JP6288491B2 - Metal foil with carrier foil, metal foil with resin and laminate with metal foil - Google Patents

Metal foil with carrier foil, metal foil with resin and laminate with metal foil Download PDF

Info

Publication number
JP6288491B2
JP6288491B2 JP2013192928A JP2013192928A JP6288491B2 JP 6288491 B2 JP6288491 B2 JP 6288491B2 JP 2013192928 A JP2013192928 A JP 2013192928A JP 2013192928 A JP2013192928 A JP 2013192928A JP 6288491 B2 JP6288491 B2 JP 6288491B2
Authority
JP
Japan
Prior art keywords
foil
metal foil
carrier
metal
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013192928A
Other languages
Japanese (ja)
Other versions
JP2015060913A (en
Inventor
大樹 畑澤
大樹 畑澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013192928A priority Critical patent/JP6288491B2/en
Publication of JP2015060913A publication Critical patent/JP2015060913A/en
Application granted granted Critical
Publication of JP6288491B2 publication Critical patent/JP6288491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、キャリア箔付き金属箔、樹脂付き金属箔及び金属箔張り積層体に関するものであり、より詳細にはダイレクトレーザ加工に適したキャリア箔付き金属箔、樹脂付き金属箔及び金属箔張り積層体に関するものである。   The present invention relates to a metal foil with a carrier foil, a metal foil with a resin, and a metal foil-clad laminate, and more specifically, a metal foil with a carrier foil suitable for direct laser processing, a metal foil with a resin, and a metal foil-clad laminate. It is about the body.

近年、多層配線基板の薄型化、配線の高密度化とともに、コスト低減を目的として、多層配線基板の非貫通孔の形成にダイレクトレーザ加工が用いられる。   In recent years, direct laser processing is used to form non-through holes in a multilayer wiring board for the purpose of reducing the cost and reducing the thickness of the multilayer wiring board and increasing the wiring density.

このような多層配線基板に用いるダイレクトレーザ加工用銅箔としては、ダイレクトレーザ加工を行う銅箔表面に、レーザ吸収率が高い表面層を設けてレーザ加工性を向上させたものが開示されている(特許文献1、2)。   As a copper foil for direct laser processing used for such a multilayer wiring board, a surface layer having a high laser absorptance is provided on the surface of the copper foil for direct laser processing to improve laser workability. (Patent Documents 1 and 2).

特開2002−019017号公報JP 2002-019017 A 特開2001−253012号公報JP 2001-253012 A

しかし、特許文献1及び2では、銅張り積層板の銅箔に対して、ダイレクトレーザ加工を行った際に、銅箔に形成した孔の周りに銅が飛散する。飛散した銅上に銅めっきを行うと、表面の凹凸が大きくなり実装工程に不具合が生じる。また、ダイレクトレーザ加工の際のレーザの吸収率を高め、加工性を改善するために、銅箔表面に粗化層を形成する方法が用いられるが、この粗化層が残ったままの銅箔表面に銅めっきを行うと、銅めっきの成長を妨げる。これらの銅箔表面への銅の飛散や粗化層の問題を防止するためには、飛散した銅及び粗化層を除去し、銅めっき前に表面を平坦化する必要がある。飛散した銅及び粗化層を除去する方法としては、エッチング工程が必要になる。したがって工数が増える問題がある。   However, in Patent Documents 1 and 2, when direct laser processing is performed on the copper foil of the copper-clad laminate, copper is scattered around the hole formed in the copper foil. When copper plating is performed on the scattered copper, the unevenness of the surface becomes large, resulting in problems in the mounting process. In addition, in order to increase the laser absorptance and improve the workability during direct laser processing, a method of forming a roughened layer on the surface of the copper foil is used. Copper plating on the surface hinders copper plating growth. In order to prevent copper scattering on the copper foil surface and the problem of the roughened layer, it is necessary to remove the scattered copper and the roughened layer and to flatten the surface before copper plating. As a method for removing the scattered copper and the roughened layer, an etching process is required. Therefore, there is a problem that man-hours increase.

本発明は、上記問題点に鑑みてなされたものであり、ダイレクトレーザ加工性を維持しつつ、飛散した銅及び粗化層を除去するエッチング工程が不要なキャリア箔付き金属箔、樹脂付き金属箔及び金属箔張り積層体を提供することを目的とする。   The present invention has been made in view of the above-described problems, and maintains a direct laser processability, and does not require an etching process for removing scattered copper and a roughened layer. Metal foil with carrier foil and metal foil with resin And it aims at providing a metal foil tension laminated body.

本発明は、以下に関するものである。
1. 金属箔と、この金属箔から物理的に剥離可能なキャリア箔とを有するキャリア箔付き金属箔であって、前記金属箔とキャリア箔とを合わせた厚みが12μm以下であり、前記キャリア箔が引張強さ600MPa以上の銅箔で、金属箔と反対側のキャリア箔表面に粗化層が設けられた、キャリア箔と金属箔を貫通し非貫通穴を形成するダイレクトレーザ加工用キャリア箔付き金属箔。

. 項において、キャリア箔の厚みが6〜11μmであるダイレクトレーザ加工用キャリア箔付き金属箔。
. 項1又は2ダイレクトレーザ加工用キャリア箔付き金属箔の金属箔のキャリア箔と反対側の面に、接着用の樹脂を配置した樹脂付き金属箔。
. 項1又は2ダイレクトレーザ加工用キャリア箔付き金属箔の金属箔のキャリア箔との反対側に絶縁樹脂と導体とを配置した金属箔張り積層体。
The present invention relates to the following.
1. A metal foil, a metal foil with a carrier having physically peelable carrier foil from the metal foil state, and are thick 12μm or less obtained by combining the said metal foil and the carrier foil, the carrier foil A metal with a carrier foil for direct laser processing, which is a copper foil having a tensile strength of 600 MPa or more and has a roughened layer provided on the surface of the carrier foil opposite to the metal foil, and forms a non-through hole through the carrier foil and the metal foil. Foil.

2 . Item 2. The metal foil with a carrier foil for direct laser processing according to Item 1, wherein the carrier foil has a thickness of 6 to 11 μm.
3 . Item 3. A metal foil with a resin in which an adhesive resin is disposed on a surface opposite to the carrier foil of the metal foil of the metal foil with a carrier foil for direct laser processing according to Item 1 or 2 .
4 . Item 3. A metal foil-clad laminate in which an insulating resin and a conductor are arranged on the opposite side of the metal foil of the metal foil with a carrier foil for direct laser processing of item 1 or 2 from the carrier foil.

本発明によれば、ダイレクトレーザ加工性を維持しつつ、飛散した銅及び粗化層を除去するエッチング工程が不要なキャリア箔付き金属箔、樹脂付き金属箔及び金属箔張り積層体を提供することができる。   According to the present invention, it is possible to provide a metal foil with a carrier foil, a metal foil with a resin, and a metal foil-clad laminate that do not require an etching process to remove scattered copper and a roughened layer while maintaining direct laser workability. Can do.

本発明のキャリア箔付き金属箔の一例を表す。An example of the metal foil with a carrier foil of this invention is represented. 本発明の樹脂付き金属箔の一例を表す。An example of the metal foil with resin of this invention is represented. 本発明の金属箔張り積層体の一例を表す。An example of the metal foil tension laminated body of this invention is represented. 本発明を用いた多層配線基板の製造方法の一例の工程(a)を表す。The process (a) of an example of the manufacturing method of the multilayer wiring board using this invention is represented. 本発明を用いた多層配線基板の製造方法の一例の工程(b)を表す。The process (b) of an example of the manufacturing method of the multilayer wiring board using this invention is represented. 本発明を用いた多層配線基板の製造方法の一例の工程(c)を表す。The process (c) of an example of the manufacturing method of the multilayer wiring board using this invention is represented. 本発明を用いた多層配線基板の製造方法の一例の工程(d)を表す。The process (d) of an example of the manufacturing method of the multilayer wiring board using this invention is represented. 本発明を用いた多層配線基板の製造方法の一例の工程(e)を表す。The process (e) of an example of the manufacturing method of the multilayer wiring board using this invention is represented. 本発明を用いた多層配線基板の製造方法の一例の工程(f)を表す。The process (f) of an example of the manufacturing method of the multilayer wiring board using this invention is represented.

<キャリア付き金属箔>
本発明の一実施形態のキャリア箔付き金属箔を、図1を用いて、以下に説明する。
<Metal foil with carrier>
A metal foil with a carrier foil according to an embodiment of the present invention will be described below with reference to FIG.

図1に示すように、本実施の形態のキャリア箔付き金属箔3は、金属箔3bと、この金属箔3bから物理的に剥離可能なキャリア箔3aとを有するキャリア箔付き金属箔3であって、前記金属箔3bとキャリア箔3aとを合わせた厚みが12μm以下であるキャリア箔付き金属箔3である。   As shown in FIG. 1, the metal foil 3 with a carrier foil of the present embodiment is a metal foil 3 with a carrier foil having a metal foil 3b and a carrier foil 3a that can be physically peeled from the metal foil 3b. Thus, the metal foil 3 with a carrier foil is a total thickness of 12 μm or less of the metal foil 3b and the carrier foil 3a.

金属箔は、キャリア箔付き金属箔の状態では、キャリア箔に支持されており、多層配線板の製造に用いられる際には、一般的には、この金属箔側が多層配線板の絶縁樹脂側に張り合わせられ、多層配線板の導体を構成する材料となるものである。なお、金属箔を給電層として、めっきパターンを形成し、このめっきパターンを絶縁樹脂に転写する場合(いわゆる転写法)等は、必ずしも、多層配線板の導体を構成する材料とならない場合もある。金属箔としては、多層配線板に用いられる一般的な材料である銅箔、アルミニム箔、ニッケル箔等を用いることができる。   In the state of a metal foil with a carrier foil, the metal foil is supported by the carrier foil. When used for manufacturing a multilayer wiring board, the metal foil side is generally on the insulating resin side of the multilayer wiring board. It is laminated and becomes a material constituting the conductor of the multilayer wiring board. Note that when a plating pattern is formed using a metal foil as a power feeding layer and this plating pattern is transferred to an insulating resin (a so-called transfer method), it may not necessarily be a material constituting the conductor of the multilayer wiring board. As the metal foil, copper foil, aluminum foil, nickel foil, etc., which are general materials used for multilayer wiring boards, can be used.

キャリア箔は、金属箔を支持するものであり、多層配線板の製造に用いられた際には、一般的には、途中工程で取り除かれ、多層配線板の導体を構成する材料にはならないものである。キャリア箔としては、多層配線板に用いられる一般的な材料である銅箔、アルミニム箔、ニッケル箔等を用いることができる。   Carrier foil supports metal foil, and when used in the manufacture of multilayer wiring boards, it is generally removed in the middle of the process and does not become a material that constitutes the conductors of multilayer wiring boards It is. As the carrier foil, copper foil, aluminum foil, nickel foil or the like, which is a general material used for multilayer wiring boards, can be used.

キャリア箔は、金属箔から物理的に剥離可能である。物理的に剥離可能とは、エッチング液等の化学薬品を用いずに、例えば、キャリア箔を金属箔から引き剥がすことで剥離できることをいう。キャリア箔を金属箔から引き剥がす際のピール強度は、10〜70N/mであると、人間の力で容易に剥離できるため好ましい。ピール強度が10N/m以上であると、製造工程中での取り扱いで金属箔とキャリア箔とが剥がれ難いため好ましい。キャリア箔を金属箔から物理的に剥離可能とする方法としては、キャリア箔と金属箔との間に、モリブデンやタングステンなどの金属とこれらの酸化物を電気めっきを用いて、いわゆる剥離層(図示しない。)を形成する方法等が知られている。   The carrier foil can be physically peeled from the metal foil. The phrase “physically peelable” means that the carrier foil can be peeled off by, for example, peeling the carrier foil from the metal foil without using a chemical such as an etching solution. The peel strength when the carrier foil is peeled from the metal foil is preferably 10 to 70 N / m because it can be easily peeled off by human power. A peel strength of 10 N / m or more is preferable because the metal foil and the carrier foil are difficult to peel off during handling in the manufacturing process. As a method for making the carrier foil physically peelable from the metal foil, a metal such as molybdenum or tungsten and an oxide thereof are electroplated between the carrier foil and the metal foil to form a so-called peeling layer (illustrated). No.) is known.

金属箔とキャリア箔とを合わせた厚みは12μm以下である。これにより、金属箔とキャリア箔とを有するキャリア箔付き金属箔の全体を貫通する貫通孔を、ダイレクトレーザ加工を用いて形成することが容易になる。ダイレクトレーザに用いるレーザの種類は、炭酸ガスレーザ、YAGレーザ、エキシマレーザ等、一般的なものを用いることができる。また、このように、ダイレクトレーザ加工を用いてキャリア箔付き金属箔の全体を貫通する貫通孔を形成できることにより、ダイレクトレーザ加工を行った場合に発生する金属の飛散物や、ダイレクトレーザ加工を行う際に、レーザ加工面に形成する粗化層を、キャリア箔付きのキャリア箔を剥離するだけで、除去することが可能になる。したがって、ダイレクトレーザ加工性を維持しつつ、金属の飛散物や及び粗化層を除去するためのエッチング工程が不要となり、大幅な工数低減が可能になる。   The total thickness of the metal foil and the carrier foil is 12 μm or less. Thereby, it becomes easy to form the through-hole which penetrates the whole metal foil with carrier foil which has metal foil and carrier foil using direct laser processing. As the type of laser used for the direct laser, a general one such as a carbon dioxide laser, a YAG laser, or an excimer laser can be used. In addition, by using the direct laser processing, through holes that penetrate the entire metal foil with the carrier foil can be formed, so that scattered metal generated when direct laser processing is performed, and direct laser processing is performed. At this time, the roughened layer formed on the laser processed surface can be removed by simply peeling the carrier foil with the carrier foil. Therefore, the etching process for removing the metal scattered matter and the roughened layer is not required while maintaining the direct laser workability, and the man-hour can be greatly reduced.

ダイレクトレーザ加工で貫通孔を形成する観点からは、金属箔とキャリア箔とを合わせた厚みは、より薄い方が好ましいが、キャリア箔が薄くなると、強度(引張強さ)が低下するため、金属箔を支持してハンドリングを容易にすることが難しくなる。また、金属箔から物理的に剥離する際にちぎれ易くなり、容易に剥離することが難しくなる。このため、キャリア箔の厚みは、キャリア箔の強度(引張強さ)や金属箔との間のピール強度にもよるが、一般的なピール強度(10〜70N/m)では、6μm以上であるのが好ましい。また、金属箔の厚みは、回路形成の観点からは、より薄い方が好ましいが、めっきの前処理等でエッチングされることを考慮すると、1μm以上であるのが好ましい。したがって、金属箔とキャリア箔とを合わせた厚みは、7μm以上であるのが好ましい。   From the viewpoint of forming a through-hole by direct laser processing, the combined thickness of the metal foil and the carrier foil is preferably thinner. However, as the carrier foil becomes thinner, the strength (tensile strength) decreases. It becomes difficult to support the foil for easy handling. Moreover, when it physically peels from metal foil, it becomes easy to tear and it becomes difficult to peel easily. For this reason, the thickness of the carrier foil depends on the strength (tensile strength) of the carrier foil and the peel strength between the metal foil, but is 6 μm or more at a general peel strength (10 to 70 N / m). Is preferred. Further, the thickness of the metal foil is preferably thinner from the viewpoint of circuit formation, but is preferably 1 μm or more in consideration of being etched by plating pretreatment or the like. Therefore, the total thickness of the metal foil and the carrier foil is preferably 7 μm or more.

キャリア箔の厚みは、6〜11μmであるのが好ましい。キャリア箔が6μmよりも薄くなると、強度(引張強さ)が低下するため、金属箔を支持してハンドリングを容易にすることが難しくなる。また、キャリア箔と金属箔との間のピール強度にもよるが、金属箔から物理的に剥離する際にちぎれ易くなり、容易に剥離することが難しくなる。キャリア箔の厚みが、6〜11μmであることにより、ハドリングや金属箔からの剥離が容易になる。   The thickness of the carrier foil is preferably 6 to 11 μm. When the carrier foil is thinner than 6 μm, the strength (tensile strength) is lowered, so that it becomes difficult to support the metal foil and facilitate handling. In addition, although it depends on the peel strength between the carrier foil and the metal foil, it easily breaks when physically peeled from the metal foil, making it difficult to peel easily. When the thickness of the carrier foil is 6 to 11 μm, peeling from the hadling or metal foil is facilitated.

金属箔の厚みは、1〜5μmであるのが好ましい。金属箔の厚みが1μm以上であると、めっきの前処理等でエッチングされても、ピンホール等が発生しにくくなり、また、金属箔の厚みが5μm以下であると、微細な回路形成に有利になる。   The thickness of the metal foil is preferably 1 to 5 μm. If the thickness of the metal foil is 1 μm or more, pinholes or the like are less likely to occur even if etching is performed by plating pretreatment, and if the thickness of the metal foil is 5 μm or less, it is advantageous for forming a fine circuit. become.

キャリア箔が引張強さ600MPa以上の銅箔であるのが好ましい。一般に、多層配線板で用いられる銅箔の引張強さは、300MPa程度であり、キャリア箔として用いる場合は、ハンドリングや剥離時の作業性を考慮すると、12μm程度の厚みが必要になる。しかし、キャリア箔が引張強さ600MPa以上の銅箔であることにより、キャリア箔が6μmと薄い場合でも、金属箔を支持したり、キャリア箔を剥離するためのキャリア箔の強度を確保できる。このため、金属箔として、厚さが1〜5μmの極薄銅箔と組合わせても、金属箔とキャリア箔を合わせた全体の厚さが12μm以下になり、ダイレクトレーザ加工によって、金属箔3bとキャリア箔3aの両方に貫通孔を形成できる。また、より確実にハドリングや剥離時の作業性を確保するには、キャリア箔が引張強さ650MPa以上の銅箔であるのがより好ましく、700MPa以上の銅箔であるのがさらに好ましい。なお、引張強さの測定は、JIS C6515に準じて万能引張り試験器を用いて測定することができる。また、引張強さ600MPa以上の銅箔を作製する方法としては、公知の方法を用いることができ、例えば、硫酸銅水溶液に各種の有機イオウ系化合物を添加する方法が挙げられる。   The carrier foil is preferably a copper foil having a tensile strength of 600 MPa or more. In general, the tensile strength of a copper foil used in a multilayer wiring board is about 300 MPa, and when used as a carrier foil, a thickness of about 12 μm is required in consideration of handling and workability during peeling. However, when the carrier foil is a copper foil having a tensile strength of 600 MPa or more, even when the carrier foil is as thin as 6 μm, the strength of the carrier foil for supporting the metal foil or peeling the carrier foil can be secured. For this reason, even if combined with an ultrathin copper foil having a thickness of 1 to 5 μm as the metal foil, the total thickness of the metal foil and the carrier foil is 12 μm or less, and the metal foil 3b is obtained by direct laser processing. And through-holes can be formed in both the carrier foil 3a. Moreover, in order to ensure workability at the time of hadling and peeling more reliably, the carrier foil is more preferably a copper foil having a tensile strength of 650 MPa or more, and further preferably a copper foil having a tensile strength of 700 MPa or more. In addition, the measurement of tensile strength can be measured using a universal tensile tester according to JIS C6515. Moreover, as a method of producing a copper foil having a tensile strength of 600 MPa or more, a known method can be used, and examples thereof include a method of adding various organic sulfur compounds to a copper sulfate aqueous solution.

キャリア箔の厚みが6〜11μmであるキャリア箔付き金属箔であるのが好ましい。キャリア箔の厚みが6μm以上であることにより、キャリア箔として、引張強さ600MPa以上の銅箔を使うことにより、金属箔を支持したり、キャリア箔を剥離するためのキャリア箔の強度を確保することが可能になる。また、キャリア箔の厚みが11μm以下であることにより、1μm以上の厚みの極薄銅箔と組合わせることで、ダイレクトレーザ加工によって、金属箔3bとキャリア箔3aの両方に貫通孔を形成できる。   It is preferable that it is a metal foil with carrier foil whose thickness of carrier foil is 6-11 micrometers. When the thickness of the carrier foil is 6 μm or more, a copper foil having a tensile strength of 600 MPa or more is used as the carrier foil, thereby securing the strength of the carrier foil for supporting the metal foil or peeling the carrier foil. It becomes possible. Moreover, when the thickness of the carrier foil is 11 μm or less, through holes can be formed in both the metal foil 3 b and the carrier foil 3 a by direct laser processing by combining with the ultrathin copper foil having a thickness of 1 μm or more.

<樹脂付き金属箔>
本発明の一実施形態の樹脂付き金属箔を、図2を用いて、以下に説明する。
<Metal foil with resin>
The metal foil with resin of one Embodiment of this invention is demonstrated below using FIG.

図2に示すように、本実施の形態の樹脂付き金属箔8は、キャリア箔付き金属箔3の金属箔3bのキャリア箔3aと反対側の面に、接着用の樹脂1を配置した樹脂付き金属箔8である。   As shown in FIG. 2, the metal foil with resin 8 of the present embodiment is provided with a resin in which the adhesive resin 1 is arranged on the surface of the metal foil 3b of the metal foil 3b with the carrier foil opposite to the carrier foil 3a. Metal foil 8.

接着用の樹脂は、いわゆるビルドアップ工法で、キャリア付き金属箔と配線基板とを接着するものである。接着用の樹脂としては、一般的な樹脂付き銅箔に用いられる公知のものを用いることができ、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂が挙げられる。接着用の樹脂には、ガラスクロスやフィラー等の補強材を有していてもよい。また、キャリア付き金属箔の金属箔のキャリア箔と反対側に接着用の樹脂を配置する方法としては、一般的な樹脂付き銅箔に用いられる公知の方法を用いることができ、例えば、ワニス状の接着用樹脂を塗工し半硬化状態とする方法、半硬化状態のシート状とした接着用樹脂を張り合わせる方法、等を用いることができる。   The bonding resin is a so-called build-up method for bonding the metal foil with carrier and the wiring board. As the adhesive resin, a known resin used for a general copper foil with resin can be used, and examples thereof include an epoxy resin, a phenol resin, and a polyimide resin. The adhesive resin may have a reinforcing material such as a glass cloth or a filler. Moreover, as a method of arranging the resin for adhesion on the opposite side of the carrier foil of the metal foil of the carrier-attached metal foil, a known method used for a general copper foil with a resin can be used. A method of applying the adhesive resin to a semi-cured state, a method of pasting the semi-cured sheet-shaped adhesive resin, and the like can be used.

<金属箔張り積層体>
本発明の一実施形態の金属箔張り積層体を、図3を用いて、以下に説明する。
<Metal foil-clad laminate>
A metal foil-clad laminate according to an embodiment of the present invention will be described below with reference to FIG.

図3に示すように、本実施の形態の金属箔張り積層体9は、キャリア箔付き金属箔3の金属箔3bのキャリア箔3aとの反対側に絶縁樹脂2と導体であるキャリア箔付き金属箔3とを配置した金属箔張り積層体9である。   As shown in FIG. 3, the metal foil-clad laminate 9 of the present embodiment includes a metal foil 3 with a carrier foil and an insulating resin 2 and a metal with a carrier foil on the side opposite to the carrier foil 3 a of the metal foil 3 b. A metal foil-clad laminate 9 in which the foil 3 is disposed.

絶縁樹脂としては、多層配線基板で用いられる公知のものを用いることができ、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂が挙げられる。絶縁樹脂には、ガラスクロスやフィラー等の補強材を有していてもよい。金属箔張り積層体を製造する方法としては、いわゆる銅張り積層板を作製する場合と同様の方法を用いることができ、例えば、キャリア箔付き金属箔と、絶縁樹脂形成用のプリプレグ(ガラスクロス等の補強材に、熱硬化性の絶縁樹脂を含浸させ、半硬化状態としたもの)と、キャリア箔付き金属箔とを、この順番に積層し、熱プレスによって成形する方法が挙げられる。   As an insulating resin, a well-known thing used with a multilayer wiring board can be used, For example, an epoxy resin, a phenol resin, and a polyimide resin are mentioned. The insulating resin may have a reinforcing material such as glass cloth or filler. As a method for producing a metal foil-clad laminate, a method similar to that for producing a so-called copper-clad laminate can be used. For example, a metal foil with a carrier foil and a prepreg for forming an insulating resin (such as glass cloth) And a reinforcing foil made by impregnating a thermosetting insulating resin into a semi-cured state) and a metal foil with a carrier foil are laminated in this order and molded by hot pressing.

参考例1)
図1に示すように、金属箔3bと、この金属箔3bから物理的に剥離可能なキャリア箔3aとを有するキャリア箔付き金属箔3であって、金属箔3bとキャリア箔3aとを合わせた厚みが12μmであるキャリア箔付き金属箔3を作製した。
( Reference Example 1)
As shown in FIG. 1, a metal foil 3 with a carrier foil having a metal foil 3b and a carrier foil 3a that can be physically peeled from the metal foil 3b, wherein the metal foil 3b and the carrier foil 3a are combined. A metal foil 3 with a carrier foil having a thickness of 12 μm was produced.

まず、キャリア金属箔として、厚さ9μmの銅箔を形成した。キャリア金属箔となる銅箔は、硫酸銅5水和物200g/L、硫酸100g/L、液温度40℃の浴にて、酸化イリジウムコーテイングを施したTi極板を陽極として、電流密度4A/dmで所定時間の電解めっきを行って形成した。このときのキャリア金属箔の引張強さは、300MPa程度であった。引張強さの測定は、JIS C6515に準じて万能引張り試験器を用いて行った。 First, a copper foil having a thickness of 9 μm was formed as a carrier metal foil. The copper foil used as the carrier metal foil is composed of a copper sulfate pentahydrate 200 g / L, sulfuric acid 100 g / L, and a Ti electrode plate coated with iridium oxide coating in a bath having a liquid temperature of 40 ° C. It was formed by performing electrolytic plating at dm 2 for a predetermined time. At this time, the tensile strength of the carrier metal foil was about 300 MPa. The tensile strength was measured using a universal tensile tester according to JIS C6515.

次に、キャリア金属箔上に、金属箔との物理的な剥離が可能になるように、剥離層(図示しない。)を設けた。剥離層は、洗浄した電解銅箔を陰極とし、酸化イリジウムコーテイングを施したTi極板を陽極とし、Ni(ニッケル)、Mo(モリブデン)、クエン酸を含有するめっき浴として、硫酸ニッケル6水和物30g/L、モリブデン酸ナトリウム2水和物3.0g/L、クエン酸3ナトリウム2水和物30g/L、pH6.0、液温度30℃の浴にて、電解銅箔の光沢面に、電流密度20A/dmで5秒間電解処理し、ニッケルとモリブデンからなる金属酸化物を含有する剥離層を形成した。 Next, a release layer (not shown) was provided on the carrier metal foil so that physical peeling from the metal foil was possible. The release layer uses a washed electrolytic copper foil as a cathode, a Ti electrode plate coated with iridium oxide as an anode, and a plating bath containing Ni (nickel), Mo (molybdenum), and citric acid. 30 g / L of sodium molybdate dihydrate, 3.0 g / L of sodium molybdate dihydrate, 30 g / L of trisodium citrate dihydrate, pH 6.0, bath of liquid temperature 30 ° C. Then, an electrolytic treatment was performed at a current density of 20 A / dm 2 for 5 seconds to form a release layer containing a metal oxide composed of nickel and molybdenum.

次に、金属箔として、厚さ3μmの極薄銅箔を形成した。金属箔となる極薄銅箔は、剥離層を形成後のキャリア金属箔の表面に、硫酸銅5水和物200g/L、硫酸100g/L、液温度40℃の浴にて、酸化イリジウムコーテイングを施したTi極板を陽極として、電流密度4A/dmで所定時間の電解めっきを行って形成した。参考例1で作製したキャリア付き金属箔は、ハンドリングが容易であった。 Next, an ultrathin copper foil having a thickness of 3 μm was formed as a metal foil. The ultrathin copper foil used as the metal foil is coated with iridium oxide on the surface of the carrier metal foil after forming the release layer in a bath of copper sulfate pentahydrate 200 g / L, sulfuric acid 100 g / L, and a liquid temperature of 40 ° C. The electrode was formed by performing electroplating for a predetermined time at a current density of 4 A / dm 2 using the Ti electrode plate subjected to the above as an anode. The metal foil with a carrier produced in Reference Example 1 was easy to handle.

次に、図3に示すように、キャリア箔付き金属箔3の金属箔3bのキャリア箔3aとの反対側に絶縁樹脂2と導体であるキャリア箔付き金属箔3とを配置した金属箔張り積層体9を形成した。絶縁樹脂としては、ガラスエポキシ系のプリプレグであるGEA−679(日立化成株式会社製、商品名)を用い、熱プレスを用いて積層成形した。   Next, as shown in FIG. 3, a metal foil-clad laminate in which an insulating resin 2 and a metal foil 3 with a carrier foil as a conductor are arranged on the opposite side of the metal foil 3b of the metal foil 3b of the carrier foil with the carrier foil 3a. Body 9 was formed. As the insulating resin, GEA-679 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a glass epoxy prepreg, was laminated using a hot press.

次に、図4の工程(a)に示すように、金属箔張り積層体9のキャリア箔3a表面に粗化層4を形成する粗化処理を行なった。粗化処理とは、ダイレクトレーザ加工を行う際にレーザ光の吸収率を上げるために行うものである。粗化処理としては、銅表面上に凹凸を作るエッチングや、銅表面上に酸化銅を形成する黒化処理等を用いることができるが、ここでは、酸化銅を形成する黒化処理を行った。   Next, as shown in step (a) of FIG. 4, a roughening treatment for forming the roughened layer 4 on the surface of the carrier foil 3 a of the metal foil-clad laminate 9 was performed. Roughening is performed to increase the absorption rate of laser light when performing direct laser processing. As the roughening treatment, etching for forming irregularities on the copper surface, blackening treatment for forming copper oxide on the copper surface, or the like can be used. Here, blackening treatment for forming copper oxide was performed. .

次に、図5の工程(b)に示すように、粗化処理されたキャリア箔3a表面にレーザを直接照射するダイレクトレーザ加工により、金属箔張り積層体9のキャリア箔3a、金属箔3b及び絶縁樹脂2を貫通し、裏面側の金属箔3bに到る非貫通孔5を形成した。ダイレクトレーザ加工には、炭酸ガスレーザを用い、ダイレクトレーザ加工によるキャリア付き金属箔への貫通孔形成が可能であった。   Next, as shown in step (b) of FIG. 5, the carrier foil 3a, the metal foil 3b, and the metal foil-clad laminate 9 are directly laser-processed by directly irradiating the surface of the roughened carrier foil 3a with a laser. A non-through hole 5 that penetrates the insulating resin 2 and reaches the metal foil 3b on the back surface side was formed. For direct laser processing, a carbon dioxide gas laser was used, and it was possible to form a through hole in a metal foil with a carrier by direct laser processing.

次に、図6の工程(c)に示すように、キャリア箔3aを金属箔3bから物理的に剥離した。このときの金属箔(厚さ3μmの極薄銅箔)とキャリア金属箔(厚さ9μmの銅箔)との間の剥離強度は、33N/mであった。なお、剥離強度(N/m)の測定は、10mm幅にカットしたキャリア付き金属箔のサンプルを作製し、テンシロンRTM−100(株式会社オリエンテック製、商品名、「テンシロン」は登録商標。)を用い、JIS Z 0237の90度引き剥がし法に準じて、室温(25℃)で行った。ここで、キャリア箔3aを金属箔3bら物理的に剥離する際にちぎれが発生することもなく、容易に剥離することができた。また、キャリア箔3aを剥離することにより、キャリア箔3a上に飛散した銅6と粗化層4とを同時に除去することができた。   Next, as shown in step (c) of FIG. 6, the carrier foil 3a was physically peeled from the metal foil 3b. The peel strength between the metal foil (ultra thin copper foil having a thickness of 3 μm) and the carrier metal foil (copper foil having a thickness of 9 μm) at this time was 33 N / m. The peel strength (N / m) was measured by preparing a sample of metal foil with a carrier cut to a width of 10 mm, Tensilon RTM-100 (made by Orientec Co., Ltd., trade name, “Tensilon” is a registered trademark). Was carried out at room temperature (25 ° C.) according to the JIS Z 0237 90-degree peeling method. Here, when the carrier foil 3a was physically peeled from the metal foil 3b, no tearing occurred, and the carrier foil 3a could be easily peeled off. Further, by peeling off the carrier foil 3a, the copper 6 and the roughened layer 4 scattered on the carrier foil 3a could be removed simultaneously.

次に、図7の工程(d)に示すように、層間接続は、非貫通孔5内に無電解銅めっき層(図示しない。)を下地銅として形成した後、この無電解銅めっき層を給電層として、電解フィルドビアめっきを行うことにより形成した。   Next, as shown in step (d) of FIG. 7, the interlayer connection is performed by forming an electroless copper plating layer (not shown) in the non-through hole 5 as a base copper, The power feeding layer was formed by performing electrolytic filled via plating.

次に、図8の工程(e)に示すように、金属箔3b及びその上に形成された層間接続銅めっき層7をエッチングにより回路加工して配線板10を形成した。   Next, as shown in step (e) of FIG. 8, the metal foil 3 b and the interlayer connection copper plating layer 7 formed thereon were processed by etching to form a wiring board 10.

次に、図2に示すように、キャリア箔付き金属箔3の金属箔3bのキャリア箔3aと反対側の面に、接着用の樹脂1として、エポキシ樹脂を途工し、半硬化させることで、樹脂付き金属箔8を作製した。   Next, as shown in FIG. 2, an epoxy resin is prepared as a bonding resin 1 on the surface opposite to the carrier foil 3 a of the metal foil 3 b of the metal foil 3 with the carrier foil and semi-cured. A metal foil 8 with resin was prepared.

次に、図9の工程(f)に示すように、配線板10の上に、キャリア箔付き金属箔3の接着用の樹脂1面を合わせて熱プレスにより積層一体化した。その後は、工程(b)〜工程(f)を繰り返し、所望の層数の多層配線板を作製した。   Next, as shown in step (f) of FIG. 9, the adhesive resin 1 surface of the metal foil 3 with carrier foil was put on the wiring board 10 and laminated and integrated by hot pressing. Thereafter, steps (b) to (f) were repeated to produce a multilayer wiring board having a desired number of layers.

(実施例
参考例1と同様に、図1に示すようなキャリア箔付き金属箔3を作製した。
(Example 1 )
Similar to Reference Example 1, a metal foil 3 with a carrier foil as shown in FIG.

まず、キャリア金属箔として、厚さ6μmの銅箔を形成した。キャリア金属箔となる銅箔は、硫酸銅五水和物濃度280g/l、遊離硫酸濃度90g/lに調整した基本溶液(硫酸−硫酸銅水溶液)に、(A)ジチオカルバミン酸誘導体又はその塩、(B)チオ尿素、(C)メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩、(D)ポリアルキレングリコール及び(E)塩素イオンを添加剤として含有する硫酸酸性銅めっき液を用い、液温度50℃の浴にて、酸化イリジウムコーテイングを施したTi極板を陽極として、電流密度40A/dmで所定時間の電解めっきを行って形成した。このときのキャリア金属箔の引張強さは、700MPa程度であった。 First, a copper foil having a thickness of 6 μm was formed as a carrier metal foil. The copper foil used as the carrier metal foil is composed of a basic solution (sulfuric acid-copper sulfate aqueous solution) adjusted to a copper sulfate pentahydrate concentration of 280 g / l and a free sulfuric acid concentration of 90 g / l, (A) a dithiocarbamic acid derivative or a salt thereof, (B) A sulfuric acid acidic copper plating solution containing, as additives, thiourea, (C) a water-soluble sulfur compound having a mercapto group or a derivative thereof or a salt thereof, (D) polyalkylene glycol and (E) chloride ion The electrode was formed by performing electroplating for a predetermined time at a current density of 40 A / dm 2 using a Ti electrode plate subjected to iridium oxide coating as an anode in a bath having a liquid temperature of 50 ° C. At this time, the tensile strength of the carrier metal foil was about 700 MPa.

次に、参考例1と同様にして、キャリア金属箔上に、金属箔との物理的な剥離が可能になるように、剥離層(図示しない。)を設けた。 Next, in the same manner as in Reference Example 1, a release layer (not shown) was provided on the carrier metal foil so that physical peeling from the metal foil was possible.

次に、参考例1と同様にして、金属箔として、厚さ3μmの極薄銅箔を形成した。実施例で作製したキャリア付き金属箔は、ハンドリングが容易であった。 Next, as in Reference Example 1, an ultrathin copper foil having a thickness of 3 μm was formed as a metal foil. The metal foil with a carrier produced in Example 1 was easy to handle.

次に、参考例1と同様にして、図4の工程(a)〜図9の工程(f)を進めて、多層配線板を作製した。ダイレクトレーザ加工によるキャリア付き金属箔への貫通孔形成が可能であった。また、金属箔(厚さ3μmの極薄銅箔)とキャリア金属箔(厚さ6μmの銅箔)との間の剥離強度は、31N/mであり、金属箔から物理的に剥離する際にちぎれが発生することもなく、容易に剥離することができた。
(比較例)
参考例1と同様に、図1に示すようなキャリア箔付き金属箔3を作製した。
Next, in the same manner as in Reference Example 1, steps (a) to (f) in FIG. 4 were advanced to produce a multilayer wiring board. It was possible to form through holes in the metal foil with a carrier by direct laser processing. Further, the peel strength between the metal foil (ultra thin copper foil having a thickness of 3 μm) and the carrier metal foil (copper foil having a thickness of 6 μm) is 31 N / m, and when physically peeling from the metal foil, It could be easily peeled off without tearing.
(Comparative example)
Similar to Reference Example 1, a metal foil 3 with a carrier foil as shown in FIG.

まず、参考例1と同様にして、キャリア金属箔として、厚さ12μmの銅箔を形成した。このときのキャリア金属箔の引張強さは、300MPa程度であった。 First, in the same manner as in Reference Example 1, a copper foil having a thickness of 12 μm was formed as a carrier metal foil. At this time, the tensile strength of the carrier metal foil was about 300 MPa.

次に、参考例1と同様にして、キャリア金属箔上に、金属箔との物理的な剥離が可能になるように、剥離層(図示しない。)を設けた。 Next, in the same manner as in Reference Example 1, a release layer (not shown) was provided on the carrier metal foil so that physical peeling from the metal foil was possible.

次に、参考例1と同様にして、金属箔として、厚さ3μmの極薄銅箔を形成した。このときの金属箔(厚さ3μmの極薄銅箔)とキャリア金属箔(厚さ12μmの銅箔)との間の剥離強度は、29N/mであった。比較例で作製したキャリア付き金属箔は、ハンドリングが容易であった。 Next, as in Reference Example 1, an ultrathin copper foil having a thickness of 3 μm was formed as a metal foil. The peel strength between the metal foil (ultra thin copper foil having a thickness of 3 μm) and the carrier metal foil (copper foil having a thickness of 12 μm) at this time was 29 N / m. The metal foil with a carrier produced in the comparative example was easy to handle.

次に、参考例1と同様にして、図4の工程(a)〜図9の工程(f)を進めて、多層配線板を作製した。ダイレクトレーザ加工によるキャリア付き金属箔への貫通孔形成は、完全ではなかった。金属箔(厚さ3μmの極薄銅箔)とキャリア金属箔(厚さ12μmの銅箔)との間の剥離強度は、29N/mであり、金属箔から物理的に剥離する際にちぎれが発生することもなく、容易に剥離することができた。


Next, in the same manner as in Reference Example 1, steps (a) to (f) in FIG. 4 were advanced to produce a multilayer wiring board. The formation of through holes in the metal foil with a carrier by direct laser processing was not complete. The peel strength between the metal foil (ultra thin copper foil of 3 μm thickness) and the carrier metal foil (copper foil of 12 μm thickness) is 29 N / m. It could be easily peeled off without tearing.


1:接着用の樹脂
2:絶縁樹脂
3:キャリア箔付き金属箔
3a:キャリア箔
3b:金属箔
4:粗化層
5:非貫通孔
6:飛散した銅
7:層間接続銅めっき層又はめっき
8:樹脂付き金属箔
9:金属箔張り積層体
10:配線板
1: Adhesive resin 2: Insulating resin 3: Metal foil 3a with carrier foil: Carrier foil 3b: Metal foil 4: Roughening layer 5: Non-through hole 6: Spattered copper 7: Interlayer connection copper plating layer or plating 8 : Metal foil with resin 9: Laminated metal foil 10: Wiring board

Claims (4)

金属箔と、この金属箔から物理的に剥離可能なキャリア箔とを有するキャリア箔付き金属箔であって、前記金属箔とキャリア箔とを合わせた厚みが12μm以下であり、前記キャリア箔が引張強さ600MPa以上の銅箔で、金属箔と反対側のキャリア箔表面に粗化層が設けられた、キャリア箔と金属箔を貫通し非貫通穴を形成するダイレクトレーザ加工用キャリア箔付き金属箔。
A metal foil, a metal foil with a carrier having physically peelable carrier foil from the metal foil state, and are thick 12μm or less obtained by combining the said metal foil and the carrier foil, the carrier foil A metal with a carrier foil for direct laser processing, which is a copper foil having a tensile strength of 600 MPa or more and has a roughened layer provided on the surface of the carrier foil opposite to the metal foil, and forms a non-through hole through the carrier foil and the metal foil. Foil.
請求項において、キャリア箔の厚みが6〜11μmであるダイレクトレーザ加工用キャリア箔付き金属箔。 The metal foil with a carrier foil for direct laser processing according to claim 1, wherein the thickness of the carrier foil is 6 to 11 µm. 請求項1又は2ダイレクトレーザ加工用キャリア箔付き金属箔の金属箔のキャリア箔と反対側の面に、接着用の樹脂を配置した樹脂付き金属箔。 A metal foil with a resin in which an adhesive resin is disposed on a surface opposite to the carrier foil of the metal foil of the metal foil with a carrier foil for direct laser processing according to claim 1 or 2 . 請求項1又は2ダイレクトレーザ加工用キャリア箔付き金属箔の金属箔のキャリア箔との反対側に絶縁樹脂と導体とを配置した金属箔張り積層体。 A metal foil-clad laminate in which an insulating resin and a conductor are arranged on the opposite side of the metal foil of the metal foil with a carrier foil for direct laser processing according to claim 1 or 2 from the carrier foil.
JP2013192928A 2013-09-18 2013-09-18 Metal foil with carrier foil, metal foil with resin and laminate with metal foil Active JP6288491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192928A JP6288491B2 (en) 2013-09-18 2013-09-18 Metal foil with carrier foil, metal foil with resin and laminate with metal foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192928A JP6288491B2 (en) 2013-09-18 2013-09-18 Metal foil with carrier foil, metal foil with resin and laminate with metal foil

Publications (2)

Publication Number Publication Date
JP2015060913A JP2015060913A (en) 2015-03-30
JP6288491B2 true JP6288491B2 (en) 2018-03-07

Family

ID=52818217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192928A Active JP6288491B2 (en) 2013-09-18 2013-09-18 Metal foil with carrier foil, metal foil with resin and laminate with metal foil

Country Status (1)

Country Link
JP (1) JP6288491B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4300870B2 (en) * 2003-05-08 2009-07-22 日立化成工業株式会社 Method for manufacturing printed wiring board
JP2008251941A (en) * 2007-03-30 2008-10-16 Nippon Steel Chem Co Ltd Manufacturing method of flexible copper-clad laminate using extra-thin copper foil with carrier copper foil
JP2009164492A (en) * 2008-01-09 2009-07-23 Shinko Electric Ind Co Ltd Manufacturing method of wiring substrate
KR101454949B1 (en) * 2008-03-26 2014-10-27 스미토모 베이클리트 컴퍼니 리미티드 Resin sheet with copper foil, multilayer printed wiring board, method for manufacturing multilayer printed wiring board and semiconductor device

Also Published As

Publication number Publication date
JP2015060913A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
TWI481325B (en) Method for manufacturing printed wiring board and copper foil for laser processing
US11266025B2 (en) Electronic-component manufacturing method and electronic components
JP5706386B2 (en) Two-layer flexible substrate and printed wiring board based on two-layer flexible substrate
JP2000059035A (en) Composite foil, copper-clad laminated material, printed wiring board, multilayer printed wiring board and manufacture of the composite foil
TWI626151B (en) Copper foil for manufacturing printed wiring board, copper foil with carrier, copper-clad laminate, and method for producing printed wiring board using the same
JP5505828B2 (en) Composite metal foil and method for producing the same
JP2007314855A (en) Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP4824828B1 (en) Composite metal foil, method for producing the same, and printed wiring board
TWI599278B (en) Copper foil having carrier foil, manufacturing method for producing the copper foil having carrier foil, and copper clad laminate for laser opening processing using the copper foil having carrier foil
TW201212743A (en) Composite metal layer provided with supporting body metal foil, wiring board using the composite metal layer, method for manufacturing the wiring board, and method for manufacturing semiconductor package using the wiring board
JP2005085923A (en) Conductive sheet and product including the same
JPWO2017141983A1 (en) Method for manufacturing printed wiring board
TWI573508B (en) Printed circuit board manufacturing method and printed circuit board
JP6288491B2 (en) Metal foil with carrier foil, metal foil with resin and laminate with metal foil
TW200922423A (en) Manufacturing method of wiring board
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP6304829B2 (en) Copper foil for laser processing, copper foil for laser processing with carrier foil, copper-clad laminate, and method for producing printed wiring board
JP5369950B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JP2008258309A (en) Punching method for printed circuit board, and printed circuit board
JP2015090980A (en) Composite metal film, and method of circuit pattern formation of printed circuit board using the same
JP3615973B2 (en) Novel composite foil and manufacturing method thereof, copper-clad laminate
JP2004330701A (en) Composite body having copper foil used for formation of printed circuit or others and manufacturing method thereof
JP2010056499A (en) Method of manufacturing multilayer circuit board, and multilayer circuit board
JP2015173160A (en) via filling plating method
JP6231773B2 (en) Method for manufacturing thick film circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180124

R151 Written notification of patent or utility model registration

Ref document number: 6288491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250