   The present invention relates to a method for increasing calcium in Komatsuna by light. More specifically, the present invention increases the calcium content of Komatsuna by increasing the calcium content of Komatsuna when cultivating Komatsuna in a plant cultivation facility that cultivates plants in the cultivation space partitioned from the outside using an artificial light source. The present invention relates to a cultivation method suitable for obtaining Komatsuna.

コマツナ(Brassica rapa var. perviridis)は、表1に示すように、カルシウム含量が高い葉菜類として知られている(非特許文献1を参照)。また、コマツナは、人体へのカルシウム吸収を阻害するシュウ酸の含量が他の葉菜類よりも少ない。さらに、コマツナはアクも少なく、生食にも適している。これらのことから、コマツナは、カルシウム摂取に極めて適した野菜と言える。   As shown in Table 1, Komatsuna (Brassica rapa var. Perviridis) is known as a leaf vegetable having a high calcium content (see Non-Patent Document 1). Komatsuna has a lower content of oxalic acid that inhibits calcium absorption by the human body than other leafy vegetables. In addition, Komatsuna is low in aqua and is suitable for raw eating. Therefore, Komatsuna can be said to be a very suitable vegetable for calcium intake.

現代の食生活においては、カルシウムが不足しがちである。そこで、このようにカルシウム摂取に極めて適した野菜であるコマツナについて、カルシウム含量をさらに増大させたカルシウム強化コマツナを提供することができれば、カルシウムが不足しがちな現代の食生活に大きく貢献し得るものと考えられる。   In modern diets, calcium tends to be deficient. Therefore, if Komatsuna, a vegetable that is extremely suitable for calcium intake, can be provided with a calcium-enriched Komatsuna with a further increased calcium content, it can greatly contribute to the modern diet that tends to be deficient in calcium. it is conceivable that.

ところで、作物のカルシウム含量を上昇させる技術として、塩化カルシウム、硝酸カルシウム、炭酸カルシウム、硫酸カルシウム、水酸化カルシウム等の無機カルシウム塩、あるいは、酢酸、ギ酸、乳酸、グルコン酸、クエン酸等の有機酸カルシウム塩、エチレンジアミン四酢酸塩などのキレートカルシウム塩、脂肪酸カルシウム塩等のカルシウム化合物に、腐食あるいは腐植土を酸・アルカリ・水または有機溶剤等で抽出した腐植抽出物を含有するカルシウム葉面散布剤を作物に散布する方法が提案されている(特許文献1)。   By the way, as a technique for increasing the calcium content of crops, inorganic calcium salts such as calcium chloride, calcium nitrate, calcium carbonate, calcium sulfate, and calcium hydroxide, or organic acids such as acetic acid, formic acid, lactic acid, gluconic acid, and citric acid are used. Calcium foliar spray containing a humus extract obtained by extracting corrosion or humus soil with acids, alkalis, water or organic solvents into calcium compounds such as calcium salts, chelate calcium salts such as ethylenediaminetetraacetate, and fatty acid calcium salts Has been proposed (Japanese Patent Application Laid-Open No. 2003-133826).

特開2003−321290号JP 2003-321290 A

文部科学省 五訂増補日本食品標準成分表MEXT 5th edition Japanese food standard ingredient

しかしながら、特許文献1に記載されているカルシウム葉面散布剤は、あくまでも作物のカルシウム欠乏症を改善するためのものであって、作物自体のカルシウム含量を積極的に上昇させることを技術的思想とするものではない。また、カルシウム葉面散布剤を作物の葉面全体に均一に散布することは非常に煩雑である。   However, the calcium foliar spray described in Patent Document 1 is only for improving the calcium deficiency of the crop, and the technical idea is to positively increase the calcium content of the crop itself. It is not a thing. Moreover, it is very troublesome to spread the calcium foliar spraying agent uniformly on the entire foliage of the crop.

ところで、近年、植物工場等の植物栽培施設を利用した植物の栽培が普及・拡大しつつある。植物工場等の栽培施設においては、外部から区画された栽培空間内で室温、水分、肥料及び植物への照射光等を適切に管理して植物の栽培を行うことができるので、天候に影響されることなく、また無農薬でも害虫による被害を受けることなく、植物を常に安定した品質で一定量供給することが可能である。そこで、コマツナについて、このような植物栽培施設にてカルシウム含量を増大させる技術を確立することができれば非常に有用であると考えられる。しかしながら、上記のようなカルシウム葉面散布剤を使用してコマツナのカルシウム含量を増量させることは、栽培架台や床面の汚れの原因、さらには腐食抽出物の使用による雑菌等の混入の原因ともなり得ることから、望ましいこととは言えない。   By the way, in recent years, the cultivation of plants using plant cultivation facilities such as plant factories is spreading and expanding. In cultivation facilities such as plant factories, it is possible to cultivate plants by appropriately managing room temperature, moisture, fertilizer, irradiation light to plants, etc. within the cultivation space partitioned from the outside. It is possible to always supply a certain amount of plant with stable quality without being damaged by pests even without pesticides. Therefore, it is considered that Komatsuna is very useful if a technique for increasing the calcium content in such a plant cultivation facility can be established. However, increasing the calcium content of Komatsuna using a calcium foliar spray as described above is a cause of contamination of the cultivation rack and floor, as well as contamination of bacteria by using a corrosive extract. This is not desirable because it can be.

そこで、本発明は、植物工場等のように人工光源を利用して外部から区画された栽培空間内で植物の栽培を行う植物栽培施設においてコマツナを栽培するに際し、従来のコマツナよりもカルシウム含量を増大させることのできる簡便な方法を提供することを目的とする。   Therefore, when cultivating Komatsuna in a plant cultivation facility that cultivates plants in an cultivation space partitioned from the outside using an artificial light source such as a plant factory, the present invention has a calcium content higher than that of the conventional Komatsuna. It aims at providing the simple method which can be increased.

かかる課題を解決するため、本願発明者等は、植物栽培施設において用いられる人工光源の光質に着目して鋭意検討を行った。まず、白色蛍光灯を用いて植物栽培施設内にてコマツナを栽培したところ、従来のコマツナよりも地上部(可食部)の単位新鮮重当たりのカルシウム含量は増大したものの、地上部の新鮮重自体が小さかったことから、コマツナとしての市場価値を考慮すると、白色蛍光灯を用いることは望ましくないとの結論に至った。   In order to solve this problem, the inventors of the present application have made extensive studies focusing on the light quality of an artificial light source used in plant cultivation facilities. First, when Komatsuna was cultivated in a plant cultivation facility using a white fluorescent lamp, although the calcium content per unit fresh weight of the above-ground part (edible part) increased compared to the conventional Komatsuna, the fresh weight of the above-ground part was increased. Because of its small size, it was concluded that it was not desirable to use a white fluorescent lamp in consideration of the market value of Komatsuna.

次に、本願発明者等は、白色蛍光灯よりも低消費電力とできる人工光源である発光ダイオードに注目し、可視光領域内にピーク波長を有する各種単色発光ダイオードを利用して、コマツナを対象とする栽培試験を実施した。その結果、いずれの単色発光ダイオードを用いた場合にも、従来のコマツナよりも地上部の単位新鮮重当たりのカルシウム含量が増大すると共に、地上部の新鮮重も白色蛍光灯を用いた場合と比較して明らかに大きくなるという知見を得るに至った。しかも、人体へのカルシウム吸収を阻害するシュウ酸の含量は増大しないことも知見した。そこで、本願発明者等は、かかる知見に基づいてさらに種々検討を重ね、本発明を完成するに至った。   Next, the inventors of the present application pay attention to light emitting diodes, which are artificial light sources capable of lower power consumption than white fluorescent lamps, and use various monochromatic light emitting diodes having peak wavelengths in the visible light range to target Komatsuna. A cultivation test was conducted. As a result, when using any single color light emitting diode, the calcium content per unit fresh weight of the above-ground part increases compared with the conventional Komatsuna, and the fresh weight of the above-ground part is also compared with the case where a white fluorescent lamp is used. And I have come to the knowledge that it will obviously grow. Moreover, it was also found that the content of oxalic acid that inhibits calcium absorption by the human body does not increase. Accordingly, the inventors of the present application have made various studies based on such knowledge and have completed the present invention.

即ち、本発明のコマツナの栽培方法は、人工光源を利用して外部から区画された栽培空間内で植物の栽培を行う太陽光を併用しない完全人工型の植物栽培施設にてコマツナ(Brassica rapa var. perviridis)を栽培するに際し、人工光源として可視光領域内に発光ピークを有する単色発光ダイオードを用いることによりコマツナのカルシウム含量を増大させる工程を含み、単色発光ダイオードは発光ピークが500nm〜630nmの単色発光ダイオードであり、単色発光ダイオードによるコマツナへの単色光照射を光合成有効光量子束密度(PPFD)100〜200μmol・m −2 ・s −1 で全日7日間以上連続とするようにしている。 That is, the method for cultivating Komatsuna of the present invention uses Komatsuna (Brassica rapa var) in a completely artificial plant cultivation facility that does not use sunlight to grow plants in a cultivation space partitioned from the outside using an artificial light source. . upon cultivating Perviridis), viewed including the step of increasing the calcium content of Komatsuna by using a monochromatic light emitting diode having an emission peak in a visible light region as an artificial light source, monochromatic light emitting diode emission peak of 500nm~630nm This is a monochromatic light emitting diode, and the monochromatic light irradiation to the komatsuna by the monochromatic light emitting diode is made continuous for 7 days or more all day with a photosynthesis effective photon flux density (PPFD) of 100 to 200 μmol · m −2 · s −1 .

本発明のコマツナの栽培方法によれば、従来のコマツナよりもカルシウム含量の高いコマツナ(カルシウム強化コマツナ)を提供することが可能となる。したがって、カルシウムが不足しがちな現代の食生活に大きく貢献し得るカルシウム強化コマツナを提供することが可能となる。   According to the cultivation method of Komatsuna of the present invention, it is possible to provide Komatsuna (calcium-enriched Komatsuna) having a higher calcium content than conventional Komatsuna. Therefore, it is possible to provide a calcium-enriched komatsuna that can greatly contribute to the modern diet that tends to be deficient in calcium.

本発明のコマツナの栽培方法を実施するための栽培施設の一例を示す図である。It is a figure which shows an example of the cultivation facility for enforcing the cultivation method of the Komatsuna of this invention. 白色蛍光灯のスペクトル特性を示す図である。It is a figure which shows the spectral characteristic of a white fluorescent lamp. 各種LED光源のスペクトル特性を示す図である。It is a figure which shows the spectral characteristic of various LED light sources. 栽培試験条件の概略を説明する図である。It is a figure explaining the outline of cultivation test conditions. 各種LED光源を7日間連続照射して栽培試験を実施した際のコマツナ地上部の単位乾物重当たりのカルシウム含量を示す図であるIt is a figure which shows the calcium content per unit dry weight of the Komatsuna ground part at the time of implementing a cultivation test by irradiating various LED light sources continuously for 7 days. 各種LED光源を7日間連続照射して栽培試験を実施した際のコマツナの形態を示す図面代替写真である。It is a drawing alternative photograph which shows the form of the komatsuna at the time of implementing a cultivation test by irradiating various LED light sources continuously for 7 days. 各種LED光源を7日間連続照射して栽培試験を実施した際のコマツナ地上部に含まれるカルシウムの化学形態の調査結果を示す図である。It is a figure which shows the investigation result of the chemical form of the calcium contained in the Komatsuna ground part at the time of implementing a cultivation test by irradiating various LED light sources continuously for 7 days. 各種LED光源の照射期間と照射タイミングの違いによるコマツナ地上部の単位重量当たりのカルシウム含量の違いを示す図である。It is a figure which shows the difference in the calcium content per unit weight of the Komatsuna ground part by the difference in the irradiation period and irradiation timing of various LED light sources. 各種LED光源を7日間連続照射して栽培試験を実施した際のコマツナ地上部の新鮮重を示す図である。It is a figure which shows the fresh weight of the Komatsuna ground part at the time of implementing a cultivation test by irradiating various LED light sources continuously for 7 days. 各種LED光源を7日間連続照射して栽培試験を実施した際のコマツナ地上部のカルシウム含量を示す図である。It is a figure which shows the calcium content of the Komatsuna ground part at the time of implementing a cultivation test by irradiating various LED light sources continuously for 7 days. 各種LED光源を7日間連続照射して栽培試験を実施した際のコマツナ地上部の単位新鮮重当たりのカルシウム含量を示す図である。It is a figure which shows the calcium content per unit fresh weight of the Komatsuna ground part at the time of implementing a cultivation test by irradiating various LED light sources continuously for 7 days. 各種LED光源を7日間連続照射して栽培試験を実施した際の培養液の総吸収量を測定した結果を示す図である。It is a figure which shows the result of having measured the total absorption amount of the culture solution at the time of implementing a cultivation test by irradiating various LED light sources continuously for 7 days. 培養液吸収量当たりのコマツナ地上部のカルシウム含量を算出した結果を示す図である。It is a figure which shows the result of having calculated the calcium content of the above-ground part of Komatsuna per culture solution absorption. 各種LED光源を7日間連続照射して栽培試験を実施した際のコマツナ地上部の単位乾物重当たりの鉄含量を示す図である。It is a figure which shows the iron content per unit dry weight of the Komatsuna ground part at the time of implementing a cultivation test by irradiating various LED light sources continuously for 7 days. 各種LED光源を7日間連続照射して栽培試験を実施した際のコマツナ地上部の単位乾物重当たりのマグネシウム含量を示す図である。It is a figure which shows the magnesium content per unit dry matter weight of the Komatsuna ground part at the time of implementing a cultivation test by irradiating various LED light sources continuously for 7 days. 各種LED光源を用いてレタスの栽培試験を実施した際の単位乾物重当たりのカルシウム含量を示す図である(PPFD300)。It is a figure which shows the calcium content per unit dry weight at the time of implementing the cultivation test of lettuce using various LED light sources (PPFD300). 各種LED光源を用いてレタスの栽培試験を実施した際の単位乾物重当たりのカルシウム含量を示す図である(PPFD200)。It is a figure which shows the calcium content per unit dry weight at the time of implementing the cultivation test of lettuce using various LED light sources (PPFD200).

以下、本発明を実施するための形態について、図面に基づいて詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

本発明のコマツナの栽培方法は、人工光源を利用して外部から区画された栽培空間内で植物の栽培を行う植物栽培施設にてコマツナ(Brassica rapa var. perviridis)を栽培するに際し、人工光源として可視光領域内に発光ピークを有する単色発光ダイオードを用いることによりコマツナのカルシウム含量を増大させる工程を含むようにしている。   The cultivation method of Komatsuna of the present invention uses an artificial light source as an artificial light source when cultivating Komatsuna (Brassica rapa var. Perviridis) in a plant cultivation facility that cultivates plants in a cultivation space partitioned from the outside. A step of increasing the calcium content of Komatsuna by using a monochromatic light emitting diode having an emission peak in the visible light region is included.

図1に本発明のコマツナの栽培方法を実施するための植物栽培施設の実施形態の一例を示す。この栽培施設1は、外部から区画された栽培空間4内にて、コマツナ2の栽培(例えば、湛液式栽培法、NFT栽培法等の水耕栽培)を実施する施設である。栽培空間4内は、コマツナ2の栽培に適した温度と湿度、CO濃度等に調整される。コマツナ2は、一定期間育苗した後、栽培架台5に定植され、人工光源3により人工光を照射しながら栽培される。人工光源3は支持体6により栽培架台5に定植されたコマツナ2へ補光可能に支持されている。 FIG. 1 shows an example of an embodiment of a plant cultivation facility for carrying out the Komatsuna cultivation method of the present invention. The cultivation facility 1 is a facility for cultivating the komatsuna 2 (for example, hydroponics such as the liquid cultivation method and the NFT cultivation method) in the cultivation space 4 partitioned from the outside. The cultivation space 4 is adjusted to a temperature and humidity suitable for cultivation of the komatsuna 2, a CO 2 concentration, and the like. The komatsuna 2 is cultivated while irradiating artificial light with an artificial light source 3 after being planted on a cultivation rack 5 after raising seedlings for a certain period of time. The artificial light source 3 is supported by the support 6 so as to be supplemented to the komatsuna 2 planted on the cultivation stand 5.

本発明のコマツナの栽培方法では、人工光源3として、可視光領域内に発光ピーク(中心波長)を有する単色発光ダイオード、好適には405nm〜680nmの間に発光ピークを有する単色発光ダイオード(以下、発光ダイオードのことをLEDと呼ぶこともある)を用いる。   In the cultivation method of Komatsuna of the present invention, as the artificial light source 3, a monochromatic light emitting diode having an emission peak (center wavelength) in the visible light region, preferably a monochromatic light emitting diode having an emission peak between 405 nm and 680 nm (hereinafter, A light emitting diode is sometimes referred to as an LED).

人工光源3として、可視光領域内に発光ピークを有する単色LEDを用いることで、地上部(可食部)の単位新鮮重当たりのカルシウム含量を、非特許文献1に掲載されているコマツナ従来品のそれよりも増大させることができる。また、人工光源3として白色蛍光灯を用いた場合よりも、地上部の新鮮重を増大させることができると共に、単位乾物重当たりのカルシウム含量を増加させることができる。つまり、本発明によれば、人工光源3として白色蛍光灯より消費電力や寿命の点で有利な単色LEDを用いて、コマツナの商品価値を高めることができ、コマツナの栽培にかかるランニングコスト等を抑えながらも品質の高いコマツナを栽培することが可能となる。   By using a monochromatic LED having a light emission peak in the visible light region as the artificial light source 3, the calcium content per unit fresh weight of the above-ground part (edible part) can be calculated using the conventional Komatsuna product described in Non-Patent Document 1. Can be increased more than that. Moreover, the fresh weight of the above-ground part can be increased and the calcium content per unit dry matter weight can be increased as compared with the case where a white fluorescent lamp is used as the artificial light source 3. That is, according to the present invention, using the monochromatic LED that is more advantageous in terms of power consumption and life than the white fluorescent lamp as the artificial light source 3, the commercial value of Komatsuna can be increased, and the running cost for cultivation of Komatsuna can be reduced. It is possible to cultivate high quality Komatsuna while suppressing it.

しかも、本発明のコマツナの栽培方法によれば、人体のカルシウム吸収を阻害するシュウ酸含量を増加させることがない。したがって、本発明の栽培方法により得られるコマツナは、シュウ酸含量が少ないという特徴を維持しながらも、カルシウム含量が増大した、カルシウムの摂取に極めて適したカルシウム強化コマツナであると言える。   And according to the cultivation method of Komatsuna of this invention, the oxalic acid content which inhibits calcium absorption of a human body is not increased. Therefore, it can be said that the Komatsuna obtained by the cultivation method of the present invention is a calcium-enhanced Komatsuna that is extremely suitable for intake of calcium with an increased calcium content while maintaining the characteristics of low oxalic acid content.

ここで、地上部の単位新鮮重当たりのカルシウム含量を増加させる上では、単色LEDとして、紫色LEDを用いることが好適であり、発光ピークが380〜430nmの単色LEDを用いることがより好適であり、発光ピークが405nmの単色LEDを用いることがさらに好適である。この場合には、地上部の単位新鮮重当たりのカルシウム含量を最も増大させ易いものとできる。このように、地上部の単位新鮮重当たりのカルシウム含量が高いコマツナは、生食用として特に適している。   Here, in order to increase the calcium content per unit fresh weight of the above-ground part, it is preferable to use a purple LED as the monochromatic LED, and it is more preferable to use a monochromatic LED having an emission peak of 380 to 430 nm. It is more preferable to use a monochromatic LED having an emission peak of 405 nm. In this case, the calcium content per unit fresh weight of the above-ground part can be most easily increased. Thus, komatsuna having a high calcium content per unit fresh weight in the above-ground part is particularly suitable for raw consumption.

また、地上部の単位乾物重当たりのカルシウム含量を増加させる上では、単色LEDとして、青色LEDを用いることが好適であり、発光ピークが440〜480nmの単色LEDを用いることがより好適であり、発光ピークが450〜470nmの単色LEDの照射がさらに好適である。この場合には、地上部の単位乾物重当たりのカルシウム含量を最も増大させ易いものとできる。このように、地上部の単位乾物重当たりのカルシウム含量が高いコマツナは、コマツナ乾物を原料とする食品等(例えば、粉末青汁などの健康補助食品やサプリメント等)への用途として特に適している。   Moreover, in order to increase the calcium content per unit dry matter weight of the above-ground part, it is preferable to use a blue LED as the monochromatic LED, and it is more preferable to use a monochromatic LED having an emission peak of 440 to 480 nm, Irradiation of a monochromatic LED having an emission peak of 450 to 470 nm is further preferable. In this case, the calcium content per unit dry weight of the above-ground part can be most easily increased. Thus, Komatsuna having a high calcium content per unit dry matter weight in the above-ground part is particularly suitable as a use for foods and the like using Komatsuna dry matter as a raw material (for example, health supplements such as powdered green juice and supplements). .

さらに、コマツナの栽培の際に養分として投入したカルシウム量に対して、コマツナのカルシウム含量を最も効率よく増大させる上では、緑色LED、黄緑色発光ダイオードまたは黄色LEDを用いることが好適であり、発光ピークが500nm〜630nmの単色LEDを用いることがより好適であり、発光ピークが510nm〜620nmの単色LEDを用いることがさらに好適であり、510〜550nmの単色LEDを用いることがなお好適であり、520nmの単色LEDを用いることが最も好適である。この場合には、コマツナの栽培の際に養分として投入したカルシウム量に対して、コマツナのカルシウム含量を最も効率よく増大させ易いものとできる。   Furthermore, it is preferable to use a green LED, a yellow-green light emitting diode, or a yellow LED in order to increase the calcium content of the komatsuna most efficiently with respect to the amount of calcium input as a nutrient during cultivation of komatsuna. It is more preferable to use a monochromatic LED having a peak of 500 nm to 630 nm, it is more preferable to use a monochromatic LED having an emission peak of 510 nm to 620 nm, and it is still more preferable to use a monochromatic LED having a peak of 510 to 550 nm, Most preferably, a 520 nm monochromatic LED is used. In this case, the calcium content of Komatsuna can be increased most efficiently with respect to the amount of calcium input as a nutrient during cultivation of Komatsuna.

次に、人工光源3を可視光領域内に発光ピークを有する単色LEDとしてコマツナに照射する期間については、コマツナ地上部のカルシウム含量が増大する範囲内で設定され、連続照射であっても間欠照射であってもよいが、特に栽培終了直前に2日以上連続で照射することが好適であり、連続的に7日間以上照射することがより好適であり、栽培終了直前の7日間以上とすることがさらに好適であり、育苗終了後の全期間とすることがなお好適である。単色光照射期間が短すぎると、カルシウム含量増大効果が得られない場合がある。また、単色光照射後に白色光照射を行うと、単色光照射により増大したカルシウム含量が減少することがある。   Next, the period for irradiating Komatsu with the artificial light source 3 as a monochromatic LED having a light emission peak in the visible light region is set within a range in which the calcium content of the Komatsuna ground part increases, and even continuous irradiation is intermittent irradiation. However, it is preferable to irradiate continuously for 2 days or more immediately before the end of cultivation, more preferably 7 days or more continuously, more preferably 7 days or more immediately before the end of cultivation. Is more suitable, and it is still more preferable to set it as the whole period after the end of raising seedlings. If the monochromatic light irradiation period is too short, the effect of increasing the calcium content may not be obtained. Moreover, when white light irradiation is performed after monochromatic light irradiation, the calcium content increased by monochromatic light irradiation may decrease.

単色LEDからの光照射強度は、例えば光合成有効光量子束密度(PPFD)で100〜200μmol・m−2・s−1とすればよいが、地上部のカルシウム含量が増大する範囲であれば、この範囲に限定されるものではない。尚、本発明の効果を得る上で好適な照射エネルギーは25.9mol・m−2以上、より好適には90.7mol・m−2以上である。 The light irradiation intensity from the monochromatic LED may be, for example, 100 to 200 μmol · m −2 · s −1 in photosynthetic effective photon flux density (PPFD). It is not limited to the range. In addition, when obtaining the effect of this invention, suitable irradiation energy is 25.9 mol * m <-2 > or more, More preferably, it is 90.7 mol * m <-2 > or more.

また、可視光領域内に発光ピークを有する単色LEDを用いた単色光の照射は、常に同じ単色LEDを用いて実施してもよいが、例えば、紫色LED→青色LED→緑色LEDといった順で、異なる色の単色LEDを順次コマツナに照射するようにしてもよい。このような場合にも、コマツナの地上部のカルシウム増大効果が発揮されると共に、紫色LED、青色LED、緑色LED、黄緑色LED、黄色LEDを用いた場合の上記効果を組み合わせて得られうる。また、色は同じであるけれども発光ピークの異なるLEDを順次コマツナに照射するようにしてもよいし、異なる色の単色LEDと色は同じであるけれども発光ピークの異なるLEDを順次コマツナに照射するようにしてもよい。   In addition, the irradiation of the monochromatic light using the monochromatic LED having the emission peak in the visible light region may always be performed using the same monochromatic LED, for example, in the order of purple LED → blue LED → green LED, You may make it irradiate a single color LED of a different color to a komatsuna sequentially. Even in such a case, the effect of increasing calcium in the ground part of Komatsuna can be exhibited, and the above effects when using purple LED, blue LED, green LED, yellow-green LED, and yellow LED can be obtained in combination. Further, LEDs having the same color but different emission peaks may be sequentially irradiated to the komatsuna, or LEDs having different colors but the same emission color but different emission peaks may be sequentially irradiated to the komatsuna. It may be.

尚、本発明のコマツナの栽培方法によれば、人工光源3として白色蛍光灯を用いた場合よりも、地上部の単位乾物重当たりの鉄含量とマグネシウム含量を増大させることができる。つまり、コマツナ中のカルシウム分のみならず、鉄分やマグネシウム分も増大させることができ、極めて商品価値の高いコマツナを提供することが可能となる。   In addition, according to the cultivation method of the komatsuna of this invention, compared with the case where a white fluorescent lamp is used as the artificial light source 3, the iron content per unit dry weight of a ground part and a magnesium content can be increased. That is, not only the calcium content in Komatsuna but also the iron content and magnesium content can be increased, and Komatsuna with extremely high commercial value can be provided.

上述の形態は、本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である Although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention .

また、上述の実施形態では、栽培対象植物をコマツナとして説明したが、コマツナ以外のアブラナ科の他の葉菜類、さらには葉菜類全般に対して、本発明の栽培方法を採用することで、本発明の効果が奏され得る。特に、人工光源3として紫色LEDや青色LEDを用いた場合には、白色蛍光灯を用いた場合と比較して、さらには従来品と比較して、コマツナのカルシウム含量が有意に増大し得るものと考えられる。   Further, in the above-described embodiment, the plant to be cultivated has been described as Komatsuna. An effect can be produced. In particular, when a purple LED or blue LED is used as the artificial light source 3, the calcium content of Komatsuna can be significantly increased as compared with the case of using a white fluorescent lamp and further compared with the conventional product. it is conceivable that.

以下に本発明の実施例を説明するが、本発明はこれら実施例に限られるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

尚、図中のアルファベットは、Tukeyの多重検定結果(5%)を示している。   The alphabet in the figure indicates Tukey's multiple test result (5%).

(実施例1)
コマツナを栽培対象植物として、各種栽培試験を実施した。
Example 1
Various cultivation tests were carried out using Komatsuna as a plant to be cultivated.

(1)栽培条件
コマツナ(おそめ、タキイ種苗)を十分に吸水させたウレタンに播種し、気温23±2℃、相対湿度40%、光合成有効光量子束密度(PPFD)150μmol・m−2・s−1の白色蛍光灯(FLR110 HW/A/100、三菱電機社)のもと、14時間日長で育苗した。発芽後2〜3日から大塚ハウス肥料A処方培養液1/2濃度(EC1.2dS/m、pH5.8)を施与し、播種後7日目にプラグトレイに移植した。さらに、播種後15日目に気温25℃、相対湿度60%、CO2濃度900μmolの人工気象室にて栽培した。光源は白色蛍光灯(FL:Lumilux plus L30/31−830;OSRAM社)または8種のLED光源(LSL/305x302型;シーシーエス社)のいずれか1つを用い、PPFD150μmol・m−2・s−1で連続照射した。白色蛍光灯の発光波長分布を図2に示し、8種のLED光源の発光波長分布を図3に示す。
(1) Cultivation conditions Komatsuna (soup, takii seedlings) is sown in urethane that has sufficiently absorbed water, air temperature 23 ± 2 ° C., relative humidity 40%, photosynthetic effective photon flux density (PPFD) 150 μmol · m −2 · s. -1 under white fluorescent lamps (FLR110 HW / A / 100, Mitsubishi Electric Corp.) for 14 hours. From 2 to 3 days after germination, Otsuka House Fertilizer A prescription culture medium 1/2 concentration (EC 1.2 dS / m, pH 5.8) was applied, and transplanted to a plug tray on the 7th day after sowing. Furthermore, on the 15th day after sowing, the plant was cultivated in an artificial weather room having an air temperature of 25 ° C., a relative humidity of 60%, and a CO 2 concentration of 900 μmol. The light source is either a white fluorescent lamp (FL: Lumilux plus L30 / 31-830; OSRAM) or one of eight LED light sources (LSL / 305x302 type; CCS), and PPFD 150 μmol · m −2 · s − 1 for continuous irradiation. The emission wavelength distribution of the white fluorescent lamp is shown in FIG. 2, and the emission wavelength distributions of the eight types of LED light sources are shown in FIG.

また、本実施例において使用した8種のLED光源について、ピーク波長、スペクトル帯域、半値幅を以下に記す。
・LED1:
ピーク波長405nm、スペクトル帯域391〜437nm、半値幅16nm
・LED2:
ピーク波長450nm、スペクトル帯域430〜488nm、半値幅16nm
・LED3:
ピーク波長470nm、スペクトル帯域444〜515nm、半値幅20nm
・LED4:
ピーク波長510nm、スペクトル帯域483〜568nm、半値幅24nm
・LED5:
ピーク波長520nm、スペクトル帯域486〜596nm、半値幅32nm
・LED6:
ピーク波長620nm、スペクトル帯域594〜646nm、半値幅13nm
・LED7:
ピーク波長660nm、スペクトル帯域631〜697nm、半値幅21nm
・LED8:
ピーク波長680nm、スペクトル帯域648〜711nm、半値幅22nm
In addition, peak wavelengths, spectral bands, and half-value widths are described below for the eight types of LED light sources used in this example.
・ LED1:
Peak wavelength 405 nm, spectral band 391-437 nm, half width 16 nm
・ LED2:
Peak wavelength 450nm, spectral bandwidth 430-488nm, half width 16nm
・ LED3:
Peak wavelength 470nm, spectral bandwidth 444 ~ 515nm, half width 20nm
・ LED4:
Peak wavelength 510nm, spectral band 483 to 568nm, half width 24nm
・ LED5:
Peak wavelength 520 nm, spectral band 486-596 nm, half width 32 nm
・ LED6:
Peak wavelength 620 nm, spectral band 594 to 646 nm, half width 13 nm
・ LED7:
Peak wavelength 660 nm, spectral band 631 to 697 nm, half width 21 nm
・ LED8:
Peak wavelength 680nm, spectral band 648-711nm, half width 22nm

(2)栽培試験条件
栽培試験条件の概要を図4に示す。播種後15日目以降の照射条件を以下の通り設定し、
栽培試験を実施した。
(a)FLまたはLED1〜8のいずれか1つを用いて7日間連続照射
(b)FLまたはLED1〜8のいずれか1つを2日間連続照射
(c)FLまたはLED1〜4のいずれか1つで2日間連続照射→FLで5日間連続照射
(d)FLまたはLED1〜4のいずれか1つで5日間連続照射→FLで2日間連続照射
(2) Cultivation test conditions The outline of the cultivation test conditions is shown in FIG. Set the irradiation conditions after the 15th day after sowing as follows,
A cultivation test was conducted.
(A) Continuous irradiation for 7 days using any one of FL or LEDs 1 to 8 (b) Continuous irradiation for any one day of FL or LEDs 1 to 8 (c) Any one of FL or LEDs 1 to 4 Continuous irradiation for 2 days → Continuous irradiation for 5 days with FL (d) Continuous irradiation for 5 days with either FL or LEDs 1 to 4 → Continuous irradiation with FL for 2 days

上記条件(a)〜(d)にて栽培試験を実施した後、試料(地上部)を収穫し、液体窒素で素早く凍結した。   After carrying out the cultivation test under the above conditions (a) to (d), a sample (above ground) was harvested and quickly frozen with liquid nitrogen.

(3)無機成分分析
凍結した試料を凍結乾燥して重量を測定した後、乳鉢にて粉末に破砕した。次に、粉末試料を湿式灰化法にて灰化し、1M塩酸で溶解し、精製標品とした。そして、この精製標品のカルシウム濃度を、ICP発光分光分析装置(optima 5300DV;PerkinElmer社)により分析し、試料(コマツナ地上部)の単位乾物重あたりのカルシウム含量を計算した。
(3) Inorganic component analysis After freeze-drying the frozen sample and measuring the weight, it was crushed into powder in a mortar. Next, the powder sample was ashed by a wet ashing method and dissolved in 1M hydrochloric acid to obtain a purified sample. Then, the calcium concentration of this purified sample was analyzed with an ICP emission spectroscopic analyzer (optima 5300 DV; PerkinElmer), and the calcium content per unit dry weight of the sample (Komatsuna above-ground part) was calculated.

また、カルシウムの試料生体内での化学形態を調査するため、凍結試料を破砕した後、参考文献1(Japanese society of soil science and plant nutrition 41 19-26, 1970)に記載された方法に従って、カルシウムの抽出分画法を実施した。具体的には、FL、LED1、LED3、LED5、LED6またはLED8を用いて栽培試験条件(a)で得られた試料(凍結後破砕)について、以下の条件(A)〜(D)で処理して、それぞれのカルシウム含量を調査した。尚、(E)は処理後の残渣である。
(A)蒸留水抽出:イオン状、無機化合物の一部、シュウ酸Caを除く有機酸塩
(B)NaCl(1mol)抽出:ペクチン酸Ca、タンパク質結合/吸着性Ca、
炭酸Ca
(C)酢酸(2%)抽出:リン酸Ca
(D)HCl(0.6N)抽出:シュウ酸Ca
(E)残渣:ケイ酸Ca等
In addition, in order to investigate the chemical form of calcium in vivo, after the frozen sample was crushed, the calcium was measured according to the method described in Reference Document 1 (Japanese society of soil science and plant nutrition 41 19-26, 1970). The extraction fractionation method was performed. Specifically, the sample (fracture after freezing) obtained under the cultivation test condition (a) using FL, LED1, LED3, LED5, LED6 or LED8 is processed under the following conditions (A) to (D). Each calcium content was investigated. In addition, (E) is the residue after a process.
(A) Distilled water extraction: ionic, part of inorganic compound, organic acid salt excluding Ca oxalate (B) NaCl (1 mol) extraction: pectic acid Ca, protein binding / adsorbing Ca,
Carbonated Ca
(C) Acetic acid (2%) extraction: Ca phosphate
(D) HCl (0.6N) extraction: Ca oxalate
(E) Residue: Ca silicate, etc.

(4)栽培試験結果
上記条件(a)にて栽培試験を実施した結果を図5に示す。全てのLED光源(LED1〜8)において、コマツナ地上部の単位乾物重当たりのカルシウム含量が、白色蛍光灯(FL)よりも有意に大きくなることが明らかとなった。このことから、可視光領域内に発光ピークを有する単色LEDから発せられる単色光を栽培中のコマツナに照射することによって、コマツナ地上部の単位乾物重あたりのカルシウム含量を増大できることが明らかとなった。そしてこの効果は、LED2(ピーク波長:450nm)及びLED3(ピーク波長:470nm)を用いた場合に顕著に高められることも明らかとなった。このことから、コマツナ地上部の単位乾物重当たりのカルシウム含量を増大させる上では、特に青色LEDを使用した青色光の照射が好適であるものと考えられた。
(4) Cultivation test result The result of having carried out the cultivation test on the said conditions (a) is shown in FIG. In all the LED light sources (LEDs 1 to 8), it was revealed that the calcium content per unit dry weight of the Komatsuna ground part is significantly higher than that of the white fluorescent lamp (FL). From this, it became clear that the calcium content per unit dry matter weight of Komatsuna ground part can be increased by irradiating Komatsuna under cultivation with monochromatic light emitted from a monochromatic LED having an emission peak in the visible light region. . And it became clear that this effect is remarkably enhanced when LED 2 (peak wavelength: 450 nm) and LED 3 (peak wavelength: 470 nm) are used. From this, in order to increase the calcium content per unit dry weight of the above-ground part of Komatsuna, it was considered that irradiation with blue light using a blue LED was particularly suitable.

また、上記条件(a)にて栽培試験を実施した際のコマツナの形態を図6に示す。いずれの条件においても、コマツナの商品価値を低下させるような形態変化は見られなかった。   Moreover, the form of the komatsuna at the time of implementing a cultivation test on the said conditions (a) is shown in FIG. Under any condition, there was no change in form that would reduce the commercial value of Komatsuna.

次に、カルシウムの試料生体内での化学形態を調査した結果を図7に示す。全ての試験区において、Aの割合が最も高く、全体量の約85%程度であった。また、光質の違いによる各抽出物間のカルシウム含量に有意差は見られなかった。また、シュウ酸カルシウムは、全試験区で検出されなかったことから、図5において見られたカルシウム増大効果は、シュウ酸の増加を伴うものではなく、本発明の栽培方法によって、人体へのカルシウム吸収を阻害するシュウ酸を増加させることなく、カルシウム含量を増大できることが示された。   Next, the result of investigating the chemical form of the calcium sample in vivo is shown in FIG. In all the test plots, the ratio of A was the highest, about 85% of the total amount. In addition, there was no significant difference in the calcium content between the extracts due to the difference in light quality. In addition, since calcium oxalate was not detected in all the test sections, the calcium increasing effect seen in FIG. 5 was not accompanied by an increase in oxalic acid. It has been shown that calcium content can be increased without increasing oxalic acid which inhibits absorption.

次に、各種栽培条件にて栽培試験を行った結果を図8に示す。図8のグラフは、左からFL、LED1〜8の結果を順に表している((a)以外は、左からFL、LED1〜4の結果を順に表している)。   Next, the result of having performed the cultivation test on various cultivation conditions is shown in FIG. The graph of FIG. 8 shows the results of FL and LEDs 1 to 8 in order from the left (except for (a), the results of FL and LEDs 1 to 4 are shown in order from the left).

栽培試験条件(b)においては、LED1〜4のいずれを用いた場合にも白色蛍光灯(FL)よりも単位乾物重当たりのカルシウム含量が増加し、LED2〜4についてはカルシウム含量がFLの1.2倍となった。   In the cultivation test condition (b), when any of LEDs 1 to 4 is used, the calcium content per unit dry weight increases as compared with the white fluorescent lamp (FL). Doubled.

栽培試験条件(c)においては、LED1と2を用いた場合に白色蛍光灯(FL)よりも単位乾物重当たりのカルシウム含量が増加したが(LED1についてはFLの1.18倍)、LED3とLED4ではカルシウム含量がFLと同程度であった。   In the cultivation test condition (c), when LEDs 1 and 2 were used, the calcium content per unit dry weight increased compared to the white fluorescent lamp (FL) (1.18 times that of FL for LED1). In LED4, the calcium content was similar to FL.

栽培試験条件(d)においては、LED1〜4のいずれを用いた場合にも白色蛍光灯(FL)よりも単位乾物重当たりのカルシウム含量が増加し、LED1とLED3についてはカルシウム含量がそれぞれFLの1.2倍と1.25倍となった。   In the cultivation test condition (d), when any of LEDs 1 to 4 is used, the calcium content per unit dry weight is higher than that of the white fluorescent lamp (FL), and the LED 1 and LED 3 each have a calcium content of FL. It became 1.2 times and 1.25 times.

尚、栽培試験条件(b)〜(d)のいずれにおいても、栽培試験条件(a)ほどのカルシウム含量増加効果は得られなかった。   In any of the cultivation test conditions (b) to (d), the effect of increasing the calcium content as much as the cultivation test condition (a) was not obtained.

これらの結果から、コマツナへの単色光の照射期間は、栽培終了直前の2日間以上とすれば、カルシウムの増大効果が得られるが、7日間以上とすることが好適であり、全期間とすることがより好適であると考えられた。   From these results, if the irradiation period of monochromatic light to Komatsuna is set to 2 days or more immediately before the end of cultivation, an effect of increasing calcium is obtained, but it is preferable to set it to 7 days or more, and the entire period. Was considered more suitable.

(実施例2)
実施例1の栽培試験条件(a)と同様の試験を行い、地上部の単位新鮮重当たりのカルシウム含量について検討した。具体的には、収穫したコマツナ可食部(地上部)の重量を測定した後、1N塩酸によりカルシウムを抽出して、カルシウム濃度をICP発光分光分析装置(optima 5300DV;PerkinElmer社)により分析し、収穫したコマツナ地上部の新鮮重100g当たりのカルシウム含量を計算した。
(Example 2)
A test similar to the cultivation test condition (a) of Example 1 was performed to examine the calcium content per unit fresh weight of the above-ground part. Specifically, after measuring the weight of the harvested Komatsuna edible part (ground part), calcium was extracted with 1N hydrochloric acid, and the calcium concentration was analyzed with an ICP emission spectrophotometer (optima 5300DV; PerkinElmer). The calcium content per 100 g of fresh weight of the harvested Komatsuna aerial part was calculated.

図9にコマツナ地上部の1株当たりの新鮮重を示す。可視光領域内に発光ピークを有する単色LEDから発せられる単色光を照射することで、白色蛍光灯(FL)から発せられる光を照射するよりも、コマツナ地上部の新鮮重を高められることが明らかとなった。   FIG. 9 shows the fresh weight per strain in the above-ground part of Komatsuna. It is clear that irradiating monochromatic light emitted from a monochromatic LED having a light emission peak in the visible light region can increase the fresh weight of the Komatsuna ground part more than irradiating light emitted from a white fluorescent lamp (FL). It became.

次に、コマツナ地上部の1株当たりの総カルシウム含量を図10に示し、コマツナ地上部の単位新鮮重(100g)当たりのカルシウム含量について検討した結果を図11に示す。いずれのLEDを用いた場合においても、表1に示すコマツナ従来品と比較して、コマツナ地上部の新鮮重100g当たりのカルシウム含量が増加することが明らかとなった。そして、この場合には、特にLED1(ピーク波長:405nm)にてカルシウム含量が顕著に増加する傾向(コマツナ従来品の1.52倍)が見られた。   Next, FIG. 10 shows the total calcium content per strain in the above-ground part of Komatsuna, and FIG. 11 shows the results of examining the calcium content per unit fresh weight (100 g) in the above-ground part of Komatsuna. When any LED was used, it became clear that the calcium content per 100 g of fresh weight of the Komatsuna ground part increased compared with the conventional Komatsuna product shown in Table 1. And in this case, the tendency for the calcium content to increase remarkably particularly in LED 1 (peak wavelength: 405 nm) (1.52 times that of the conventional Komatsuna product) was observed.

この結果から、可視光領域内に発光ピークを有する単色LEDから発せられる光を栽培中のコマツナに照射することによって、コマツナ地上部の単位新鮮重当たりのカルシウム含量を従来のコマツナよりも増大できることが明らかとなった。そしてこの効果は、LED1(ピーク波長:405nm)を用いた場合に顕著に高められることも明らかとなった。このことから、コマツナ地上部の単位新鮮重当たりのカルシウム含量を増大させる上では、特に紫色LEDを使用した紫色光の照射が好適であるものと考えられた。   From this result, by irradiating Komatsuna under cultivation with light emitted from a single color LED having a light emission peak in the visible light region, the calcium content per unit fresh weight of the Komatsuna ground part can be increased as compared with the conventional Komatsuna. It became clear. And it became clear that this effect is remarkably enhanced when LED 1 (peak wavelength: 405 nm) is used. From this, in order to increase the calcium content per unit fresh weight of the above-ground part of Komatsuna, it was considered that irradiation of purple light using a purple LED was particularly suitable.

(実施例3)
実施例1の栽培試験条件(a)と同様の試験を行い、培養液吸収量を投資として、コマツナに含まれるカルシウム量を収益として考えた場合に、投資に対して最も効率的に収益が得られる単色光について検討した。具体的には、7日間の栽培試験期間における培養液吸収量を測定し、この測定結果と図10に示すコマツナ地上部の1株当たりの総カルシウム含量の測定結果に基づき、培養液吸収量当たりのコマツナ地上部のカルシウム含量を算出した。培養液吸収量の測定結果を図12に示し、培養液吸収量当たりのコマツナ地上部のカルシウム含量を算出した結果を図13に示す。
(Example 3)
When the same test as in the cultivation test condition (a) of Example 1 is performed, and the amount of culture medium absorbed is considered as an investment and the amount of calcium contained in Komatsuna is considered as the income, the most profit is obtained with respect to the investment. The monochromatic light that was produced was examined. Specifically, the amount of culture broth absorbed during the cultivation test period of 7 days was measured, and based on the measurement result and the measurement result of the total calcium content per strain of the above-ground part of Komatsuna shown in FIG. The calcium content of the above-ground part of Komatsuna was calculated. FIG. 12 shows the measurement results of the amount of culture broth absorbed, and FIG. 13 shows the result of calculating the calcium content of the above-ground part of Komatsuna per the amount of broth absorbed.

この結果から、培養液吸収量当たりのコマツナ地上部のカルシウム含量は、LED4(ピーク波長:510nm)、LED5(ピーク波長:520nm)、LED6(ピーク波長:620nm)において高く、特にLED5(ピーク波長:520nm)において顕著に高い傾向が見られた。   From this result, the calcium content in the above-ground part of Komatsuna per culture broth absorption is high in LED4 (peak wavelength: 510 nm), LED5 (peak wavelength: 520 nm), and LED6 (peak wavelength: 620 nm), particularly LED5 (peak wavelength: A markedly high tendency was observed at 520 nm).

以上の結果から、培養液吸収量を投資として、コマツナに含まれるカルシウム量を収益として考えた場合に、投資に対して最も効率的に収益が得られる単色光は、緑色LEDからの緑色光、黄色LEDからの黄色光であり、特にピーク波長520nmの緑色LEDからの緑色光が好適であることが明らかとなった。また、緑色LEDと黄色LEDの双方で効率的な収益が得られていることからすれば、黄緑色LEDを用いた場合にも効率的な収益が得られうるものと考えられた。   From the above results, when considering the amount of absorption of the culture medium as an investment and the amount of calcium contained in Komatsuna as the income, the monochromatic light that is most profitable for the investment is the green light from the green LED, It has become clear that yellow light from a yellow LED, particularly green light from a green LED with a peak wavelength of 520 nm, is suitable. Moreover, considering that efficient profit is obtained with both the green LED and the yellow LED, it is considered that efficient profit can be obtained even when the yellow green LED is used.

(実施例4)
実施例1の栽培試験条件(a)と同様の試験を行い、実施例1の(3)と同様の手法で単位乾物重当たりの鉄含量とマグネシウム含量を求めた。単位乾物重当たりの鉄含量を図14に示し、単位乾物重当たりのマグネシウム含量を図15に示す。
Example 4
A test similar to the cultivation test condition (a) of Example 1 was performed, and the iron content and the magnesium content per unit dry weight were determined by the same method as in Example 3 (3). The iron content per unit dry weight is shown in FIG. 14, and the magnesium content per unit dry weight is shown in FIG.

図14及び図15に示される結果から、いずれのLEDを用いた場合にも、白色蛍光灯(FL)を用いた場合よりもコマツナ地上部の単位乾物重当たりの鉄含量とマグネシウム含量が増加し、特にLED2(ピーク波長:450nm)とLED3(ピーク波長:470nm)でその傾向が顕著であった。   From the results shown in FIGS. 14 and 15, the iron content and the magnesium content per unit dry weight of the Komatsuna above-ground part increase when using any LED compared to when using a white fluorescent lamp (FL). In particular, the tendency was remarkable in LED2 (peak wavelength: 450 nm) and LED3 (peak wavelength: 470 nm).

以上の結果から、可視光領域内に発光ピークを有する単色LEDから発せられる単色光を栽培中のコマツナに照射することによって、コマツナ地上部の単位乾物重あたりのカルシウム含量に加えて、さらに鉄含量及びマグネシウム含量を増大できることが明らかとなった。そして、コマツナ地上部の乾物重当たりの鉄含量及びマグネシウム含量を増大させる上では、特に青色LEDを使用した青色光の照射が好適であることも明らかとなった。   From the above results, by irradiating Komatsuna under cultivation with monochromatic light emitted from a monochromatic LED having an emission peak in the visible light region, in addition to the calcium content per unit dry matter weight of Komatsuna ground part, further iron content And it became clear that the magnesium content could be increased. And it became clear that irradiation of blue light using a blue LED is particularly suitable for increasing the iron content and the magnesium content per dry matter weight of the Komatsuna ground part.

(実施例5)
レタスを栽培対象植物として、各種栽培試験を実施した。
(Example 5)
Various cultivation tests were carried out using lettuce as a plant to be cultivated.

(1)栽培条件
レタス(晩抽レッドファイアー,タキイ種苗)を十分に吸水させたウレタンに播種し、気温23±2℃、相対湿度40%、光合成有効光量子束密度(PPFD)100μmol・m−2・s−1の白色蛍光灯(FLR110 HW/A/100、三菱電機社)のもと、14時間日長で育苗した。発芽後2〜3日から大塚ハウス肥料A処方培養液1/2濃度(EC1.2dS/m、pH5.8)を施与し、播種後10日目にプラグトレイに移植した。さらに、播種後10日目に気温25℃、相対湿度60%、CO2濃度900μmolの人工気象室にて栽培した。光源は白色蛍光灯(FL:Lumilux plus L30/31−830;OSRAM社)または実施例1と同様の8種のLED光源(LSL/305x302型;シーシーエス社)のいずれか1つを用い、PPFD200μmol・m−2・s−1または300μmol・m−2・s−1で7日間連続照射した。加えて、発光ピークが530nmの緑色LED(スペクトル帯域496〜596nm、半値幅33nm)と発光ピークが640nmの赤色LED(スペクトル帯域600〜655nm、半値幅13nm)についても、同様の試験を実施した。栽培試験を実施した後、試料(地上部)を収穫し、液体窒素で素早く凍結し、実施例1と同様の方法で地上部の単位乾物重当たりのカルシウム含量を得た。
(1) Cultivation conditions Lettuce (evening red fire, Takii seedlings) is sown in urethane with sufficient water absorption, air temperature 23 ± 2 ° C., relative humidity 40%, photosynthetic effective photon flux density (PPFD) 100 μmol · m −2 -Seedlings were grown for 14 hours under a white fluorescent lamp of s -1 (FLR110 HW / A / 100, Mitsubishi Electric Corporation). From 2 to 3 days after germination, Otsuka House Fertilizer A prescription culture medium 1/2 concentration (EC 1.2 dS / m, pH 5.8) was applied, and transplanted to a plug tray 10 days after sowing. Further, on the 10th day after sowing, the plants were cultivated in an artificial weather room having an air temperature of 25 ° C., a relative humidity of 60%, and a CO 2 concentration of 900 μmol. The light source is a white fluorescent lamp (FL: Lumilux plus L30 / 31-830; OSRAM) or any one of eight LED light sources similar to Example 1 (LSL / 305x302 type; CCS). Irradiation was continued for 7 days at m −2 · s −1 or 300 μmol · m −2 · s −1 . In addition, the same test was performed for a green LED having an emission peak of 530 nm (spectral band 496 to 596 nm, half-value width 33 nm) and a red LED having an emission peak of 640 nm (spectral band 600 to 655 nm, half-value width 13 nm). After carrying out the cultivation test, a sample (above ground part) was harvested and quickly frozen with liquid nitrogen, and the calcium content per unit dry weight of the above ground part was obtained in the same manner as in Example 1.

PPFD300μmol・m−2・s−1の場合の結果を図16に示し、PPFD200μmol・m−2・s−1の場合の結果を図17に示す。いずれの場合にも、405nm〜510nmに発光ピークを有する単色LEDを用いることで、地上部の単位乾物重当たりのカルシウム含量を増大可能であることが明らかとなった。 The results in the case of PPFD 300 μmol · m −2 · s −1 are shown in FIG. 16, and the results in the case of PPFD 200 μmol · m −2 · s −1 are shown in FIG. In any case, it was revealed that the calcium content per unit dry weight of the above-ground part can be increased by using a monochromatic LED having an emission peak at 405 nm to 510 nm.

2 コマツナ
3 人工光源
2 Komatsuna 3 Artificial light source

Claims (1)

人工光源を利用して外部から区画された栽培空間内で植物の栽培を行う太陽光を併用しない完全人工型の植物栽培施設にてコマツナ(Brassica rapa var. perviridis)を栽培するに際し、前記人工光源として可視光領域内に発光ピークを有する単色発光ダイオードを用いることにより前記コマツナのカルシウム含量を増大させる工程を含み、
前記単色発光ダイオードは発光ピークが500nm〜630nmの単色発光ダイオードであり、
前記単色発光ダイオードによる前記コマツナへの単色光照射を光合成有効光量子束密度(PPFD)100〜200μmol・m −2 ・s −1 で全日7日間以上連続とする
ことを特徴とするコマツナの栽培方法。
When cultivating Komatsuna (Brassica rapa var. Perviridis) in a fully artificial plant cultivation facility that does not use sunlight to grow plants in a cultivation space partitioned from the outside using an artificial light source, the artificial light source Increasing the calcium content of the komatsuna by using a monochromatic light emitting diode having an emission peak in the visible light region as
The monochromatic light emitting diode is a monochromatic light emitting diode having an emission peak of 500 nm to 630 nm,
The Komatsuna is characterized in that the monochromatic light irradiation to the Komatsuna by the monochromatic light emitting diode is continuous for 7 days or more all day at a photosynthetic effective photon flux density (PPFD) of 100 to 200 μmol · m −2 · s −1. Cultivation method.
JP2012089240A 2012-04-10 2012-04-10 Komatsuna calcium increase method by light Active JP6304919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012089240A JP6304919B2 (en) 2012-04-10 2012-04-10 Komatsuna calcium increase method by light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089240A JP6304919B2 (en) 2012-04-10 2012-04-10 Komatsuna calcium increase method by light

Publications (2)

Publication Number Publication Date
JP2013215145A JP2013215145A (en) 2013-10-24
JP6304919B2 true JP6304919B2 (en) 2018-04-04

Family

ID=49588086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089240A Active JP6304919B2 (en) 2012-04-10 2012-04-10 Komatsuna calcium increase method by light

Country Status (1)

Country Link
JP (1) JP6304919B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2923561B1 (en) * 2014-03-28 2017-11-15 Plantui Oy Hydroponic indoor gardening method
JP2018201497A (en) * 2017-05-31 2018-12-27 株式会社キーストーンテクノロジー Production method of leaf vegetables and production device of leaf vegetables
CN107711349A (en) * 2017-11-06 2018-02-23 桐梓县佳隆种植专业合作社 A kind of spinach implantation methods
CN109863902A (en) * 2018-12-12 2019-06-11 福建省中科生物股份有限公司 The illumination method and plant lamp of promotion plant growth and its application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467228B2 (en) * 2000-06-02 2003-11-17 日本植生株式会社 How to grow vegetables
JP2003174827A (en) * 2001-12-11 2003-06-24 Nisshoku Corp Method for cultivating vegetable
JP5047117B2 (en) * 2008-10-20 2012-10-10 パナソニック株式会社 Lighting system for plant disease control
JP5448043B2 (en) * 2009-03-24 2014-03-19 国立大学法人山口大学 Method for enhancing nutritional components of plants

Also Published As

Publication number Publication date
JP2013215145A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP7423605B2 (en) Light source for plant cultivation
Zhang et al. Manipulating growth, color, and taste attributes of fresh cut lettuce by greenhouse supplemental lighting
Riahi et al. Bioactive compounds and antioxidant activity of organically grown tomato (Solanum lycopersicum L.) cultivars as affected by fertilization
Hao et al. Far-red LEDs improve fruit production in greenhouse tomato grown under high-pressure sodium lighting
Bian et al. Uncovering LED light effects on plant growth: New angles and perspectives-LED light for improving plant growth, nutrition and energy-use efficiency
Brazaitytė et al. Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions
CN103814750A (en) Cultivation method of organic blueberries
JP6304919B2 (en) Komatsuna calcium increase method by light
JP6487304B2 (en) Hydroponic cultivation method, leaf vegetable production method, culture solution, and culture solution production method.
KR101916314B1 (en) Culturing method of Agastache rugosa
KR20170123079A (en) Method for improving growth and phytochemicals of Crepidiastrum plants using various LED lights
Ben-Amor et al. Hot water treatments combined with cold storage as a tool for Ectomyelois ceratoniae mortality and maintenance of Deglet Noor palm date quality
Conesa et al. The influence of nitrate/ammonium ratio on yield quality and nitrate, oxalate and vitamin C content of baby leaf spinach and bladder campion plants grown in a floating system
JP2011055816A (en) Method for controlling growth of plant utilizing light ray
Avasilcai et al. Parameters of chemical composition of Phaseolus coccineus L. pods grown in protected areas
JP2011055816A5 (en)
JP2018166442A (en) Production method and freshness keeping method of tomato fruits
Wojciechowska et al. Effect of supplemental led lighting on growth and quality of Valerianella locusta L. and economic aspects of cultivation in autumn cycle
Sarkadi Study upon the impact of chemical thinning with ethephon on the quality of two peach varieties cultivated in the Western part of Romania.
WO2020067266A1 (en) Kale cultivation method and salad
Khwankaew et al. Growth and nutrient level of water spinach (Ipomoea aquatica Forssk.) in response to LED light quality in a plant factory
KR101822385B1 (en) Purple soybean sprout and cultivated method thereof
KR20180119383A (en) Method for improving growth and phytochemicals of Crepidiastrum denticulatum
KR101188315B1 (en) Method for producing red pepper powder with increased mineral content using deep sea water
Ali et al. Quality and physiological evaluation of tomato subjected to different supplemental lighting systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161114

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180306

R150 Certificate of patent or registration of utility model

Ref document number: 6304919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250