JP6298165B2 - 高出力光ファイバの熱マネジメント - Google Patents

高出力光ファイバの熱マネジメント Download PDF

Info

Publication number
JP6298165B2
JP6298165B2 JP2016541123A JP2016541123A JP6298165B2 JP 6298165 B2 JP6298165 B2 JP 6298165B2 JP 2016541123 A JP2016541123 A JP 2016541123A JP 2016541123 A JP2016541123 A JP 2016541123A JP 6298165 B2 JP6298165 B2 JP 6298165B2
Authority
JP
Japan
Prior art keywords
optical fiber
metal
substrate
electrodeposited
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016541123A
Other languages
English (en)
Other versions
JP2017500610A (ja
Inventor
エル. ピクルスキー,ヨセフ
エル. ピクルスキー,ヨセフ
ウシンスキー,マイケル
ピー. ストロケンデル,フリエドリッヒ
ピー. ストロケンデル,フリエドリッヒ
ダブリュ. タウンセンド,カール
ダブリュ. タウンセンド,カール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2017500610A publication Critical patent/JP2017500610A/ja
Application granted granted Critical
Publication of JP6298165B2 publication Critical patent/JP6298165B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4272Cooling with mounting substrates of high thermal conductivity
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3608Fibre wiring boards, i.e. where fibres are embedded or attached in a pattern on or to a substrate, e.g. flexible sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3608Fibre wiring boards, i.e. where fibres are embedded or attached in a pattern on or to a substrate, e.g. flexible sheets
    • G02B6/3612Wiring methods or machines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Lasers (AREA)

Description

本開示は、概して、熱管理技術に関する。より具体的には、本開示は、高出力光ファイバの熱マネジメントに関する。
様々な種類の装置が、光ファイバを用いて、高出力(ハイパワー)信号の生成、増幅、及び/又は輸送を行っている。例えば、高出力ポンプレーザを用いて、光ファイバのコア内の活性イオンを励起し、エネルギーを付与することができ、そして、それがシグナルビームによって取り出される。ポンプからシグナルへのエネルギー伝達は、当然ながら完全ではなく、結果として熱が生成される。熱は、例えば温度に依存する屈折率や温度勾配によって生じる機械的な応力などのメカニズムを通じて、主要な性能制限要因となる。これらの特性はどちらも、レーザに基づく装置に伴う様々な問題を生み出す。
温度依存性の屈折率に関して、高出力レーザ装置においては、しばしば、高いビーム品質が最も重要なことである。最適なビーム品質を得るためには、全レーザ出力が理想的にシングルモードで搬送され、ビームの断面にわたって振幅及び位相が明確に定められることで、レンズのような単純な光学素子を用いてビームの挙動を操作することができるようにされる。残念ながら、高出力ビームの生成に使用されている従来装置は、2つ以上のモードが存在することを許していることが多い。例えば、大モード面積(Large Mode Area;LMA)ファイバは、2つ以上のモードを導くことができる。高出力レーザシステムの設計者はしばしば、シングルモードビームが幾つかのモードに分裂するときに起こるものであるモードカップリングを避けるために細心の注意を払っている。温度依存性の屈折率は、モードカップリングを生み出す1つの主要因である。
機械的応力に関して、長期にわたるこれらの応力は、機械的な故障につながり得る。しかしながら、機械的故障が起こる前にも、機械的応力が、モードカップリングひいてはビーム分裂を引き起こす更なるメカニズムであるレンズ効果や応力誘起の複屈折を生じさせる。
結果として、高出力レーザ装置では、しばしば、熱のマネジメントが重要な課題である。1つのコンベンショナルな熱マネジメント技術は、光ファイバを覆って薄い金属の層を堆積することを伴う。金属層の厚さは、光ファイバの寸法に依存して様々であり得る。例えば、金属層の厚さは、5ミクロンから60ミクロンの間で変わり得る。金属層は典型的に、例えば大きい熱質量を持つ受動的な装置などの、別の構造体上にはんだ付けされる。金属層は、光ファイバからその大きい熱質量へと熱を運び去る。
残念ながら、この手法は様々な欠点を有し得る。例えば、金属層は典型的に、光ファイバから遠ざける熱輸送を制限するボイドを含んでいる。また、より厚い金属層は、デバイス故障をもたらし得るものである剥離応力の増大に悩まされ得る。さらに、金属層と光ファイバのガラスクラッドとの相異なる熱膨張係数に起因して、ファイバ長に限界が存在することが多く、また、高温でのはんだ付けが光ファイバ内に熱応力を生成し得る。一般に、この技術は、デバイス性能を低下させ得る多数の制約及び副次的効果に悩まされる。
本開示は、高出力光ファイバの熱マネジメントを提供する。
第1の実施形態において、方法は、少なくとも1つの露出金属表面を有する基体を得ることを含む。この方法はまた、上記基体の上記少なくとも1つの露出金属表面上及び光ファイバの少なくとも一部の周りに金属を電着して、上記光ファイバを上記基体に固定することを含む。上記基体及び上記電着された金属は、上記光ファイバから熱を取り除くように構成される。
第2の実施形態において、装置は、基体と、光ファイバと、上記基体及び上記光ファイバの少なくとも一部の周りに熱的に結合された電着金属とを含む。上記基体及び上記電着金属は、上記光ファイバから熱を取り除くように構成されている。
第3の実施形態において、システムは、光信号を生成するように構成されたレーザと、上記光信号を運ぶように構成された装置とを含む。この装置は、基体と、上記光信号を運ぶように構成された光ファイバと、上記基体及び上記光ファイバの少なくとも一部の周りに熱的に結合された電着金属とを含む。上記基体及び上記電着金属は、上記光ファイバから熱を取り除くように構成されている。
第4の実施形態において、方法は、少なくとも1つの露出金属表面を有する基体を得ることを含む。この方法はまた、上記基体の上記少なくとも1つの露出金属表面上及び光ファイバの少なくとも一部の周りに金属を堆積して、上記光ファイバを上記基体に固定することを含む。上記基体及び上記堆積された金属は、上記光ファイバから熱を取り除くように構成される。特定の実施形態において、上記金属は、電着技術、金属気相堆積技術、スパッタリング技術、又は化学気相成長技術を用いて堆積される。
その他の技術的特徴が、以下の図面、説明、及び請求項から、当業者には容易に明らかになる。
より完全なる本開示及びその特徴の理解のため、ここでは、以下の図を含む添付図面とともに以下の説明を参照する。
本開示に従った光ファイバの熱マネジメントを提供する技術の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の他の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の他の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の他の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の他の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の他の一例を示している。 本開示に従った光ファイバの熱マネジメントを提供する技術の他の一例を示している。 本開示に従った光ファイバの熱管理ソリューションを製造するのに使用されるシステムの一例を示している。 本開示に従った光ファイバレイアウトの例を示している。 本開示に従った光ファイバレイアウトの例を示している。 本開示に従った光ファイバで実装され得る機構例を示している。 本開示に従った光ファイバで実装され得る機構例を示している。 本開示に従った光ファイバで実装され得る機構例を示している。 本開示に従った光ファイバで実装され得る機構例を示している。 本開示に従った光ファイバで実装され得る機構例を示している。 本開示に従った光ファイバで実装され得る機構例を示している。 本開示に従った光ファイバで実装され得る機構例を示している。 本開示に従った光ファイバで実装され得る機構例を示している。 本開示に従った光ファイバで実装され得る機構例を示している。 本開示に従った光ファイバの熱マネジメントを提供する方法の一例を示している。
以下に説明される図1A−14、及び本明細書にて本発明の原理を説明するために使用される様々な実施形態は、単に例示によるものであり、本発明の範囲を限定するように解釈されるべきでない。当業者が理解するように、本発明の原理は、あらゆる種類の好適に構成された装置又はシステムにて実装され得る。
図1A−1Gは、本開示に従った光ファイバの熱マネジメントを提供する技術の一例を示している。図1Aに示すように、基体102が用意され、基体102の上又は上方に光ファイバ104が配置される。基体102は、光ファイバ104が例えば高出力レーザシステムなどにおいて使用されるときに、光ファイバ104から熱を導き去ることができる。基体102は、少なくとも1つの金属から形成されることができ、光ファイバ104を部分的あるいは完全に包み込むために、該金属の上に更なる金属が堆積され得る。基体102は、例えば、銅基板、又は銅で被覆されたベリリウム若しくはモリブデンの基板など、如何なる好適な金属を含んでいてもよい。基体102はまた、如何なる好適なサイズ、形状、及び寸法、例えば約1/8インチ(約3.175mm)の厚さなど、を有していてもよい。
あらゆる好適なタイプの光ファイバ104が使用され得る。例えば、1つ又は複数のコアを持つ光ファイバ104が使用され得る。また、光ファイバ104は、単一の光ファイバ、又は例えばスプライス(継ぎ)を用いることなどによって共に接続された複数の光ファイバを表し得る。使用され得る光ファイバ104の具体的なタイプは、溶融石英光ファイバ、及びリン酸塩ドープ光ファイバ若しくはその他のドープト光ファイバを含み得る。
光ファイバ104は、当初、支持構造106によって、基体102の上又は上方で適所に保持され得る。支持構造106は、後の金属の堆積が光ファイバ104を基体102に接続するように基体102の上又は近くで光ファイバ104を保持することが可能なあらゆる好適構造を表す。例えば、支持構造106は、柔軟な不活性シリコーンエラストマから形成された透明なパッド、配管工又はめっき工テープを含み得る。
図1B−1Eに示すように、光ファイバ104の一部を包んで、基体102上に更なる金属108が堆積される。更なる金属108は、例えば銅など、あらゆる好適金属を表し得る。また、基体102上に更なる金属108を堆積することには、例えば、電着技術、金属気相堆積技術、スパッタリング技術、又は化学気相成長技術など、如何なる好適な堆積技術が使用されてもよい。具体的な一例として、電着技術において、硫酸銅及び硫酸を含有する溶液内に、基体102及び光ファイバ104が沈められ得る。
更なる金属108は、基体102の上方に、又は光ファイバ104の上方に、好適な高さまで堆積され得る。例えば、一部の実施形態において、更なる金属108は、例えば図1D又は1Eに示すように、それが光ファイバ104を部分的に包み込むまで堆積され得る。例えば、光ファイバ104の少なくとも約50%が金属で覆われるときなど、如何なる好適な部分的包囲量を得てもよい。他の実施形態において、更なる金属108は、例えば図1F及び1Gに示すように、それが光ファイバ104を完全に包み込むまで堆積され得る。これらの実施形態においては、所望高さの部分的包囲が得られて光ファイバ104が基体102に好適に固定されると、支持構造106が光ファイバ104から取り外され得る。その後、更なる金属108の堆積を再開し、更なる金属108が基体102又は光ファイバ104より上の所望の高さを有するまで堆積を続けることができる。
斯くして、基体102及び更なる金属108が、光ファイバ104を少なくとも部分的に包み込む構造を形成する。この構造は、従来手法に付随する問題のうちの1つ、一部、又は全てを回避しながら、光ファイバ104から熱を運び去ることにおいて、非常に効果的である。基体102及び更なる金属108から熱を運び出すために、この構造に1つ以上の受動的又は能動的な冷却装置を結合することができる。このようにして光ファイバ104が部分的あるいは完全に包み込まれた後、更なる処理を行い得る。例えば、光ファイバ104の端部を研磨することができ、また、装置又はシステムのその他のコンポーネントに光ファイバ104を結合するための更なる構造を形成し得る。
図2A−2Fは、本開示に従った光ファイバの熱マネジメントを提供する技術の他の一例を示している。図2Aに示すように、基体202上にマスキング材料201及び犠牲材料203が形成され、あるいはその他の方法で配される。マスキング材料201は、更なる金属が基体202上に堆積される空間を画成するために使用され、犠牲材料203は、マスキング材料201によって画成された空間内に置かれる。しかしながら、マスキング材料201の使用は選択的である。犠牲材料203は、堆積される金属に包み込まれることが可能であり且つ後に除去されることが可能である材料を表す。例えばワックスプレフォーム又はガリウムプレフォームなど(例えば、約30℃の融点を持つものなど)、如何なる好適な犠牲材料203が使用されてもよい。犠牲材料203はまた、如何なる好適なサイズ、形状、及び寸法を有していてもよい。
図2Bに示すように、マスキング材料201間に、及び犠牲材料203を覆って、更なる金属208aが堆積される。如何なる好適量の更なる金属208aが犠牲材料203の上に堆積されてもよい。更なる金属208aは、例えば銅など、あらゆる好適金属を表し得る。更なる金属208aはまた、例えば、電着技術、金属気相堆積技術、スパッタリング技術、又は化学気相成長技術を用いることによるなど、如何なる好適手法で堆積されてもよい。
図2Cに示すように、光ファイバ204が、この構造の上又は上方に配置され、支持構造206を用いて適所に保持される。これらのコンポーネントは、図1A−1Gにおける対応するコンポーネント104−106と同じ又は同様とし得る。次いで、図2Dに示すように、光ファイバ204の周りに更なる金属208bを堆積するために、堆積が続けられる。ここでは、更なる金属208bが光ファイバ204を完全に覆っているが、更なる金属208bは光ファイバ204を部分的に覆うのみでもよい。更なる金属208bは、例えば、電着技術、金属気相堆積技術、スパッタリング技術、又は化学気相成長技術を用いることによるなど、如何なる好適手法で堆積されてもよい。
元の基体202及び更なる金属208a−208bが、光ファイバ204を囲む構造を形成し、この構造もやはり、従来手法に付随する問題のうちの1つ、一部、又は全てを回避しながら、光ファイバ204から熱を運び去ることにおいて、非常に効果的である。基体202及び更なる金属208a−208bから熱を運び出すために、この構造に1つ以上の受動的又は能動的な冷却装置を結合することができる。
このようにして光ファイバ204が部分的あるいは完全に包み込まれた後、更なる処理操作を行い得る。例えば、光ファイバ204の端部を研磨することができ、また、装置又はシステムのその他のコンポーネントに光ファイバ204を結合するための更なる構造を形成し得る。また、このプロセス中の何らかの時点で、図2Eに示すように、マスキング材料201を除去することができ、また、図2Fに示すように、犠牲材料203を除去して冷却チャネル210を残すことができる。冷却チャネル210は、この構造から熱を取り除くために冷却用の流体がその中を通り抜けることができる構造領域を表す。冷却チャネル210は。如何なる好適なサイズ、形状、及び寸法を有していてもよいが、それらは少なくとも部分的に、犠牲材料203と、犠牲材料203を周囲の金属の中から除去するために使用される技術とによって定められる。
図1A−2Fに示した手法は、その実装に応じて様々な利益を提供することができる。例えば、光ファイバ104、204を金属で部分的あるいは完全に封入することは、光ファイバを熱マネジメントするための改善された機構を提供する。また、この封入及び光ファイバ104、204に関連する端面(エンドファセット)ジオメトリは、自由空間及びファイバ結合系の双方をサポートするように制御されることができる。さらに、非常に長い長さを持つ光ファイバをこのようにして封入することができ、従来システムでは典型的に課される長さ制約が緩和される。また、(例えば、電着、金属気相堆積、スパッタリング、又は化学気相成長などにより)低応力的に堆積される金属は、光ファイバとともに従来使用されていた金属層よりも有意に少ないボイドを有し、それにより、堆積された金属の伝熱能力が高められる。それだけでなく、様々な手法(例えば電着など)を用いて、はんだ付けと比較して遥かに低い温度(例えば、室温)で金属を堆積することができ、それにより、遥かに低い応力のみが光ファイバ内に誘起される。加えて、堆積した金属を用いて、共に結合された複数の光ファイバの周りの気密シールを形成することができる。例えば後述するものなど、更なる利益も可能である。
図1A−2Fは光ファイバの熱マネジメントを提供する技術例を示しているが、様々な変形が図1A−2Fに対して為され得る。例えば、これらの図におけるコンポーネントの相対的なサイズ、形状、及び寸法は、単に例示のためのものである。また、図1A−1Gに示した様々な機構が、図2A−2Fの中で使用されてもよく、その逆もまた然りである。例えば、マスキング材料201又は犠牲材料203が、図1A−1Gの中で使用されてもよい。さらに、光ファイバ104、204は、平坦な基体102、202又は下地金属208aの上に配置されるように図示されているが、基体又は下地金属は平坦である必要はない。例えば、基体102、202又は下地金属208aが溝を彫られ、その溝の中に光ファイバ104、204が配置されてもよい。これは、光ファイバと、光ファイバの周りの金属を有する部分との、いっそう容易な配置及び保持を支援する(それにより、金属堆積時間を短縮することができる)。その他に、図1A−2Fに示した処理の順序は、実装に応じて変わり得る。加えて、基体102、202に使用されるとして、及び堆積させる金属として、銅を上述したが、例えば、高導電性金属や、高導電性金属を含有するニッケル銀のような合金など、様々なその他の金属(金属合金を含む)も使用され得る。最後に、ここでは、光ファイバ204の下に単一のリセス203を示しているが、或る構造は、如何なる数のリセス203を如何なる位置に含んでいてもよい。
図3は、本開示に従った光ファイバの熱管理ソリューションを製造するのに使用されるシステム300の一例を示している。図3に示すように、システム300は、電鋳溶液304を入れる容器302を含んでいる。容器302は、電鋳溶液を入れる又は保持するように構成されたあらゆる好適構造を表す。電鋳溶液304は、例えば銅などの金属を別の構造体上に電着するために使用されることができるあらゆる溶液を表す。具体的な一例として、電鋳溶液304は、約10重量%から約12重量%の硫酸を含む溶液内に硫酸銅を含み得る。
システム300はまた、陽極接続308及び陰極接続310に電気的に結合される電圧源又は電流源306を含んでいる。電圧源又は電流源306は、電鋳溶液304を流れる電流を生成するように構成されたあらゆる好適構造を表す。接続308−310は、システム300のその他のコンポーネントをそれに電気的に結合することができるあらゆる好適構造を表す。
金属陽極312が、陽極接続308に結合されるとともに、陽極バッグ314内に収容され得る。金属陽極312は、例えば銅などの(1つ以上の)金属から形成され得る。陽極バッグ314は、金属陽極312の周りに粒子状物質を集めるために使用され得る。電鋳溶液304内の銅又はその他の(1つ以上の)金属は、金属陽極312を起源とし得る。
この例において、固定治具316及びサムスクリュー318を用いて、アセンブリ320を適所に保持している。アセンブリ320は、ここでは、図1A−1Gの基体102、光ファイバ104、及び支持構造106を含んでいる。それに代えて、アセンブリ320は、図2A−2Fの基体202、光ファイバ204、及び支持構造206、又は、基体と少なくとも部分的に包み込まれるべき光ファイバとを含むその他の好適構造を含んでいてもよい。固定治具316は、如何なる好適なサイズ、形状、及び寸法を有していてもよく、また、如何なる好適材料から形成されていてもよい。サムスクリュー318は、例えばナイロンなどの何らかの好適材料から形成され得る。なお、しかしながら、アセンブリ320を電鋳溶液304内に保持することには、その他の好適機構が用いられてもよい。
アセンブリ320の金属基体が陰極接続310に電気的に結合される。金属基体の一部はマスキング材料322で覆われている。電流が電鋳溶液304を流れるとき、それにより、マスキング材料322によって覆われていない金属基体の(1つ以上の)露出表面上に、金属が電着される。マスキング材料322は、(1つ以上の)如何なる好適材料から形成されてもよく、また、例えば金属基体の頂面を除く全表面など、金属基体の(1つ以上の)如何なる好適部分を覆っていてもよい。
電鋳溶液304は、電着プロセス中、何らかの好適手法で、容器302内で撹拌され得る。例えば、容器302内の磁性インペラ(羽根車)324が、容器302の外部の磁気アクチュエータ326を用いて動かされ得る。しかしながら、如何なる好適な攪拌機がシステム300で使用されてもよい。
電着プロセスにおいて、サムスクリュー318を用いてアセンブリ320が固定治具316に固定され、固定治具316及びアセンブリ320が電鋳溶液304の中まで下降され得る。電圧源又は電流源306を用いて、電鋳溶液304を流れる電流が作り出され、それにより、金属が、アセンブリ320の(1つ以上の)露出金属表面上に堆積させられる。
電着は、アセンブリ320内の光ファイバ104、204を、所望の高さまでゆっくりと包み込むことができる。光ファイバの部分的な包囲が望まれる場合、アセンブリ320上への金属の堆積は、所望の高さの包囲が得られるまで継続され得る。その点で、電鋳溶液304を流れる電流を止めることができ、そして、固定治具316及びアセンブリ320を容器302から取り出すことができる。
光ファイバの完全な包囲が望まれる場合、アセンブリ320上への金属の堆積は、望ましい量(例えば、少なくとも約50%など)だけ光ファイバが包囲されるまで継続され得る。電鋳溶液304を流れる電流を止め、固定治具316及びアセンブリ320を容器302から取り出し、そして、アセンブリ320を固定治具316から取り外すことができる。次いで、支持構造106、206を有しないアセンブリ320を固定治具316に固定して、電鋳溶液304の中に戻すことができ、あるいは、固定治具316を用いずにアセンブリ320を電鋳溶液304の中に戻すことができる。そして、再び電鋳溶液304に電流を与えることによって、光ファイバの包囲を完了させることができる。
電着プロセスに使用される(1つ以上の)金属、並びに該(1つ以上の)金属の厚さ及び密度は、様々なファクタに基づいて選定され得る。例えば、(1つ以上の)金属、厚さ、及び密度は、所望の熱伝導率のレベルに基づいて、及び少なくとも部分的に包み込まれる光ファイバ104、204に基づいて選定され得る。この選択に影響を及ぼし得る光ファイバの特性は、光ファイバの絶縁パラメータ、光ファイバと金属との間の熱的な接触若しくは界面抵抗、光ファイバのコア及び(1つ以上の)ガラスクラッドのジオメトリの違い、電鋳に先立っての光ファイバの(1つ以上の)ガラスクラッドの表面処理及び活性化、並びに、光ファイバとともに使用されるファイバースプライスのジオメトリ及び材料を含む。光ファイバのコア及び(1つ以上の)ガラスクラッドのジオメトリの違いは、異なるタイプの光ファイバで異なり得るものであるコア及びコア光モードの直径並びにクラッドの直径を含み得る。特定のデバイスに関わる電着プロセスにおける具体的な選定は、実験的に決定されることができ、理想的には、それらの条件は、電着される金属と光ファイバとの界面における微小ボイド形成を抑制あるいは最小化することができるものである。
図3は、光ファイバの熱管理ソリューションを製造するのに使用されるシステム300の一例を示しているが、様々な変形が図3に対して為され得る。例えば、光ファイバの少なくとも一部の周りに金属を電着することには、その他の好適システムも使用され得る。また、銅を電鋳するとして記述していることが多いが、多様なその他の金属も使用され得る。加えて、上述のように、光ファイバを部分的あるいは完全に包み込むために基体上に金属を堆積させることには、例えば金属気相堆積、スパッタリング、又は化学気相成長などの、その他の堆積技術が使用されてもよい。
図4A及び4Bは、本開示に従った光ファイバレイアウト例400、450を示している。光ファイバレイアウト400、450は、基体又は下地金属の上での光ファイバの取り得る構成を表しており、この後に、金属堆積プロセスを用いて光ファイバが部分的あるいは完全に金属で包囲される。
図4Aに示すように、レイアウト400は、基体102、202上にコイル(渦巻き)状のようなやり方で配置された光ファイバ104、204を含んでいる。光ファイバ104、204の一端402が入力を表し、光ファイバ104、204の他端404が出力を表す。光ファイバ104、204の端部402−404で、基体102、202は、例えば約5°など、角度を付けられてもよい。しかしながら、如何なる好適な(1つ以上の)端面ジオメトリがサポートされてもよい。また、(1つ以上の)端面ジオメトリは、例えば研磨によってなど、如何なる好適手法で形成されてもよい。
入力端402から出力端404まで移動するに、光ファイバ104、204は、基体102、202の中央部406付近で進行方向を反転するまで一方向(この例では反時計回り)に、面内コイル状経路を辿っている。その後、光ファイバ104、204は、出力端404に至るまで別方向(この例では時計回り)に、面内コイル状経路を辿っている。
図4Bのレイアウト450も同様の構成を有している。しかしながら、図4Bの光ファイバ104、204はいっそう長くて多数の巻きを含んでおり、それらの巻きが互いにいっそう近くに配置されている。所与の基体上の光ファイバの最大巻き数は、光ファイバの製造者によって推奨される最小曲げ半径に基づき得る。光ファイバ104、204の曲げ半径を最小曲げ半径よりも大きく維持することは、マイクロベンド損失を抑制あるいは最小化する助けとなり得る。
図4Bにおいて、基体102、202は、複数のマウント穴452を含んでいる。これらの穴452は、基体102、202を所望の位置にマウントするためにボルト又はその他の接続機構を用いることができる領域を表す。各穴452、如何なる好適なサイズ、形状、及び寸法を有していてもよい。各穴452はまた、例えばドリル加工によるなどの如何なる好適手法で形成されてもよい。加えて、基体には、(1つ以上の)如何なる好適位置で如何なる数のマウント穴452が設けられてもよい。なお、しかしながら、マウント穴452の使用は選択的であり、その他の機構を用いて基体を所望位置に固定してもよい。
図4A及び4Bの双方において、下地の基体102、202(又は下地金属208a)は、光ファイバ104、204のコイル状経路を画成する1つ以上の凹部(リセス)を形成するようにエッチングされ得る。そして、光ファイバ104、204が、金属堆積プロセスに先立って、(1つ以上の)凹部内に配置され得る。一部の実施形態において、光ファイバ104、204の小さい部分が、テープ又はその他のコネクタによって、下地の基体又は金属に固定されてもよく、そして、光ファイバを下地の基体又は金属に固定するように金属堆積が行われ得る。その後、テープ又はその他のコネクタを除去することで、それまで覆われていた光ファイバ部分が金属で覆われ得るようにし、金属堆積プロセスが完成され得る。
このように光ファイバ104、204を巻くことは、幾つかの利益を有し得る。例えば、光ファイバ104、204を巻くことは、大きい長さのファイバを基体102、202上に配置することを可能にし得る。これは、下地の基体102、202のサイズを縮小する助けとなり、それにより、この光ファイバを使用する装置又はシステムの全体サイズ及び重量を有意に低減し得る。しかしながら、いっそう長い長さを持つ光ファイバのみがここで使用され得る光ファイバであるというわけではない。金属への封入の恩恵を受け得るその他のタイプのファイバは、より高いパルスエネルギーの、より短いパルスを有する信号とともに使用される高吸収性の短い光ファイバを含み得る。また、ポリマーコーティングを有する光ファイバは、堆積される金属に直接的に埋め込まれることができる。
図4A及び4Bは光ファイバレイアウト例400、450を示しているが、様々な変形が図4A及び4Bに対して為され得る。例えば、少なくとも部分的に金属で包み込まれる光ファイバは、その他の如何なる好適なコイル状又は非コイル状のレイアウトを有していてもよい。例には、むき出し(ベア)のファイバ、スラブ導波路、及び規則的若しくは不規則なコイル状ジオメトリが含まれる。
図5−13は、本開示に従った光ファイバで実装され得る機構例を示している。これらの機構のうちの何れか、又はこれらの機構のうちの何らかの組み合わせが、例えば図1A−2Fに示したデバイスとともに使用され得る。
図5に示すように、光ファイバ104、204の一実施形態例は、コア502、ガラスクラッド504、及びポリマークラッド506を含む。ポリマークラッド506は、光ファイバと周囲の金属との間のCTE不整合を受け入れる弾性ある接合部として作用することができる。また、ポリマークラッド506は、周囲の金属の中に完全に埋め込まれることができるので、ポリマークラッド506の使用に付随する問題が大いに抑制される。
また、図5に示すように、この構造の端面(エンドファセット)510付近の領域で、ポリマークラッド506の一部508が除去されている。例えばポリマークラッド506をのうちの最大で約40μm又はそれより多くなど、ポリマークラッド506の如何なる好適部分508が除去されてもよい。ポリマークラッド506のこの部分508の除去は、信号514が光ファイバ104、204に入る箇所でのポリマークラッド506の燃焼又は溶融を回避する助けとなり得る。ここで見て取れるように、ポリマークラッド506は周囲の金属によって完全に封入されており、故に、金属が、ポリマークラッド506の部分508が除去された領域の周りに気密シールを形成し得る。
この構造の端面510は、光学膜512で覆われている。光学膜512は、光ファイバ104、204への信号514のカップリングを容易にし得る。光学膜512は、例えば反射防止コーティングなどの、(1つ以上の)好適な膜を含んでいる。
光学膜512はまた、光ファイバ104、204が位置する開口(すなわち、光ファイバの露出部分)の外側に、周囲金属上まで延在している。ガラス及び金属の双方の領域を一緒に光学膜でコーティングすることの方が容易であることが多いので、これは有益であり得る。さらに、ガラス及び金属の複合的な大きいファセットを持つことは、後続の洗浄手順を単純化する。というのは、片持ち梁型のファイバ先端を用いるジオメトリとは対照的なことに、ファイバボディの全体が機械的に支持されるからである。
端面510は、例えば構造の研磨及び洗浄を行うことなどにより、如何なる好適手法で如何なる好適角度に刻まれてもよい。刻まれる端面510付近にポリマークラッド506が存在しないことは、端面510の研磨及び洗浄を行うことの容易さを増す助けとなる。さらに、ポリマー材料を端面510よりも奥に置くことは、高出力動作において有用であり得る。何故なら、ポリマーの脱ガス、溶融、又は燃焼は、ファセットの高出力領域を汚染させてファセットの不具合につながり得るものだからである。ポリマーを奥に追いやることは、ファセットの信頼性を大いに向上させる助けとなる。
信号514は、例えばポンプレーザなどの何らかの好適ソースによって提供され得る。信号514は、ここでは、実線と破線の双方によって表されている。実線は、光ファイバ104、204のクラッド504に入る信号514の部分を表し、破線は、クラッド504の外への信号514のスピルオーバー(溢れ)を表すとし得る。このスピルオーバーは、ヒートシンクに直に接続されるマウントの金属部分にぶつかるので容易に対処され得る。それは故に、光ファイバ104、204の加熱を殆ど又は全くもたらさず、ポリマークラッド506の燃焼をもたらさない。
光ファイバ104、204の周りの堆積金属の使用は、端面作成を大いに単純化する助けとなる。堆積された金属は、端面510まで至る実効的なヒートシンク機能を提供することができる。さらに、堆積された金属は、端面510を形成するための構造の研磨を単純化し得る頑丈(ソリッド)な機械マウントを提供する。また、研磨後に、光ファイバ104、204と周囲金属との間に平らな接合部が存在することができ、それにより、構造の洗浄が単純化され得る。端面510の使用もまた有益であり得る。例えば、端面510に鋭いエッジを作り出すことができ、それが、光を散乱し得る意図せぬベベルによる望ましくない影響を抑制あるいは回避する助けとなる。これは、ピグテール型ポンプダイオード、ピグテールアレイ、又はその他同様のタイプのシステムを用いる特定の用途を見出し得る。
また、端面510は、反射されたシグナル光がポリマークラッド506に侵入することができるように、十分に角度を付けられ得る。ファセット角及びクラッド506の屈折率が、この機能をサポートするように連係される。ファセット角が小さすぎる場合、反射された光は、ガラスクラッド504とポリマークラッド506との界面によって全内部反射され得る。ポリマー侵入の発現に関する閾ファセット角の計算は、ガラスクラッド及びポリマークラッドの所与の屈折率の値に対して簡単である。アクティブファイバーは通常、ガラスクラッドに対する規定の光学開口数(NA)を有する。そして、上述の閾ファセット角は、ガラスクラッド504の屈折率をnとして、asin(NA)/nによって与えられる。
端面510はまた、望ましくないレーザ発振(レージング)モードである寄生モードの生成を回避する助けとなる。例えば、増幅器が全くレーザ発振しないことになっていても、光ファイバの利得が十分に高い場合にレージングループが生じることがあるが、これは利得媒体からエネルギーを奪うものである。角度を付けた端面の使用により、レージングループが抑圧される。最大の抑圧を得るため、ファセット角が、ポリマークラッド506への侵入が起こるのに十分な大きさにされる。この目的のためのポリマークラッド506の関連特性は、その屈折率、吸収、及び、活性利得媒体から放出される蛍光の拡散的散乱である。完全に最適化されたシステムにおいては、ポリマーの厚さ及びその弾性特性とともに、これら3つの特性が設計パラメータである。
図6に示すように、光ファイバ104、204は、図5の光ファイバと同じ構造を有する。しかしながら、この例においては、光ファイバ104、204の一端に隣接して、エンドキャップ616が形成されている。エンドキャップ616は、光ファイバ104、204が終端するところの例えばアンドープのガラスなどの材料の領域を表す。エンドキャップ616は、例えば少なくとの約1mmの長さなど、如何なる好適なサイズ、形状、及び寸法を有していてもよい。
エンドキャップ616は、光ファイバ104、204に当接する気密シールを形成することができる。また、エンドキャップ616から光ファイバ104、204への応力下の遷移領域が保護され得る。何故なら、それが、周囲の金属によって完全に封入されているとともに、周囲の金属を用いて完全にヒートシンクされることができるからである。この例においては、信号614が、エンドキャップ616を通じて光ファイバ104、204のガラスクラッド504に入ることができるとともに、信号618が、エンドキャップ616を通じて光ファイバ104、204のコア502を退出して広がることができる。故に、大型のエンドキャップ616を用いて、光ファイバのクラッド504にポンプレーザを結合することができる。ポンプエネルギーのスピルオーバー及び関連する熱生成は、デバイスのバルクのファセットを離れて起こり得る。
なお、エンドキャップ616はしばしば、光ファイバ104、204の残部とは一致しない形状にされることができ、エンドキャップ616につながる遷移領域はしばしば、でこぼこな形状を有する。堆積される金属は、従来技術よりも、このような変わりゆく形状に遥かに容易に従うことができ、それにより、製造プロセスが単純化されるとともに、ヒートシンク能力が向上される。
図7は、図5に示したものと同様の構造を示している。しかしながら、図7においては、光ファイバ104、204を覆う更なる金属108、208bが、1つ以上のポート702を含むように変更されている。(1つ以上の)ポート702は、実装に応じた1つ以上の目的を果たし得る。
例えば、一部の実施形態において、ポリマークラッド506が、信号波長で損失を組み入れ得るとともに、散乱又は拡散を生じさせ得る。また、構造の端面510が、反射されガイドされる増幅自然放出(ASE)をガラスクラッド504又はポリマークラッド506に投入するのに十分な大きさのファセット角を有し得る。ポート702は、ポリマークラッド506中を進行する信号によって生成される蛍光が逃げ出ることを可能にする。
他の実施形態において、光ファイバ104、204は、ポリマークラッド506を欠いていてもよい。結果として、ガラスクラッド504と周囲の金属との間の界面で反射される寄生モードの可能性が存在する。複数のポート702を用いることにより、光ファイバ104、204の複数のセクションが、露出されたままにされて(金属で完全に包み込まれずに)、そのような寄生モードに関する反射率を低減あるいは最小化し得る。
ポート702の各々は、例えば金属堆積プロセスにおいて光ファイバ104、204の一部をマスキングすることによってなど、如何なる好適手法で形成されてもよい。また、各ポート702は、如何なる好適なサイズ、形状、及び寸法を有していてもよく、例えば光ファイバ104、204に対して横断方向又は長手方向など、如何なる好適な配置を有していてもよい。
図8は、光ファイバ104、204が、スプライス(継ぎ)806にて継ぎ合わされた複数のセグメント802−804に分割される一構造例を示している。スプライス806は典型的に、2つのファイバ片を局所的に溶融させてそれらを融合することによって作り出される。スプライスは、例えば、ドープされたセグメントとアンドープのセグメントに関して、相異なるドーピング濃度のセグメントに関して、増幅器ファイバに結合されるシグナルファイバ及びポンプファイバの束(テーパードファイバカップラとして知られる)に関して、複数のモードファイバに関して、複数のモード場アダプタに関してなどで、共通又は異なる特性を持つファイバ片同士を継ぎ合わせるために作り出されることができる。スプライス領域は、バルクファイバよりも脆弱な傾向にあるとともに、加熱をもたらすものである散乱光及び場合により吸収を生成する傾向にある。
スプライス806は、構造の再被覆セクション808の中に置かれている。再被覆セクション808とは、光ファイバセグメント802−804が継ぎ合わされた後に金属堆積技術又はその他の技術によって金属が付加され得る領域を意味する。ここに示すように、スプライス806の位置で光ファイバを逃げ出る幾らかの散乱光810が存在し、それにより、周囲金属によって取り除かれる熱が生成される。周囲金属はまた、散乱光810を終端させるように作用する。堆積される金属の共形性が、構造的及び熱的の双方でスプライス806を保護する。
図9において、基体102、202は、金属層904によって少なくとも部分的に取り囲まれたコア902を用いて実装されている。コア902は、例えばベリリウム又はモリブデンなど、(1つ以上の)如何なる好適材料をも表し得る。コア902は、低いCTEと高い熱伝導率とを有し得る。金属層904は、例えば銅などのその他の金属が上に堆積されることが可能な、(1つ以上の)好適な金属を含む。金属層904はそれ自体、例えば電着によるなど、如何なる好適手法で形成されてもよい。
また、図9において、金属は光ファイバ104、204上に直接には堆積されていない。むしろ、光ファイバ104、204は、軟質の材料層906によって囲まれており、この材料層906の周りに金属が堆積されている。材料層906は、例えば銀、鉛、ガリウム、又はインジウムなど、高い熱伝導率を持つ如何なる好適材料を含んでいてもよい。一具体例として、より柔らかいリン酸塩ガラス又はフルオロリン酸塩ファイバとともに使用される金属の展性を高めるように、及びそれらの異なるCTEに基づく物理的な損傷を生じさせないように、鉛めっきが使用され得る。
図10−12は、図1A−2Fに示した構造を使用し得るシステム例を示している。図10においては、ポンプレーザ1002が、少なくとも部分的に金属で包み込まれた光ファイバ104に与えられる信号を生成する。信号は、光ファイバ104を退出して、出力光学系1004に与えられ得る。出力光学系1004は、ミラー、スプリッタ、レンズ、又は、信号を更に変更あるいは案内し得るその他の光学素子を含み得る。
少なくとも1つの伝熱ユニット1006が、1つ以上の位置で、光ファイバ104を取り囲む金属に熱的に結合され得る。各伝熱ユニット1006は、光ファイバ104を取り囲む金属から熱を、如何なる好適手法で取り除いてもよい。例えば、伝熱ユニット1006は、例えば1つ以上のヒートパイプ、メタルスプレッダ、ヒートシンク、熱電冷却器、又は送風機など、熱を消散するように設計された受動的若しくは能動的な冷却システムを表し得る。
図11においては、ポンプレーザ1002が、少なくとも部分的に金属で包み込まれた光ファイバ204に与えられる信号を生成する。信号は、光ファイバ204を退出して、出力光学系1004に与えられ得る。この例では、ポンプ1102を含んだ冷却ループによって冷却が提供される。ポンプ1102は、光ファイバ204の周りの金属内に形成された冷却チャネル210に、例えば液体又は気体などの流体を送り込むことができる。流体は、光ファイバ204の周りの金属から熱を取り除くために使用され得る。如何なる好適な流体が使用されてもよく、ポンプ1102は、流体の流れを作り出す如何なる好適構造をも表す。なお、図11のシステムにおいても、1つ以上の伝熱ユニット1006が使用されてよい。
図12においては、光ファイバ204を冷却するために複数の冷却ループが使用される。この例では、第1の流体が、ポンプ1202によって、光ファイバ204を取り囲む金属内の冷却チャネル210内でポンプされる。そして、この第1の冷却ループ内の上記流体を冷却するために、第2の冷却ループ1204が使用される。特定の実施形態において、第1の冷却ループ内の流体は液体金属を表し、ポンプ1202は電磁ポンプを表す。しかしながら、マルチループ冷却システムは、(1つ以上の)如何なる好適な流体及び(1つ以上の)如何なる好適なポンプを含んでいてもよい。なお、また、マルチループ冷却システムは、3つ以上の冷却ループを含んでいてもよい。なお、さらに、図12のシステムにおいても、1つ以上の伝熱ユニット1006が使用されてよい。
図13は、光ファイバ104、204の全体を覆っての金属の堆積が必ずしも必要でないことを例示している。例えば、図13では、更なる金属108、208bは、熱の除去が最も必要とされる領域を表し得る光ファイバ104、204の端部の位置又はその付近のみに堆積され得る。更なる金属108、208bは、基本的に、ヒートシンク又はその他の受動的若しくは能動的な伝熱装置に留められ得るコネクタピースを形成し得る。なお、しかしながら、更なる金属108、208bは、光ファイバ104、204に沿ったその他の位置又は更なる位置に堆積されてもよい。なお、また、ここでは示されていないが、少なくとも1つのリセス203が、光ファイバ104、204を取り囲む金属内に形成されてもよい。なお、さらに、下地の基体102、202、又は下地の金属208aは、光ファイバ104、204の下で連続である必要はなく、同様に指定の位置のみで光ファイバ104、204を接触していてもよい。
図5−13は、光ファイバとともに実装され得る機構の例を示しているが、様々な変形が図5−13に対して為され得る。例えば、図5−13は、堆積される金属で光ファイバが少なくとも部分的に包み込まれる構造に組み入れられ得る様々な機構を、単に例示することを意図したものである。なお、これらの機構のうちの1つ又は2つ以上が使用され得る。また、ここには示さない更なる機構も使用され得る。
図14は、本開示に従った光ファイバの熱マネジメントを提供する方法1400の一例を示している。図14に示すように、ステップ1402にて、基体が取得される。これは、例えば、銅板、銅めっきを有するベリリウム若しくはモリブデンの基体、又はその他の好適な基体102、202を得ることを含み得る。
場合により、ステップ1404にて、基体の上に犠牲材料が配置され、犠牲材料の上に金属が堆積され得る。これは、例えば、基体202上に犠牲材料203を形成し、あるいはその他の方法で配置し、犠牲材料203の上に金属208aを堆積することを含み得る。更なる金属208aは、例えば、電着技術、金属気相堆積技術、スパッタリング技術、又は化学気相成長技術を用いることによるなど、如何なる好適手法で堆積されてもよい。
ステップ1406にて、この基体の上に光ファイバが配置される。これは、例えば、固定治具316又はその他の構造を用いて、基体102、202の上で光ファイバ104、204を保持することを含み得る。これはまた、エラストマーの又はその他の支持構造106、206を用いて光ファイバ104、204上に力を広げることを含み得る。
ステップ1408にて、光ファイバの少なくとも一部の周りに金属が堆積される。これは、例えば、堆積プロセスを実行して、光ファイバ104、204の少なくとも一部の周りに銅又はその他の(1つ以上の)金属108、208bを堆積することを含み得る。これは、下に位置する基体102、202又は金属208aに光ファイバ104、204を物理的に接続する助けとなる。例えば、電着技術、金属気相堆積技術、スパッタリング技術、又は化学気相成長技術など、如何なる好適な堆積技術が使用されてもよい。
堆積プロセスは、金属が一定の速さ又は可変の速さで堆積されるように制御され得る。例えば、堆積プロセスは、当初において、光ファイバ104、204の下側部分に沿ってゆっくりめに金属を堆積し得る。下に位置する基体102、202又は金属208aに光ファイバ104、204を固定するための、光ファイバ104、204の下側部分の十分なカバレッジが達成されると、堆積プロセスは、速めに金属を堆積して当該堆積プロセスを完了させ得る。また、電着プロセスにおいては、堆積される金属内での有意なボイド形成を回避するために、電鋳溶液304を流れる電流が、プロセス全体において十分に低く保たれ得る。
場合により、ステップ1410にて、犠牲材料が金属から除去される。これは、例えば、ドリル加工又はその他の好適プロセスによって犠牲材料203を除去することを含み得る。これは、それを通って冷却流体が流れることが可能な少なくとも1つの冷却チャネル210を、金属内に形成する。
望ましい場合には、ステップ1412にて、堆積された金属が、1つ以上の伝熱ユニットに熱的に結合される。これは、例えば、封入された光ファイバ104、204を、1つ以上のヒートパイプ、メタルスプレッダ、ヒートシンク、熱電冷却器、又は送風機に取り付けることを含み得る。この時点で、製造された構造は、何らかの好適な信号を運ぶために使用されることができる。
図14は、光ファイバの熱マネジメントを提供する方法1400の一例を示しているが、様々な変形が図14に対して為され得る。例えば、一連のステップとして示されているが、図14の様々なステップは、重なり合っていてもよいし、並行して行われてもよいし、異なる順序で行われてもよいし、あるいは複数回にわたって行われてもよい。
なお、光ファイバを少なくとも部分的に囲んで金属を堆積するための異なる技術は、それらの技術がそのように実行されるかに応じて異なる利益を有し得る。例えば、電着技術は、短め及び長めのファイバインターコネクトに等しく適用可能であり、それにより、高出力及び低−中出力の双方の用途オプションに対処し得る。また、電着技術は、チップ型、サンドイッチ型、及び平面型の設計を含め、数多くの半導体レーザ設計とともに使用されることができる。さらに、電着技術を用いて、実質的にボイドのない構造を形成することができ、基体及び堆積金属を厚くすることができ、それらは、光ファイバの熱質量をかなりの量(例えば、少なくとも3桁の大きさ)上回る熱質量を有することができる。その上、電着された金属は、ファイバの絶縁ガラスと金属との間の界面的な熱抵抗を低減あるいは最小化し得るとともに、改善あるいは最適化されたヒートスプレッディング及びヒートシンキングの能力を提供し得る。また、電着は、似ていない材料(例えば、ガラス−銅の組み合わせ)を有するアセンブリにおいて低い残留応力形成を達成し得る。
加えて、電着を用いて、単にランダムな構造ではなく、熱輸送を支援し得る明確に定められた形状を形成することができる。例えば、技術的に優れた金属ヒートシンクは、支配的な熱質量を有し且つ所望の熱拡がりを提供する望ましい断面を有し得るそのベースに主として注目した熱スプレッドモードを提供することができる。そして、ファイバに基づくレーザキャビティは、寄生発振を抑制あるいは最適化して、予測可能なレーザ発振を有することができる。図4A及び4Bに示した螺旋パターンは、これの良い一例であり、下に位置する基体(ベース)は、光ファイバ自体の熱質量と比較して大きい熱質量によって特徴付けられる。螺旋構成にて配置された光ファイバと適切にインテグレートされるとき、ファイバループ間の熱勾配が無視できるほど小さくなることができ、ファイバループ内の温度場がほぼ均一になり得る。
電着技術は多数の利益を有するが、本開示は電着技術だけに限定されない。光ファイバを少なくとも部分的に包み込むことには、例えば金属気相堆積、スパッタリング、又は化学気相成長など、その他の堆積技術も使用され得る。これらの堆積技術の各々がそれ自身の強みを有し得る。
本特許文献の全体を通して使用される特定の単語及びフレーズの定義を説明しておくことが有益であるかもしれない。用語“含む”及び“有する”、並びにこれらの派生語は、限定なしでの包含を意味する。用語“又は”は、及び/又はを意味する包括的なものである。“〜と関連付けられる”なる言い回し、及びその派生語は、〜を含む、〜の中に含まれる、〜と相互接続される、〜を含有する、〜内に含有される、〜に又は〜と接続する、〜に又は〜と結合する、〜と通信可能である、〜と協働する、〜と交互である、〜隣り合う、〜に近接した、〜に又は〜と結合される、〜を有する、〜の特性を有する、〜に又は〜と関係を有する、又はこれらに類するものを意味し得る。“〜のうちの少なくとも1つ”なる言い回しは、アイテムのリストとともに使用されるとき、リストアップされたアイテムのうちの1つ以上の様々な組み合わせが使用され得ることを意味し、リスト内の1つのアイテムのみが必要とされることもある。例えば、“A、B、及びCのうちの少なくとも1つ”は、以下の組み合わせ:A、B、C、AとB、AとC、BとC、及びAとBとC、のうちの何れをも含む。
本開示は、特定の実施形態及び概して関連する方法を述べてきたが、これらの実施形態及び方法の改変及び並べ替えが当業者に明らかになる。従って、以上の実施形態例の説明は、本開示を定めたり制約したりするものではない。以下の請求項によって規定される本開示の精神及び範囲を逸脱することなく、その他の変形、代用、及び改変も可能である。

Claims (28)

  1. 少なくとも1つの露出された平坦な金属表面を有する基体を得ることと、
    前記基体の前記少なくとも1つの露出された平坦な金属表面上及び光ファイバの少なくとも一部の周りに金属を電着して、前記光ファイバを前記基体に固定するとともに前記光ファイバの少なくとも前記一部を包み込むことであり、前記光ファイバは前記平坦な金属表面と接触し、前記光ファイバは前記平坦な金属表面上でコイル状にされる、ことと
    を有し、
    前記基体及び前記電着された金属は、前記光ファイバから熱を取り除くように構成される、
    方法。
  2. 前記少なくとも1つの露出された平坦な金属表面を有する前記基体を得ることは、
    犠牲材料の周りに金属を電着して、前記平坦な金属表面を形成することと、
    前記犠牲材料を除去して、前記電着された金属中の少なくとも1つの冷却チャネルであって、冷却流体が通り抜けることができる冷却チャネル、を形成することと、
    を更に有する請求項1に記載の方法。
  3. 前記光ファイバはポリマーコーティングを有し、
    前記金属を電着することは、前記光ファイバの前記ポリマーコーティングの周りに前記金属を電着することを有し、且つ
    当該方法は更に、前記光ファイバの一端で前記ポリマーコーティングの一部を除去することを有する、
    請求項1に記載の方法。
  4. 前記基体及び前記電着された金属は合計で、前記光ファイバの熱質量を少なくとも約3桁の大きさだけ上回る熱質量を有する、請求項1に記載の方法。
  5. 前記光ファイバの入力及び前記光ファイバの出力で、前記基体及び前記電着された金属をファセット化すること、
    を更に有する請求項1に記載の方法。
  6. 前記金属を電着することは、室温で前記金属を電着することを有する、請求項1に記載の方法。
  7. 前記光ファイバの一部が前記電着された金属を通して露出されたままであるようにして、ポートを形成すること、
    を更に有する請求項1に記載の方法。
  8. 前記光ファイバは前記基体上でコイル状構成を有し、前記光ファイバが、進行方向を反転するまで一方向に面内コイル状経路を辿り、その後、別方向に面内コイル状経路を辿るようにされる、請求項1に記載の方法。
  9. 前記金属を電着することは、前記電着された金属で前記光ファイバを完全に包み込むことを有する、請求項1に記載の方法。
  10. 前記金属を電着することは、前記光ファイバの端部の前記光ファイバの一部のみの周りに前記金属を電着することを有する、請求項1に記載の方法。
  11. 平坦な表面を持つ基体と、
    前記平坦な表面と接触した光ファイバであり、前記平坦な表面上でコイル状にされた光ファイバと、
    前記基体の前記平坦な表面と接触し且つ前記光ファイバの少なくとも一部を包み込む電着金属と
    を有し、
    前記基体及び前記電着金属は、前記光ファイバから熱を取り除くように構成されている、
    装置。
  12. 前記光ファイバは、スプライス又は融合ファイバカップラで継ぎ合わされた複数のセグメントを有し、且つ
    前記基体及び前記電着金属が、前記スプライス又は融合ファイバカップラを取り囲んでいる、
    請求項11に記載の装置。
  13. 前記基体は、コアと、前記コア上に堆積された金属とを有し、且つ
    前記電着金属は、前記基体の前記金属上に位置する、
    請求項11に記載の装置。
  14. 当該装置は更に、前記光ファイバの少なくとも一部を取り囲む材料を有し、前記電着金属が該材料の少なくとも一部の周りに位置し、該材料は前記電着金属よりも軟質である、請求項11に記載の装置。
  15. 前記光ファイバはクラッドを有し、且つ
    当該装置は更に、前記光ファイバが終端するエンドキャップを有し、前記エンドキャップは、前記基体及び前記電着金属によって少なくとも部分的に包み込まれている、
    請求項11に記載の装置。
  16. 前記基体は、前記平坦な表面を形成する電着金属層を含み、
    当該装置は、
    前記電着金属中の少なくとも1つの冷却チャネルであり、冷却流体が通り抜けることができる冷却チャネル
    を更に有する請求項11に記載の装置。
  17. 前記光ファイバの露出部分の上及び前記電着金属の一部の上に位置する光学膜、
    を更に有する請求項11に記載の装置。
  18. 前記基体及び前記電着金属は合計で、前記光ファイバの熱質量を少なくとも約3桁の大きさだけ上回る熱質量を有する、請求項11に記載の装置。
  19. 光信号を生成するように構成されたレーザと、
    前記光信号を運ぶように構成された、請求項11乃至18の何れかに記載の装置
    を有するシステム。
  20. 前記基体及び前記電着金属に熱的に結合された伝熱ユニットであり、前記装置から熱を取り除くように構成された伝熱ユニット、
    を更に有する請求項19に記載のシステム。
  21. 前記装置から熱を取り除くために、前記装置内の少なくとも1つの冷却チャネルを通して冷却流体を輸送するように構成された、少なくとも1つの冷却ループ、
    を更に有する請求項19に記載のシステム。
  22. 少なくとも1つの露出された平坦な金属表面を有する基体を得ることと、
    前記基体の前記少なくとも1つの露出された平坦な金属表面上及び光ファイバの少なくとも一部の周りに金属を堆積して、前記光ファイバを前記基体に固定するとともに前記光ファイバの少なくとも前記一部を包み込むことであり、前記光ファイバは前記平坦な金属表面と接触し、前記光ファイバは前記平坦な金属表面上でコイル状にされる、ことと
    を有し、
    前記基体及び前記堆積された金属は、前記光ファイバから熱を取り除くように構成される、
    方法。
  23. 前記金属を堆積することは、電着技術、金属気相堆積技術、スパッタリング技術、及び化学気相成長技術、のうちの少なくとも1つを用いて前記金属を堆積することを有する、請求項22に記載の方法。
  24. 前記少なくとも1つの露出された平坦な金属表面を有する前記基体を得ることは、
    犠牲材料の周りに金属を堆積して、前記平坦な金属表面を形成することと、
    前記犠牲材料を除去して、前記堆積された金属中の少なくとも1つの冷却チャネルであって、冷却流体が通り抜けることができる冷却チャネル、を形成することと、
    を更に有する請求項22に記載の方法。
  25. 前記光ファイバはポリマーコーティングを有し、
    前記金属を堆積することは、前記光ファイバの前記ポリマーコーティングの周りに前記金属を堆積することを有し、且つ
    当該方法は更に、前記光ファイバの一端で前記ポリマーコーティングの一部を除去することを有する、
    請求項22に記載の方法。
  26. 前記金属を堆積することは、室温で前記金属を堆積することを有する、請求項22に記載の方法。
  27. 前記光ファイバの一部が前記堆積された金属を通して露出されたままであるようにして、ポートを形成すること、
    を更に有する請求項22に記載の方法。
  28. 前記光ファイバは前記基体上でコイル状構成を有し、前記光ファイバが、進行方向を反転するまで一方向に面内コイル状経路を辿り、その後、別方向に面内コイル状経路を辿るようにされる、請求項22に記載の方法。
JP2016541123A 2013-12-18 2014-10-16 高出力光ファイバの熱マネジメント Active JP6298165B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/133,264 US9606311B2 (en) 2013-12-18 2013-12-18 Thermal management for high-power optical fibers
US14/133,264 2013-12-18
PCT/US2014/060872 WO2015094467A1 (en) 2013-12-18 2014-10-16 Thermal management for high-power optical fibers

Publications (2)

Publication Number Publication Date
JP2017500610A JP2017500610A (ja) 2017-01-05
JP6298165B2 true JP6298165B2 (ja) 2018-03-20

Family

ID=51842902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016541123A Active JP6298165B2 (ja) 2013-12-18 2014-10-16 高出力光ファイバの熱マネジメント

Country Status (6)

Country Link
US (1) US9606311B2 (ja)
EP (1) EP3084494B1 (ja)
JP (1) JP6298165B2 (ja)
CN (1) CN105992962B (ja)
CA (1) CA2933188C (ja)
WO (1) WO2015094467A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6140743B2 (ja) * 2015-02-12 2017-05-31 株式会社フジクラ ファイバレーザ装置および増幅用コイルの製造方法
US9787048B1 (en) * 2016-10-17 2017-10-10 Waymo Llc Fiber encapsulation mechanism for energy dissipation in a fiber amplifying system
CN109038193A (zh) * 2018-09-07 2018-12-18 广东国志激光技术有限公司 一种光纤自固定盘绕装置及利用该装置盘绕光纤的方法
US10901161B2 (en) 2018-09-14 2021-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Optical power transfer devices with an embedded active cooling chip
CN112740489A (zh) * 2018-09-21 2021-04-30 三星钻石工业股份有限公司 光纤冷却装置和光纤激光装置
JP7341673B2 (ja) * 2019-02-27 2023-09-11 三菱重工業株式会社 レーザ装置
CN112987182B (zh) * 2021-04-25 2021-08-31 中国工程物理研究院激光聚变研究中心 光纤合束器及光纤激光器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407561A (en) 1980-10-14 1983-10-04 Hughes Aircraft Company Metallic clad fiber optical waveguide
US4733933A (en) * 1984-01-20 1988-03-29 Hughes Aircraft Company Fiber optic structure and method of making
US4708431A (en) 1984-01-20 1987-11-24 Hughes Aircraft Company Fiber optic solderable bulkhead fitting
US4647147A (en) 1984-01-20 1987-03-03 Hughes Aircraft Company Fiber optic to integrated optical chip coupler
EP0168404B1 (en) * 1984-01-20 1990-07-11 Hughes Aircraft Company Fiber optic structure and method for making
JPH02275910A (ja) * 1989-04-18 1990-11-09 Yokogawa Electric Corp 光ファイバの固定方法
JPH04106509A (ja) * 1990-08-27 1992-04-08 Kyowa Densen Kk 光ファイバ素材
DE4227836C2 (de) 1992-08-20 1997-09-25 Atotech Deutschland Gmbh Verfahren zur Metallisierung von Nichtleitern
US5380559A (en) 1993-04-30 1995-01-10 At&T Corp. Electroless metallization of optical fiber for hermetic packaging
EP0635737A1 (en) 1993-07-23 1995-01-25 Lucas Industries Public Limited Company Brazed bonding of optical glass fiber and silicon substrate
US5389193A (en) 1993-12-14 1995-02-14 At&T Corp. Methods for bonding aluminized optical fiber
US6174648B1 (en) * 1997-07-08 2001-01-16 Oki Electric Industry Co., Ltd. Optical filter fabrication method using fiber holder with spiral groove and phase mask with spiral diffraction grating
US6671450B2 (en) 2000-09-01 2003-12-30 Lightwave Microsystems Corporation Apparatus and method to metallize, reinforce, and hermetically seal multiple optical fibers
US6355301B1 (en) 2000-11-02 2002-03-12 3M Innovative Properties Company Selective fiber metallization
US6753034B2 (en) 2001-07-12 2004-06-22 Cidra Corporation Method of metallization of an optical waveguide
JP3732777B2 (ja) 2001-11-28 2006-01-11 三菱電線工業株式会社 光ファイバシート及びその製造方法
JP2003344709A (ja) 2002-05-23 2003-12-03 Okano Electric Wire Co Ltd ファイバ型光モジュール
CN101393306B (zh) * 2007-09-19 2012-07-04 日立电线株式会社 光配线部件的制造方法及光配线部件
US8340482B2 (en) * 2009-03-31 2012-12-25 Furukawa Electric Co., Ltd. Optical fiber holding apparatus
US8493651B1 (en) * 2010-04-12 2013-07-23 Lockheed Martin Corporation Apparatus for optical fiber management and cooling
JP2012074603A (ja) * 2010-09-29 2012-04-12 Furukawa Electric Co Ltd:The 光ファイバレーザモジュール
JP2012150360A (ja) 2011-01-20 2012-08-09 Mitsubishi Cable Ind Ltd 光ファイバ布線構造体及びその製造方法
US8971359B2 (en) * 2011-04-29 2015-03-03 Bae Systems Information And Electronic Systems Integration Inc. Temperature control of a fiber laser system
CN103064151A (zh) * 2012-12-05 2013-04-24 清华大学 一种具有流体冷却的光纤耦合器装置
JP6034720B2 (ja) * 2013-02-27 2016-11-30 株式会社フジクラ 光増幅部品及びファイバレーザ装置
US20140367859A1 (en) * 2013-06-17 2014-12-18 Freescale Semiconductor, Inc. Tin-based wirebond structures

Also Published As

Publication number Publication date
CN105992962A (zh) 2016-10-05
CN105992962B (zh) 2018-09-07
CA2933188A1 (en) 2015-06-25
CA2933188C (en) 2021-01-26
EP3084494A1 (en) 2016-10-26
US20150331209A1 (en) 2015-11-19
EP3084494B1 (en) 2019-11-20
US9606311B2 (en) 2017-03-28
JP2017500610A (ja) 2017-01-05
WO2015094467A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6298165B2 (ja) 高出力光ファイバの熱マネジメント
EP3292433B1 (en) Three-dimensional (3d) photonic chip-to-fiber interposer
KR102163083B1 (ko) 홈 라우팅 광섬유 가열을 포함하는 온도 제어 장치, 기판 온도 제어 시스템들, 전자 디바이스 처리 시스템들 및 처리 방법들
US20170276869A1 (en) Metalized double-clad optical fiber
TW201140975A (en) Method and system for hybrid integration of a tunable laser
US6879604B2 (en) Waveguide laser devices
US9435945B2 (en) High power metal clad mode absorber
EP2801132B1 (en) High power metal clad mode absorber
JP6649843B2 (ja) 光回路
CN107787538B (zh) 用于形成在激光系统或其它系统以及相关联的设备中使用的波导的技术
WO2004036289A2 (en) Heat sink for a planar waveguide substrate
JP2005062645A (ja) 光接続構造体およびその製造方法
JP2000147312A (ja) レーザモジュール及びその製造方法
JP3274691B2 (ja) 微小レンズ付光ファイバ端末の製造方法
JP2007271674A (ja) 光デバイス
WO2006020925A2 (en) High thermal-conductivity materials for a cooled laser gain assembly
WO2004102236A2 (en) A side coupled optical waveguide device
JP5508249B2 (ja) 光モジュールの製造方法
JP2005345701A (ja) ファイバフューズストッパ
JP2004303807A (ja) ハンダコート付きサーモ・モジュール及びその製造方法
EP1322978A1 (fr) Dispositif d'injection pour fibre optique et procede de preparation
JP2006514317A (ja) 光パワーの横転送のためにアセンブルされた導波路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180222

R150 Certificate of patent or registration of utility model

Ref document number: 6298165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250