JP6292747B2 - エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング - Google Patents

エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング Download PDF

Info

Publication number
JP6292747B2
JP6292747B2 JP2012534340A JP2012534340A JP6292747B2 JP 6292747 B2 JP6292747 B2 JP 6292747B2 JP 2012534340 A JP2012534340 A JP 2012534340A JP 2012534340 A JP2012534340 A JP 2012534340A JP 6292747 B2 JP6292747 B2 JP 6292747B2
Authority
JP
Japan
Prior art keywords
cells
pluripotent
image
cell
differentiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012534340A
Other languages
English (en)
Other versions
JP2013507643A (ja
Inventor
ラミ マンゴウビ,
ラミ マンゴウビ,
ポール ジェイ. サマック,
ポール ジェイ. サマック,
ムクンド デサイ,
ムクンド デサイ,
ネイサン ローリー,
ネイサン ローリー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pittsburgh
Original Assignee
University of Pittsburgh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Pittsburgh filed Critical University of Pittsburgh
Publication of JP2013507643A publication Critical patent/JP2013507643A/ja
Application granted granted Critical
Publication of JP6292747B2 publication Critical patent/JP6292747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24147Distances to closest patterns, e.g. nearest neighbour classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

関連出願への相互参照
この出願は、2009年10月13日に出願された米国仮出願第61/278,992号(この開示は、その全体が参考として本明細書に援用される)の利益を主張する。
連邦政府による資金供与に関する声明
本明細書に記載された研究は、National Institutes of HealthおよびNational Institute of Biomedical Imaging and Bioengineering (NIBIB)によって付与された助成金第EB006161号、ならびにFlight Attendant Medical Research Institute Foundationによって付与された助成金第FAMRI 26−3401−2150号によって、その全体またはその一部において資金の供与を受けた。
人工多能性幹細胞(iPSC)は、組織工学における細胞治療および疾患の研究に対して極めて有望である。この有望性は、あらゆる遺伝子源から多能性胚性幹様細胞を形成する能力による。患者特異的免疫適合細胞を、iPSCにリプログラミングするために親細胞系として選択することができる。次いで、このiPSCを使用して、拒絶反応のない患者が許容する細胞および組織を作製する。iPSCはまた、疾患の機序および処置の発見に使用するために遺伝病の患者から得ることもできる。他の多能性幹細胞と同様に、iPSCを使用して、薬物候補を試験するため、薬物の有効性を評価するため、および/または薬物開発プロセスの初期段階での薬物候補の毒作用を明らかにするための心臓、脳、網膜、肝臓、および他の組織の細胞を作製することもできる。
例えば、幹細胞で発現されるが、後に分化細胞でサイレント化される遺伝子に転写因子を使用してスイッチを入れることによってiPSCを分化細胞から誘導することが可能である。遺伝子サイレンシングは、エピジェネティック変化、すなわち基礎をなすDNA配列を超えた機序によって引き起こされる表現型もしくは遺伝子発現の変化の1種である。細胞の分化に関連したエピジェネティック変化を逆転することができれば、多能性細胞の誘導の頻度および率を増加させることができ、iPSCコロニーの形成の安全性および効率が改善されるであろう。例えば、安全性は、癌性細胞が生じる確率を低下させることによって改善することができる(Okitaら、2007)。
加えて、iPSCが分化細胞から正常に誘導されるか否か、およびいつ誘導されるかを決定する必要がある。形態学的に異なる分化段階と多能性段階との間に明確な中間段階が存在するため、細胞集団を画像化して数理的画像解析を使用して、画像中の細胞がどの段階に達しているかを決定することが可能である。細胞のエピジェネティック操作との組み合わせでは、画像解析により、迅速かつ効率的に有用なiPSCの集団を誘導して評価する強力な方法が提供される。
非破壊的かつ非侵襲的な方法で多能性を識別するためのスケーラブルかつ立証可能な方法が、体細胞からの希少iPSCの誘導にとって、または細胞治療用の多数のhESCコロニーの品質管理にとって理想的であろう。現在、ヒトhESCを分類する方法は、訓練を受けた顕微鏡使用者による生細胞の目視検査、または生化学的もしくは免疫化学的染色に限られている。明視野顕微鏡法または位相差顕微鏡法を用いた目視観察は非侵襲的であるが、時間がかかり、非定量的であり、治療または商業的環境で期待される大量の細胞のために規模を拡大することができない。同様に、hESCの生化学的染色は、一貫性があり、定量的であり、かつ自動化可能であるが、この生化学的染色は、破壊的であり、サンプルが治療用途に適さなくなる(Sammakら、2008)。生細胞蛍光マーカーは、新生iPSCコロニーを認識するために使用することができるが(Chanら、2009)、このようなマーカーは、侵襲的であり、かつ時間と共に染料が減少するために動態アッセイに用途が限定される細胞外または膜永久染料を添加する必要がある。さらに、このような染料を検出するための蛍光染料および方法は、光受容細胞を損傷することがある。さらに、正確な品質管理は、細胞の形態の均質性の尺度が必要であり、これは、非常に多数の細胞培養プレートに対して視覚的に行うのはほぼ不可能である。対照的に、形態学的測定は、細胞多能性または細胞分化の終点の指標として役立ち、細胞の実験的作用物質のリアルタイムの測定を可能にする。
本発明は、人工多能性幹細胞を識別するための改善された方法を提供する。iPSCを識別するこのような改善された方法は、例えば、iPSCを最終分化および/または部分分化細胞から区別するため;iPSCを体細胞から誘導する方法を評価および最適化するため;化合物のスクリーニングを容易にするため;および細胞の分化の状態を調節するための方法および技術の理解を容易にするために使用することができる。本明細書に記載される画像化および他の識別方法の様々な特徴および実施形態を組み合わせることができる。さらに、特徴のあらゆる組み合わせを含むこれらの方法は、多能性細胞を誘導する、および/または多能性細胞の分化状態を調節する他の1つ以上の方法と組み合わせることができる。
本発明の一態様は、人工多能性幹細胞を識別する方法であって、(a)1つ以上の細胞の画像を得るステップと、(b)この画像を多数のピクセルとして表すステップと、(c)プロセッサーを使用して、前記多数のピクセルから1つ以上の画像の特徴を抽出するステップと、(d)この1つ以上の画像の特徴を、1つ以上の多能性幹細胞から得た画像の特徴と比較するステップと、を含み、このプロセッサーが、1つ以上の統計的比較法を行って画像の特徴を比較し;これにより人工多能性幹細胞を識別する、方法を提供する。
この方法の一実施形態では、1つ以上の細胞は、細胞のコロニーである。この方法はまた、1つの細胞の核、または1つ以上の細胞を含む画像を特徴付けることもできる。一部の実施形態では、多数のピクセルから抽出された画像の特徴は、テクスチャーであり、このテクスチャーは、細胞の形態学的構造と対応する。一部の実施形態では、テクスチャーは、不均質である。
別の実施形態では、この方法は、(e)前記画像の平滑化とセグメント化を同時に行うステップと、(f)前記細胞の1つ以上の境界を画定するステップと、(g)前記1つ以上の境界に近接した領域または小領域を識別するステップと、(h)領域または小領域の1つ以上の属性を得るステップと、(i)前記1つ以上の属性における変動を分析するステップと、をさらに含み;前記1つ以上の画像の特徴が、前記1つ以上の属性の成分を含む。一部の実施形態では、1つ以上の画像の特徴は、ウェーブレット分解アルゴリズムを用いて抽出される。さらなる実施形態では、このウェーブレットアルゴリズムは、1レベル当たり3つの詳細サブバンドを生成するn−レベル分解である。なおさらなる実施形態では、1レベル当たりの3つの詳細サブバンドのそれぞれは、水平方向、垂直方向、および対角線方向である。
この方法のさらに別の実施形態では、1つ以上の統計的方法が、確率密度関数の比較である。さらなる実施形態では、1つ以上の画像の1つ以上の領域は、クラスター化アルゴリズムを用いて分類され、例示的なクラスター化アルゴリズムは、k−最近傍(kNN)アルゴリズムおよびサポート・ベクター・マシン(SVM)から選択される。一部の実施形態では、1つ以上の画像の特徴間の相違は、pdf推定量を用いて計算され、情報ダイバージェンスを用いて定量される。他の実施形態では、相違は、カルバック−ライブラーダイバージェンス(KLD)を用いて計算される。注目すべきは、一部の実施形態は、一般化ガウス密度モデル(GGD);対称α安定(SαS)密度モデル;Ahmad−Lin(A−L)KLD推定:およびLoftsgaarden−Quesenberry(L−Q)KLD推定から選択される、pdfおよびKLDを推定する方法を用いる。
この方法のなお別の実施形態では、人工多能性幹細胞は、細胞の不均質な混合物に含められる。一部の実施形態は、1つ以上の細胞の画像を1つ以上のウインドウに細分するステップをさらに含む。さらなる実施形態では、1つ以上のウインドウは、分類され、細分され、そして再分類される。さらなる実施形態では、多能性細胞は、フィーダー細胞から分化する。
本発明の別の態様は、人工多能性幹細胞(iPSC)を作製する方法であって:(a)線維芽細胞(または他の体細胞)を培養するステップと;(b)この線維芽細胞(または他の体細胞)を1つ以上の転写因子でトランスフェクトするステップと;(c)1つ以上のエピジェネティック制御因子の活性を低下させるステップと、を含み;この線維芽細胞(または他の体細胞)が多能性幹細胞になるように誘導する、方法を提供する。本発明の態様は、本明細書に記載されるどの画像化法、検出法、および定量法とも組み合わせることができることに留意されたい。
本発明の一部の実施形態では、1つ以上の転写因子が、体細胞でのみ発現されるサイレント化遺伝子にスイッチを入れる。他の実施形態では、1つ以上の転写因子は、Oct4、Sox2(MKOS)、KLF4、およびcMycである。さらなる実施形態では、1つ以上のエピジェネティック制御因子は、ヒストンの調節またはクロマチンの凝縮に関連する。なお他の実施形態では、1つ以上のエピジェネティック制御因子は、メチル−CpG結合ドメインタンパク質、ヒストンデアセチラーゼ、およびDNAメチルトランスフェラーゼである。一部の実施形態では、ヒストンデアセチラーゼである。一部の実施形態では、ヒストンデアセチラーゼは、HDAC1および/またはHDAC2であり、かつ/またはDNAメチルトランスフェラーゼは、DNMT1、DNMT3a、および/またはDNMT3bである。
この方法の他の実施形態では、1つ以上のエピジェネティック制御因子の活性を、RNAiによって低下させる。一部の実施形態では、RNAiはshRNAである。他の実施形態では、shRNAは、レンチウイルスで発現される。さらなる実施形態では、レンチウイルスは、ドキシサイクリンによって誘導される。
この方法のさらなる実施形態では、薬物の添加により、1つ以上のエピジェネティック制御因子の活性を低下させる。一部の実施形態では、薬物は、バルプロ酸、酪酸塩、またはトリコスタチンA(TSA)である。さらなる実施形態では、線維芽細胞は、フィーダーなし培養培地で培養される。
本願は特定の実施形態において例えば以下の項目を提供する:
(項目1)
人工多能性幹細胞を識別するための方法であって、該方法は:
(a)1つ以上の細胞の画像を得るステップと、
(b)該画像を多数のピクセルとして表すステップと、
(c)プロセッサーを使用して、該多数のピクセルから1つ以上の画像の特徴を抽出するステップと、
(d)該1つ以上の画像の特徴を、1つ以上の多能性幹細胞から得た画像の特徴と比較するステップと、を含み、該プロセッサーが、1つ以上の統計的比較法を行って該画像の特徴を比較し、これにより人工多能性幹細胞を識別する、方法。
(項目2)
前記1つ以上の細胞が、細胞のコロニーである、項目1に記載の方法。
(項目3)
前記画像が、1つの細胞の核を含む、項目1に記載の方法。
(項目4)
前記画像の特徴がテクスチャーである、項目1に記載の方法。
(項目5)
前記テクスチャーが、前記細胞の形態学的構造と対応している、項目4に記載の方法。
(項目6)
前記テクスチャーが不均質である、項目4に記載の方法。
(項目7)
(e)前記画像の平滑化とセグメント化を同時に行うステップと、
(f)前記細胞の1つ以上の境界を決定するステップと、
(g)該1つ以上の境界に近接した領域または小領域を特定するステップと、
(h)領域または小領域の1つ以上の属性を得るステップと、
(i)該1つ以上の属性における変動を分析するステップと、をさらに含み、
該1つ以上の画像の特徴が、該1つ以上の属性の成分を含む、項目1に記載の方法。
(項目8)
前記1つ以上の画像の特徴が、ウェーブレット分解アルゴリズムを用いて抽出される、項目1に記載の方法。
(項目9)
前記ウェーブレットアルゴリズムが、1レベル当たり3つの詳細サブバンドを生成するn−レベル分解である、項目8に記載の方法。
(項目10)
前記1レベル当たり3つの詳細サブバンドのそれぞれが、水平方向、垂直方向、および対角線方向である、項目9に記載の方法。
(項目11)
前記1つ以上の統計的比較法が、確率密度関数の比較である、項目1に記載の方法。
(項目12)
前記1つ以上の画像の1つ以上の領域が、クラスター化アルゴリズムを用いて分類される、項目11に記載の方法。
(項目13)
前記クラスター化アルゴリズムが、k−最近傍(kNN)アルゴリズムおよびサポート・ベクター・マシン(SVM)から選択される、項目11に記載の方法。
(項目14)
前記1つ以上の画像の特徴間の相違が、pdf推定量を用いて計算され、情報ダイバージェンスを用いて定量される、項目12に記載の方法。
(項目15)
相違が、カルバック−ライブラーダイバージェンス(KLD)を用いて計算される、項目14に記載の方法。
(項目16)
pdfおよびKLDを推定するために使用される方法が、一般化ガウス密度モデル(GGD);対称なα安定(SαS)密度モデル;Ahmad−Lin(A−L)KLD推定:およびLoftsgaarden−Quesenberry(L−Q)KLD推定から選択される、項目14に記載の方法。
(項目17)
前記人工多能性幹細胞が、細胞の不均質な混合物に含まれている、項目1に記載の方法。
(項目18)
前記1つ以上の細胞の画像を1つ以上のウインドウに細分するステップをさらに含む、項目13に記載の方法。
(項目19)
前記1つ以上のウインドウが、分類され、細分され、そして再分類される、項目14に記載の方法。
(項目20)
多能性細胞が、フィーダー細胞から分化する、項目13に記載の方法。
本開示は、上記の態様および実施形態のあらゆる組み合わせ、ならびに以下の詳細な説明および実施例に記載されるあらゆる実施形態との組み合わせも企図する。
本特許または本願は、カラーで作成された少なくとも1つの図面を含む。カラーの図面(複数可)を含む本特許または本願のコピーは、必要な手数料を添えて特許庁に申請すれば得られる。
図1は、どのようにヒストンおよびDNAのエピジェネティック修飾が、オープンユークロマチンを凝縮へテロクロマチンに変換するかを例示している。この多段階プロセスは、ヒストンの脱アセチル化(複数のHDACによる)、ならびにシトシンにおけるヒストン(メチルトランスフェラーゼ、HMTが特にH3リシン9および27を標的にする)およびDNAのメチル化(DNAメチルトランスフェラーゼによる)を含む、クロマチンのいくつかの酵素による翻訳後修飾の調整を必要とする。この図面は(Eggerら、2004)からである。 図2は、エピジェネティック酵素が、分化細胞中のヘテロクロマチンに結合した複合体に見られることを示している。研究により、HDAC1、HDAC2、SUV39H1、およびDNMT3bが、ヘテロクロマチンに結合してH3K9および5’Mec(右)をメチル化する、体細胞(右)中の複合体に会合することを示している。結合定数は、酵素によって異なる。多能性細胞では、我々の予備的な免疫蛍光データ(下)は、酵素が密に結合しないこと(左)を示している。 図3は、存在するiPSCコロニーおよびhESCコロニーの識別を示している。(A)細胞外マトリックスタンパク質の外側に300を超える細胞を含む、樹立された成熟iPSCコロニー。(B)画像の外部が赤色でマークされ、多能性コロニーが青色でマークされたコロニーのコンピューター画像解析。多重解像度テクスチャーアルゴリズムを適用して結果を得た。(C)同様のアルゴリズムも、フィーダー由来の新生iPSCに類似した状況である、継代の24時間後のフィーダー上で成長した非常に小さいコロニーの30のhESCを識別することができる。(D)周囲のフィーダーとのコロニーの判別。 図4は、新生iPSCを例示している。左のパネルは、MKOS転写因子でのトランスフェクションから0時間後、23時間後、および59時間後の明視野画像である。右のパネルでは、rtTA−IRES−GFPのノッキングが、59時間後にiPSCを新たに形成するが、それ以前は確実ではないことを明らかにしている。 図5は、微速度撮影解析の例を示している。(A−E)カラーオーバーレイ青色(t=0分)、緑色(t=1分)、および赤色(t=2分)による単一共焦点スライスに示されているGFP−H2B標識核。多能性核(A、B)は、分化(C、D)またはコントロール体細胞内皮核(E)と比較するとよりカラーであることを示している。定量テクスチャー解析(2行目、F)は、核(カラーの正方形)について示され、それぞれの正方形が10分間隔の10の画像を含む。カラーバーは、テクスチャー(M1〜M4)間のカルバック−ライブラー(K−L)ダイバージェンス(青色:最小距離、赤色:最大距離)の測度である。多能性核(A、B)は、大きいK−Lダイバージェンス(赤色)および(F)の黄色の体細胞核(E)とは異なっている。体細胞Eからの距離は、細胞が分化するにつれて減少する。 図6は、幹細胞クロマチンに適用された分類スキームの性能評価を実証している。曲線は、部分的または完全に分化した核からの多能性核の識別の偽陽性の確率に対する正確な識別の確率を表している。赤色の曲線は、最大偽陽性確率が0.003の場合に0.99の確率で多能性核(A)を体細胞(D)から正確に識別できること示している。2日目の分化核(B、青色の曲線)と比較すると、トレードオフは、0.96対0.02である。5週間目の分化核(C、黒色の曲線)では、トレードオフは、0.094対0.02である。 図7は、マトリックスエッジ(Matrix Edge)概念を例示している。(a)四角形のノイズのない画像、従来のセグメント化で処理(c1)された、(b)空間的に変化する強力なノイズ(四角形の左上の角のノイズが、他の角よりも強い)によって妨害された画像、エッジは、(c2)局所平滑化が行われる近傍が、サイズのみを局所的に変更するためぼやけているが、(d1)マトリックスエッジセグメント化では、エッジは、サイズに加えて、局所近傍の形状および向きを変更できるため(d2)、大幅に改善されている。 図8は、マトリックスエッジおよびオニオンピーリング(Onion Peeling)の幹細胞核への適用を示している。多能性核(上)および分化核(下)の(a)生の入力(左の列)、平滑化(中間)、およびエッジフィールド(右)出力画像。マトリックス・エッジ・フィールド出力(右の列)は、空間的に変化する細部が多い。エッジフィールド画像の層は、(b)タマネギの皮をむくように抽出され、(c)多能性核(上の曲線)と分化核(下の曲線)で値が異なる数値の特徴を抽出するように定量される 図9は、幹細胞核を示している。(a)核のセグメント化、青色の輪郭が、識別された核領域を示している;(b)正規化された画像、最も明るい領域が右下であることに留意されたい;(c)内部ウインドウの位置が、各分解レベルの中心にあり、赤色が、レベル3の内部ウインドウであり、オレンジ色が、レベル2であり、緑色が、レベル1である;(d)第3の水平サブバンドにおける係数分布のParzen推定対GGD推定。 図10は、H3K9me3およびHDAC1の抗原の回収が、免疫検出の均一性を改善することを示している。分化中のクロマチン再構成を、免疫蛍光によってhESCコロニーで評価した。HeLaおよびMEFを含むコントロール細胞での観察により、PFA固定またはMeOH固定を用いたヘテロクロマチン抗体での一貫性のない染色を実証した。一貫性のない抗体染色は、すべての細胞が洗剤で抽出され、他の核タンパク質、例えば、転写因子(不図示)を染色することができるため、抗体の一貫性のない浸透によるものではない。様々な固定後の抗原回収条件下で、H3K9me3(緑色)の免疫染色およびHDAC1(赤色)染色を評価した。最適なHDAC染色は、95℃のクエン酸塩、pH6.0、30分(著作権)で得られたが、この条件は、H3K9me3の弱い免疫染色をもたらした。H3K9me3の確実な染色がすべての細胞ではなかったため、良好であるが準最適のH3K9me3染色を、室温のクエン酸塩、pH7.4、5分で観察した。両方の抗原染色の優れた一貫性が、アルカリ条件(C)によって、または冷メタノールでのパラホルムアルデヒド処理後(D)得られた。メタノールは、アルカリ条件よりもやや優れている。これらの方法は、ほぼ100%の陽性抗原染色および低い細胞質バックグラウンド染色で、H3K9−3Me、H3K9ac、HDAC1、HDAC2、Crest、Oct−4、ネスチン、HP1α、HP1βを含む、これまで研究したすべての抗体に対して一貫性のある染色を可能にする。 図11は、適応ウインドウイングおよびテクスチャー解析を示している。(a)3段階テクスチャー分類の概念的なフローチャート。(b)〜(e)初期分化核のテクスチャー解析。(b)dの第1の垂直サブバンドにおける係数分布のParzen推定対GGD推定;(c)核のセグメント化、青色の輪郭は、識別された核領域を示している;(d)正規化画像、最も明るい領域は、右下であることに留意されたい;(e)各分解レベルで選択されたモデル化係数、赤色は、レベル4の係数であり、オレンジ色は、レベル3の係数であり、黄色は、レベル2の係数であり、シアンは、レベル1の係数であり;青色は、細胞の内部であるが、レベル1の外側である;濃い青色は、細胞の外部である。(f)〜(g)は、(c)〜(d)と同様であるが、多能性細胞用である。 図12は、多能性細胞マーカーおよび初期分化細胞マーカーを例示している。Oct4は、通常密度のフィーダー(A〜C)で成長したコロニーにおいて、転写因子、Hnf3b(A)、Nanog(B)、およびFoxd3(C)を含む多能性の追加のマーカーと共に核に共局在化する。低密度フィーダー(D)では、Oct4が存在せず、栄養外胚葉マーカー、Cdx2が、希少細胞に存在する。hESCを我々の低密度フィーダーで分化させるときは、神経外胚葉系譜が好ましい。 図13は、多能性系譜の初期発生段階の分子確認のための多能性パネルを例示している。2つの標準的な条件下−フィーダー上(DSR中およびゼラチン上)およびフィーダーなしの条件(StemPro中およびGeltrex(マトリゲル)上)でのH7の成長は、様々なレベルの多能性のマーカー、特にOct、Sox2、HNF3b、FoxD3、およびRex1を示している。特にRex1は、ICM様細胞のマーカー(StemPro、B)であり、FGF5Rは、着床後の胚盤葉上層の特性である(フィーダー+DSR、C)。ICMおよび胚盤葉上層は共に、多能性である。 図14は、核分類およびKLD最近傍分類を示している。クラス1(変形している多能性核):画像1〜11、クラス2(移行している多能性核):12〜22、クラス3(流動している2日目の分化核):23〜33、クラス4(ゲル様の5週間目の分化核):34〜43、クラス5(静止内皮細胞):44〜53。y軸上のそれぞれの核の画像では、5つの最近傍(最も低い合計KLD)は、x軸に沿った白色の正方形によって示されている。 図15は、多能性hESCコロニーの画像と分化栄養外胚葉コロニーの画像の形態学的比較を示している。多能性hESC培養物、系WA07(a、d、g、i)を、100ng/ml BMP4を用いた培養で、in vitroで4日間分化したhESC(b、e、h、j)と比較した。形成された扁平上皮単層は、栄養外胚葉であり、胚盤胞の外殻に見られ、胎盤を形成する。固定されたコロニーを、DNA染色、Hoechst33342(a、b)ならびに多能性マーカーOCT4(d)および栄養外胚葉マーカー、CDX2(e)に対する抗体で染色した。広がるコロニーの特性である形態学的相違には、細胞の増加(c)および核のサイズ(f)が含まれる。4つのコロニーのHoechst画像を、核のサイズ、およびコロニーの面積当たりの核の数(平均細胞面積)について解析し、多能性コロニーの形態と栄養外胚葉コロニーの形態との間の相違が有意であり、スチューデントのt検定によるとp<0.05であった。固定されずに(a〜f)で行われたように免疫染色された生細胞(g、h)のコロニーの形態は、画像の空間周波数の分布(i、j)によって得られる。(g、h)における1mmの白色の線に沿った1Dラインのプロフィールは、核のサイズおよび細胞のサイズの両方に依存するコロニー形態の統合測度となる。空間周波数は、TEコロニーよりも多能性コロニーで高く、画像テクスチャーのウェーブレット解析、一般化2D、マルチスカラー測度を用いてより完全に測定することができる。(e)のバーは、100μmであり、(g)および(h)のバーは、1,128μmである。(i)および(j)におけるラインスキャンの3つの詳細サブバンドの経験的確率密度関数(k〜l)は、空間周波数の概念を定量する。第2(k)のサブバンドおよび第3(l)のサブバンド(それぞれ、スケールが2および2ピクセル)では、多能性密度における厚い分布および広い裾は、より小さいスケールで比較的縁が多いことを示し、したがって多能性画像では、細胞の数が多くて細胞が小さい。この状態は、第6(k)の詳細サブバンド(スケールが2=64ピクセル)で逆転し、これは、多能性幹細胞および分化幹細胞(それぞれ、69±30ピクセルおよび82±40ピクセル、平均±SD、5つの独立したコロニー中に400細胞)のほぼ平均直径のスケールである。 図16は、核の分類を示している。(a)KLD最近傍分類。クラス1(初期分化核):画像1〜25、クラス2(多能性核):26〜53。y軸上の各核の画像では、10の最近傍(最も低い合計KLD)は、x軸に沿った白色の正方形によって示されている;(c)〜(d)変動するウェーブレットおよびpdf/KLD推定量のための2つおよび3つの分解レベルでの分類確度;分類確度は、分解レベルの数およびウェーブレットの選択に対して高いロバスト性であり、パラメトリック(GGD、SαS)法は、ノンパラメトリック(A−L、L−Q)法に匹敵する確度を示す。 図17は、hESCコロニーの分類を例示している。(a)2つのウインドウ間の統計的相違測度(KLD)を、青色(類似)から赤色(相違)のマトリックスの各入口の色によって可視化する;したがって、対角線の要素はそれぞれ、各ウインドウがそれ自体テクスチャー的に同一であるため、濃い青色であり、類似のモデルを含むクラスは、対角線に沿った青みがかったブロックとして現れる;(b)多能性hESCコロニーのウインドウごとの分類;3つのパスを使用して元の画像を分類し、中間結果が、分類および境界検出段階の後に示される;青色が多能性であり、緑色が分化であり、赤色が外部であり、金色が未知である;(c)多能性から明確に区別された分化コロニー;(d)分類子パラメーターの変化に対するアルゴリズムのロバスト性;(d〜i)は、一定ウェーブレット(Daubechies−4)、分類子パラメーター(k、k)は変動する;青色が多能性であり、緑色が分化であり、赤色が外部である;バーは、90%信頼区間の範囲を示し、菱形は、確度の最大事後(MAP)推定値である;(d−ii)は多能性であり、(d−iii)は分化であり、(d−iv)は外部であり、これらは、一定の分類子パラメーター(k、k)=(7、5)および変動するウェーブレットを有する;(e)GGDモデルとSαSモデルとの間の比較、Daubechies−4ウェーブレット、(k、k)=(7、5);性能は、ウェーブレットの選択、分類子パラメーターに対してロバストである;GGD性能は、SαS性能と同等以上である。 図18は、多能性hESC(A、B)、2日目の分化hESC(C)、および5週間目の分化hESC(D)、およびコントロール完全分化内皮細胞(E)由来のGFP−H2B標識された核の共焦点画像を示している;クロマチンの粒度は、分化中に増加し、コントロール細胞に近づく。各カラー画像は、0分(青色)、5分(緑色)、および10分(赤色)における画像のオーバーレイである。カラーバーは、核が時間と共に変化するか(多能性細胞で明るい色)、または時間と共に変化しないか(分化細胞でグレー)を視覚的に示す。Aのバーは10μmである。 図19は、パラメトリックアプローチ対ノンパラメトリックアプローチを示している。合計KLDは、細胞11(クラス1の一部)とクラス1および2との間の相違を示している。クラス1:画像1〜11、クラス2:12〜22。GGD統計モデルは上であり;Parzenは下である。Parzenの改善されたクラス分けに留意されたい。 図20は、さらなる適用例を示している。(a、b)混合された自然分化幹細胞コロニー(系UC06)についての概念の証明(a)分化上皮細胞(シアン、ライブラリーウインドウ1〜4)、色の濃い分化細胞(紫色、ライブラリーウインドウ5〜8)、外部フィーダー細胞(オレンジ色、ライブラリーウインドウ9〜16)、および多能性細胞(淡青色、ライブラリーウインドウ17〜20)を示し、バーは100μmである;多能性細胞は、(b)に示されているようなKLDが6の他のテクスチャーから区別することができ、KLDプロットは、混合画像(a)の対応する色の付いた領域についてのプロットである。(c、d)では、廃棄されたアカゲザル由来の分裂中期II卵子を、ホフマン・モジュレーション・コントラスト対物レンズで40倍で撮影し、環境室(c)内で10時間観察した。CO2を5%から大気濃度まで減少させて、フレーム30の前にpHを変更した。この卵子は、閉鎖性となり、細胞質の粒度が、卵子が死ぬにつれて細かい粒度から粗い粒度に変化した。KLDを、各フレームと最初のフレーム(青色の曲線、生きた卵子)および最後のフレーム(赤色の曲線、死んだ卵子)との間で計算した。最初は、青色の曲線が低い一方、赤色の曲線が高く、それぞれ、健常な細胞に対するテクスチャー類似性および死んだ細胞に対する相違性を示している;この変化は、卵子が損傷したフレーム30で始まっている。 図21は、継代後の小さいhESCコロニーが新生iPSCに類似しているように見えることを例示している。コロニーは、4×および10×のそれぞれで、3日目(C、F)に容易に検出可能である。しかしながら、1日目は、コロニーは、4×(A)ではなく10×(D)のみで区別される。したがって、新生iPSCの検出のための2つの変数は、形成後の時間ならびに画像検出のスケールおよび解像度である。4×の視野は、2mm×3mmである。 図22は、存在するiPSCコロニーおよびhESCコロニーの識別を実証している。(A)細胞外マトリックスタンパク質の外側に300を超える細胞を含む、樹立された成熟iPSCコロニー。(B)画像の外部が赤色でマークされ、多能性コロニーが青色でマークされたコロニーのコンピューター画像解析。多解像度テクスチャーアルゴリズムが、結果を得るために適用された。(C)同様のアルゴリズムも、フィーダー由来の新生iPSCに類似した状況である、継代の24時間後のフィーダー上で成長した非常に小さいコロニーの30のhESCを識別することができる。(D)周囲のフィーダーとのコロニーの判別。 図23は、mESCコロニーの成長および死の明視野微速度撮影を示している。高い倍率では、細胞の成長および死は、分化の特性である形態変化に加えて、細胞ごとに測定することができる。マウス胚性幹細胞(mESC)の分裂および死は、コロニーの拡大中に高周波数で起こる。接着mESC細胞の小さいコロニーを、微速度撮影ホフマン・モジュレーション・コントラスト顕微鏡法によって41時間、観察した。丸い細胞の分裂を観察できる34分の抜粋が、上に示されている。有糸分裂細胞の染色体凝縮から中央体形成への移行は、迅速に進行した(28±7分、n=29、5回の6時間の微速度撮影のうち)。分裂および細胞死のデータを、上記の棒グラフに6時間間隔で記録した。細胞の総数は、培養培地が消耗するまで35時間、増加した。有糸分裂指数は、11〜36%と高かったが、死亡率も高く、コロニーの拡大を制限する。細胞死の大部分は、分裂終期の直後に起きた。 図24は、どのように分化中にユークロマチンマーカーが分離し、ヘテロクロマチンマーカーが同時発生するかを例示している。クロマチンマーカー(緑色または赤色)は、オーバーレイが黄色を生成する場合は共局在化している。共焦点チャンネルは、各チャンネルで蛍光が等しくなるように調整した。DNAは、すべての図面で青色である。(A〜C)ヘテロクロマチンマーカー(H3K9me3およびH3K27me3)は、多能性細胞ではオーバーラップしないが、神経幹細胞および内皮細胞ではオーバーラップが増加する。(D〜F)ユークロマチンマーカーH3K9AchおよびH3K4me2は、分化中にオーバーラップが減少する。(G〜I)ユークロマチンマーカーとヘテロクロマチンマーカーはオーバーラップしない。多能性幹細胞は、分化細胞とは異なるヒストン翻訳後マーカーの構成を示す。ヘテロクロマチンの様々なマーカー(H3K9me3緑色およびH3K27me3赤色、図C5、A〜C)は、多能性細胞では異なる分布を有するが、神経分化細胞および体細胞ではより共局在化(黄色)している。逆に、ユークロマチン(H3K9ac、緑色、およびH3K4me2、赤色、図C5、D〜E)のマーカーは、多能性細胞でより共局在化している。ユークロマチンマーカーおよびヘテロクロマチンマーカーは、すべての段階で空間的に異なる(図C5、G〜I)。 図25は、Oct4のウエスタンブロット解析およびH3K9の修飾を示している。フィーダー上の細胞は、フィーダーなしの条件、馴化DSR培地およびmTeSRよりも低いレベルのOct4(黒色)およびH3K9acを有する。H3K9meのレベルは、フィーダーまたはフィーダー馴化培地上のhESCで、またはマトリゲル上のmTeSR中のhESCで高い。 図26は、iPSCクロマチンがhESCクロマチンに類似していることを示している。(A)H3K9ac(赤色)の分布は、核全体に拡散し、H3K9me3は、hESC(図6)と同様に、大きい染色中心(緑色)に局在化する。(B)iPSCの50%は、hESC(不図示)と同様にS期(緑色、EdU、デオキシウリジン類似体)にある。 図27は、どのようにiPSCの溶解が、hESCと同様にヒストンH2Bを除去するかを例示している。非溶解(A)iPSCおよび溶解(B)iPSCは、H2B(赤色)が大幅に減少するが、DNA(Hoechst、青色)、およびS期の細胞(緑色)に最近取り込まれたEdUヌクレオチドの識別可能な減少が一切ないことを示している。細胞を、Ca2+を含まない緩衝液中で、0℃で5分間抽出した。同様の結果が、hESCで得られた(不図示)。抽出は、FRAPを補完するヒストン交換の尺度である。 図28は、どのようにDNAメチルトランスフェラーゼおよびヒストンデアセチラーゼが、神経分化時に発現および位置を変更するかを示している。DNMT3b(A)およびDNMT3a(B)(赤色の核、右上)は、Oct4を発現する多能性hESC(緑色、右上)に存在するが、分化hESC(Hoechst、青色の核、左下)には存在しない。HDAC1(赤色)は、DNA(青色)およびOct4(緑色)のレベルと比較すると、多能性hESCで非常に様々なレベルで存在する(C)。(D)HDAC1、HDAC2、およびDNAの比率も、多能性細胞(右上、D)における位置によって様々であるが、分化細胞(左下、D)の核を除くと、核全体で一定である。多能性細胞におけるDNMTの存在にもかかわらず、活性は、5’meシトシンの低レベルによって示されているように低い(E)。また、HDAC1選択標的、H2BK5は、多能性hESC(F、右上)でなおアセチル化されているが、hESCおよびmESCの多能性および分化培養物中での一定レベルのHDACの発現にもかかわらず、神経系譜(F、左下)ではアセチル化されていない(G〜I)。Dのバーは、10μmである。 図29は、hESCにおけるshRNA HDAC1のノックダウンが、毒作用のない最大濃度の1nM TSAと同様に有効であることを実証している。Bの細胞は、レトロウイルスpSM2骨格内のOpen Biosystems HDAC1shRNAmirでヌクレオフェクト(核導入)した。細胞を、pMAXGFPを用いて同時トランスフェクトし、70〜80%の細胞がGFPを発現した。ヌクレオフェクション(核導入)の3日後に、コントロールコロニーを、細胞質GFPの欠損によって識別する一方(A)、pSM2 HDAC1bのトランスフェクションを、細胞質GFPを含む小さいコロニー内で同定した(B)。核HDAC1染色(赤色)の定量測定が、(D)のグラフに示されており、HDAC1ノックダウンが、1nM TSAに相当するレベルまで、HDAC1染色を30分の1に低下させている。 図30は、どのようにHDAC1またはHDAC2のノックダウンが、BMP4のTE分化を48時間遅らせるかを例示している。HDAC1またはHDAC2のノックダウンは、パネル(バー、短い核間距離)に示されているように、上皮形態によって測定される上皮化を防止する。核間距離(バー、上のパネル)は、コントロール(−ノックダウン)で非常に有意であり、P<0.05である。 図31は、神経分化(1、多能性)、多能性hESC(2、初期分化)神経外胚葉、および(3、後期分化)神経ロゼットの3段階の特性を示している。hESC、系H7(a〜b)およびHSF6(c〜g)は、MEFフィーダー上で多能性条件(多能性、a)で、および低密度フィーダー上で分化条件(b〜g)で調製した。単層中の平坦な分化細胞が、1週間後に低密度線維芽細胞上のコロニーの縁で同定され(初期分化、b)、大きい多層コロニーの内部は、2〜4週間後にロゼットを形成した(後期分化、c)。多能性細胞は、Oct4に対して陽性であり、ネスチンに対して陰性であったが(a)、初期分化細胞は、ネスチンに対して陽性であり、低レベルのOct4を有し(b)、これは神経外胚葉の特性である。後期分化培養物では、神経幹細胞のロゼットは、コロニー(WGAで標識された細胞表面、赤色、およびHoechst、青色)の中心の厚い部分内で、NCAM染色(緑色)の複数の星状アレイによって示されているように、2〜4週間で一般的である(c)。分化コロニーのトルイジン青色染色されエポン包埋された厚い部分の明視野画像は、透明な中心内腔および細胞の放射状アレイ(矢印、d)を含む複数のロゼットを示している。ロゼットは、有糸分裂および間期核の放射状アレイを含む(e)。ロゼットのコアに、線毛突出部を含む透明なゾーンが見られる(ボックス、fの拡大)。内腔を取り囲んでいるこれらの細胞の頂点は、密な細胞膜の付着を示し、内腔に近接した細胞間空間に好濃性媒染剤を有する(f)。中間フィラメントの束および微小管が、コアから放射状に伸び、中心小体が、内腔近傍の頂点に見られ(矢印)、これは、機能的に極性化された神経上皮の特性である(g)。bのバーは、10μmであり;cおよびdのバーは、100μmであり;fのバーは、2μmであり;gのバーは、1μmである。 図32は、クロマチン凝縮が、分化中の癒着によって増加することを示している。多能性hESC、系HSF−6は、初期分化段階と後期分化段階との間で次第に顆粒状になる均一で平滑なクロマチンをもつ核を有する。多能性(列a〜j)、初期分化(列b〜k)、および後期分化(列c〜l)コロニーは、電子顕微鏡法(d〜fは、a〜cのボックスの拡大である)および染料Yoyo−1(g〜i)を用いた光学顕微鏡法によって検出されるように顆粒状度の上昇を示している。多能性細胞では、均一で細かい顆粒状のクロマチンは、神経外胚葉では、光学顕微鏡法(g)による検出限界よりも大きい凝集体を有しておらず、クロマチンの細かい凝集体は、0.2μm分離された好濃性凝集体の癒着によって形成され、光学顕微鏡法(h)によって分解可能であり、神経ロゼット(f)のクロマチンの粗い凝集体は、光学顕微鏡法(i)によって大きい凝集体として検出可能である。Yoyo−1染色DNAの共焦点部分の折れ線グラフは、多能性細胞(j)で徐々に変動する強度(低空間周波数)、初期分化細胞(k)における高周波数、小さい振幅変動、および後期分化細胞(i)における長い周波数であるが大きい振幅変動を示している(グラフは、強度およびサイズについて均一な縮尺である)。aのバーは、0.5μmであり、dのバーは、0.125μmであり、g〜iの黄色のバーは、10μmである。 図33は、神経分化中のヘテロクロマチン凝縮のテクスチャー解析を示している。クロマチンテクスチャーは、画像における物体のサイズの2次元マルチスカラー測度であり、折れ線グラフで表される線形空間周波数の一般化である。多能性(a、d)、初期分化(b〜e)、および後期分化(c〜f)コロニーを、DNA用のYoyo1(緑色)で染色した。多能性細胞を、コムギ胚芽凝集素(a、d、赤色)でさらに染色して細胞およびコロニー表面を明らかにした。核の共焦点画像(d、e、fはそれぞれ、a、b、cの白色の長方形の拡大である)は、多能性細胞におけるクロマチンが、比較的平滑で、核にわたって強度が徐々に変動し、細かい顆粒状の低コントラストパターン(e)に漸進的に凝縮し、際立って明るいまたは暗い(f)大きい顆粒状の高コントラストドメインになることを示し、それぞれ、ヘテロクロマチンおよびユークロマチンの特性である。(P)における2次元の定量的マルチスカラーウェーブレット解析を、核の境界を除く各区分の10の細胞に対して行った。細胞の各対のテクスチャー係数間のカルバック−ライブラー距離を報告する。自己類似性を表す対角線KL距離は、0に設定する(暗い青色)。相互比較は、細胞の各クラスが、高い自己類似性(青色)および高い交差クラス相違性(赤色)を有することを示している。細かい顆粒状の初期分化核は、多能性および後期分化細胞とは大きく異なる一方(赤色、KL距離>20)、多能性および後期分化細胞は、平均8.2のKL距離を有し、多能性細胞と初期分化細胞との間の大きいテクスチャーの相違を示している。発生中、高次クロマチン構成は、癒着により均一密度から、細かい顆粒状の低コントラストの形態を経て、ヘテロクロマチンおよびユークロマチンの特性である大きい顆粒状の高コントラスト凝集体になる。aおよびdのバーは、10μmである。 図34は、H3K9アセチル化における正味の変化のない分化中の動原体の進行性のヒストンH3K9メチル化を示している。多能性コロニー(列a)および5日目の分化単層(列b)におけるHSF−6の共焦点部分を、ヒストンH3K9me3(赤色、a〜d)、動原体(CREST血清、緑色、a〜d)、H3K9ac(緑色、e〜h)、およびDNAの広視野画像(青色、Hoechst33342、a〜h)で免疫染色した。殆どの動原体スポットは、分化細胞(b、d)では動原体周辺のH3K9me3によって取り囲まれているが、多能性細胞(a、c)では取り囲まれていない。前中期細胞(c、d)では、一部の染色体上の動原体が、検出不可能なメチル化を示す一方(c)、初期分化細胞では、動原体間の間質性ゾーンが、ほぼすべての染色体でメチル化されている(挿入、c、d)。動原体は、すべての分化細胞ではなく一部の分化細胞の核周辺に会合しているが(b)、多能性細胞では稀である(a)。H3K9acのレベルは、分化後により顆粒状であるが、全体のレベルは変化しない(e〜h)。核H3K9me3の総数が、分化の2日後に4倍に増加するが、CREST染色の面積は一定である(i)。H3K9me3と共局在化した動原体の割合は、分化の2日後に44%から80%に増加している(j)。分化中のヒトhESCのH3およびH4のメチル化およびアセチル化(Oct4のレベルによって示される)を、ウエスタンブロット(k)によって検出した。4つの独立した実験についての平均、SD、およびP値が、l、mに示され、マウスおよびヒトESCにおけるメチル化の有意な増加を実証している(l)。ウエスタンブロット(k)によって測定されたアセチル化のレベルは、免疫染色細胞(e〜h)における強度測定によって一定であり、マウスESCでは減少しているが、ヒトESCでは減少していない(m)。dのバーは、5μmである。 図35は、hESC分化中のヘテロクロマチンの形成が、シトシンにおけるヒストンH3K9およびDNAのメチル化、ならびに凝縮の増加を含むことを実証する。メチル化ヒストンおよびDNAは、分化中に次第に共局在化する。hESC系HSF−6の最大投影、コントラストストレッチ画像(a、b)、および線形共焦点部分(c〜h)が、メチル化H3K9me3(赤色)および5meC(緑色)の染色で示されている。分化しているコロニーの縁(a)では、5meC(緑色)が、コロニーの外部のみで検出可能となり、特にそれぞれの核の周辺で上昇している。分化の10日後までは、メチル化DNAおよびヒストンが、スポットに同時に発生するが(白色、c〜h)、特に核周辺のDNAメチル化は、H3K9me3染色の領域に制限されていない(b)。間期(c、d、e)および有糸分裂(f、g、h)細胞は、H3K9me3(赤色)、5meC(緑色)、および閾値よりも高い共局在化(白色)と共に示されている。間期の核では、多能性細胞は、H3K9me3を含み、5meCは、コロニーの縁の細胞に現れ、最初に核周辺に現れ(d)、最後にH3K9me3と共局在化する(e)。有糸分裂細胞では、動原体のH3K9me3が、有意な5meCを伴わずに現れる(f)。コロニーの縁では、5meCは、遠位染色体アームで優先的に現れるが(g)、H3K9m3とのオーバーラップは、染色体の近位領域に制限されている。メチル化ヒストンおよびDNAは、分化細胞の染色体アーム全体に沿って共局在化する(h)。パネルA、Bに示されているコロニーの共焦点スライスにおけるメチル化ヒストンとメチル化DNAの連続的な相関が、DNAメチル化およびヒストンメチル化の強度のピクセルごとの分布を示す細胞蛍光図(cytofluorogram)(i)に示されている。多能性細胞は、殆どDNAのメチル化のない共局在化(左側、A)を示していない(K)。赤色の線(i)は、この分布の中央値を示している。初期分化細胞(右側、a)は、中央値を中心に広く分布し、部分共局在化を示しているが、後期分化細胞(b)は、中央値を中心に密に分布し、1:1の化学量論との高い相関性を示している(i)。ピアソン係数(白色のバー、j)は、分化中の相関性の強化を示している(T検定による平均、SD、およびP値が示されている)。Van Steenselの相互相関は、画像の1つの20ピクセルのシフトの後のピアソン係数であり、共分布の空間的シャープさを測定する。Van Steenselの係数(黒色のバー、j)は、分化中に増大し、これは、分化後の、拡散の少ないより粒子状の分布を示している。bおよびhのバーは、10μmである。 図36は、多能性hESCでのエピジェネティック酵素の発現を示している。多能性hESCでは、エピジェネティック酵素、DNMT1、3a、および3bは、タンパク質レベルを上昇させたが、分化が始まるまではDNAおよびヒストン基質での活性が低かった。hESC、系H7では、DNMT1、3a、および3b(赤色の核、それぞれa〜c)は、Oct4(緑色、a〜c)を発現する多能性hESC(各パネルの左側)には存在するが、分化hESC(各パネルの右側、Hoechst、青色の核)には存在しない。赤色チャンネル、緑色チャンネル、および青色チャンネルで陽性の多能性核は、ふじ色で現れる。DNMT3bおよび3aは、多能性細胞(一定のふじ色の色合い)の中ではOct4強度にしたがうが、DNMT1は、Oct4に関係なく多能性細胞で様々に現れる(緑色から赤色の様々な色合い)。分化後のDNMTのレベルは、DNMT1(a、e)については明らかにバックグラウンドよりも高いが、DNMT3a(b、f)およびDNMT3b(c、g)についてはほぼ検出不可能である。多能性細胞におけるDNMTの存在にかかわらず、DNMTの産物(5meC)が、非常に低いレベルで存在し、コロニーの周辺の初期分化細胞のみで上昇した(d)。HSF6細胞中の5meCの定量化は、多能性段階から、初期分化段階、そして後期分化段階にかけての全DNAメチル化の漸進的増加を示している(h)。cのバーは、10μmである。dのバーは、100μmである。 図37は、神経分化中に、HDAC1および2の共局在化およびデアセチラーゼ活性は増加するが、タンパク質レベルは変化しないことを示している。HDAC1、HDAC2、およびDNAの比率は、多色多能性細胞核によって例示されているように異なる核ドメイン間で異なるが(a、b、Oct4陽性、不図示)、分化細胞では一定である(a、c)。細胞蛍光図は、HDAC1および2の分布が、多能性細胞では相関していないが、初期分化細胞ではより密接に相関する(f)。HDAC1の選択基質(H2BK5ac)は、多能性細胞ではアセチル化したままであるが、分化細胞では脱アセチル化される(e、g)。ウエスタンブロット(h)により、マウスESCおよびヒトESCにおいてHDAC1をプローブし、HDAC2を再プローブし、多能性ESC(レーン1および2)および分化ESC(レーン3および4)のポンソーS染色を行った。HDAC1(i)およびHDAC2(j)の3つのサンプルの正規化平均およびSDは、マウスESCおよびヒトESCにおける多能性細胞と分化細胞との間で統計的に異なっていない。aおよびeのバーは、10μmである。 図38は、どのようにHP1βがH3K9me3と共に次第に共局在化し、有糸分裂染色体に結合し、そして分化細胞の溶解後に抽出しにくくなるかを実証している。多能性(a、d、c)hESC、H17は、拡散HP1β(a、赤色)を示すが、初期分化細胞は、HP1β(b)およびHP1α(c、赤色)の次第に局所的になる分布を示している。H3K9me3(d〜f、緑色)の分布は、拡散性かつ局所的であり、HP1βとの共局在化が、多能性および初期分化細胞(g、h、黄色および白色)における拡散H3K9me3と共に、ならびに初期分化細胞(b、白色)のみにおけるH3K9me3の局所スポットと共に起こる。HP1αは、Hp1βよりも、H3K9me3陽性染色体(c、i、薄い黄色および白色)との共局在化が少ない。強度分布の細胞蛍光図は、HP1βが低い化学量論での多能性細胞におけるH3K9me3との部分共局在化(中央値の線、赤色、j)、ほぼ1:1の化学量論での部分共局在化(中央値の線、赤色、k)を有し、HP1αは、殆どがノイズによる強度分布(原点近傍の低い強度、l)を有することを示す。ピアソンおよびVan Steenselの相関係数(m)は、H3K9me3が、HP1βと選択的に共局在化し、その分布が、初期分化細胞でよりシャープになること、およびHP1αが、H3K9me3と低い相関性を有することを示している。有糸分裂細胞では、HP1βは、細胞質分布を有し、多能性細胞の有糸分裂染色体に存在しないが(n)、初期分化細胞では、HP1βは、染色体に結合し、細胞質に存在しない(ob)。0.5%Tx−100での固定前の溶解は、多能性hESC(pc)からのHP1βの完全な抽出を示すが、初期分化細胞では見られない(q)。hESC系H7のウエスタンブロットレベルは、HP1αのレベルが、分化中にヒトESCでは変化しないが、マウスESCでは変化することを示している(r、t)。HP1γは、hESCで低レベルで発現する(s)。i(a〜i、p、q用)およびo(n、o用)のバーは、5μmである。 図39は、iPSC画像の適応ウインドウから得た結果を示している。表のそれぞれの四角形は、6つのコロニーのサンプルの2つコロニーを比較している。(a)〜(f)は、コロニー#1〜6に相当し、これらは、iPSCコロニーであり;(g)〜(h)は、コロニー#7〜8に相当し、これらは、分化コロニー(上半分および下半分)であり;(i)#9は、iPSCコロニー#4の小さいフラグメントである。(j)は、iPSCコロニー#9の係数マスクを示している。(k)は、iPSCコロニーおよび分化コロニーのKLDを例示している。コロニーの対が類似すればするほど、相違が小さくなる。コロニー#9とコロニー#1〜#6のすべてとの比較は、コロニー#9が、コロニー#7および#8よりもコロニー#1〜#6に近いことを示している。
本発明のさらなる詳細の説明を続ける前に、特定の組成物またはプロセスのステップが変化し得るため、これらに本発明が限定されないことを理解されたい。本明細書および添付の特許請求の範囲で使用される場合、単数形「ある(「a」および「an」)」および「その(「the」)」は、文脈で明確に他の意味を示さない限り、複数の指示物も含むことに留意されたい。
特段の記載がない限り、本明細書で使用されるすべての技術用語および科学用語は、本発明に関連する技術分野の一般的な技術者が通常理解するのと同じ意味を有する。
本願の方法は、人工多能性幹細胞を分化細胞から区別する形態学的特徴および他の分子の特性に基づいて、人工多能性幹細胞の識別に適用することができる。この方法は、統計的分類法、例えば、それぞれ参照によりその全容が本明細書に組み入れられる、米国特許第7,711,174号および米国特許出願第12/321,360号に開示されている方法を使用する。
本願の方法は、例えば、iPSCの高スループット解析および識別の自動化された方法を提供することによって、再生医療の分野に広く適用することができる。本明細書に開示されるこの方法は、幹細胞コロニーおよび胚葉体の高スループットの作製の自動化された分類にも適用することができる。例えば、幹細胞凝集体の分化状態の評価(Ungrinら、2008)は、in vivoで奇形腫に適用することができる(Bhagavatulaら、2010)。さらなる例として、ゼブラフィッシュ胚および他の胚を、薬物スクリーニングに使用することができる(Vogtら、2009)。開示される方法にしたがって自動化された非侵襲性幹細胞分類を使用して、特定の系譜の発生(Bushwayら、2006;Huangら、2008;Ichidaら、2009;Zong−Yunら、2010;Huangfuら、2008;Fazzioら、2008)に影響を及ぼす小分子のスクリーニングを向上させる他、幹細胞の発生(Seilerら、2004;Sinha、2005;Changら、2004)を阻害または促進する、あるいは特定の系譜、例えば、iPSCもしくはhESC(Cezar、2007)に由来する肝細胞(Garethら、2009)、心筋細胞、またはニューロン(Schrattenholzら、2007)に影響を与える化合物および薬物の毒性研究のツールを向上させることができる。
画像をベースとする方法論は、hESCまたはiPSCの成長、維持、および解析にかかわる生物学者および臨床家の統計的および定量的支援として役立ち、非破壊的方法で多能性の程度を自動的に評価およびモニタリングする自動化された画像取得および解析の可能性を有している。定量的なテクスチャーをベースとする統計学は、適切な非侵襲性、非破壊的バイオマーカーである。本明細書に記載される方法は、再生医療の分野に広く適用することができ、例えば、ヒトを含むあらゆる種由来のあらゆる体細胞型からiPSCを識別し、そしてiPSCの作製および識別を最適化するために使用することができる。
(人工多能性幹細胞の誘導)
iPSCの信頼性の高い集団の誘導が、疾患の細胞治療および処置に対するiPSCの可能性を明らかにする最初のステップである。本明細書に詳述される1つのアプローチは、多能性細胞に対する分化細胞の異なるエピジェネティック制御を利用する。一部の実施形態では、記載される方法にしたがったiPSCの誘導により、より効率的なiPSCの誘導がもたらされる、すなわちより迅速により多くのiPSCが得られ、しかも健常な細胞の取得および識別の確率が高い。
iPSCは、現在は、分化細胞を脱分化またはリプログラミングして原始系譜へ戻すことよって多能性を誘導する4つの転写因子(cMyc、KLF4、Oct4、Sox2/MKOS)で体細胞を形質転換することによって作製される。細胞表現型のリプログラミングは、異所性の遺伝子発現の要求が一時的であるため、細胞の遺伝的同一性を変更する必要がない。さらに、一旦iPSCが作製されれば、細胞は、内在性遺伝子の発現に依存する。したがって、現在の方法を用いてリプログラミング中に生成される分化状態の変化は、遺伝子構造ではなく遺伝子発現の変化によって媒介される。
一部の実施形態では、多能性に必要な長期サイレント化遺伝子を再発現する方法が、ヘテロクロマチンにある遺伝子の永続的なサイレンシングを逆転することによって発現に影響を及ぼすエピジェネティック機構によって達成される。一実施形態では、へテロクロマチンにおけるメチル化依存遺伝子のサイレンシングに影響を及ぼす酵素が操作される。他の実施形態では、遺伝子サイレンシングに関係する重要な分子が、リプログラミングのプロセスの改善に役立つ他の標的を識別するために操作される。上記のいずれか1つ以上を使用して、多能性細胞を作製する、例えば、体細胞からiPSCを作製することができる。さらに、本明細書に記載される画像化法および解析法を使用して、多能性状態に脱分化した細胞を識別する他、リアルタイムで脱分化の進行を追うことができる。上記の任意の一定の実施形態では、このような画像化法および解析法は、非破壊的かつ非侵襲的である。
一部の実施形態では、線維芽細胞または他の体細胞のリプログラミングは、多能性細胞に見られる遺伝子を評価して、異所性遺伝子で細胞を形質転換することによって達成される。以前に、分化細胞に多能性を誘導するために必要な最小セットの4つの()転写因子が見出された(Okitaら、2007;Takahashiら、2006)。遺伝子を導入する1つの方法は、cMyc、Klf4、Oct4、およびSox2(MKOS)のウイルス導入(Takahashiら、2006;Parkら、2009;Parkら、2008)、またはOCT4、SOX2、NANOG、およびLIN28の導入(Yuら、2007)によるものである。異所性遺伝子は、ウイルス形質転換(Zengら、2009)によって、およびプラスミドトランスフェクション(Okitaら、2008)を含む非ウイルス法によって導入されるが、異所性遺伝子を導入することなく、可逆PiggyBacベクターPB−MKOS系(Zengら、2009;Okitaら、2008)および組換えタンパク質を直接添加して多能性を誘導することができる(Zhouら、2009)。シグナル伝達活性を有する小分子(Marsonら、2008)またはエピジェネティックスを変更する小分子を使用して、リプログラミングに必要な異所性遺伝子の効率を上げる、または異所性遺伝子の数を少なくする(Fengら、2009;Shiら、2008)。環境の変化だけでも、線維芽細胞における内在性多能性マーカー(Pageら、2009)の発現を増加させるのに十分であり、これは、培地の組成が重要であり、リプログラミングのために培地の組成を最適化できることを示している。前記のいずれか1つ以上を使用して、多能性細胞を作製する、例えば、体細胞からiPSCを作製することができる。加えて、これらの方法の任意の組み合わせ(例えば、ウイルスを使用する転写因子の導入とエピジェネティックな特徴(複数可)の変更に基づいた方法)を使用して、多能性細胞を作製する、例えば、体細胞からiPSCを作製することができる。さらに、本明細書に記載される画像法および解析法を使用して、多能性状態に脱分化した細胞を識別する他、リアルタイムで脱分化の進行を追うことができる。上記の任意の一定の実施形態では、このような画像化法および解析法は、非破壊的かつ非侵襲的である。
一部の実施形態では、バルプロ酸によるヒストンデアセチラーゼ(HDAC)の阻害(Zhouら、2009)は、リプログラミングの効率を改善することができる。さらに、酪酸塩(butrate)またはトリコスタチンA(TSA)によるHDACの薬物阻害が、フィーダーまたは組換え成長因子とは無関係に、hESCにおける自己再生プログラムを活性化する(Wareら、2009)。より選択的な方法によるヒストンの脱アセチル化および続くメチル化の阻害(図1)が、リプログラミングとヘテロクロマチン安定性との間の相互接続を明らかにする。
本願の一態様は、iPSCを作製する方法であって、線維芽細胞または他の体細胞を培養するステップと、この線維芽細胞(または他の細胞)を1つ以上の転写因子でトランスフェクトするステップと、1つ以上のエピジェネティック因子の活性を低下させるステップと、を含み、この線維芽細胞(または他の体細胞)が多能性幹細胞になるように導入する、方法を記載する。一部の実施形態では、エピジェネティック因子は、ヒストンの修飾、クロマチンの凝縮、および活性化因子またはリプレッサーへのアクセスに関係している。本明細書に記載される画像化法および解析法を使用して、多能性状態に脱分化した細胞を識別する他、リアルタイムで脱分化の進行を追うことができる。上記の任意の一定の実施形態では、このような画像化法および解析法は、非破壊的かつ非侵襲的である。
遺伝子発現は、遺伝機構、エピジェネティック機構、および核機構の階層によって制御される(O’Brienら、2003;van Drielら、2003)。遺伝子サイレンシングは、核構造によって制御され、核構造は、ヒストンの修飾、クロマチンの凝縮、および活性化因子またはリプレッサーへのアクセスを制御する(Feuerbachら、2002;Caiら、2003;Teixeiraら、2002)。ヒストンH3リシン9(H3−K9)のメチル化(Grewalら、2003)およびヒストン変異体の置換(Mizuguchiら、2004)によるヘテロクロマチン内のサイレンシングは、遺伝子不活化の重要な機構である(図2)。H3K9のメチル化は、凝縮されて動的に維持される(Cheutinら、2003)不活性なクロマチン(Pal−Bhadraら、2004;Cheutinら、2003)の広い近接部にヘテロクロマチンタンパク質1(HP1αおよびHP1β)をリクルートする。H3K27のメチル化は、促進性へテロクロマチンに関係している。H3K27のトリメチル化は、発現される遺伝子、発現の準備ができた遺伝子、または安定的に発現される遺伝子を識別する、したがって細胞の状態および系譜の可能性を反映する。リシン36のトリメチル化は、一次コーディング転写物および非コーディング転写物をマークし、遺伝子の注釈付けを容易にする。リシン4およびリシン9のトリメチル化は、インプリンティング制御領域をマークする(Mikkelsenら、2007)。H3K27およびH3K4のメチル化が、保存された非コーディング配列に2価として作用して、多能性細胞内のコーディング配列の発現を制御するという別の仮説も考えられた(Bernsteinら、2006)。クロマチンのリモデリングは、ヒストンの翻訳後修飾によってだけではなく、オープンクロマチン構造を制御し、かつ多能性を維持するChd1を含むクロマチンリモデリングタンパク質によって制御される(Gaspar−Maiaら、2009)。
哺乳動物の発生に不可欠なシトシン残基のDNAメチル化は、遺伝子サイレンシングにかかわる別の十分に研究されたエピジェネティック機構である(Bird、2002)。DNAのメチル化は、メチル−CpG結合ドメインタンパク質(MBD)のリクルートによってある程度は遺伝子を抑制し、MBDは、クロマチン構造に影響を与える複数のタンパク質リプレッサー複合体を構築して遺伝子を不活化させる。MeCP2は、転写抑制ドメイン、Sin3Aと複合体を形成して、ヒストンからアセチル基を除去して遺伝子サイレンシングをもたらすHDAC1または2をリクルートすることによって転写を沈黙させるタンパク質の1つである(Jonesら、1998;Nanら、1998)。HDACは、HMTと協調して、ヒストンH3k9のアセチル基をメチル基で置換する。哺乳動物細胞の狭動原体領域(Eggerら、2004)では、H3k9のトリメチル化に関与するHMTは、SUV39H1であり、この酵素の減少により、有糸分裂染色体が減少する(Reaら、2000)。この特殊な複合体および得られるH3k9me3は、DNMT3によるDNAサテライト反復のメチル化に関与する(Lehnertzら、2003)。さらに、免疫沈降およびプルダウン実験により、DNMT3bが、クロマチンリモデリング酵素hSNF2H、HDAC1および2、HP1タンパク質、ならびにSUV39H1と相互作用するだけではなく、HeLa細胞のヘテロクロマチンにあるエピジェネティック機構のこれらの構成要素と共に局在化もすることが実証されている(Geimanら、2004;Silversteinら、2005)。上記のエピジェネティックな方法のいずれか1つ以上を使用して、多能性細胞を作製する、例えば、iPSCを体細胞から作製することができる。このようなエピジェネティックな方法は、任意選択で、転写因子、例えば、Oct4、Sox2などの遺伝子発現を上方制御する方法と組み合わせることができる。さらに、本明細書に記載される画像化法および解析法を使用して、多能性状態に脱分化した細胞を識別する他、リアルタイムで脱分化の進行を追うことができる。上記の任意の一定の実施形態では、このような画像化法および解析法は、非破壊的かつ非侵襲的である。
他の実施形態では、分化細胞の培養培地は、リプログラミングプロセスを促進することができる。例えば、標準的なMKOS形質転換を使用することができるが、培養培地を様々にすることができる。環境条件が、線維芽細胞における内在性多能性マーカーに影響を与えることが実証され(Pageら、2009)、iPSCコロニーの形成を促進する最適化培地を決定することができる。本発明は、上記のいずれかと組み合わせたこの特徴の使用を企図する。本明細書に記載される画像化法および解析法を使用して、多能性状態に脱分化した細胞を識別する他、リアルタイムで脱分化の進行を追うことができる。上記の任意の一定の実施形態では、このような画像化法および解析法は、非破壊的かつ非侵襲的である。
(多能性幹細胞を区別する分子的な方法)
人工多能性幹細胞は、分化細胞と区別しなければならない。一部の実施形態では、分化の特定のマーカーを用いて分化細胞を識別することができる。異なる分化状態の細胞を区別する方法は、様々な遺伝子発現プロフィールまたは細胞に存在するエピジェネティックな特質を利用することができる。分化の分子マーカーは、任意の体細胞から得ることができる。同様に、多能性細胞の分子マーカーも、胚性幹細胞、例えば、ヒト胚性幹細胞(hESC)または人工多能性幹細胞(iPSC)から得ることができる。
体細胞では、組織の同一性は、組織特異的遺伝子発現プログラムの細胞記憶によって維持される。細胞記憶は、遺伝子座のサイレンシングを持続させるヘテロクロマチンの差次的形成によって達成される(Lunyakら、2002;Misteli、2005;O’Brienら、2003;van Drielら、2003)。組織表現型は、最終分化細胞の組織に不適当な遺伝子座をサイレンシングすることによって確立される(de Witおよびvan Steensel、2009)。発生的に、細胞同一性は、最終分化まで、ある程度は可塑性を維持するべきである。
一部の実施形態では、へテロクロマチンの消失は、ヘテロクロマチンが、特殊化し始める胚性幹細胞(ESC)として最初に現れる、分化に酷似したプロセスで、体細胞が脱分化し始めていることを示す。ヘテロクロマチン凝集体が、いくつかの基準によるとhESCにほぼ存在しなくなり、これは、多能性細胞における細胞記憶および有糸分裂染色体の安定を示唆する。
クロマチンは、ヒストンの翻訳後修飾およびヌクレオソーム構造(Annunziatoら、1981;KimuraおよびCook、2001)から、多重遺伝子座を含むヘテロクロマチンの動的形成(Cheutinら、2003)、そして最終的に核内の全染色体の高次位置決め(Misteli、2005;O’Brienら、2003;van Drielら、2003)に階層的に組織化されている。局在化した遺伝子特異的なエピジェネティック修飾は、多重遺伝子座の顕微鏡で検出可能なヘテロクロマチン凝集体への高次クロマチン再構成によって補完され、ヘテロクロマチン凝集体は、転写活性化因子またはリプレッサーへのプロモーターのアクセスを物理的な障害によって制限する(GrewalおよびMoazed、2003;Hattoriら、2004)。
ヒト胚性幹細胞(hESC)の例に目を向けると、これらの細胞は、発生段階中にエピジェネティック的にユニークである。これらの細胞は、関連プロモーターが、着床前発生中に低メチル化され、続いて着床直後に過剰メチル化される内部細胞塊から誘導される(Li、2002)。エピジェネティック修飾には、H3K4、H3K9、およびH3K27を含む重要なリシン残基におけるH3アセチル化およびメチル化が含まれる(Azuaraら、2006b;Jorgensenら、2006;Leeら、2006;Panら、2007)。刺激性H3K4ジメチル化およびトリメチル化の挿入ドメインを有する阻害ドメイン、H3K27における全体的にメチル化された2価のドメインが、発生的に関連した転写因子のプロモーターに存在する(Azuaraら、2006a;Bernsteinら、2006;Golebiewskaら、2009;Kuら、2008;Panら、2007)。ゲノム全体のH3K9acが、分化中に減少する(Krejciら、2009)。ヒストンアルギニンメチル化R17およびR26転写活性もまた、マウスESCの多能性に必要である(Wuら、2009)。エピジェネティック修飾は、デアセチラーゼおよびメチルトランスフェラーゼによって制御される。ヌクレオソームリモデリング(NuRD)複合体中のヒストンデアセチラーゼ1および2(HDAC1および2)は、段階特異的に動原体周辺のへテロクロマチンに作用し、脱アセチル化を開始し、動原体周辺のヒストンH3のメチル化が続く(Kantorら、2003)。DNAメチルトランスフェラーゼ(DNMT3a、3b)もまた、DNA維持メチル化(DNMT1)(DingおよびChaillet、2002; Goyalら、2006)と比べて、動原体の5’メチルシトシン(5meC)におけるDNAのメチル化(Bachmanら、2001;Gopalakrishnanら、2009)の開始に対して選択的効果を有する。両方とも、有糸分裂中の適切なクロマチンの分離に必要である(Gopalakrishnanら、2009;Kantorら、2003)。一般に、多能性細胞は、転写的に活性なゲノム外領域を含む高レベルのオープンクロマチンを有する(Efroniら、2008;Gaspar−Maiaら、2009)。したがって、発生的に可塑性の多能性ESCにおける転写活性および遺伝子制御は、体細胞とは根本的に異なり、この相違が、クロマチン構造に反映される。一部の実施形態では、クロマチン構造における相違を使用して、iPSCと分化細胞とを区別する。
着床前発生中のDNAおよびヒストンの過剰メチル化は、ヘテロクロマチンの圧縮に影響を与えることが予想され得る。圧縮は、通常はDNAメチル化に強く関係しているが、凝縮が、H3K9me2およびH3K9me3(Wuら、2005)を含む他のエピジェネティック制御因子、低アセチル化(Gorischら、2005;Popovaら、2009)、ならびにリンカーヒストン活性(Cheutinら、2003;Karymovら、2001)による影響を受けるため、独立して生じ得る(Gilbertら、2007)。条件的ヘテロクロマチンは、ゲノムのコーディング領域で発生するが、構成的ヘテロクロマチンは、非コーディングおよび高反復領域、例えば、動原体周辺ドメインで発生する(Allisら、2007)。構成的ヘテロクロマチンは、より持続性であるが、なお動的であり(Lamら、2006)、H3K9me3で豊富であり(Petersら、2002)、そして高次クロマチン構造の基礎である(Grigoryevら、2004;Maisonら、2002;NatarajanおよびSchmid、1971)。体細胞におけるサイレンシングは、DNAメチル化、ヒストン修飾、およびクロマチンリモデリングの相乗効果によって制御される(Lippmanら、2003)。例えば、H3K9トリメチル化は、へテロクロマチン内で起こり(GrewalおよびMoazed、2003)、hESCの神経分化(Golebiewskaら、2009)中の遺伝子サイレンシング(Kouzaridesら、2002)に関連した重要なヒストン修飾である。H3K9me3は、凝縮されて持続的であるが動的に活性である不活性なクロマチンの広い近接部に対するヘテロクロマチン結合タンパク質(HP1)の結合親和性を高める(Cheutinら、2003)。実際、HP1レベルは減少し、特にHP1βの分布が、hESCで非局在化する(Bartovaら、2008b)。加えて、H3K9me3は、動原体周辺へテロクロマチンの構造的構成を制御する(Henikoffら、2000;Lehnertzら、2003)。狭動原体ヘテロクロマチンの集合(Petersら、2001;Reaら、2000)および動原体でのヒストンメチル化(Eot−Houllierら、2009;Kondoら、2008)は共に、有糸分裂中の適切な染色分体分離およびゲノム安定性に不可欠である。
体細胞では、核周辺は、サイレント化クロマチンが豊富であり、hESC細胞では、核周辺は、許容ドメインおよび抑制ドメインの混合であり(Luoら、2009)、動原体が少ない。hESCは、活性遺伝子およびヒストンH3修飾パターンを放射状に構成し、殆どの活性遺伝子が核の中心にある(Bartovaら、2008a;Strasakら、2009a;Wiblinら、2005)。エピジェネティック機構は、ヒストンデアセチラーゼおよびメチルトランスフェラーゼの阻害が放射状の染色体の位置決めおよび染色中心の完全性に影響を与え得るため、核構成により大規模なゲノム制御に直接影響を与える(Harnicarova Horakovaら)。mESCでは、多能性mESCの特性である運動過多構造クロマチンタンパク質が、高次クロマチン構造が初期分化中に構築されるため、分化時に活動性が弱まる(Meshorerら、2006)。
核構成およびクロマチン動態の測定における1つの障害は、クロマチンの凝縮の程度を定量するための測定ツールが存在しないことである。クロマチンの不定形の構造は、長さまたは面積の測定に適していないが、コンピュータービジョンをベースとしたテクスチャー解析を使用すれば、エピジェネティック変化に一致する幹細胞の分化中のクロマチンの進行性の構造的変化を定量的および統計的に実証することができる。これに合わせて、核構成の多能性特異的特徴を、多能性のマーカーとして使用することができる。したがって、試験細胞におけるこのようなマーカーの発現を、基準細胞における発現または基準細胞の画像と比較することができる。統計的比較法を用いて試験細胞が基準細胞にどの程度近いかを決定することにより、多能性幹細胞を識別する。本願の方法は、この目標を達成する。
(非侵襲的なビデオ顕微鏡法による細胞の分化、成長、および死の測定)
一部の実施形態では、細胞を損傷させる、かつ/または細胞を増殖培地から取り出すことなく、細胞を、分化状態についてアッセイすることができる。非侵襲的技術は、細胞に接触することなく細胞の連続的なモニタリングを可能にするため、細胞および/またはコロニーを、他の細胞または細胞が成長しているウェルから機械的に分離する必要がない。非侵襲的方法の使用はまた、さらなる処理、例えば、顕微鏡法の免疫染色または固定のために細胞のサンプルを取り出す必要もない。しばしば、細胞は、その特徴を解析できるようになる前に透過化処理して固定しなければならない、または細胞は、小分子色素および/または分子プローブで標識しなければならない。すなわち、選択細胞が、解析のために犠牲になり、この選択細胞を、この選択細胞が成長した全集団の代表と見なす。したがって、特定の細胞またはコロニーの分化の進行をモニタリングすることが不可能な場合があり、代わりに、アッセイされる細胞に基づいた概算に依存しなければならない。たとえ均質な集団内の細胞でも、常に同じ速度で分化するわけではないため、侵襲的なサンプリング法は、分化の正確な状態にある細胞が必要な目的に適し得ない。
本明細書に記載される非侵襲的な方法を使用すると、細胞培養物の成長、分化、および/またはリプログラミングをモニタリングすることができ、細胞の分化状態を、細胞の画像の取得および後述の方法にしたがった画像情報の処理によって決定することができる。細胞は、解析のために集団からサンプリングすることができ、または特定の細胞および/またはコロニーを、一定時間にわたって連続的にモニタリングすることができる。例示的な一実施形態では、画像は、生細胞または細胞コロニーの位相差顕微鏡法によって得ることができる。
一部の実施形態では、リプログラミング中にiPSCを識別する1つの基準は、コロニーの形態である(Ellisら、2009)。形態を、非侵襲的に決定することができ、蛍光生細胞マーカーによって妨げられない細胞の測定が可能となる。ここで、新たな多能性幹細胞コロニーを識別するために多数の細胞を形態についてスクリーニングする非侵襲的な方法を説明する。図21は、フィーダー線維芽細胞で継代培養された後の非常に小さいhESCのコロニーを示している。位相差画像を、4倍および10倍で、継代から1日目、2日目、および3日目に撮影した。矢印は、各フレーム内の1つのコロニーを指している。図21aおよび図21dのコロニーは、15の細胞を含み、目視によって線維芽細胞から区別することができる。別のコロニーが、2日目(図21b、図21e)および3日目(図21c、図21f)に検出されるが、15の細胞の閾値よりも下のこれらのコロニーの検出は、目視では確実には識別することができない。本明細書に記載される方法では、多能性細胞のコロニーの検出は、テクスチャー解析を使用し、経験豊かな観察者の目視検出限界に一致する(図22)。さらに、完全多能性iPSCに類似した形態の部分的にリプログラムされた細胞となり得る、転写因子のリプログラミングパネルに依存するリプログラミングの中間状態および様々な動態が存在する(Nakagawaら、2008)。一部の実施形態では、中間状態または不完全にリプログラムされた状態の同定には、形態学的基準だけで十分であり得る。
一部の実施形態では、iPSC(図22b)およびhESC(図22a、図22b)の両方の多能性細胞のテクスチャーを、ウェーブレット解析(Mangoubiら、2007;Sammakら、2008)によって検出して、mTeSR培地の細胞外マトリックスまたはDSR培地のフィーダー線維芽細胞と区別することができる。さらに、多能性コロニーのテクスチャーは、上皮形態および線維芽細胞形態を有する分化細胞のコロニーのテクスチャーと区別することができる。さらに、ビデオ顕微鏡法を使用して、幹細胞のコロニーの有糸分裂指数および死亡率を測定することができる(図23)。したがって、一部の例示的な実施形態では、アルゴリズムデザインを使用して、様々な条件下での多能性の誘導中の成長、死、およびリプログラミング形態の1つ以上(1つ、2つ、または3つ)を測定する。このプロセスを繰り返して、細胞を繰り返し画像化して処理することができ、この方法を自動化することができる。
(画像解析法:マトリックスエッジ)
iPSCを誘導するプロセスの最中および後の両方で、細胞がいつ、適切な多能性状態に完全に脱分化されるかを決定することが重要である。一部の実施形態では、画像解析法を、細胞の画像に対して行うことができる。画像の収集は、非侵襲性または最小侵襲性であり得るため、細胞を傷つけ足り、細胞の成長を妨げずに、同じ1つ以上の細胞の画像を様々な時点で解析することができる。さらに、所定の集団における分化の範囲をモニタリングし、かつ/または細胞の脱プログラミングに対する環境の変化の影響を評価するために、分化状態のリアルタイムの画像化を行うことができる。細胞の破壊または外来性マーカーの追加なしに、コロニーを、成長および分化の動態ならびに/または治療前の品質管理について連続的に評価することができる。
一部の実施形態では、新たにリプログラミングされた細胞は、それらの形態に基づいて親細胞から区別する。加えて、それぞれの細胞型の核構成およびコロニー構成が、細胞間の区別の基礎となり得る。例示的な一実施形態では、ヒストンデアセチラーゼ(HDAC)およびDNAメチルトランスフェラーゼ(DNMT)のような核酵素を操作して、上記のように、細胞リプログラミングに影響を与える。
一部の実施形態では、多能性幹細胞または幹細胞コロニーは、統計的多重解像度テクスチャー画像解析を用いて非侵襲的および非破壊的に識別する。コロニーは、当技術分野で公知の顕微鏡技術で画像にすることができる。一部の実施形態では、位相差顕微鏡法を使用する。画像をベースとしたアルゴリズムを用いて、多能性コロニーを識別して、分化コロニーおよびその外部から統計的に区別することができる(Mangoubiら、2007;Sammakら、2008;Desaiら、2009;Mangoubiら、2008、図3)。
テクスチャーは、細胞形態の不定形の非幾何学的性質、特に核および細胞質のサイズおよび縁を測定する定量可能方法である。様々な細胞生物学的機能が、細胞のサイズおよび形状に反映されるため、細胞形態は、幹細胞および分化細胞産物の総合的な尺度である。形態だけでは、特定の分子の活性を決定するには不十分な場合があるが、多くの場合、分子活性に基づいた細胞型の決定には十分である。統計的多重解像度テクスチャー解析は、hESC細胞およびコロニーの両方の画像を区別および分類するための非破壊的な光学法である。コロニーの場合、化学物質は必要ない。
本明細書に記載されるテクスチャー分類アルゴリズムを、多様な培養条件下で、様々なhESCおよび既存のiPSC系に使用することができる。結果は、多能性および分化の分子マーカーを用いて検証することができる。例えば、iPSC誘導法の質は、非侵襲的動態法によって評価することができ、かつ/または得られるiPSCの質は、多能性マーカーパネルおよびエピジェネティック・マーカー・パネルを用いた単一細胞の定量的な免疫染色によって評価することができる。
一部の実施形態では、マークのない画像を使用して、新生iPSCコロニーがヒト線維芽細胞から最初に誘導されたときに一次継代で新生iPSCコロニーを検出して同定することができる。新生iPSCコロニーは、単一細胞または細胞の小さなクラスターとして出発し(図4、(Woltjenら、2009)から)、これらの細胞の検出閾値を確立することができる。加えて、生細胞の動態特性を、リプログラミング中間体を決定するために比較することができる。最後に、iPSCの質は、多能性マーカーおよびエピジェネティックマーカーの分子パネルを用いて初期段階で検証することができる。このアプローチは、一定の実施形態では、静止画像および/または微速度撮影画像のテクスチャー解析の方法を使用して、動態の特徴の抽出を可能にし、新たなiPSCの出現の検出を容易にする。注目すべきは、統計的方法は、小領域が不規則な形状の小さい不均質なテクスチャーの同時平滑化およびセグメント化(Parkら、2009)に使用することができる。例えば、明確な多能性形態は、継代直後に形成されたコロニーのように非常に小さいコロニー、および/または単一細胞として分散された細胞における形態で識別することができる。
注目すべきは、画像をベースとしたアルゴリズムを、染色された核の画像に使用することができ、かつ単一多能性細胞核におけるクロマチン構成の分類に使用することができる(図5および図6)(Desaiら、2009;Mangoubiら、2008)。一定の実施形態では、このアルゴリズムを、自動化して、(i)望ましいiPSCを背景細胞から識別して分離し、そして(ii)定量的なコロニーの特徴を提供する、方法に組み入れる。
(マトリックス・エッジ・オニオン・ピール(Matrix Edge Onion Peel)・アルゴリズム)
テクスチャー解析のアルゴリズムでは、通常は、比較的均質なサブテクスチャーの長方形の小領域を含むように、解析される領域を十分に大きくする必要がある。しかしながら、単一細胞および新生iPSCコロニーは、通常は、このような要望;小領域が小さく、不均質性、そして不規則な形状である、を満たさない。このような形状の解析には、これらのコロニーに適した改善されたアルゴリズムが必要である。新しいマトリックス・エッジ・オニオン・ピール(MEOP)アルゴリズム(Desaiら、2009)が本明細書に記載され、このアルゴリズムは、新生iPSCに起因するテクスチャーに関する3つの課題:(1)小さいサイズ、(2)不均質性、および(3)不規則な形状の領域に対処する。このアルゴリズムを使用して、多能性幹細胞および/またはコロニーをそれらのテクスチャーに基づいて識別することができる。テクスチャー領域が十分に大きい一部の実施形態では、テクスチャーウェーブレット解析アルゴリズムを、小さいサイズのテクスチャー領域用のMEOPアルゴリズムと組み合わせて使用することができる。
MEOPの方法は、オニオン層(onion layer)型テクスチャーの変分を有する不均質なテクスチャーに対処するため、他のテクスチャー解析法の限界を超えている。ここでは、層内の挙動は、不均質であると見なされるが、層間には変分があり得る。オニオン層の形状は、データに依存し;放射対称を必要としない。エネルギー関数アプローチを、同時平滑化およびセグメント化に使用することができる。このアプローチは、2つの特徴:マトリックス・エッジ・フィールド、および平滑化プロセスモデルに対する測定値の適応重み付けに依存する。このマトリックスエッジ関数は、テクスチャーの様々な領域に対する平滑化近傍の形状、サイズ、および向きを適応的および暗黙的に調節する。したがって、このマトリックスエッジ関数は、より一般的なスカラー・エッジ・フィールドをベースとしたアプローチでは得られないテクスチャーについての方向の情報を提供する。この適応測定値重み付けは、各ピクセルの測定値間の重み付けが異なる。
(マトリックス・エッジ・フィールドおよび適応重み付け:変分の式)
変分最適化の問題の検討
式中、Eは、領域Rの積分であり、この画像領域は、
であり、gは、平滑化されるべき入力画像であり、νおよびVはそれぞれ、平滑化画像およびその関連した2×2の対称エッジ・マトリックス・フィールドであり、Xは、g、ν、Vが定義されている2D空間を表す。上記において、下付き文字Xは、空間勾配演算子を表す。第1項は、平滑フィデリティー項(fidelity term)であり、エッジに位置していないピクセルのみで平滑化が起こるように、νの勾配(1−V)をペナライズ(penalize)する。第2項は、入力データから平滑データの偏差をペナライズするデータフィデリティー項である。スカラー項G(V)は、エッジ強度をペナライズし、F(V)は、エッジが平滑である必要があるが、なおキンクを認識する。
(Okitaら、2007)の式では、マトリックス・エッジ・フィールドは、スカラー・エッジ・フィールドV(X)が使用される以前の式、例えば、Mumfordら、1985およびAmbrosioら、1990の式の一般化である。スカラー・エッジ・フィールドは、局所平滑化が行われる円形の近傍のサイズを調節し、より一般的なマトリックス・エッジ・フィールドは、楕円形の局所平滑化近傍を用いてサイズ、形状、および向きを調節する。したがって、この平滑化は、より効果的である。
(近傍の形状、向き、およびサイズ)
不均質なテクスチャーを同時に平滑化およびセグメント化するプロセスでは、アルゴリズムの2つの特徴は、(i)現行方式のように異なるサイズだけではなく、異なる形状および向きの局所近傍を画定して、細かくセグメント化された画像を提供する能力、および(ii)空間的に変化するノイズに適応する能力である。これらの特徴のために、少数のピクセルを有する狭い領域で画像をセグメント化することが可能である。図7は、マトリックス・エッジ・セグメント化の効果、すなわち、ぴったりのサイズと比較するとサイズ、形状、および向きが様々である近傍の平滑化の使用を例示している。
図8は、アルゴリズムの初期バージョンの幹細胞核への適用を例示し、別の要素:不均質なテクスチャーのオニオンピーリング(onion peeling)を説明する。このアルゴリズムを使用して、検出されたら小さい細胞をトラッキングして、細胞が最小サイズに成長したらそのテクスチャーを解析することができる。最後に、このアルゴリズムは、非侵襲的かつ非破壊的にiPSC誘導法を比較する、評価する、および改善するために必要な特徴および統計を提供することができる。
(画像解析法:ノンパラメトリック法)
一部の実施形態では、幹細胞核をセグメント化および分類するためのノンパラメトリック法を使用することができる。このアプローチは、幹細胞の成長および発達のモニタリングを自動化することができ、レベルセット法、多重解像度ウェーブレット解析、および分解からのウェーブレット係数の密度関数のノンパラメトリック推定の組み合わせに基づいている。加えて、最大の内接長方形ウインドウが、多重解像度解析にとって十分な数のピクセルを含み得ない小さいサイズのテクスチャーに対処するために、我々は、細長く不規則な形状の核の多重解像度解析を可能にする調節可能なウインドウイング法を提案する。一部の例示的な実施形態では、ノンパラメトリック密度モデルと組み合わせた調節可能なウインドウイングアプローチは、ウェーブレット係数のパラメトリック密度モデリングが、適用できない、または適用可能であるがロバスト性が低い場合に良好な分類を提供する。
多重解像度テクスチャー解析は、テクスチャーの回収(DoおよびVetterli、2002)および分類(Mangoubiら、2007)の有効な方法であり得、テクスチャーの性質が、多能性の程度の質的表示である(Mangoubiら、2007)、幹細胞コロニーの分類で特に成功する。非侵襲的であるが、顕微鏡法による従来のコロニー解析は、費用が嵩み、主観的であり、そして時間がかかり、訓練を受けた専門家が注意を払う必要がある。あるいは、化学染色は、迅速であり、自動化可能であり、そして一貫性があるが、破壊的であり、染色された要素が、組織の成長または薬物試験での使用に適さなくなる。
対照的に、画像ベースの幹細胞コロニーテクスチャー解析は、自動化可能であり、非侵襲的であり、一貫性があり、そして後の生物医学的用途のためにコロニーを保存する。さらに、このテクスチャー解析は、多重時空間解像度で幹細胞の成長のマルチスケール質的モニタリングを可能にする。核解像度レベルでは、たとえ染色が必要であってもなお、この画像ベースの方法は、自動化され、一貫性があり、かつ迅速な幹細胞核の定量的な分類で使用される(Mangoubiら、2008)。コロニー解析と同様に、このような定量は、多能性および直接分化を維持する能力に対して様々なタンパク質が有する効果を理解するために使用することができる。
上記の参考文献では、統計的多重解像度ウェーブレットテクスチャー解析は、詳細サブバンドにおいてウェーブレット係数を表すために使用されるパラメトリック統計モデル、一般化ガウス密度(GGD)と組み合わせられると効果的であることが示された。しかしながら、既に実現されているパラメトリック統計的多重解像度ウェーブレット解析には制限がある:(1)テクスチャー解析を可能にする十分なサイズの長方形のテクスチャー的に均質な領域をユーザーが手動で選択する必要がある、および(2)係数の分布が対称、単一モード、かつバイアスされていないと仮定するが、これは、一部のテクスチャーには当てはまらないことがある。上記のように、マトリックス・エッジ・オニオン・ピール・アルゴリズムは、「オニオン層」テクスチャー変分、すなわち核半径の関数として変化するテクスチャー特性を有する小さいサイズの不規則な形状の核に使用することができる。
一部の実施形態では、あるアルゴリズムを、核を自動的にセグメント化するために使用することができ、調節可能なウインドウイング法を、小さい不規則な形状(すなわち非長方形)の領域の多重解像度分解から得られる係数の数を最大にするために使用することができる。これらのステップは、複数の幹細胞核を含む画像の自動解析を可能にし、テクスチャー解析を行うために人間がウインドウを手動で選択する必要がない。最後に、ノンパラメトリック統計解析を、パラメトリックGGDモデルが適用できない場合に適用することができる。このステップにより、パラメトリックモデルが適用できない場合のこのパラメトリックモデルに比べて優れた性能を提供する。
4つの非ガウス方法は、統計的相違を推定するために使用することができ、かつ個別細胞の時系列画像および全hESCコロニーの位相差画像の一方または両方を分類するために適用することができる非ガウス方法の例示である。
(テクスチャー解析:ウェーブレットベースのテクスチャーモデル)
それぞれのウェーブレット詳細サブバンドにおける係数の経験的確率密度関数(pdf)が、多くの場合、対称で単一モードの一般化ガウス分布:
に類似していることが以前に指摘された(Mallat、1989)。
式中、xは、確率変数(詳細係数)であり、αおよびβは、密度を定義する幅および形状パラメーターである。
この統計的一致は、テクスチャーモデル−テクスチャー的に均質な領域のウェーブレット詳細サブバンドを特徴付ける推定GGDのセットを提案する。このモデルは、サブバンド全体の統計的独立および近似バンドにおけるテクスチャー的に関連した情報の欠如の両方を仮定するが、いくつかのテクスチャーについて検証され、αパラメーターおよびβパラメーターを計算する技術が、Van de Wouwerら、(1999)およびDoおよびVetterli(2002)によって、コンテンツベースの画像検索で使用するために開発された。この方法は、幹細胞の画像分類に適用することに成功した(Mangoubiら、2008;Mangoubiら、2007)。
一部の実施形態では、GGDモデルは、広いスケールのサブバンドで適用できなくなる。左から右に移動するにつれて平均強度の顕著な増加を示す図9の画像を参照されたい。図10のpdfプロットから分かるように、この勾配が、第3の水平サブバンドに結合し、これにより、顕著にバイアスされてGGDによって不完全にモデル化されたウェーブレット係数分布となり、この分布は、原点を中心に対称に拘束されている。これは、ガウス平滑化によって係数ヒストグラムをpdfに効率的に変換する、ガウス核(ThompsonおよびTapia、1990)を用いるParzen密度推定量を用いた係数pdfのモデル化によって説明される:
同様に、xは、確率変数(詳細係数)であり、{x}は、特定のサブバンドについて計算されたN詳細係数のセットである。幅パラメーターσは、カーネルの有効平滑半径を調節し、サブバンド全体を正規化するためにヒストグラムサポートの一定の割合に等しく設定する。
テクスチャーモデルが、各サブバンドについての推定pdfのセットであるため、モデル間の相違測度は、カルバック−ライブラーダイバージェンス(KLD)に基づいており、このKLDは、2つのpdf fとfとの間で定義される:
KLDは、非対称であるが、対称バージョンは、KLDsym(1,2)=DKL(1,2)+DKL(2,1)を用いて得られる。次いで、この距離を、詳細サブバンドにわたって合計する。Parzenモデルを使用する場合は、KLDは、数値積分法によって決定することができる。
(小さい不規則な形状の領域から係数を抽出するための適応ウインドウイング)
ウェーブレットピラミッド解析は、正方形または長方形の領域における2次元信号を分解する。多くの適用例では、これは許容され得る;画像は、モデル化のためのテクスチャー均質長方形領域を分離するべく、タイル表示またはクロッピングするのに十分な大きさにすることができる。
しかしながら、小さいまたは不規則な形状の物体、例えば、幹細胞核に関係する一部の実施形態では、適切なサイズの長方形領域を分離することは不可能であると思われる。高度に可塑性または可動性の核は、時間と共にかなり変形する不規則な形状を有することがあり、正確な統計を推定するのに十分なサイズでの解析のためのあらゆる長方形の領域の識別を妨げる。また、様々なマトリックス延長技術(例えば、ピリオダイゼーション、対称化など)も、統計的アーチファクトを取り込み得る。
このような領域の多重解像度ウェーブレット分解の各サブバンドから可能な限り多くの係数を抽出するために、調節可能なウインドウイング(Lowryら、2010)を導入する。処置手順を説明すると、画像内の目的の領域を示すセグメント化マスクが存在すると仮定し、マスク内の一部の特定のピクセルを考える。ピクセルの左、上、および対角線上の左上のピクセルもマスクの範囲内である場合は、右下の角がそのピクセルである2×2のウインドウもマスクの範囲内である。ここで、この2×2のウインドウを考える。このウインドウのすぐ左、上、および対角線上の左上のピクセルもマスクの範囲内である場合は、最初のピクセルで終端している3×3のウインドウはすべて、マスクの範囲内である。このプロセスを繰り返して、特定のピクセルで始まり、すべてがマスクの範囲内に維持され得る最大ウインドウ長さを決定することができる。
より正確には、目的の領域が1とマークされ、その外部が0とマークされる、一部のセグメント化マスクMが存在すると仮定する。画像に長さkのフィルターをかけると、マスクMは、完全にMの範囲内に位置する情報から得られた、フィルター処理された出力を示し、以下のように再帰的に計算することができる:
式中、
は、iピクセルが右にシフトし、jピクセルが下にシフトしたマスクMを表す。
次いで、定常ウェーブレット変換(SWT)(Pesquetら、1996)を適用する。このSWTは、画像への出力をダウンサンプリングするのではなくフィルターをアップサンプリングするため、詳細サブバンドが、最初の画像と同じサイズである。基準フィルター長さnの場合、レベルdにおけるSWT分解ウインドウは、以下の長さを有する:
したがって、上記の帰納的プロセスにより、どの係数が、各レベルにおける目的の領域に単独で属するかを決定することが可能である。このプロセスは、図11c〜図11eに例示されている。図11cは、最初の画像を示している。図11dでは、細胞の最も軽い4分の1区分が右下に来るように画像が回転され、ウェーブレット分解のどの非対称も、最初の右側にバイアスされる。図11は、各分解レベルで選択された係数を示し;赤が表示レベル4、オレンジがレベル3、黄色がレベル2、そしてシアンがレベル1である。
(PDFおよびテクスチャーの相違の推定)
テクスチャーパッチ間の相違を計算するために、pdf推定量を選択して、それぞれの3n詳細サブバンドに適用することができ、次いで情報ダイバージェンス(すなわち、カルバック−ライブラーダイバージェンスまたはKLD)を用いて相違を定量することができる。他のダイバージェンス測定、例えば、L1ダイバージェンス(∫|f−f|)およびバタチャリヤ距離(Bhattacharyya distance)も存在するが、情報ダイバージェンスは、我々の2つのpdfモデルに対する扱いやすい閉形式解を許容するため、特に便利である。2つのpdf fおよびgの場合、情報ダイバージェンスは以下のように定義される:
n分解レベルのテクスチャーの場合は、2つのモデル間の全相違は以下の通りである:
一般に、DKL(f||g)≠DKL(g||f)であるため、正規化するために両方が加えられる。同様に、{k}は、特定のサブバンドiに割り当てられる単純な重みである。一般に、すべてk=1と設定するが、従来の知識にしたがって一定のバンドを強調またはペナライズするために使用されることもあり得る。
多種多様な方法を使用して、ウェーブレット係数のpdfおよびその対応するKLDを推定することができる;4つの例示的な方法を後述する。実際に、モデルの選択では、計算の単純さ(パラメトリックモデル、例えば、GGDおよびSαS)と正確さ(より詳細には、ノンパラメトリックモデル、例えば、A−LおよびL−Q)とがトレードオフされる。
(1、一般化ガウス密度(GGD)モデル)
詳細係数のpdfが、対称で単一モードの一般化ガウス分布(GDD):
に類似している場合が多いことが以前に指摘された(Mallat、1989)。
式中、xは、確率変数(詳細係数)であり、αおよびβはそれぞれ、幅因子および形状パラメーターである。Γは、γ関数を表している。位置パラメーター(すなわち、プロセス平均)は、ゼロになると仮定する。
GGDを使用して、多種多様な対称で単一モードの密度関数をモデル化することができる。実際、特殊なケースとして、標準偏差σの場合、
、および均一(β→∞)密度が含まれる。GGDプロセスの標準偏差σは、以下のとおりである:
テクスチャーの特徴付けにおけるこの密度関数の利用は、それぞれ、αおよびβを計算するためのモーメントマッチングおよび最尤法を開発した(Van de Wouwerら、1999)および(Doら、2002)に示されていた。
この方法の1つの重要な利点は、2つのGGDプロセス(DOら、2002)間のKLDに対する閉形式解が存在することであり、計算を容易にする:
(2.対称α安定(SαS)密度モデル)
テクスチャーの分類に使用される別の密度族は、GDDによって許容されるよりも重い裾確率を有する分布をモデル化するために使用される対称α安定密度(SαS)である。SαSの特性関数のための複数のパラメーター化が存在するが、以下(Tzagkarakisら、2004)のタイプ2にしたがう:
式中、ωは、周波数であり、αおよびγはそれぞれ、特性指数(0<α≦2)および分散(γ>0)である。GGDと同様に、位置パラメーターを0と仮定する。GGDとは異なり、SαSのpdfは、コーシー(α=1、スケールγ)および
分布を含む2、3の特殊なケースの閉形式のみで存在する。
したがって、正規化特性関数
が有効pdfを生成することを指摘して、この密度をテクスチャー解析に適用した(Tzagkarakisら、2004)の方法にしたがった:
2つの正規化SαS特性関数間の閉形式KLDは、以下のとおりである:
SαSパラメーターは、(Nolan、1997)および(Veillete、2009)に詳細に記載されている最尤法を用いて計算することができる。
(3.Ahmad−Lin(A−L)KLD推定)
上記のpdf族は共に、分布が、原点における処理平均と対称であると仮定する。これらの仮定は、一般に妥当であり、特に、前処理における平均にしたがって画像を正規化するときに妥当であり、詳細係数は、広域フィルターの出力である。場合によって、例えば、図11eに示されているhESC核では、細胞を横断して見ると、強度の顕著な増加が見られる。この勾配が、広いスケールの詳細サブバンドに結合し、これにより、顕著に非対称にバイアスされ(2b)、したがってGGDまたはSαS分布によって不完全にモデル化された係数分布となる。
一部の実施形態では、下側の分布の形状を仮定しないKLD推定量を使用するのが望ましいであろう。例示的な一実施形態は、Ahmad−Lin(A−L)エントロピー推定量(Ahmad,ら、1976)に基づいている:
式中、XおよびYは、詳細係数の2つのセットであり、|X|は、セットXにおける要素の数を表す。K(x)は、核関数を表す。一例として、帯域幅を有するParzen(ガウス)核を使用した(Boltzら、2007):
式中、Ωは、推定のデータのセットであり(XまたはY)、σ^は、経験的標準分布であり、ρ^は、4分位範囲である。
GGDおよびSαS分布との比較では、ノンパラメトリック法は、一般化の著しい利点を有し;分布の下側の形状について何も仮定をしない。しかしながら、このような推定は、一般に、計算に費用がかかり、全分解の保存または再計算を必要とする。結果として、この推定量は、経験的係数分布が、著しい非対称または多様式を示す場合に最も有効に適用される。
(4.Loftsgaarden−Quesenberry(L−Q)KLD推定)
Ahmad−Lin推定量のようなカーネルベースの方法は、帯域幅σに対して非常に敏感である。これを回避する試みでは、(Boltzら、2007)が、Ahmad−Linエントロピー推定量とLoftsgaarden−Quesenberry(L−Q)pdf推定量(Loftsgaardenら、1965)とを組み合わせた:
次元は、一変量の場合には1であるdであり、ρ(Y,x)は、xに位置するあらゆる要素を除く、セットYにおいてxからk番目に近い要素までの距離である。近傍サイズkは、事前に選択しなければならず;一般的な選択は、
である。(Boltzら、2007)は、一般に、KLD推定が、σよりもkの選択に対して感受性が低いことを主張している。
(分類)
KLD相違度を用いて、hESCテクスチャーパッチを、当技術分野で公知の方法にしたがって、任意の従来の分類またはクラスター化アルゴリズムによって分類することができる。例示的な分類法は、参照によりその全容が本明細書に組み入れられる、米国特許第7,711,174号および米国特許出願第12/321,360号に記載されている。例えば、k−最近傍(kNN)アルゴリズムを適用することができ、またはサポート・ベクター・マシン(SVM)を適用することができる(Mangoubiら、2007)。
(技術の組み合わせ)
一部の実施形態では、本明細書に記載される技術の組み合わせを使用することができる。例えば、人工多能性幹細胞用の当技術分野で公知の任意の方法を、マトリックス・エッジ・オニオン・ピール・アルゴリズムおよび/または細胞の画像解析用の適応ウインドウイング法と組み合わせることができる。同様に、多能性幹細胞を、記載されるエピジェネティックな方法にしたがって誘導することができ、かつ他の細胞画像解析用の統計的方法を使用することができる。これらの方法によると、限定されるものではないが、線維芽細胞および他の体細胞を含む任意の細胞を、iPSCを誘導するための開始点として使用することができる。さらに、iPSCは、実質的にあらゆる生物、例えば、マウス、ラット、ブタ、非ヒト霊長類、およびヒトの細胞から作製することができる。
加えて、一部の実施形態は、体細胞から人工多能性幹細胞を誘導してiPSCを識別する方法であって、線維芽細胞を培養するステップと、線維芽細胞を1つ以上の転写因子でトランスフェクトするステップと、1つ以上のエピジェネティック制御因子の活性を低下させるステップと、線維芽細胞が、多能性幹細胞になるように誘導され、さらに、1つ以上の細胞の画像を得るステップと、画像を複数のピクセルとして表すステップと、プロセッサーを使用して複数のピクセルから1つ以上の画像の特徴を抽出するステップと、この1つ以上の画像の特徴を、1つ以上の多能性幹細胞から得た画像の特徴と比較するステップと、を含み、このプロセッサーが、1つ以上の統計的比較方法を行って、これらの画像の特徴を比較し、これによりiPSCを導き出して識別する、方法を提供する。本発明を一般的に記載して、出願者は、一般的に記載された本発明の理解を容易にするために以下の例示的な実施例について述べる。これらの特定の実施例は、本発明の一定の態様および実施形態を単に例示するために含められ、いかなる場合も本発明を限定するものではない。しかしながら、実施例に記載される一定の一般的な原理は、一般に、本発明の他の態様または実施形態に適用することができる。本発明は、上記および下記の態様、実施形態、および他の特徴のいずれか1つ以上を組み合わせ得ることを企図する。
(実施例1:リプログラミングの分子特徴付けおよび検証)
リプログラミングの非侵襲的な測定を検証するために、免疫染色アプローチを、Oct4、Nanog、Sox2、FGF5R、HNF3b、FoxD3、およびRex1を含む、多能性の特性である核および細胞質因子のパネルに使用する。Gata6、Bracyury、およびAFP(不図示)を含む、後期分化段階のマーカーも、多能性細胞で異なる。早期着床前および着床後の多能性系譜の区別に有用な別のマーカーも、マウスESC用に同定された(Tesarら、2007)。予備的研究により、多能性hESCでこれらのマーカーを見出したが、神経分化細胞では見出せなかった。しかしながら、様々な培地で成長した核型的に正常なhESC系H7はすべて、陽性免疫染色であったが、自動顕微鏡法での定量により、非常に様々なプロフィールであることが判明している。ノックアウト血清代替培地を含むDSR DMEM中のマウス胚線維芽細胞フィーダー上のH7の多能性パネルは、フィーダーなし培地、StemPro(Invitrogen)で成長したH7の多能性パネルよりも大幅に低い。マーカーRex1およびFGF5Rの予備的評価は、高レベルのRex1および低レベルのFGF5Rを有する内部細胞塊様細胞(Tesarら、2007;Peltonら、2002;Chambersら、2009)ではなく、高レベルのFGF5Rおよび低レベルのRex1を有する(図13a、図13b)多能性胚盤葉上層様細胞または初期内胚葉細胞(Rathjenら、1999;Peltonら、2002)をフィーダーが促進し得ることを示唆している。特に、Rex1は、StemPro培養中で1日目から5日目に時間と共に発生する(図13b)。最適化フィーダーなし培養培地は、リプログラミングを促進し得る。この実施例は、特に、定量的および自動アプローチを用いた幹細胞構造および遺伝子発現の解析により、他の方法では観察または確認できない差異を明らかにすることを示唆している。
(実施例2:体細胞と比較した多能性幹細胞のエピジェネティック状態)
ヘテロクロマチンの様々なマーカー(H3K9me3[緑色]およびH3K27me3[赤色]、図24A〜図24C)は、多能性細胞では異なる分布を有するが、神経分化細胞および体細胞ではより共局在化(黄色)している。反対に、ユークロマチンのマーカー(H3K9ac[緑色]、H3K4me2[赤色]、図24d〜図24e)は、多能性細胞でより共局在化している。ユークロマチンマーカーおよびヘテロクロマチンマーカーは、すべての段階で空間的に異なっている(図24g〜図24i)。
多能性幹細胞は、分化細胞とは異なるヒストン翻訳後マーカーの構成を示している。ヘテロクロマチンの様々なマーカー(H3K9me3[緑色]およびH3K27me3[赤色]、図24a〜図24c)は、多能性細胞では異なる分布を有するが、神経分化細胞および体細胞ではより共局在化(黄色)している。反対に、ユークロマチンのマーカー(H3K9ac[緑色]、H3K4me2[赤色]、図24d〜図24e)は、多能性細胞においてよりも共局在化している。ユークロマチンマーカーおよびヘテロクロマチンマーカーは、すべての段階で空間的に異なっている(図24g〜図24i)。
多能性細胞のエピジェネティック状態は、環境の条件および系譜段階によって異なる。ヒストンメチル化は、ICM様状態と胚盤葉上層様hESC状態では異なる。フィーダーおよびゼラチン(DSR培地)上の胚盤葉上層様hESCは、マトリゲル上のmTeSR中のフィーダーなし条件のICM様hESCよりも低いレベルのOct4およびH3K9のアセチル化および高いレベルのH3K9のメチル化を有するが(図25)、フィーダー馴化培地は、最も高いレベルのH3K9のメチル化を示している。StemProで培養されたiPSCは、hESCと同様のエピジェネティックヒストン状態を有する。S期におけるヒストンH3K9acおよびH3K9meならびに細胞の割合は、iPSCと同様であるが(図26)、塩を添加しない洗剤溶解後のH2Bの抽出は、hESCと同様であるが(不図示)、分化細胞よりも多く抽出可能であり、ヒストン結合が、両方の多能性細胞で不安定であることを示している。リプログラミング中のiPSCのエピジェネティック状態が、特徴付けられるため、中間リプログラミング状態を区別するための基準に加えられる。
(実施例3:hESCの誘導HDAC1、2ノックダウン系の樹立および分化の抑制)
多能性細胞は、DNMT1、3a、3b、およびHDAC1および2を含むいくつかのエピジェネティック酵素を発現する(図28a〜図28d)。場合によっては、高レベルの酵素にもかかわらず、多能性細胞で酵素活性が低いが、これは、DNAの低メチル化(図28e)またはヒストンH2BK5の脱アセチル化(図28f)の反映である。例外は、分化が始まったコロニー周辺の多能性細胞である。注目すべきは、HDACのレベルが、フィーダー上での分化中に変化しないことである。
hESCにおけるHDAC1および2のレベルは、HDAC1および2ノックダウンおよび非サイレンシングコントロール用のtet−誘導レンチウイルスで変更した(図29〜図30)。安定に形質転換されたhESCのいくつかの系を樹立し、ノックダウンの効果の最初の試験は、BMP4で分化するように誘発されたときに、ドキシサイクリン誘導HDAC1および2ノックダウン系での分化速度の抑制を示している(図30)。HDAC KD線維芽細胞も樹立し、リプログラミングの効率に対する影響を決定する。
(実施例4:ヒト線維芽細胞からのiPSCの誘導)
ヒト線維芽細胞、系IRM90(ATCC CCL186)を使用してiPSCを誘導する(Yuら、2007;Yuら、2008)。4つの転写因子、c−Myc、Klf4、Oct−4、およびSox2(MKOS)の異所性発現を、PiggyBacベクターPB−MKOS系(Woltjenら、2009;Kajiら、2009)を用いてこれらの細胞で誘導する。この系の利点には、異所性遺伝子によるさらなる活性を防止する多能性の誘導後の挿入DNAのトランスポゼース切断が含まれる。加えて、この非ウイルス系は、高い形質転換効率を有し、3つの異なる2Aペプチド配列によって分離された4つのリプログラミング導入遺伝子の多シストロン性発現のための単一カセットを使用する(Hasegawaら、2007)。単一インサート由来のMKOS転写因子の最適共発現は、不完全なリプログラミングを引き起こすMKOS転写因子の不完全なセットの発現の頻度を最小限にする。この発現カセットは、構成的に活性なCAG−rtTAトランス活性化因子コンストラクトの共発現およびドキシサイクリンの培地への添加によって誘導される(Woltjenら、2009;Kajiら、2009)。tet−誘導MKOS導入遺伝子用の市販のレンチウイルスコンストラクトも利用可能である(StemGent)。hESCのレンチウイルス形質転換、およびピューロマイシンを用いた安定な形質転換細胞系の選択を行う。
ヒト線維芽細胞の形質転換を、エピジェネティック制御因子のshRNA媒介ノックダウンと組み合わせて行う。系IRM90由来の線維芽細胞を、HDAC1または2およびDNMT1、3a、または3bおよび非サイレンシング配列用のドキシサイクリン誘導性レンチウイルスノックダウン(KD)shRNAで形質転換する。HDACまたはDNMT KD IRM90系が樹立されたら、細胞をMKOS転写因子で形質転換する。コロニーの形質転換を、エピジェネティック変化を開始するドキシサイクリンの存在下、またはドキシサイクリンの非存在下のコントロール条件下で比較する。形質転換効率(形態学的に変換されたコロニー/フィーダー細胞数の割合)、リプログラミング効率(多能性マーカーを有するコロニーの割合)、および効率のレート(効率/時間)を、2つの方法:(i)核密度を用いた形態によって検出されたコロニーのカウントによって、および(ii)Hoechst染色(形態学的に変換されたコロニーにおける核密度)およびAlexa546−ファロイジン染色(線維芽細胞張繊維の非存在、幹細胞における周辺アクチンバンドの出現、データは不図示)およびSSEA4(リプログラミング)での細胞骨格再構築によって決定する。これらの検証のカウントは、上記の方法によって決定されるコロニーカウントに関連している。最後に、条件間の統計的有意差を、リプログラミング前のエピジェネティックプライミング(epigenetic priming)の有効性を評価するために決定する。
1つのレンチウイルス(Open Biosystems)は、赤色蛍光タンパク質およびピューロマイシン選択マーカーを含むtet−誘導shRNA pTRIPZコンストラクトを含む。tet誘導発現系を、HEK293細胞(不図示)およびhESCで樹立した。安定なhESCの選択は、ピューロマイシン選択によって確立した(図6)。HDAC1 KDの有効性が、図12に実証されている。レトロウイルスプラスミドにおけるHDAC1 shRNAのヌクレオフェクションでは、トランスフェクション効率は、細胞の80%であり、KD有効性は、30倍であり、阻害剤、トリコスタチンA(TSA)によるHDAC1の阻害に類似していた。
(実施例5:線維芽細胞のリプログラミングのための環境因子の変更)
線維芽細胞を、多能性を裏付けるために様々な培地で、MKOS転写因子で形質転換する。多能性を支えるiPSCリプログラミング用の4つの例示的な培地には以下が含まれる:
1.ゼラチン・マトリックス・タンパク質上のMEFフィーダー細胞およびDSR(DMEM w/ノックアウト血清代替物)(供給者からの標準的なプロトコル)
2.Geltrexマトリックスタンパク質上のStemPro培地(Invitrogen)
3.マトリゲル・マトリックス・タンパク質上のmTeSR培地(Stem Cell Technologies)
4.FGF2、アクチビンA、Neruegulin、およびマトリゲルを含む、ならびに含まないGeltrexマトリックスタンパク質上の、EMPM(DMEM、NEAA、グルタミン、1%ITS、2%BSA)、カスタム最小多能性培地。
ある標準的なプロトコルは、iPSCをフィーダーおよびDSR上で成長させるが、hESCおよびiPSCの成長速度、高レベルの多能性マーカー、および低レベルのヒストンメチル化にとっては、StemProおよびmTeSRが好ましい。すべてのこれらの条件は、リプログラミングを支持するはずである。基本培地、EMPMは、インスリンを除く成長因子の非存在下でのhESCの1〜2週間の生存を促進する。この培地は、単一成長因子FGF2、アクチビンA、Neruegulinを用いて、および用いないで、ゼラチンの代わりにマトリゲルで評価する。線維芽細胞に添加すると、FGF2だけが、内因性多能性マーカーの発現を増加させた(Pageら、2009)。
生細胞の実験では、生細胞の微速度撮影を非侵襲性位相差で記録し、リプログラミング因子活性のためのrtTA−IRES−GFP発現を確認するために少なくとも初期に蛍光を用いた。様々な倍率で評価するが、10×の倍率では、最小で10以下の細胞のコロニーを検出できる可能性が高い(図4)。微速度撮影の間隔は、コロニーのカウントを1日に1回望むか否か、またはリプログラミングに応じた単一細胞の成長率および死亡率が必要であるか否かによって異なる。
微速度撮影ビデオによる生細胞の測定基準には以下が含まれる:
1.コントロール線維芽細胞およびコントロールiPSCと比較したテクスチャー基準
2.分化形態への逆戻りの存在
3.閾値が検出できるトランスフェクション後の時間
4.新生コロニーの成長率(面積)
5.閾値検出時のコロニーのサイズ
6.コロニーにおける細胞の死亡率(細胞溶解)
7.線維芽細胞とiPSC形態との間の形態学的中間状態の存在
8.コロニーにおける細胞の細胞分裂率 。
(実施例6:初期iPSCコロニーの検証)
MKOS形質転換後の線維芽細胞の不完全なリプログラミングが起きて「偽」iPSCが作製される可能性がある。したがって、iPSC形成(図4、グレーのスクリーン)の形態学的決定は、多能性の分子マーカーの測定によって確認する(図4、緑色のスクリーン)。まず、位相差画像(灰色のスクリーン)をテクスチャー解析によって解析し、別の蛍光画像を、多能性の細胞外マーカー、例えば、SSEA4を用いて同じコロニーから得る。SSEA4に対する抗体の染色は、TRA1−60、TRA1−81、またはSSEA3よりもH7でより均一である。新生iPSCコロニーにおいて、細胞が多能性であることを確認するために、4つのカラー免疫染色を行い、Thermo Fisher Arrayscanを用いて自動的に定量する。新生iPSCおよび線維芽細胞の定量的測定は、核間距離によって線維芽細胞から区別することができる(Sammakら、2008)。1つの多能性転写因子の発現だけでは、多能性状態を特徴付けるのに不十分であるため、固定細胞表示を用いた生細胞実験の検証が必要である(図13)。それぞれの実験条件では、誘導して、多能性およびエピジェネティック状態のマーカーに対する抗体のパネルで免疫染色した後の様々な時点で細胞を固定する。多能性のマーカーを表1に示し、広範囲のエピジェネティック状態のマーカーを表2に示す。
(実施例7〜14:幹細胞を分化細胞から区別するための別の方法およびアッセイ)
(実施例7:低密度MEFフィーダー上での多能性hESCおよび神経分化の特徴付け)
hESCのコロニーを、3つの異なる発生段階:多能性段階(多能性)、多分化能神経外胚葉段階(初期分化)、および神経系譜に制限された神経ロゼット段階(後期分化)で特徴付けた(Ozolekら、2009;Ozolekら、2007)。神経分化を、低密度MEF(5,000/cm)上で開始させた(Ozolekら、2009;Ozolekら、2007)。多能性を、転写因子Oct4(図31a、図31b)、Hhf3b、FoxD3、およびNanog(図12)の免疫染色、ならびに分化マーカー、ネスチン(図31a)、Cdx2(図12d)、Gata6、AFP、およびブラキュリ(brachyury)(不図示)の非存在によって決定した。ネスチン、神経外胚葉マーカーは、多能性H7でまれに存在したが(図31a)、特にコロニーの縁では、初期分化神経外胚葉で上方制御されていた(図31b)。初期分化細胞は、類上皮単層で成長し、大きい核直径および長い核間距離によって特徴付けられた(図31b、図32b、図33b、図33e、および図36a)。GFAP、O4、NCAM、またはβ−3−チューブリンを含む神経系譜専用のマーカーは、神経外胚葉細胞において、僅かにバックグラウンドレベルで存在した(不図示)。神経外胚葉は、多能性であり、乏突起膠細胞、放射状グリア、およびそれほどではないが星状膠細胞を形成することができる(Ozolekら、2009;Ozolekら、2007)。後期分化コロニーが、2〜4週間後に高密度コロニーから形成され、神経ロゼット(図1c、図1d)で豊富であったが、これは、機能的に極性化された神経管上皮細胞の特性である(Bacallaoら、1989)。初期分化神経外胚葉とは対照的に、後期分化神経ロゼットは、多層領域内に存在し、NCAM陽性であった(図31c)。
in vitroロゼットは、組織化3次元組織のいくつかの特性を有していた。ロゼットコア(図31e)の電子顕微鏡法により、絨毛を含む液体で満たされた透明ゾーンが明らかになった(図31f)。これは、分泌細胞の特性である。頂端細胞の細胞膜は、細胞間隙におけるオスミウム親和性媒染剤に密着していた(図31g、fのボックス)。中間径フィラメントの束および微小管が、コアから放射状に伸び、中心小体の極性分布が、内腔近傍のいくつかの細胞の頂部に見られ得る(図31g)。これは、分泌上皮の特性である。したがって、in vitro細胞培養系は、3つの異なる発生段階:(1)多能性段階(多能性)、(2)多分化能段階(初期分化)、および(3)単分化能神経系譜段階(後期分化)でヘテロクロマチン集合を評価するための機能性発生モデルを提供する。
(実施例8:分化中の癒着によるクロマチン凝縮が増加する)
ヘテロクロマチンの形態学的変換を、光学および電子顕微鏡法によって3つの異なる発生段階で評価した。分化中のクロマチンの凝縮を、電子顕微鏡法によって、オスミウム親和性染色の増加によって検証した(図32a〜図32cの白色で囲まれた領域の拡大である図32d〜図32fを比較)。透過電子顕微鏡法では、オスミウム親和性染色が、多能性hESCでの光学顕微鏡法による検出レベルよりも低い、非常に微細な粒子の均一構造(図32a、図32d)から、光学顕微鏡の解像度限界(0.2μm)によって漸く区別された初期分化細胞における微細粒子凝集体(図32b、図32e)を経て、後期分化hESCにおける粗粒子凝集体(図32c、図32f)に進んだ。DNA密度は、ヘテロクロマチンドメインおよびユークロマチンドメインを示す蛍光色素で測定することができる(Grigoryevら、2006;Mateos−Langerakら、2007)。多能性細胞は、形態学的に異なるユークロマチンおよびヘテロクロマチンを有していなかったが、代わりに、クロマチン密度が、多能性細胞(図32j)では、核(低い空間周波数)にわたって徐々に異なり、初期分化細胞(図32k)では、高周波数の小さい振幅変動を示し、後期分化細胞(図32l)では、中間周波数の大きい振幅変動を示した。ヘテロクロマチンは、大きいドメインに凝縮する小さい凝集体によって特徴付けられる中間段階によって凝縮し、これは、癒着と呼ばれる身体現象である。
(実施例9:神経分化中のヘテロクロマチン凝縮の統計的評価)
ヘテロクロマチンの癒着を、ウェーブレット解析でさらに定量して、複数の空間規模で密度の変化を測定した(Lowryら、2010;Mangoubiら、2008;Mangoubiら、2007;Sammakら、2008)。3つの段階(図33a〜図33c)における核は、異なるクロマチンテクスチャーを有する(図33d〜図33fの拡大)。各段階からの10の核を、定量的に比較した(図33g)。カラーチャートは、カルバック−ライブラー(KL)距離(DoおよびVetterli、2002)によって決定されるすべての画像の統計的区別を示している。全体として、各群内の自己比較は、類似していた(青色)。異なる発生段階間の相互比較は、類似していなかった(赤色)。標準偏差が1である正規化ガウス密度では、7以上のKL距離は、2つの密度関数の平均間の距離の少なくとも7の標準偏差に等しく、0.99を超える信頼度である。クロマチンの新生中間凝集体は、多能性細胞のクロマチンおよび分化細胞のヘテロクロマチンの両方からテクスチャー的に離れていた(20のKL距離)。要点は、統計的画像の特徴としてのKL距離では、核の適切なクラス:多能性、分化、または初期分化へのクラスター化が自動化可能である。したがって、コンピュータービジョン法、特に統計的多重解像度テクスチャー解析(Lowryら、2010;Mangoubiら、2008;Mangoubiら、2007;Sammakら、2008)は、クロマチン凝縮の新規な定量的測定を提供し、初期の分化中に起こるクロマチン癒着の新たな中間相を統計的に区別する。
(実施例10:動原体周辺ヘテロクロマチンのメチル化が多能性細胞の動原体の半分に存在しなかった)
多能性細胞では、動原体周辺は、H3Kme3のレベルがすべて同じではなかった(図34)。HSF6間期および前中期細胞では、動原体(緑色、ヒトCREST血清)の半分未満が、H3K9me3(赤色スポット)を含んでいたが、初期分化細胞では、殆どの動原体周辺は、H3K9me3を含んでいた(図34a〜図34dの拡大を参照)。H3K9me3の面積が、hESC分化時(図34i)に4倍に増加し(150±21μmから676±20μm)、予想通り、CRESTスポットの面積は一定であった(n=45±1動原体/細胞、n=10の多能性細胞、共焦点シリーズから評価)。動原体周辺におけるH3K9me3の局在化を、Manderの相関係数によって測定すると(図34j)、H3K9me3を含む動原体周辺の割合が、多能性細胞での44±12%から初期分化細胞での80±1%(n=20の核)に増加したことを示した。逆に、殆どのH3K9me3は、多能性hESCの動原体周辺であるが、動原体周辺外のH3K9me3は、分化中に増加した(図34c)。同様の結果がH7細胞でみられた(不図示)。免疫ブロット(図34k)によって測定したH7細胞におけるH3K9me3のレベルが、ヒトhESCで4倍、マウスESCで10倍に増加した(ヒトでは、0.1±0.1から0.4±0.14、P<0.014、マウスでは、0.006±0.001から0.6±0.002、P<3.7×10、図34l)。この結果は、挟動原体の集合は、多能性細胞では不完全であり、構成的ヘテロクロマチンは、hESC分化後に初めて集合を完了することを示唆している。
多能性hESCにおけるH3K9acの核の分布は、核小体を除くと、間期中に拡散した(図34e)。H3K9acは、初期分化時により粒子状であるが(図34f)、HSF6細胞の免疫染色のレベルは、著しく異なってはいなかった(不図示)。4つの別個の生物学的サンプルに対して平均されたH7細胞における正規化免疫ブロットバンドの密度の測定は、H3K9acにおける差異(図34m)が有意でなかったことを裏付けている。しかしながら、分化中のマウスESCにおけるH3K9acの減少が観察され、同一条件下で著しかった。したがって、ヒトhESCでは、H3K9acの全体レベルにおける肉眼的変化に無関係な、動原体周辺の進行性ヒストンH3K9me3を観察した。H3K9acのレベルは、hESCの分化時に減少することが報告され(Krejciら、2009)、実際、神経前駆体および乏突起膠細胞前駆体を産生する神経分化でH3K9acの著しい減少も観察した(作成中の原稿)。しかしながら、低密度フィーダー上で7日間の培養で誘導された神経外胚葉の場合では、発生マーカー、例えば、Oct4およびネスチン(図31)、およびエピジェネティックマーカー、例えば、5Mec(図35)および動原体周辺特異的H3K9me3(図33)は、H3K9のアセチル化が著しく変化することなく発生する。
(実施例11:hESCの分化中のメチル化DNAとメチル化ヒストンの増加量および相関)
メチル化ヒストン(H3K9me3、赤色)およびメチル化DNA(5meC、緑色)で免疫染色されたHSF6 hESCの最大投影共焦点切片は、初期分化細胞において、コロニーの縁(図35a、右)で5meCが増加したことを示した。後期分化細胞では、H3K9me3は、5MeCに合着した(図35b)。ヒストンとDNAの相関の測定を図35c〜図35jに示す。一定の線形対比の単一共焦点スライスが、単一間期細胞(c〜e)および有糸分裂細胞(f〜h)の拡大図に示されている。一定閾値を超えた共局在化ドメインが白色で示されている。間期核では、トリメチル化H3K9が、後期分化時に大きくて明るいスポットに合着する小さくて強度の低いスポットに現れた(図35c〜図35e)。有糸分裂細胞では、動原体H3K9me3は、有意な5meCを伴わずに多能性細胞に現れ(図35f)、5meCは最初に、殆どがH3K9me3の動原体周辺の分布(図34c、図35g)ではなく、初期分化hESCにおける遠位染色体アームに最高レベルで現れた。5meC免疫染色は、後期分化細胞で完全な染色体長さに伸長した(図35h)。
細胞蛍光図(図35i)は、コロニーの単一共焦点切片(図35a、図35b)から作成し、この図は、分化時にメチル化ヒストンとメチル化DNAの相関性の漸進的増加を明らかにした。多能性細胞では、殆どの5meC染色は、ノイズと区別することができなかった(y軸上で低い値)。初期分化細胞では、強度分布のxおよびyの値は、ほぼ中央値(赤色の線)に来るが、強度分布の幅は広く、部分的な共局在化を示している。後期分化細胞では、xおよびyの強度が、厳密に中央値をたどり、高い共局在化を示し、1:1の化学量論であった。化学量論値は、抗原密度および蛍光曝露時間に依存するため、絶対なものではない。4つの別個のコロニーの平均ピアソン相関係数は、メチル化DNAとメチル化ヒストンの相関性が8.4倍に増加したことを示している(p<0.0004、図33j)。Van Steenselの相互相関係数を、1つの画像を20ピクセル、オフセットして、メチル化ドメインの分布の空間的シャープさを示すようにした点を除き、同様に計算した(BolteおよびCordelieres、2006;van Steenselら、1996)。分化中のVan Steenselの相互相関係数の8.5倍の増加は、DNAメチル化とヒストンメチル化の共分布が、分化中に、多能性細胞で観察される拡散分布ではなく、集中点を含んでいることを実証した(p<0.01、図35j)。
(実施例12:維持メチルトランスフェラーゼDNMT1が維持されたまま分化時にDNMT1、3a、および3bがバックグラウンドレベルに低下)
hESC、系H7では、DNMT1、3a、および3b(それぞれ、図36a、図36e、図36b、図36f、図36c、および図36g)は、多能性hESCに存在したが、Oct4陰性初期分化hESCでは減少した(図36a〜図36cの各パネルの右下)。DNMT3aおよび3b、新生DNAメチル化に関与する酵素は、Oct4の強度に比例して細胞ごとに異なり、Oct4陰性細胞では検出不可能となり、それぞれ15分の1および32分の1に低下した(p<0.002で有意、図36f、図36g)。維持DNAメチル化に必要なDNMT1は、Oct4レベルと無関係に多能性細胞で様々であった。分化後、DNMT1レベルは、有意に低下しなかった(1.2倍P<0.27、図36e)。DNMT活性の産物、5MeCは、多能性細胞で低く(図36d(H7細胞)、および6h(HSF6細胞))、かつ強度がHSF6細胞で増加し、初期分化細胞では2.7倍、後期分化細胞では4.3倍に増加し(p<0.002)、特にこの移行中にDNMT活性が増加したことを示唆している。
(実施例13:HDAC1および2が共局在化し、デアセチラーゼ活性が、タンパク質レベルが増加することなく増加する)
HDACは、多能性および初期分化hESCの両方に存在した(図37a〜図37c、および図37h〜図37j)。ウエスタンブロットによって測定したHDACレベル(図37h)により、HDAC1(図37i)およびHDAC2(図37j)が、マウスまたはヒトESCにおいて、分化中に統計的に異なっていなかったことが明らかにされた。HDAC1とHDAC2の染色強度の割合が、多能性細胞核では異なったが、初期分化hESCでは空間的に一定であった(等しい赤色輝度および緑色輝度に調整された拡大を参照、図37b、図37c)。細胞蛍光図も同様に、初期分化細胞での密な分布(図37f)に対して、多能性細胞では広い強度分布(低い相関性)を示している。H2BK5、HDAC1の選択基質(Barskiら、2007)を多能性細胞(図37e)でアセチル化し、初期分化細胞では27%低く(p<0.03、図37g)、後期分化細胞では検出不可能であった(不図示)。図10は、H3K9me3およびHDAC1の抗原回収により、免疫検出の均一性が改善することを示している。
(実施例14:HP1βが、H3K9me3、有糸分裂染色体と次第に共局在化し、hESCの分化時に抽出しにくくなる)
多能性hESC、系H7は、HP1βの拡散(図38a)を示し、初期分化細胞は、HP1βおよびHP1α(それぞれ、図38bおよび図38c)の次第に局所的になる分布を示した。同じパターンが、マウスECSの分化時に観察された(不図示)。多能性細胞におけるそれらの拡散分布のために、HP1αおよびHP1βは、H3K9me3と非特異的に重なり合った(図38g)。しかしながら、初期分化細胞では、HP1βは、H3Kme3と共に局所スポットに共分布するが(図38h、白色)、HP1αの小さい局所スポットは、H3K9me3陽性染色中心との弱い共局在化を示した(図38i)。HP1の共分布を、細胞蛍光図(図38j〜図38l)によって、および初期分化細胞でのH3K9me3のHP1αではなくHP1βとの共局在化を定量するピアソンおよびVan Steenselの相関係数(図38m)によって測定した。同様の変化が、マウスESCで見られた(不図示)。HP1βのタンパク質レベルは、ヒトESCでは変化しないままであったが、マウスESC(図38r、図38t)では増加し、種特異的なヘテロクロマチン集合機構を際立たせている。染色中心に優先的に会合するHP1βは、検出されなかった(図38s)。多能性有糸分裂細胞では、HP1βは、染色中心から排除され、細胞質に制限されていた(図38n)。対照的に、初期分化有糸分裂細胞では、HP1βは、染色中心に結合し、細胞質には存在しなかった(図38o)。HP1βは、多能性hESCの洗剤溶解によって抽出可能であったが、分化hESCでは抽出できなかった(図38p、図38q)。クロマチンに対するHP1βの共局在化および結合の増加は、hESCの初期分化時のヘテロクロマチン集合の仮説をさらに裏付ける。
(実施例15〜25:幹細胞の画像解析)
(実施例15:iPSCの画像へのアルゴリズムの適用)
新たな不均質なテクスチャーアルゴリズムを、エピジェネティックベースのプロセスから得た新生コロニーの画像に適用し、統計的情報を、そのアルゴリズムの出力から抽出する。
様々なiPSC処置手順の開発を比較するために、テクスチャー変換の微速度撮影解析を使用する。図5は、分化中のクロマチンテクスチャー変換に適用されたこのような解析の一例である。2つのiPSC作成プロトコル間を統計的に区別することは、ロバストな仮説検定を用いると可能であり、この検定は、方法、例えば、エピジェネティックベースのプロセスが、従来のプロトコルと比較すると質の高いより多くのコロニーを形成することを立証するのに役立つ。アルゴリズムの数値性能を、特に幹細胞核を分類するために現在使用されているアルゴリズムに対して評価する(Mangoubiら、2008)。
(実施例16:画像解析における初期ステップ)
(1.セグメント化)
蛍光マーカーが核内に集中しているとすると、細胞核(比較的明るい前面の物体)を、Chan−Veseスタイル・レベル・セット・アルゴリズム(ChanおよびVese、2001)を用いて周囲成長培地(比較的暗い背景の領域)から単離することができる。次いで、領域拡張を使用して、前面の物体を標識し、かつこれらの物体内に位置するすべての小さい孔に充填した。デブリおよびノイズが、時には、小さい擬似物体を形成することがあるため、適切な閾値未満のサイズの標識領域を除去した。結果として、それぞれの核が、画像内のその領域を示すバイナリマスクMに関連する。したがって、ピクセル(i、j)が核内である場合は、M(i、j)=1、その他はM(i、j)=0である。
(2.正規化)
セグメント化後、最初に、画像の最大幅が水平に整合するように画像を回転させることによって画像を正規化して、核の向きを焦点面に一致させる。続いて、画像を回転または反転させて、画像の最も明るい4分の1区画が右下に来るようにする。この変換により、画像全体の強度勾配が左から右に、そして上から下になり、これにより、広いスケールの詳細サブバンドにおけるウェーブレット係数のあらゆるバイアスが正方向に来るようにする。これは、核のテクスチャーを比較するときに一貫性を提供する。このプロセスは、図9a〜図9bに例示されている。
(実施例17:テクスチャーの特徴の抽出、モデル化、および分類)
hESCテクスチャーを、コンテンツベースの画像検索(CBIR)(Doら、2002)用に開発された3段階ウェーブレットベースの統計法にしたがって分類した。図11aを参照されたい。この方法は、テクスチャー解析(2つのパッチを比較する)に適しているが、テクスチャー合成(人工的にパッチを作成する)に必要な特徴が不足していることに留意されたい。
第1の段階では、ウェーブレット分解を、テクスチャーが均質な画像パッチのグレースケールに適用した。ウェーブレット解析は、向きおよびスケールにしたがって信号を局所的に分解するため、多重スケールにおける強度ランダム性によって特徴付けられる、テクスチャーのモデル化に特に適している。より具体的には、nレベルの分解により、1レベルに付き3つの詳細サブバンドが得られ、1つは水平方向、1つは垂直方向、1つは対角線方向に向いている。テクスチャー情報がないことは、近似サブバンドで推測された。
第2の段階では、テクスチャーパッチ間の相違度を、統計的に独立していると推測される、3n詳細サブバンドにおける係数の経験的確率密度関数(pdf)の統計モデルから得た。第3の段階では、相違度を使用して、テクスチャーパッチを分類またはクラスター化する。
これらの特徴は、特徴のアンサンブルの一部として非線形分類子に使用することもできる。前の実施例は、支援装置(Jeffreys、2004;Mangoubiら、2008;Mangoubiら、2007)を用いた境界のシャープさ(border crispness)、ならびにニューラルネットワーク(Bhagavatulaら、2010)を用いた色、核の形状、および向きなどを含む。十分な解像度の画像の場合、上記の方法は、単純であり、十分な性能を引き出す。
(実施例18:幹細胞の特性の解析)
ヒトESCコロニーを、多能性の分子マーカー(OCT4、図15d)の免疫染色によって確認される多能性状態(図15a、図15d、図15g)に維持した。分化細胞(図15b、図15e、図15h)を、成長因子骨形態形成タンパク質、BMP4で処置して、免疫染色(CDX2、図15e)によって確認される栄養外胚葉を形成することによって作製した。これらの2つの検証された発生段階の幹細胞を使用して、コロニー形態に対するテクスチャーアプローチを開発した。
幹細胞コロニーは、分化中に形態が変化するが、これは、主に核および細胞直径(図15c、図12f)1c、f)の40%の増大によってであるが、分化細胞および核の標準偏差がそれぞれ、80%および50%(図15c、図15f)よりも高いことによる細胞のサイズの不均質の増大によってももたらされる。図15gおよび図15gおよび図15hのコロニーと比較されたい。多能性コロニー(図15g)は、各細胞の周囲のシャープで明確な境界内で粒子の細かい均質なテクスチャーを示す。明確に画定された細胞は、均一なサイズであり、その一部は白色の境界を有する(ドーム細胞のレンズ効果による位相ハローアーチファクト(phase halo artifact))。対照的に、分化コロニー(図15h)は、連続した単層における個々の細胞の「目玉焼き」の外観と表現される不完全に画定された境界、暗い中心、そして不規則な広い青白い細胞の縁(白い線がない)を有する。画像のグレースケールの水平線スキャン(図15i〜図15j)は、両方の画像が、距離に対してかなりの強度変化を有するが、これら2つの画像は、不規則変動が起こるスケールにしたがって区別することができる;細かい顆粒状の多能性コロニーのグレースケール強度が、比較的高い空間周波数で変動する。強度プロフィールは、細胞および核直径(xおよびy寸法)に依存するだけではなく、細胞の縁が、急激または段階的(z寸法における物理的プロフィール)であるかにも依存する。
この空間周波数は、画像の縁に関する複合情報を含み、画像における細胞のサイズ、数、および形状の統合された測度である。小さい凝集細胞は、細胞と細胞の境界が次第に段階的になっている大きい細胞よりもシャープな縁を有する。幹細胞の画像テクスチャーは、多重解像度ウェーブレット解析を用いて、スケールに依存した統計的変動を定量することによって分類され、このウェーブレット解析は、位置およびスケールにしたがって信号を局所的に分解する(図15k〜図15m)。図15kおよび図15l、図15kおよび図15lでは、多能性コロニーの第2および第3の詳細サブバンドの係数(それぞれ、2および2ピクセルのスケールにおける変動を考慮する)は、中心が著しく幅が広くて裾が厚い確率密度関数を有し、これは、小さいスケールでより多くの縁、したがってより多くのより小さい細胞であることを示唆する。同様に、図15mでは、状態が、第6の詳細サブバンド(スケール2ピクセル)で逆転し、これは、分化画像が、より離れた縁、したがってより大きい細胞を含むことを示唆する。幹細胞の分化に対して最も敏感なスケールは、多能性幹細胞および分化幹細胞の平均直径(それぞれ、69±30ピクセルおよび82±40ピクセル)に類似している。コロニーの画像を完全に一般化するために、2つの寸法を一般化する。
(実施例19:hESC核への適用)
これらの方法を最初に、実施例が図11f(多能性)および図11c(初期分化)に示されている、セクション2bのiiに記載されている固定された核に適用した。初期セグメント化マスクを、Chan−Veseレベルセット法(Chanら、2001)およびCellProfiler(Carpenterら、2006)によって決定してから、適応ウインドウイングを利用した。統計的多重解像度テクスチャーモデルを、様々なウェーブレット型および4つの各KLD推定法を用いて適用した。
k−最近傍分類子を、図16aに例示されている53の細胞に適用した。この図では、白色の四角形がx軸に沿って配置されて、所定の細胞に対する10の最も類似してない核を示している。したがって、対角線に沿ったブロックは、正しい細胞の分類を示すが、対角線上にないマークは、所定の細胞と別のクラスとの間の相違が小さいことを示す。僅か2つの例外を除き、各細胞の近傍の殆どが、正しいクラスからである。したがって、クラスター化は、ほぼ完全である。これらの結果は、様々なデータセット(Mangoubiら、2008)(Desaiら、2009)、(Lowryら、2010)についての他の結果および方法と一致しており、テクスチャー解析が、他のバイオマーカーを補完できる非破壊性バイオマーカーの役割を果たし得ることを示唆している。
変動するウェーブレットおよび分解レベルによる誤り率の図16c〜図16dの結果は、これらの画像では、確度が、ウェーブレットの選択および分化レベルの数の両方に対して高いロバスト性であることを示唆している。しかしながら、細胞の画像が、顕著な細かいスケール変動を有する場合は、可能な限り多くの分解レベル(したがって、スケールにおける変動)を抽出することが極めて重要であろう。pdfモデル化については、分解の係数をモデル化するためのGGD密度関数が好ましいことが立証された。L−Qでの2、3の例外を除いて、4つの方法の確度は、同等であり、GGDは、計算が最も容易である。注目すべきは、この提示した方法は、セグメント化が核テクスチャー解析の前であるため、細胞解析および分類を自動化する。
(実施例20:hESCコロニーおよびiPSCへの適用)
コロニーの画像は、多能性細胞、分化細胞、細胞外マトリックスタンパク質、およびフィーダーを含み得るため、画像セグメント化は、テクスチャーの特性と組み合わせなければならない。本明細書に記載される階層的分類アプローチは、テクスチャーベースの分類法をウインドウベースの意思決定と組み合わせて、不均質なコロニーの画像をセグメント化および分類する。部分的に分化したコロニーまたは混合された培養物を定量する能力は、幹細胞発生の動的プロセスの測定を可能にするという点で著しい進歩である。
また、分類法も使用してiPSCを分類した。セグメント化マークを、タイリング法を用いて得た。係数を、適応ウインドウイング法を用いて選択し、統計的テクスチャーモデルは、GGD、db4ウェーブレット、5の分解レベル、swtとした。ここでは、適応ウインドウイングをここで使用したが、この適応ウインドウは、小さいコロニーの対処に加えて、全コロニーからの特徴を1つの特徴ベクトルに構築するという利点を有する。従来の方法は、タイリングを必要とするが、このタイリングは、小さいコロニーでは不可能である。
図39において、iPSC((a)〜(f)のコロニー#1〜6)は、分化コロニー((g)および(h)に示されている#7〜8)から区別することができる。コロニー#3(b)は、アウトライアー(このコロニーが、2つの分離された部分になるためであると考えられる)のようであるが、この細胞は、それでも明らかにiPSCであって、分化細胞ではない。コロニー#9(i)は、iPSCコロニー#4(d)の小さいフラグメントである。適応ウインドウイングは、テクスチャーモデルを得るために使用できる係数を最大にするのに役立つ。ここで、コロニー#9(i)は、分化細胞ではなく明らかにiPSCである。
比較は、適応ウインドウイングを用いた非ガウス多重解像度ウェーブレットテクスチャー解析に基づいている。具体的には、各コロニーのウェーブレット分解を行い、各サブバンドのウェーブレット係数を使用して、非ガウス確率密度関数を推定する。すべてのサブバンドにわたる同時確率密度関数は、コロニーまたはコロニークラスを特徴付ける。一対のコロニーの場合、この対の2つの確率密度関数を、カルバック−ライブラー KLダイバージェンス、または尤度比、または任意の他の比較を用いて比較する。示される結果は、KLダイバージェンス(k)についてである。マトリックスは、コロニーの対の比較を示し、それぞれは、2つの異なるウェーブレット分解に基づいている。コロニーの対のKLダイバージェンス値は、その色によって示される。四角形の色が濃い青色に近づけば近づくほど、2つのコロニーが類似している。したがって、各コロニーがそれ自体と比較される対角線の要素は、KLダイバージェンスが0であるため、濃い青色である。コロニー#1〜#6におけるどの対を比較する四角形も、青みがかっていることが分かり、コロニーは、テクスチャーが類似していることを意味する。同様に、コロニー#5および#6も、小さいKLダイバージェンスを有する。対照的に、コロニー#1〜#6(ipsc)のいずれかのコロニー#7および#8(分化)に対する比較は、対応する四角形の赤みがかった色によって示されるように、大きいダイバージェンスを示す。パネル(j)は、コロニー#9の係数レベルマスクを示す。ここでは、数値−1は、コロニーの外部に相当し、0は、コロニーの内部に相当し、どのサブバンド推定値にも含まれない。数1〜5は、サブバンドを推定するために使用される係数である。
(実施例21:コロニーテクスチャーのライブラリーの作成)
コロニー画像分類における問題は、細かい顆粒状の多能性領域を分化「湿地(swampland)」から区別し、かつこれらを外部から区別することである。これは、画像を一定のサイズの重複しないウインドウに細分することによって達成され、各ウインドウを、GGD密度関数を用いて個々に分類してウェーブレット係数の統計的変動をモデル化する。クラス内テクスチャー不均質性は、すべての分化、多能性、または外部ウインドウが互いに厳密に類似しているわけではないため、ウインドウは、基準モデルによって分類するのではなく、図17aに例示されている、4つの画像(3つの多能性、1つの分化)から作成されたモデルライブラリーの専門家分類サンプルに対する比較によって分類した。ライブラリー内KLDは、ライブラリーテクスチャーをクラス、すなわち、ライブラリー内のコロニーの対間のKLDのマトリックスの対角線に沿ってクラスター化された青みがかったブロックとして示されている1つの分化、3つの外部、および2つの多能性(左上から右下)にグループ分けすることを示している。対角線から外れた緑がかったバーに示されている第1のクラス(分化)と最後のクラス(多能性)との間の類似性、および青色の薄い影が付いた、分化クラスのテクスチャーの不均質性に留意されたい。
ウインドウのクラス分けは、k−最近傍分類子を使用する。未知のウインドウと各ライブラリモデルとの間の相違の計算後、最も小さい相違(すなわち、最近傍)のkモデルが「投票」し、最も多くの「票」を持つクラスが勝ちとなる。曖昧なケースを排除するために、相違がある上限値よりも低い場合にのみ、モデルが「投票」することができ、最終結果は、少なくともk≦k「投票」が一致する場合にのみ受け入れられる。実際は、分類は、k、k、および相違上限の選択に対してロバスト性であることが示される。
(実施例22:階層画像ウインドウイング)
計算を容易かつ迅速にするために、かなり大きくなるようにウインドウ(256×256ピクセル)が選択されるため、いくつかのウインドウは、テクスチャークラス、例えば、多能性および外部などの不均質な混合物を含む。このようなウインドウは、2つ(またはそれ以上)のpdfの重ね合わせを表す。この問題に取り組むために、階層画像ウインドウイングによって分類を改善する。分類子が、空間推論規則を用いてこれらのウインドウを識別した後、それらを4等分して、上記と同じ要領で再分類する。このプロセスは、特色(例えば、分化細胞凝集塊、多能性白色系など)がウインドウサイズ程度になるまで繰り返すことができる。したがって、本願における最小スケールは、64×64ピクセルである。
2つの空間推論規則は、改善された分類用のテクスチャー境界ウインドウを識別する。最初に、k−最近傍検定に落ちたウインドウを選択する。次に、別のクラスのウインドウに隣接した任意の分化ウインドウを選択する;なぜなら、分化hESC領域が、ある種のテクスチャーの不均質性によって特徴付けられるためであり、境界ウインドウは、分化として誤って識別される傾向にある。
図17bは、アルゴリズムの進行、および多能性コロニー画像の64×64ピクセルの最大精度へのテクスチャーのセグメント化を例示している。分化コロニーのセグメント化の入力および結果が図17cに示されている。青色のウインドウは、多能性として分類され、緑色は分化として分類され、赤色は外部として分類される。金色のウインドウは、未知または分類できない。これらは、数としては非常に少ない。
(実施例23:性能結果)
不均質なhESCコロニーの画像の分類は、かなり成功している。典型的には、多能性ウインドウの識別は、ほぼ完全である(99%、90%信頼区間(CI)[0.9812、0.9986])。誤分類された多能性ウインドウの非常に小さい割合の1つを除くすべてのウインドウが、コロニー周囲に割り当てられるため、多能性ウインドウが、分化として分類されることは本質的にあり得ない。これは、組織を利用する前にすべての細胞が分化しなければならない組織工学の適用例にとって重要である。
分化および外部の確度はそれぞれ、89%(90%CI[0.8547、0.9196])および96%(90%CI[0.9432、0.9812])である。通常は、hESCコロニーは、分化するにつれて拡散するため、約70%の誤分類分化ウインドウが、外部に割り当てられ、残りは分類不可である。したがって、分化細胞が、多能性として誤分類されることはなかった。これは、多能性コロニーが汚染されていないはずがない大規模hESC培養にとって重要である。
図17dの結果は、様々な分類(k、k)およびモデル化(ウェーブレット原理)パラメーターの正確な結果である。多能性の確度は、これらの値の変化に対して高いロバスト性であることに留意されたい。分化確度は、様々であるが、8タップ以下のウェーブレット(Sym4および左)で許容され得る。青色は多能性を示し、緑色は分化を示し、赤色は外部を示す。バーは、90%CIを示し、菱形は、分布の平均を示す。
前述のように、これらの結果を、GGD密度に使用してウェーブレット係数をモデル化した。比較として、モデルパラメーターの「典型的な」セットについてのSαSモデルでの結果が図17eに示されている。多能性確度は、比較的変化しないが、分化確度は、顕著に低下し(89%から82%に低下)、本願におけるGGD密度モデルの使用を検証する。
加えて、図18は、10分間隔で微速度撮影した10または11枚の画像の中のマーカーFGP−H2Bで画像化された5つの細胞の核を示している。k−最近傍分類子を用いた、5つのクラスの画像についての合計KLD分類の結果が、図14に示されている。y軸上のそれぞれの核について、白色の四角形が、5つの相違が最小の核(すなわち、最も小さい合計KLD)をx軸に沿って示すように配置されている。対角線に沿ったブロックは、正確な画像の分類を示す一方、対角線から外れた入力は、所定の核と別のクラスの低い相違を示す。1つの例外を除き、最近傍の殆どが、正しいクラスからである。また、モデル係数選択法は、多能性クラス2の分類を可能にする;この細胞の形状は、非常に不規則であるため、統計的テクスチャー解析に十分な長方形の領域の選択を除外することに留意されたい。
また、ノンパラメトリック統計モデルは、核間のクラス分類を増加させることに留意されたい。核11とクラス1および2の核との間の実際の相違度を示す図19を参照されたい。下側ストリップは、ParzenモデルからのKLDを例示し;唯1つのケース(核4)では、クラス1の核が、どのクラス2の核よりも核11から離れている。これは、この核に対する非常に悪いクラス分類を示す、上側ストリップに示されている、GGDモデルに勝る利点である。
(実施例24:画像法のさらなる検証)
多数の多能性hESCおよび栄養外胚葉のコロニーを試験して幹細胞クラス間の再現性のある有意な相違を示し、分化中の時間経過による僅かな相違を評価することによって、アルゴリズムの生物学的検証を行った(Erb、提出された原稿)。このアプローチを使用して、薬物、トリコスタチンAの添加後に分化速度における僅かな差異を評価した(Erb、提出された原稿)。他のサンプルに対する我々のアルゴリズムの汎用性を例示するために図20に例示する。
図20aおよび図20bに、自然に分化したhESCコロニー(系UC06)が実際に可能であることを示す実証が示されている。図20aでは、分化上皮、濃い色素の、外部フィーダー、および多能性細胞が、統計的多重解像度テクスチャー法によって区別された。
また、テクスチャー解析を適用して、個々の卵細胞の細胞質の動的変化を測定した(Mangoubiら、2007)。図20cのアカゲザル卵子の60フレームの微速度撮影画像の写真を考える。0時間目の健常な卵子は、培地のpHの変化によって損傷したため、後のフレームで目に見えるテクスチャーの変化が起きた(図20c、6時間および10時間)。フレーム30では、卵子がより顆粒状になり、フレーム60では、閉鎖卵子が、溶解して収縮した。GGDテクスチャーモデルを使用して、順番に使用された最初の画像および最後の画像を、卵細胞死の最中の中間のフレームと比較し、pHショックによる卵子の死の最中のテクスチャーの状態における変化を忠実に実証した。
(材料と方法)
(データ収集)
ヒト胚性幹細胞(hESC、NIH認可レジストリからの系UC06)を、標準的な条件下で、マウスフィーダー細胞上で成長させた。hESCの多能性を、多能性マーカー、Oct−4の免疫染色によって定期的に確認した。hESCを、フィーダー細胞上に通常の濃度の半分でプレーティングすることによって最大5週間にわたって分化するように誘導し、この初期神経細胞系譜への誘導分化を、神経マーカー、ネスチン、sox2、およびpax6によって決定した(Ozolekら、2007)。蛍光タンパク質GFPに結合したヒストンH2BのDNAで細胞をトランスフェクトすることによって生細胞でクロマチンを可視化した(Kandaら、1998)。4−D動画を、0.2μmの解像度の40×1.3NAニコン対物レンズを装着したスピニングディスク顕微鏡(Perkin Elmer Ultraview)によって撮影した。3つの時間:1分(青色のチャンネル)、5分(緑色のチャンネル)、および10分(赤色のチャンネル)における単一共焦点スライスが図18に示されている。静止画は、すべてのピクセルで青−緑−赤を有するためグレーであるが、10分の間隔の間に動く核は、色を維持する。
多能性細胞中の核は、内部運動(図18A)または全核運動(図18b)によって時間経過と共に変化した平滑なテクスチャーのクロマチンを有していた。分化の最中に、クロマチンは、より顆粒状になり、運動が減少した(図18cおよび図18d)。5週間後に(図18d)、分化幹細胞の核は、成人血管内皮細胞の核(図18e)とほぼ同じ顆粒状であった。多能性核は、物理的に非常に可塑性であり、1つにはヘテロクロマチンへのクロマチン凝縮の増加によって分化中に柔軟性が低くなる(Pajerowskiら、2007)。ヘテロクロマチンは、一般に、サイレント化遺伝子を含むため、テクスチャー解析により、クロマチンのリモデリングによって全体的な遺伝子サイレンシングの程度を直接測定することができる。
(幹細胞の培養および分化)
多能性hESC、系WA07を、StemPro(Invitrogen)多能性合成培地中のGeltrex被覆プレート(Invitrogen)上でフィーダーなしで成長させて維持した。1日おきに培地を交換し、コロニーを、コラーゲナーゼIV型で毎週継代した。上皮細胞型への特異的かつ選択的分化は、bFGFを含まないがBMP−4(100ng/mL)が添加されたStemProで4日間培養することによって達成した(Erbら、提出された原稿)。あるいは、多能性hESC、系WA07およびUC06を、20%ノックアウト血清代替物、2mM L−グルタミン、非必須アミノ酸、100U/mlペニシリン、100μg/mlストレプトマイシン、4ng/ml bFGF(すべてInvitrogenから)が添加されたノックアウトDMEM中のマイトマイシン処置マウス胎児線維芽細胞上で成長させ、維持した。1日おきに培地を交換し、コロニーを、供給者が推奨するPasteurピペットまたはコラーゲナーゼIV型(それぞれ、WiCellまたはUCSF)を用いた酵素的消化によって毎週継代した。フィーダー上での混合コロニーの分化が、新しいプレートに継代しないで2週間の培養によって自然に得られた。
ピッツバーグ大学のESCRO委員会によって承認されたhESC、系HSF−6およびH7を、20%KSR、1%MEM NEAA、Pen/Strep(10,000U/10,000μg)、1%L−グルタミン(2mM)、および8ng/mL bFGF(Invitrogen Life Technologies)を含むES−DMEM高グルコース中に維持し、マイトマイシン処置MEF(1cm当たり15,000細胞)上で培養した(GlobalstemまたはChemicon)。神経系に分化したhESC培養物を、1〜3週間にわたって低密度CF−1 MEF(1cm当たり5,000細胞)上で調製した(Ozolekら、2009;Ozolekら、2007)。マウスESC、系R1/EL129(ATCC系SCRC−1036)を、2.0mM L−グルタミン、0.1mM NEAA、0.1mM β−メルカプトエタノール、1000U/mlマウスLIF、および15%FBSが添加されたES−DMEM(Invitrogen Life Technologies)中で成長したMEF上で培養した。Hela細胞(ATCC)を、10%FBS、1%Pen/Strep、1%MEM NEAA、および1%L−グルタミンを含むDMEM中で成長させた。
(免疫細胞化学および画像解析)
hESCコロニーを、PBS緩衝液中の2%パラホルムアルデヒドで固定し、1%Triton X−100(Sigma,St.Louis MO)で透過処理し、非特異的抗体結合を10%ヤギ血清でブロックした。一次抗体を、1%ヤギ血清で希釈し、短時間スピンにかけ、次いで0℃で一晩インキュベートした。PBS−Tween0.05%で洗浄後、種特異的蛍光二次抗体を37℃で60分間添加し、次いでDNA染料Hoechst33342(1:10,000)中でインキュベートした。コロニーを、抗OCT4(R&D systems)またはCDX2(Biogenex)で免疫染色し、Zeiss 20×対物レンズおよびAxiocam MR5カメラで撮影した。4つの独立したコロニーのHoechst画像を、流域セグメント化によってセグメント化し、閾値化し、次いで核カウント用のMcMaster Biophotonics Facility Image J plug−ins(Particle Analysis)を用いてサイズ排除を行った。切り取られたコンフルエントな単層の細胞領域を、核カウントにより画像領域を分割することによって決定した。すべての画像を、最終画像合成およびコントラスト調整のためにAdobe Photoshopに取り込んだ。同等の画像を、チャンネル強度の比較を可能にする一定のコントラストを用いて調整した。
コロニーを、10M Pixel Nikon D40x SLRカメラを備えたTMS細胞培養顕微鏡の4×Nikon 0.13NA対物レンズを用いた位相差顕微鏡法によって画像化した。RGB画像を、色収差を減らす緑色チャンネルを選択することによってグレースケールに減力し、色ずれを回避した。生細胞の強度線プロフィールを画像Jで測定した。
(幹細胞核の染色)
共焦点核画像を、プラスチック底マルチウェルマイクロスライド(Ibidi、Integrated BioDiagnostics)で成長させ、固定し、DNA染料Yoyo−1で標識したhESCから収集した。サンプルを、Nikon TE2000E倒立顕微鏡、40× planapo 1.4 NA対物レンズ、Yokogawaリアル−タイム−スピニングディスク共焦点ヘッド、コヒーレントクリプトン−アルゴンイオンレーザー、およびPhotometrics HQ CCDカメラを利用して、Perkin Elmer Ultraview LCIで画像化した。厚さ0.23μmの画像スタックを得た。
(ウェーブレット係数の統計的特性)
体細胞では、へテロクロマチンおよびユークロマチンは、明らかに異なる密度およびシャープな境界(蛍光強度によって測定)を有し、面積測定によって確定的に定量することができる。幹細胞におけるヘテロクロマチン凝縮は、ヘテロクロマチンドメインの形状、密度、およびスケールが分化中に常に変化するため、面積測定だけでは測定することができない。クロマチン凝縮の定量に使用して成功した生物学的特徴は、マルチスカラーテクスチャー、またはクロマチン強度における変動パターンである。テクスチャーは、少なくとも2つの特性を有する強度変動に対して敏感である:これらは、(1)ランダムな性質である、および(2)この変動は、様々な空間スケールで起こる。
ウェーブレット解析(DoおよびVetterli、2002)をMatlab環境内で使用して、核テクスチャーを分解した。ウェーブレット解析は、ピクセル強度が、多重スケールまたは電子的な倍率で変化する程度を定量するフーリエ解析の一般化である。これらの変動の統計的比較は、テクスチャーを、測定可能に明確な程度のクロマチン凝縮に分類する。ウェーブレット係数を比較するための3つの統計的方法を評価した:(1)パラメトリック密度関数、特に一般化されたガウス分布(Mangoubiら、2008)、(2)ノンパラメトリック分類子法、特にサポート・ベクター・マシン(SVM)[Jeffreysら、2007]、および(3)ノンパラメトリック・コルモゴロフ・スミルノフ検定[Lowryら、2010]。パラメトリックアプローチを現行の解析に適用した。
一般化ガウス(GG)分布が、各サブバンドにおけるテクスチャーのウェーブレット分解の係数の統計的無作為挙動を表すのに適切であることを立証した。具体的には、
式中、xは、テクスチャー分解のサブバンドbのウェーブレット係数であり、αは、標準偏差に比例する幅パラメーターであり、βは、厚さ形状パラメーターである。第3のパラメーター、位置パラメーターまたは平均は、ゼロと推定され、図示していない。一般化ガウスモデルは、確率的挙動(分布曲線形状)のリッチファミリーを包含し、密度は、常に単一モード(我々のケースでは、ゼロで単一ピーク)および対称である。
核画像テクスチャーをBサブバンドに分解することにより、パラメーターα,β,b=1,...,Bからなる核画像テクスチャーを表す統計的特徴を有する。多能性核では、これらのパラメーターの値が、互いに類似し、分化細胞核の同じパラメーター値とは異なることを立証した。結果として、分化の程度に依存する各核を、ウェーブレットベースのテクスチャー解析によって特定の一般化されたガウス同時密度にマッピングすることができる。発生クラスi(多能性、初期分化、後期分化)の核では、この同時密度は、以下の式の通りである。
式中、x=[xi1,...,xib]である。前記別の方法では、それぞれの核クラスiを、特定の密度関数pにマッピングすることができる。次いで、クロマチン形成の段階を、各発生クラス間で統計的に比較することができる。それらの密度関数によってクラスを統計的に区別するために、カルバック−ライブラー(K−L)距離を利用した(DoおよびVetterli、2002)。2つの密度関数f(x)およびg(x)はいずれも、fからgのこの距離は以下の通りである。
距離が長ければ長いほど、2つのクラスを区別しやすい。この距離測度は、方向性があり、正または負であり得、一般に対称ではない、すなわちD(f,g)≠D(g,f)であることに留意されたい。実際には、D(f,g)およびD(g,f)の絶対値の合計、または|D(f,g)+D(g,f)|によってD(g,f)を置換することによって対称的な正の測度を利用する。
K−L距離の感覚を得るために、より知られているガウス密度を参照する。平均がmおよびmで、標準偏差が同じ1である2つのガウス密度を考える。次いで、上記の距離を、m−mまたはm−m、すなわち2つの平均の差に減らす。平均はゼロであるが、スケールおよび幅パラメーター、αおよびβが異なる我々の一般化ガウスモデルでは、(19)によって与えられる2つの密度fとfとの間のK−L距離は、以下のようになる:
この式で、それぞれの核対のパラメーターαib,βib,i=1,...,M、b=1,...,Bを、ウェーブレット分解の係数を用いて推定する。
次いで、結果のセクションに神経発生の3つの異なるクラスが示されているため、ヘテロクロマチン遺伝子座の形状および密度について事前に仮定しないで、核の対間の距離(21)を使用して、ヘテロクロマチンが存在するまたは形成された程度に基づいて核をクラスター化して分類する。
(ウエスタンブロット法)
MEFフィーダー上のhESCおよびmESCコロニーをプル・ガラス・ピペットで切除して採取した。コロニーをプレートから吸引し、2×還元サンプル緩衝液と混合し、95℃で10分間加熱した。細胞抽出物を、既に上記したドデシル硫酸ナトリウム(SDS)、12.5%または15%、ポリアクリルアミドゲル中での電気泳動法によって分解した(Rodriguez−Collazoら、2009)。0.1mmの細孔径のニトロセルロース膜(Whatman,Protran,BA79、Superior Nitrocellulose Membrane)にタンパク質をウエスタントランスファーし、タンパク質を、ポンソーS(Sigma)を用いた膜の染色によって可視化した。膜を、一次抗体と共にインキュベートし、次いでペルオキシダーゼ結合抗ウサギ二次抗体(Jackson Immunoresearch)と共にインキュベートし、化学発光(Pierce)によって検出した。膜を、8−9−M尿素/10〜20%酢酸を含む溶液中で剥がし、60℃で1時間または室温で一晩インキュベートし、4%スキムミルクで再ブロックし、再プロービングした。バンド密度の計算は、画像Jを用いてスキャンした薄膜の同じサンプルのポンソーSバンド密度によって正規化した、4つの別個の複製生物学的サンプルからの3〜4のバンドのそれぞれから再現した。
(陰性染色電子顕微鏡法)
多能性HSF−6細胞のペレットを、2.5%グルタルアルデヒドで一晩固定し、PBSで3回洗浄し、続いて1%O中でフェリシアン化カリウムと共に4℃で1時間インキュベートした。サンプルをPBSで3回洗浄し、続いて30%、50%、70%、90%EtOHで連続洗浄し、最後に3回、100%EtOHで15分間洗浄して脱水した。サンプルを、プロピレンオキシドで2回洗浄し(10分間)、続いて1:1のエポン/プロピレンオキシド混合物中で1時間インキュベートし、100%エポンで、4℃で一晩インキュベートし、続いて100%エポンでの1時間のインキュベーションを3回行った。次いで、ペレットを包埋し、37℃で24時間硬化させ、続いて60℃で48時間インキュベートした。サンプルを、65nmで切除し、200メッシュ銅格子に載せ、次いで酢酸ウラニルおよびクエン酸鉛で対比染色した。
(参考文献)
(参照による組み入れ)
本明細書で言及したすべての刊行物および特許は、それぞれの刊行物または特許が参照により組み入れられることが明確かつ個別に述べられているかのごとく、参照によりその全容が本明細書に組み入れられる。
本発明の特定の実施形態を説明してきたが、本明細書は、例示目的であり、制限するものではない。当業者であれば、本明細書および特許請求の範囲を見れば、本発明の多くの変更形態が明らかになるであろう。本発明の全範囲は、本発明の全範囲の等価物と共に特許請求の範囲を参照し、かつこのような変更形態と共に本明細書を参照して決定するべきであろう。

Claims (15)

  1. 人工多能性幹細胞を識別するための方法であって、該方法は:
    (a)少なくとも人工多能性幹細胞およびフィーダー細胞を含む細胞の混合物を含む、1つ以上の細胞の画像を得るステップと、
    (b)該画像を多数のピクセルとして表すステップと、
    (c)該多数のピクセルを、1つ以上の画像の特徴を含む複数のウインドウに分割するステップと、
    (d)該複数のウインドウの各々について該1つ以上の画像の特徴を、1つ以上の多能性幹細胞から得た画像の特徴と比較するステップであって、プロセッサーが、1つ以上の統計的比較法を行って該画像の特徴を比較する、ステップと、
    (e)クラスター化アルゴリズムを用いて、該複数のウィンドウを分類するステップであって、クラスター化アルゴリズムがk−最近傍(kNN)検定を含む、ステップと、
    )(1)k−最近傍検定に落ちたウインドウの選択と、(2)分化し、かつ、別のクラスのウインドウに隣接するとして分類されたウインドウの選択と、を含む空間推論規則を用いて、細分および再分類するためのウインドウを選択するステップと、
    )選択したウインドウを細分するステップと、
    )該細分したウインドウ内の細胞の混合物内において人工多能性幹細胞を識別するステップと、
    を含む方法。
  2. 前記1つ以上の細胞が、細胞のコロニーである、請求項1に記載の方法。
  3. 前記画像が、1つの細胞の核を含む、請求項1に記載の方法。
  4. 前記画像の特徴がテクスチャーである、請求項1に記載の方法。
  5. 前記テクスチャーが、前記細胞の形態学的構造と対応している、請求項4に記載の方法。
  6. 前記テクスチャーが不均質である、請求項4に記載の方法。
  7. )前記画像の平滑化とセグメント化を同時に行うステップと、
    )前記1つ以上の細胞の1つ以上の境界を決定するステップと、
    )該1つ以上の境界に近接した領域または小領域を特定するステップと、
    )領域または小領域の1つ以上の属性を得るステップと、
    )該1つ以上の属性における変動を分析するステップと、をさらに含み、
    該1つ以上の画像の特徴が、該1つ以上の属性の成分を含む、請求項1に記載の方法。
  8. 前記1つ以上の画像の特徴が、ウェーブレット分解アルゴリズムを用いて抽出される、請求項1に記載の方法。
  9. 前記ウェーブレットアルゴリズムが、1レベル当たり3つの詳細サブバンドを生成するn−レベル分解である、請求項8に記載の方法。
  10. 前記1レベル当たり3つの詳細サブバンドのそれぞれが、水平方向、垂直方向、および対角線方向である、請求項9に記載の方法。
  11. 前記1つ以上の統計的比較法が、確率密度関数の比較である、請求項1に記載の方法。
  12. 前記1つ以上の画像の特徴間の相違が、pdf推定量を用いて計算され、情報ダイバージェンスを用いて定量される、請求項1に記載の方法。
  13. 相違が、カルバック−ライブラーダイバージェンス(KLD)を用いて計算される、請求項1に記載の方法。
  14. pdfおよびKLDを推定するために使用される方法が、一般化ガウス密度モデル(GGD);対称なα安定(SαS)密度モデル;Ahmad−Lin(A−L)KLD推定:およびLoftsgaarden−Quesenberry(L−Q)KLD推定から選択される、請求項1に記載の方法。
  15. 前記人工多能性幹細胞が、細胞の不均質な混合物に含まれている、請求項1に記載の方法。
JP2012534340A 2009-10-13 2010-10-13 エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング Active JP6292747B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US27899209P 2009-10-13 2009-10-13
US61/278,992 2009-10-13
PCT/US2010/052572 WO2011047103A2 (en) 2009-10-13 2010-10-13 Mathematical image analysis based cell reprogramming with applications for epigenetic and non-epigenetic base induced pluripotent stem cell derivation

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2015256609A Division JP2016101171A (ja) 2009-10-13 2015-12-28 エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング
JP2017150974A Division JP2017205125A (ja) 2009-10-13 2017-08-03 エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング

Publications (2)

Publication Number Publication Date
JP2013507643A JP2013507643A (ja) 2013-03-04
JP6292747B2 true JP6292747B2 (ja) 2018-03-14

Family

ID=43876856

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012534340A Active JP6292747B2 (ja) 2009-10-13 2010-10-13 エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング
JP2015256609A Pending JP2016101171A (ja) 2009-10-13 2015-12-28 エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング
JP2017150974A Withdrawn JP2017205125A (ja) 2009-10-13 2017-08-03 エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2015256609A Pending JP2016101171A (ja) 2009-10-13 2015-12-28 エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング
JP2017150974A Withdrawn JP2017205125A (ja) 2009-10-13 2017-08-03 エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング

Country Status (4)

Country Link
US (1) US8515150B2 (ja)
EP (1) EP2488992B1 (ja)
JP (3) JP6292747B2 (ja)
WO (1) WO2011047103A2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718363B2 (en) * 2008-01-16 2014-05-06 The Charles Stark Draper Laboratory, Inc. Systems and methods for analyzing image data using adaptive neighborhooding
US8402066B2 (en) * 2008-10-07 2013-03-19 Gemological Institute Of America (Gia) Method and system for providing a clarity grade for a gem
BR112012009116A2 (pt) * 2009-10-22 2020-08-18 Koninklijke Philips Electronics N.V método para o alinhamento de uma pilha ordenada de imagens de um corpo de prova, equipamento para o alinhamento de uma pilha ordenada de imagens de um corpo de prova, produto de programa de computador, transportador de dados
EP2681551A1 (en) * 2011-02-28 2014-01-08 Cellomics, Inc Predicting toxicity of a compound over a range of concentrations
EP2570970A1 (en) * 2011-09-16 2013-03-20 Technische Universität Berlin Method and system for the automatic analysis of an image of a biological sample
US8842937B2 (en) * 2011-11-22 2014-09-23 Raytheon Company Spectral image dimensionality reduction system and method
US8655091B2 (en) 2012-02-24 2014-02-18 Raytheon Company Basis vector spectral image compression
JP2014018184A (ja) * 2012-07-23 2014-02-03 Tokyo Electron Ltd 画像解析による多能性幹細胞の評価方法
JP5413501B1 (ja) * 2012-12-07 2014-02-12 富士ゼロックス株式会社 画像処理装置、画像処理システム及びプログラム
US8856698B1 (en) * 2013-03-15 2014-10-07 Globalfoundries Inc. Method and apparatus for providing metric relating two or more process parameters to yield
JP6461128B2 (ja) * 2014-05-30 2019-01-30 富士フイルム株式会社 細胞評価装置および方法並びにプログラム
CN106339721A (zh) * 2016-08-25 2017-01-18 成都君晟科技有限公司 一种仪表面板读数自动识别方法
CN106557549A (zh) * 2016-10-24 2017-04-05 珠海格力电器股份有限公司 识别目标对象的方法和装置
JP6931870B2 (ja) * 2017-02-15 2021-09-08 国立研究開発法人理化学研究所 細胞の再プログラム化を検出するための方法及び装置
CN111492368B (zh) * 2017-12-22 2024-03-05 文塔纳医疗系统公司 用于基于膜特征对组织图像中的细胞进行分类的系统和方法
CN110135428B (zh) * 2019-04-11 2021-06-04 北京航空航天大学 图像分割处理方法和装置
CA3139879A1 (en) 2019-05-14 2020-11-19 University Of Pittsburgh-Of The Commonwealth System Of Higher Education System and method for characterizing cellular phenotypic diversity from multi-parameter cellular and sub-cellular imaging data
CN111369627B (zh) * 2020-03-05 2023-04-07 电子科技大学 一种非侵入式散斑定向成像方法
WO2024014489A1 (ja) * 2022-07-12 2024-01-18 国立大学法人東京工業大学 解析システム、解析装置、解析プログラム、及び解析方法
CN115439938B (zh) * 2022-09-09 2023-09-19 湖南智警公共安全技术研究院有限公司 一种防分裂的人脸档案数据归并处理方法及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652263B2 (ja) * 1985-12-10 1994-07-06 株式会社日立製作所 細胞分析装置
JPH10197522A (ja) * 1997-01-14 1998-07-31 Mitsubishi Electric Corp 病理組織診断支援装置
DE69901565T2 (de) * 1998-07-14 2002-09-05 Pe Corporation (Ny), Foster City Automatische maskierung von objekten in bildern
JP2003514309A (ja) * 1999-11-09 2003-04-15 ザ・ビクトリア・ユニバーシテイ・オブ・マンチエスター 物体の種類の識別、検証あるいは物体の画像合成
US7907769B2 (en) 2004-05-13 2011-03-15 The Charles Stark Draper Laboratory, Inc. Image-based methods for measuring global nuclear patterns as epigenetic markers of cell differentiation
US7711174B2 (en) * 2004-05-13 2010-05-04 The Charles Stark Draper Laboratory, Inc. Methods and systems for imaging cells
US20060160169A1 (en) * 2004-12-03 2006-07-20 Board Of Regents, The University Of Texas System Cell microarray for profiling of cellular phenotypes and gene function
JP4766935B2 (ja) * 2005-07-05 2011-09-07 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP2007334746A (ja) * 2006-06-16 2007-12-27 Olympus Corp 画像処理装置および画像処理プログラム
US8718363B2 (en) * 2008-01-16 2014-05-06 The Charles Stark Draper Laboratory, Inc. Systems and methods for analyzing image data using adaptive neighborhooding
US20120021519A1 (en) * 2008-09-19 2012-01-26 Presidents And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
US8703413B2 (en) * 2008-09-22 2014-04-22 Children's Medical Center Corporation Detection of human somatic cell reprogramming
CN102471744B (zh) * 2009-07-21 2015-06-10 国立大学法人京都大学 图像处理装置、培养观察装置及图像处理方法

Also Published As

Publication number Publication date
WO2011047103A2 (en) 2011-04-21
WO2011047103A3 (en) 2011-11-24
EP2488992B1 (en) 2024-05-29
EP2488992A2 (en) 2012-08-22
JP2016101171A (ja) 2016-06-02
JP2013507643A (ja) 2013-03-04
US8515150B2 (en) 2013-08-20
EP2488992A4 (en) 2017-04-05
US20110110577A1 (en) 2011-05-12
JP2017205125A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6292747B2 (ja) エピジェネティックおよび非エピジェネティックベースの人工多能性幹細胞誘導への応用を含む細胞リプログラミング
US9607202B2 (en) Methods of generating trophectoderm and neurectoderm from human embryonic stem cells
Liu et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids
Kato et al. Parametric analysis of colony morphology of non-labelled live human pluripotent stem cells for cell quality control
Fan et al. A machine learning assisted, label-free, non-invasive approach for somatic reprogramming in induced pluripotent stem cell colony formation detection and prediction
JP5451073B2 (ja) 細胞集団における変化の決定
Libby et al. Axial elongation of caudalized human organoids mimics aspects of neural tube development
US8189900B2 (en) Image-based methods for measuring global nuclear patterns as epigenetic markers of cell differentiation
Rouhani et al. Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells
US20130183707A1 (en) Stem cell bioinformatics
De Vos et al. High content image cytometry in the context of subnuclear organization
Sutcliffe et al. High content analysis identifies unique morphological features of reprogrammed cardiomyocytes
Saiz et al. Quantitative analysis of protein expression to study lineage specification in mouse preimplantation embryos
WO2023221951A2 (zh) 基于细胞动态图像机器学习的细胞分化
Mota et al. Automated mesenchymal stem cell segmentation and machine learning-based phenotype classification using morphometric and textural analysis
Flight et al. Automated noninvasive epithelial cell counting in phase contrast microscopy images with automated parameter selection
Coquand et al. A cell fate decision map reveals abundant direct neurogenesis bypassing intermediate progenitors in the human developing neocortex
US20230392180A1 (en) Microscopic imaging and analyses of epigenetic landscape
Chen et al. Branching development of early post-implantation human embryonic-like tissues in 3D stem cell culture
Kinoshita et al. Automated collective motion analysis validates human keratinocyte stem cell cultures
Mangoubi et al. Performance evaluation of multiresolution texture analysis of stem cell chromatin
Balbinot et al. Immunoexpression of stem cell markers SOX-2, NANOG AND OCT4 in ameloblastoma
Resto Irizarry et al. Machine learning-assisted imaging analysis of a human epiblast model
Sekulovski et al. Temporally resolved early bone morphogenetic protein-driven transcriptional cascade during human amnion specification
Flight et al. Semi-Automated Cell Counting in Phase Contrast Images of Epithelial Monolayers.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170502

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170606

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180213

R150 Certificate of patent or registration of utility model

Ref document number: 6292747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250