JP6287181B2 - Fixing method of inner ring for rolling bearing - Google Patents

Fixing method of inner ring for rolling bearing Download PDF

Info

Publication number
JP6287181B2
JP6287181B2 JP2013267578A JP2013267578A JP6287181B2 JP 6287181 B2 JP6287181 B2 JP 6287181B2 JP 2013267578 A JP2013267578 A JP 2013267578A JP 2013267578 A JP2013267578 A JP 2013267578A JP 6287181 B2 JP6287181 B2 JP 6287181B2
Authority
JP
Japan
Prior art keywords
retaining ring
axial direction
ring
inner ring
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013267578A
Other languages
Japanese (ja)
Other versions
JP2015124787A5 (en
JP2015124787A (en
Inventor
泰裕 中島
泰裕 中島
星治 上野
星治 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013267578A priority Critical patent/JP6287181B2/en
Publication of JP2015124787A publication Critical patent/JP2015124787A/en
Publication of JP2015124787A5 publication Critical patent/JP2015124787A5/ja
Application granted granted Critical
Publication of JP6287181B2 publication Critical patent/JP6287181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Description

この発明は、軸に対して転がり軸受の内輪を支持固定する、転がり軸受用内輪の固定方法の改良に関する。 The present invention, the inner ring of the rolling bearing for supporting and fixing with respect to the axis, to an improvement of the inner ring of the fixed method for a rolling bearing.

ステアリングホイールから入力された回転運動を舵角付与の為の直線運動に変換する為の機構としてラックアンドピニオンを使用する、ラックアンドピニオン式ステアリングギヤユニットを備えたステアリング装置が、例えば特許文献1〜3に記載される等により、従来から広く知られている。又、ラックアンドピニオン式ステアリングギヤユニットは、小型且つ軽量に構成でき、しかも剛性が高く良好な操舵感を得られる為、実際に広く使用されている。図8〜10は、この様なラックアンドピニオン式ステアリングギヤユニットを組み込んだステアリング装置の1例として、特許文献2に記載された構造を示している。このステアリング装置では、ステアリングホイール1の操作に伴って回転するステアリングシャフト2の動きを、自在継手3、3及び中間シャフト4を介して、ステアリングギヤユニット5の入力軸である、ピニオン軸6に伝達する。   A steering device including a rack and pinion type steering gear unit that uses a rack and pinion as a mechanism for converting a rotational motion input from a steering wheel into a linear motion for giving a steering angle is disclosed in, for example, Patent Documents 1 to 3. 3 has been widely known. In addition, the rack and pinion type steering gear unit can be configured to be small and light, and since it has high rigidity and a good steering feeling, it is actually widely used. 8 to 10 show a structure described in Patent Document 2 as an example of a steering apparatus in which such a rack and pinion type steering gear unit is incorporated. In this steering device, the movement of the steering shaft 2 that rotates in accordance with the operation of the steering wheel 1 is transmitted to the pinion shaft 6 that is the input shaft of the steering gear unit 5 through the universal joints 3 and 3 and the intermediate shaft 4. To do.

このステアリングギヤユニット5は、このピニオン軸6の軸方向の一部に設けたピニオン歯7と、ラック軸8の前面に設けたラック歯9とを噛合させて成る。これらピニオン軸6及びラック軸8は、それぞれの一部を、ケーシング10内に収納している。このケーシング10は、それぞれが筒状である、主収納部11及び副収納部12を備える。このうちの主収納部11は、両端が開口している。又、この副収納部12は、この主収納部11の一部側方に設けられていて、一端が開口している。これら主収納部11の中心軸と副収納部12の中心軸とは、互いに捩れの位置関係にある。前記ラック軸8は、このうちの主収納部11に、軸方向の変位を可能に挿通しており、両端部をこの主収納部11から突出させている。そして、この両端部に、それぞれ球面継手13、13を介して、タイロッド14、14の基端部を結合している。これら両タイロッド14、14の先端部は、それぞれ図示しないナックルアームの先端部に、枢軸により結合している。尚、前記ラック軸8は、前記ピニオン歯7と前記ラック歯9との噛合により、自身の中心軸回りで回転する事はない。   The steering gear unit 5 is formed by meshing pinion teeth 7 provided on a part of the pinion shaft 6 in the axial direction with rack teeth 9 provided on the front surface of the rack shaft 8. Each of the pinion shaft 6 and the rack shaft 8 is housed in a casing 10. The casing 10 includes a main storage portion 11 and a sub storage portion 12 each having a cylindrical shape. Of these, the main storage portion 11 is open at both ends. Moreover, this sub-accommodating part 12 is provided in a part of the main accommodating part 11, and one end is opened. The central axis of the main storage portion 11 and the central axis of the sub storage portion 12 are in a twisted positional relationship with each other. The rack shaft 8 is inserted through the main storage portion 11 of the rack shaft 8 so as to be axially displaceable, and both end portions protrude from the main storage portion 11. And the base end part of the tie rods 14 and 14 is couple | bonded with the both ends via the spherical couplings 13 and 13, respectively. The tip portions of the tie rods 14 and 14 are respectively connected to the tip portions of knuckle arms (not shown) by pivots. The rack shaft 8 does not rotate around its own central axis due to the engagement of the pinion teeth 7 and the rack teeth 9.

又、前記ピニオン軸6は、前記ピニオン歯7を形成した先半部を前記副収納部12内に、回転のみ可能に支持している。この為に、前記ピニオン軸6の先端部をこの副収納部12の奥端部に、ラジアルニードル軸受15により支持している。又、前記ピニオン軸6の中間部を前記副収納部12の開口寄り部分に、深溝型、3点接触型若しくは4点接触型等の単列の玉軸受16により支持している。この玉軸受16を構成する内輪17と外輪18とのうちの内輪17は、前記ピニオン軸6の中間部に形成した段差面である内径側段差面19と、このピニオン軸6の中間部に係止した止め輪20との間で挟持している。又、前記外輪18は、前記副収納部12の内周面中間部に形成した外径側段差面21と、この副収納部12の開口部に螺着した抑えねじ筒22との間で挟持している。この構成により前記ピニオン軸6の先半部を前記副収納部12内に、ラジアル荷重及びスラスト荷重を支承可能に(軸方向の変位を阻止して回転可能に)支持している。   The pinion shaft 6 supports the tip half of the pinion teeth 7 in the sub-accommodating portion 12 so that it can only rotate. For this purpose, the tip end portion of the pinion shaft 6 is supported by the radial needle bearing 15 at the back end portion of the auxiliary storage portion 12. Further, the intermediate portion of the pinion shaft 6 is supported by a single row ball bearing 16 such as a deep groove type, a three-point contact type, or a four-point contact type at a portion near the opening of the sub storage portion 12. Of the inner ring 17 and the outer ring 18 constituting the ball bearing 16, the inner ring 17 is engaged with an inner diameter side step surface 19, which is a step surface formed at an intermediate portion of the pinion shaft 6, and an intermediate portion of the pinion shaft 6. It is clamped between the retaining ring 20 that has stopped. Further, the outer ring 18 is sandwiched between an outer diameter side step surface 21 formed in the middle portion of the inner peripheral surface of the sub-accommodating portion 12 and a holding screw cylinder 22 screwed into the opening of the sub-accommodating portion 12. doing. With this configuration, the front half of the pinion shaft 6 is supported in the sub-accommodating portion 12 so as to be able to support a radial load and a thrust load (to prevent rotation in the axial direction).

又、前記主収納部11の直径方向に関して、前記副収納部12と反対側部分にシリンダ筒部23を設け、このシリンダ筒部23内に押圧ブロック24を嵌装している。そして、このシリンダ筒部23の開口部に螺着した蓋体25とこの押圧ブロック24との間にばね26を設けて、この押圧ブロック24を前記ラック軸8に向け押圧している。そして、このラック軸8を前記ピニオン軸6に向け弾性的に押圧して、前記ピニオン歯7と前記ラック歯9との噛合部のバックラッシを解消している。又、これら両歯7、9同士の噛合部での動力伝達に伴って前記ラック軸8に加わる、前記ピニオン軸6から離れる方向の力に拘らず、前記噛合部の噛合状態を適正に維持する。   Further, a cylinder tube portion 23 is provided on the opposite side of the sub storage portion 12 in the diameter direction of the main storage portion 11, and a pressing block 24 is fitted in the cylinder tube portion 23. A spring 26 is provided between the cover 25 screwed into the opening of the cylinder cylinder 23 and the pressing block 24 to press the pressing block 24 toward the rack shaft 8. The rack shaft 8 is elastically pressed toward the pinion shaft 6 to eliminate backlash at the meshing portion between the pinion teeth 7 and the rack teeth 9. Further, the meshing state of the meshing part is properly maintained regardless of the force in the direction away from the pinion shaft 6 applied to the rack shaft 8 with the power transmission at the meshing part of the teeth 7 and 9. .

左右の前輪に舵角を付与する際には、前記ステアリングホイール1の操作により前記ピニオン軸6を回転させると、前記ピニオン歯7と前記ラック歯9との噛合に基づいて、前記ラック軸8が軸方向に変位する。そして、このラック軸8の両端部に結合した、前記両タイロッド14、14を押し引きして、前記両前輪に所望の舵角を付与する。   When the steering angle is applied to the left and right front wheels, when the pinion shaft 6 is rotated by the operation of the steering wheel 1, the rack shaft 8 is moved based on the engagement of the pinion teeth 7 and the rack teeth 9. Displace in the axial direction. Then, the tie rods 14 and 14 coupled to both ends of the rack shaft 8 are pushed and pulled to give a desired rudder angle to the front wheels.

上述した様な従来構造のステアリングギヤユニット5の場合、前記玉軸受16を構成する内輪17は、次の様な手順で、前記ピニオン軸6に対し支持固定する。先ず、このピニオン軸6の中間部外周面に設けた嵌合面27に前記内輪17を径方向に関するがたつきなく(軽い締り嵌めで)外嵌すると共に、この内輪17の軸方向片端面(図10の左端面)を前記内径側段差面19に突き当てる。この状態で、前記ピニオン軸6の軸方向他端寄り部分(図10の右端寄り部分)を、金属製で円筒状の止め輪20に挿通する。次に、この止め輪20の軸方向片端面を前記内輪17の軸方向他端面に押し付けつつ、軸方向他端寄り部分を縮径する方向に塑性変形させ(かしめ)、前記止め輪20の軸方向他半部を軸方向他側に向かう程直径が小さくなる方向に傾斜した部分円すい状にする。そして、前記止め輪20の軸方向他端部を、前記ピニオン軸6の外周面のうちで、前記嵌合面27の軸方向他側に隣接する部分に設けた係止溝28に係止し、前記止め輪20を、前記内輪17とこの係止溝28との間で突っ張らせる。これにより、前記内径側段差面19と前記止め輪20の軸方向片端面との間で前記内輪17を強く挟持し、この内輪17の軸方向変位を阻止する事で、この内輪17を前記ピニオン軸6に対し支持固定する。   In the case of the steering gear unit 5 having the conventional structure as described above, the inner ring 17 constituting the ball bearing 16 is supported and fixed to the pinion shaft 6 by the following procedure. First, the inner ring 17 is fitted on the fitting surface 27 provided on the outer peripheral surface of the intermediate portion of the pinion shaft 6 without looseness in the radial direction (with a light interference fit), and one end surface (in the axial direction) of the inner ring 17 ( The left end surface of FIG. 10 is abutted against the inner diameter side step surface 19. In this state, the portion near the other end in the axial direction of the pinion shaft 6 (the portion near the right end in FIG. 10) is inserted through the metal retaining ring 20 made of metal. Next, the one end surface in the axial direction of the retaining ring 20 is pressed against the other end surface in the axial direction of the inner ring 17 and is plastically deformed (caulked) in a direction to reduce the diameter of the portion near the other end in the axial direction. The other half of the direction is formed in a partial conical shape that is inclined in a direction in which the diameter becomes smaller toward the other side in the axial direction. The other end in the axial direction of the retaining ring 20 is locked in a locking groove 28 provided in a portion of the outer peripheral surface of the pinion shaft 6 adjacent to the other axial side of the fitting surface 27. The retaining ring 20 is stretched between the inner ring 17 and the locking groove 28. As a result, the inner ring 17 is strongly clamped between the inner diameter side step surface 19 and the one axial end surface of the retaining ring 20, and the inner ring 17 is prevented from being displaced in the axial direction. It is supported and fixed to the shaft 6.

この様な従来構造の場合、前記止め輪20の軸方向他端寄り部分を縮径するのに要する力(かしめ荷重)を低減して、製造コストを抑える面からは改良の余地がある。即ち、前記従来構造の場合、前記止め輪20の軸方向他端寄り部分を縮径する以前の状態で、前記内輪17の軸方向他端面とこの止め輪20の軸方向片端面とを互いに平行にしている。この為、この止め輪20の軸方向片端面を前記内輪17の軸方向他端面に押し付けつつ、この止め輪20の軸方向他端寄り部分を縮径するのに要する力が大きくなり、押圧装置が大型化する等して、前記ステアリングギヤユニット5の製造コストが増大する可能性がある。この様な問題は、前記止め輪20の軸方向長さが前記係止溝28の軸方向幅に対し長くなる程、この止め輪20の塑性変形量が大きくなって顕著になる。   In the case of such a conventional structure, there is room for improvement in terms of reducing the force (caulking load) required to reduce the diameter of the portion near the other end in the axial direction of the retaining ring 20 and reducing the manufacturing cost. In other words, in the case of the conventional structure, the other end surface in the axial direction of the inner ring 17 and one end surface in the axial direction of the retaining ring 20 are parallel to each other before the diameter of the portion near the other end in the axial direction of the retaining ring 20 is reduced. I have to. For this reason, the force required to reduce the diameter of the portion close to the other end in the axial direction of the retaining ring 20 is increased while pressing the one end surface in the axial direction of the retaining ring 20 against the other end surface in the axial direction of the inner ring 17. There is a possibility that the manufacturing cost of the steering gear unit 5 will increase due to an increase in size. Such a problem becomes more prominent as the axial length of the retaining ring 20 becomes longer than the axial width of the retaining groove 28 and the amount of plastic deformation of the retaining ring 20 increases.

特許文献4には、内輪の内周面に段差部(円環状切欠部)を設け、この段差部の奥端面に止め輪(加締リング)の片端面を押し付ける事で、この止め輪の他端寄り部分をかしめる際に、片端部が径方向に拡がるのを防止する技術が記載されている。又、特許文献5には、止め輪(加締リング)の端面に凸部(凸条)を設け、この止め輪をかしめる際に、この凸部と係止溝の端縁とを当接させる事でこの止め輪の変形量を適切に規制し、この止め輪の内輪とこの係止溝との間での突っ張り力を増大させる技術が記載されている。但し、前記両特許文献4〜5には、止め輪を縮径するのに要する力を小さくして、製造コストを抑える事に就いては記載されていない。   In Patent Document 4, a step portion (annular notch) is provided on the inner peripheral surface of the inner ring, and one end surface of a retaining ring (caulking ring) is pressed against the inner end surface of the step portion. A technique for preventing one end portion from expanding in the radial direction when caulking the end portion is described. Also, in Patent Document 5, a convex portion (ridge) is provided on the end face of a retaining ring (caulking ring), and when this retaining ring is caulked, the convex portion and the edge of the locking groove abut. Thus, a technique is described in which the amount of deformation of the retaining ring is appropriately regulated, and the tension force between the inner ring of the retaining ring and the locking groove is increased. However, both Patent Documents 4 to 5 do not describe reducing the force required to reduce the diameter of the retaining ring to reduce the manufacturing cost.

又、特許文献6には、係止溝の底面に突条(環状隆起部)を設け、この突条に止め輪(加締リング)の一部を食い込ませる事によって、軸受の保持力を大きくできる技術が記載されている。この様な特許文献6に記載された技術の場合、前記止め輪を塑性変形させる際に、この止め輪の端部と前記係止溝の底面とが摺接しない為、この止め輪を縮径するのに要する力を低減できる。但し、前記特許文献6に記載された技術の場合、前記突条は高い形状精度を要求される為、軸の製造コストが増大する可能性がある。一方、特許文献7には、円周方向1乃至複数箇所に切り欠き部を設けた止め輪(カシメリング)の構造が記載されている。この様な特許文献7に記載された止め輪によれば、この止め輪を縮径するのに要する力を低減できるが、この止め輪の剛性が低くなるだけでなく、この止め輪と軸受の内輪との当接面積が小さくなって、この軸受の保持力の確保が難しくなる可能性がある。   In Patent Document 6, a protrusion (annular bulge) is provided on the bottom surface of the locking groove, and a retaining ring (clamping ring) is partly inserted into the protrusion to increase the holding force of the bearing. Possible technologies are described. In the case of the technique described in Patent Document 6, when the retaining ring is plastically deformed, the end of the retaining ring and the bottom surface of the retaining groove are not in sliding contact with each other. The force required to do this can be reduced. However, in the case of the technique described in Patent Document 6, since the protrusion is required to have high shape accuracy, the manufacturing cost of the shaft may increase. On the other hand, Patent Document 7 describes a structure of a retaining ring (caulking) provided with notches in one or more circumferential directions. According to the retaining ring described in Patent Document 7, the force required to reduce the diameter of the retaining ring can be reduced, but not only the rigidity of the retaining ring is lowered, but also the retaining ring and the bearing There is a possibility that the contact area with the inner ring becomes small and it is difficult to secure the holding force of the bearing.

特開2007−186185号公報JP 2007-186185 A 特開2009−184591号公報JP 2009-184591 A 特開2009−190426号公報JP 2009-190426 A 特開2007−9940号公報Japanese Patent Laid-Open No. 2007-9940 特開2012−180860号公報JP 2012-180860 A 特開2012−237403号公報JP 2012-237403 A 特開2009−68625号公報JP 2009-68625 A

本発明は、上述の様な事情に鑑みて、止め輪を縮径するのに要する力を低減し、製造コストの低減を図れる、転がり軸受用内輪の固定方法を実現すべく発明したものである。 The present invention is, in view of the circumstances as described above, to reduce the force required to diameter of the retaining ring, thereby reducing the manufacturing cost, which was invented in order to realize a fixed method of the inner ring for the rolling bearing is there.

本発明の転がり軸受用内輪の固定方法は、ピニオン軸等の回転軸或いは支持軸である軸に対して、ラジアル玉軸受等の転がり軸受の内輪を支持固定する為の方法である。この様な本発明の転がり軸受用内輪の固定方法では、前記軸の軸方向中間部に設けた段差面と、この軸の外周面に係止した止め輪とにより、前記内輪を軸方向両側から挟持する。 Rolling rising method of fixing the inner ring bearing of the present invention, with respect to the axis is a rotation axis or the supporting shaft of the pinion shaft or the like, a method for supporting and fixing the inner ring of the rolling bearing, such as radial ball bearings. In such a method for fixing an inner ring for a rolling bearing according to the present invention, the inner ring is moved from both sides in the axial direction by a stepped surface provided at an axially intermediate portion of the shaft and a retaining ring locked to the outer peripheral surface of the shaft. Hold it.

特に、本発明の転がり軸受用内輪の固定方法に於いては、前記止め輪の軸方向片端面を、軸方向他側に向かうに従って内径が小さくなる方向に傾斜した傾斜面とする。そして、前記段差面に、前記内輪の軸方向片端面を突き当てた状態で、前記軸の軸方向他端寄り部分を前記止め輪に挿通する。その後、この止め輪の軸方向片端面を前記内輪の軸方向他端面に押し付けつつ、この止め輪の少なくとも軸方向他端寄り部分を縮径して(かしめて)、この止め輪の軸方向他端部を前記軸の外周面に形成した係止溝に係止する。これにより、この止め輪を前記内輪の軸方向他端面とこの係止溝との間で突っ張らせて、この内輪の軸方向変位を阻止する。   In particular, in the method for fixing an inner ring for a rolling bearing according to the present invention, one end surface in the axial direction of the retaining ring is an inclined surface inclined in a direction in which the inner diameter becomes smaller toward the other side in the axial direction. Then, in a state where one end surface in the axial direction of the inner ring is abutted against the stepped surface, a portion closer to the other end in the axial direction of the shaft is inserted into the retaining ring. Thereafter, while pressing one end surface of the retaining ring in the axial direction against the other end surface in the axial direction of the inner ring, at least a portion near the other end in the axial direction of the retaining ring is reduced in diameter (caulked), and the axial direction of the retaining ring The end is locked in a locking groove formed on the outer peripheral surface of the shaft. As a result, the retaining ring is stretched between the other axial end surface of the inner ring and the locking groove to prevent axial displacement of the inner ring.

上述の様な本発明の転がり軸受用内輪の固定方法を実施する場合に好ましくは、請求項2に記載した発明の様に、前記軸の軸方向他端寄り部分を前記止め輪に挿通した後、この軸の軸方向他端寄り部分を、内周面に軸方向他側に向かう程内径が小さくなる方向に傾斜した傾斜面部を設けたかしめ工具に挿通する。そして、このかしめ工具を軸方向片側に向け押圧する事により、前記止め輪を前記内輪に向けて押し付けると共に、この止め輪の少なくとも軸方向他端寄り部分を縮径する。
或いは、請求項3に記載した発明の様に、前記軸の軸方向他端寄り部分を前記止め輪に挿通した後、この止め輪の少なくとも軸方向他端寄り部分を、内面に軸方向他側に向かう程内径が小さくなる方向に傾斜した傾斜面部を設けた1対のかしめ金型により径方向に押圧する。これにより、前記止め輪を前記内輪に向けて押し付けると共に、この止め輪の少なくとも軸方向他端寄り部分を縮径する。
Preferably, when the inner ring for a rolling bearing according to the present invention is fixed as described above, it is preferable that after the portion near the other end in the axial direction of the shaft is inserted into the retaining ring as in the invention described in claim 2. The portion closer to the other end in the axial direction of the shaft is inserted into a caulking tool provided with an inclined surface portion inclined in a direction in which the inner diameter decreases toward the other axial direction on the inner peripheral surface. Then, by pressing the caulking tool toward one side in the axial direction, the retaining ring is pressed toward the inner ring, and at least a portion near the other end in the axial direction of the retaining ring is reduced in diameter.
Alternatively, as in the invention described in claim 3, after inserting a portion near the other end in the axial direction of the shaft into the retaining ring, at least a portion near the other end in the axial direction of the retaining ring is connected to the inner surface on the other side in the axial direction. The radial pressing is performed by a pair of caulking dies provided with inclined surface portions that are inclined in a direction in which the inner diameter becomes smaller toward the center. Accordingly, the retaining ring is pressed toward the inner ring, and at least a portion near the other end in the axial direction of the retaining ring is reduced in diameter.

、転がり軸受用内輪の固定構造物は、軸の軸方向中間部に設けた段差面と、この軸の外周面に係止した止め輪とにより、転がり軸受の内輪を軸方向両側から挟持する事で、この軸に対しこの内輪を支持固定している。
そして、前記段差面に、前記内輪の軸方向片端面を突き当てている。更に、この内輪の軸方向他端面と前記止め輪の軸方向片端面とを、互いにほぼ平行(形状誤差に基づく僅かなずれを除く。)な状態で当接させ、且つ、この止め輪の軸方向他端部を前記軸の外周面に形成した係止溝に係止し、この止め輪を前記内輪の軸方向他端面とこの係止溝との間で突っ張らせている。これにより、この内輪の軸方向変位を阻止している。
Further, the inner ring of the fixed structure for rotation shy bearing, clamping and the stepped surface provided on the axially intermediate portion of the shaft by a snap ring engaged with the outer peripheral surface of the shaft, the inner ring of the rolling bearing from both sides in the axial direction By doing so, this inner ring is supported and fixed to this shaft.
Then , one end surface in the axial direction of the inner ring is abutted against the step surface. Further, the other end surface in the axial direction of the inner ring and the one end surface in the axial direction of the retaining ring are brought into contact with each other in a substantially parallel state (excluding a slight deviation based on a shape error), and the shaft of the retaining ring The other end in the direction is locked in a locking groove formed on the outer peripheral surface of the shaft, and this retaining ring is stretched between the other axial end surface of the inner ring and the locking groove. Thereby, the axial displacement of the inner ring is prevented.

上述の様に構成する本発明の転がり軸受用内輪の固定方法によれば、止め輪を縮径するのに要する力を低減して、製造コストの低減を図れる。即ち、この止め輪の軸方向片端面を、軸方向他側に向かうに従って内径が小さくなる方向に傾斜した傾斜面としている為、前記止め輪を転がり軸受の内輪に向け押し付ける事に伴って、この止め輪の軸方向他端寄り部分が縮径する方向に傾く傾向になる。この為、この止め輪を縮径する(かしめる)のに要する力を低減できる。又、本発明の場合、この様な構造をこの止め輪の軸方向片端面を前記傾斜面とする事により実現できる為、この止め輪の製造コストが徒に増大する事はない。従って、例えば転がり軸受用内輪の固定構造物を組み込んだラックアンドピニオン式のステアリングギヤユニット等の製造コストを低減できる。
更に本発明の場合、前記止め輪の軸方向他端寄り部分を縮径し、軸方向他端部を軸の外周面に設けた係止溝に係止した状態では、前記止め輪の軸方向片端面と前記内輪の軸方向他端面とが互いにほぼ平行(形状誤差に基づく僅かなずれを除く。)な状態になって、これら両面同士が全周に亙り当接する。この結果、これら両面同士の当接面積を確保でき、前記軸に対するこの内輪の保持力を確保できる。
According to fixed method of the inner ring rolling bearing of the present invention constructed as described above, to reduce the force required to diameter of the retaining ring, thereby reducing the manufacturing cost. That is, the one end surface in the axial direction of the retaining ring is an inclined surface that is inclined in a direction in which the inner diameter becomes smaller toward the other side in the axial direction, so that the retaining ring is pressed against the inner ring of the rolling bearing. A portion closer to the other end in the axial direction of the retaining ring tends to be inclined in a direction of reducing the diameter. For this reason, the force required for reducing (caulking) the diameter of the retaining ring can be reduced. In the case of the present invention, since such a structure can be realized by making the one end surface in the axial direction of the retaining ring the inclined surface, the manufacturing cost of the retaining ring does not increase easily. Therefore, it is possible to reduce the manufacturing cost of the rack-and-pinion steering gear unit or the like incorporating the fixed structure of the inner ring rolling rising bearings, for example.
Further, in the case of the present invention, the axial direction of the retaining ring is reduced in a state in which the portion near the other axial end of the retaining ring is reduced in diameter and the other axial end is engaged with a retaining groove provided on the outer peripheral surface of the shaft One end face and the other end face in the axial direction of the inner ring are substantially parallel to each other (excluding a slight shift based on a shape error), and these both faces abut on the entire circumference. As a result, the contact area between the two surfaces can be secured, and the holding force of the inner ring with respect to the shaft can be secured.

本発明の実施の形態の第1例を、ピニオン軸及び玉軸受に適用した状態で示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention in the state applied to the pinion shaft and the ball bearing. 同じく、内輪を固定する方法を工程順に示す断面図。Similarly, sectional drawing which shows the method of fixing an inner ring in process order. 同じく、止め輪を縮径する作業を工程順に示す、図2の(B)のa部拡大図に相当する図。Similarly, the figure equivalent to the a section enlarged view of Drawing 2 (B) which shows the work which reduces the diameter of a retaining ring in order of a process. かしめ工具の形状の2例を示す断面図。Sectional drawing which shows two examples of the shape of a crimping tool. 止め輪の形状の別例を示す、図2の(B)のa部拡大図に相当する図。The figure equivalent to the a section enlarged view of (B) of Drawing 2 showing another example of the shape of a retaining ring. 本発明の実施の形態の第2例を示す、図2の(A)と同様の図(A)と、(A)のb部拡大図(B)。The figure (A) similar to (A) of Drawing 2 showing the 2nd example of an embodiment of the invention, and the B section enlarged view (B) of (A). かしめ金型を取り出して示す断面図。Sectional drawing which takes out and shows a crimping metal mold | die. ラックアンドピニオン式ステアリングギヤユニットを組み込んだ自動車用操舵装置の1例を示す部分切断側面図。The partial cutting side view which shows an example of the steering device for motor vehicles incorporating the rack and pinion type steering gear unit. 図8のc−c断面図。Cc sectional drawing of FIG. 図9の拡大d−d断面図。FIG. 10 is an enlarged dd sectional view of FIG. 9.

[実施の形態の第1例]
図1〜5は、請求項1、2に対応する、本発明の実施の形態の第1例を示している。尚、本例を含めて本発明の特徴は、金属製の止め輪20aを縮径するのに要する力を低減して、製造コストの低減を図れる構造を実現する点にある。その他の部分の構造及び作用は、前述した従来構造と同様であるから、同等部分には同一符号を付して重複する説明を省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。
[First example of embodiment]
1 to 5 show a first example of an embodiment of the present invention corresponding to claims 1 and 2 . The feature of the present invention including this example is that a structure that can reduce the manufacturing cost can be realized by reducing the force required to reduce the diameter of the metal retaining ring 20a. Since the structure and operation of the other parts are the same as those of the conventional structure described above, the same parts are denoted by the same reference numerals, and redundant description is omitted or simplified, and the following description will focus on the characteristic parts of the present invention. .

本例の場合、特許請求の範囲に記載した転がり軸受である玉軸受16を構成する内輪17は、特許請求の範囲に記載した軸であるピニオン軸6の軸方向中間部の外周面に設けた嵌合面27に径方向に関するがたつきなく(必要に応じて締り嵌めで)外嵌している。これと共に、このピニオン軸6のうち、前記嵌合面27の軸方向片側(図1〜6の左側)に隣接する部分に形成した、特許請求の範囲に記載した段差面である内径側段差面19と、同じく軸方向他側(図1〜6の右側)に隣接する部分に形成した係止溝28に係止した前記止め輪20aとの間で前記内輪17を軸方向両側から強く挟持し、この内輪17の軸方向変位を阻止している。言い換えれば、この内輪17の軸方向片端面を前記内径側段差面19に突き当てた状態で、前記止め輪20aがこの内輪17の軸方向他端面と前記係止溝28の底面との間で突っ張る事により、この内輪17が軸方向他方に変位するのを阻止している。以上の様な構成により、前記玉軸受16の内輪17を、前記ピニオン軸6に対し支持固定している。   In the case of this example, the inner ring 17 constituting the ball bearing 16 which is the rolling bearing described in the claims is provided on the outer peripheral surface of the axially intermediate portion of the pinion shaft 6 which is the shaft described in the claims. The fitting surface 27 is externally fitted with no looseness in the radial direction (with an interference fit if necessary). At the same time, an inner diameter side step surface which is a step surface described in the claims, formed on a portion of the pinion shaft 6 adjacent to one axial side of the fitting surface 27 (left side in FIGS. 1 to 6). The inner ring 17 is strongly clamped from both sides in the axial direction between the ring 19 and the retaining ring 20a locked in the locking groove 28 formed in the portion adjacent to the other side in the axial direction (the right side in FIGS. 1 to 6). The axial displacement of the inner ring 17 is prevented. In other words, with the one end surface in the axial direction of the inner ring 17 abutted against the step surface 19 on the inner diameter side, the retaining ring 20a is between the other end surface in the axial direction of the inner ring 17 and the bottom surface of the locking groove 28. By stretching, the inner ring 17 is prevented from being displaced in the other axial direction. With the configuration as described above, the inner ring 17 of the ball bearing 16 is supported and fixed to the pinion shaft 6.

上述の様に止め輪20aを用い、前記内輪17を前記ピニオン軸6に対し支持固定する為、本例の場合には、先ず、この内輪17の軸方向片側からこのピニオン軸6の軸方向他半部を挿通する。そして、この内輪17をこのピニオン軸6の軸方向中間部の外周面に設けた前記嵌合面27に径方向に関するがたつきなく外嵌すると共に、前記内輪17の軸方向片端面を前記内径側段差面19に突き当てる。次に、前記ピニオン軸6の軸方向他端寄り部分を、円筒状の前記止め輪20aに軸方向片側から挿通する。本例の場合、この止め輪20aの軸方向片端面を、軸方向他側に向かうに従って内径が小さくなる方向に傾斜した傾斜面29としている。次いで、前記ピニオン軸6の軸方向他端寄り部分を、内周面のうちの軸方向片端寄り部分に、軸方向片側に向かう程内径が大きくなる方向に傾斜した傾斜面部30を設けたかしめ工具31の内径側に挿通する。そして、このかしめ工具31を軸方向片側に向け変位させる(押圧する)事により、前記傾斜面部30により前記止め輪20aを前記内輪17に向け押し付けつつ、この止め輪20aの軸方向他端寄り部分を縮径する方向に塑性変形させる。これにより、この止め輪20aの軸方向他端部を前記係止溝28に係止し(この止め輪20aの軸方向他端面をこの係止溝28の底面に押し付け)、この止め輪20aを、前記内輪17とこの係止溝28との間で突っ張らせる。   Since the retaining ring 20a is used and the inner ring 17 is supported and fixed to the pinion shaft 6 as described above, in this example, first, the axial direction of the pinion shaft 6 and the like from one side of the inner ring 17 in the axial direction. Insert half. Then, the inner ring 17 is fitted on the fitting surface 27 provided on the outer peripheral surface of the intermediate portion in the axial direction of the pinion shaft 6 without looseness in the radial direction, and one end surface in the axial direction of the inner ring 17 is connected to the inner diameter. It abuts on the side step surface 19. Next, the portion near the other end in the axial direction of the pinion shaft 6 is inserted into the cylindrical retaining ring 20a from one axial direction. In the case of this example, one end surface in the axial direction of the retaining ring 20a is an inclined surface 29 inclined in a direction in which the inner diameter becomes smaller toward the other side in the axial direction. Next, a caulking tool in which a portion near the other end in the axial direction of the pinion shaft 6 is provided with an inclined surface portion 30 which is inclined in a direction in which the inner diameter increases toward the one side in the axial direction at a portion near one axial end of the inner peripheral surface. It is inserted through the inner diameter side of 31. Then, by displacing (pressing) the caulking tool 31 toward one side in the axial direction, the inclined ring portion 30 presses the retaining ring 20a against the inner ring 17 and a portion closer to the other end in the axial direction of the retaining ring 20a. Is plastically deformed in the direction of reducing the diameter. As a result, the other axial end of the retaining ring 20a is engaged with the engaging groove 28 (the other axial end surface of the retaining ring 20a is pressed against the bottom surface of the engaging groove 28). The inner ring 17 is stretched between the locking groove 28.

本例の場合、この止め輪20aの軸方向片端面を前記傾斜面29としている為、前記押し付けに伴ってこの止め輪20aが、図3の(A)に矢印αで示す様に、この止め輪20aの軸方向片端面の外周縁を中心として、この止め輪20aの軸方向他端寄り部分が縮径する方向に傾く(塑性変形する)傾向になる。そして、図3の(B)→(C)に示す様に、前記かしめ工具31を更に軸方向片側に向け変位させ、このかしめ工具31の内周面に設けた前記傾斜面部30に沿って前記止め輪20aの軸方向他端寄り部分を縮径し(かしめ)、この止め輪20aの軸方向他端部を前記係止溝28に係止する。この止め輪20aの縮径作業の完了状態に於いては、前記内輪17の軸方向他端面と前記止め輪20aの軸方向片端面(傾斜面29)とは互いにほぼ平行(形状誤差に基づく僅かなずれを除く。)になり、これら両面同士が全周に亙り当接する。前記傾斜面29の、軸方向に対し直交する仮想平面に対する傾斜角度θは、前記縮径作業の完了状態に於いて、前記内輪17の軸方向他端面と前記止め輪20aの軸方向片端面とが互いにほぼ平行となる様に、この止め輪20aの軸方向長さや前記係止溝28の径方向深さ等に基づき、設計的に定める。又、本例の場合、前記かしめ工具31の傾斜面部30は、図2〜3、図4の(A)に示す様な、断面形状が部分円弧形の曲面としている。但し、前記傾斜面部30は、図4の(B)に示す様な、部分円すい面とする事もできる。何れにしても、この傾斜面部30の傾斜角度や軸方向長さ等の形状に就いても、前記傾斜面29の傾斜角度θと同様に、設計的に定める。   In the case of this example, since the one end surface in the axial direction of the retaining ring 20a is the inclined surface 29, the retaining ring 20a is attached to the retaining ring 20a as shown by an arrow α in FIG. Centering on the outer peripheral edge of one end surface in the axial direction of the ring 20a, the portion near the other end in the axial direction of the retaining ring 20a tends to be inclined (plastically deformed) in the direction of diameter reduction. Then, as shown in FIG. 3 (B) → (C), the caulking tool 31 is further displaced toward one side in the axial direction, and the caulking tool 31 is moved along the inclined surface portion 30 provided on the inner peripheral surface thereof. The diameter of the retaining ring 20a near the other end in the axial direction is reduced (caulked), and the other axial end of the retaining ring 20a is locked in the locking groove 28. When the diameter reduction operation of the retaining ring 20a is completed, the other axial end surface of the inner ring 17 and the one axial end surface (inclined surface 29) of the retaining ring 20a are substantially parallel to each other (slightly based on the shape error). The two surfaces are in contact with each other over the entire circumference. The inclination angle θ of the inclined surface 29 with respect to a virtual plane orthogonal to the axial direction is determined by the axial other end surface of the inner ring 17 and the axial one end surface of the retaining ring 20a when the diameter reducing operation is completed. Are determined in terms of design based on the axial length of the retaining ring 20a, the radial depth of the locking groove 28, and the like. In the case of this example, the inclined surface portion 30 of the caulking tool 31 is a curved surface having a partial arc shape in cross section as shown in FIGS. However, the inclined surface portion 30 may be a partial conical surface as shown in FIG. In any case, the shape of the inclined surface portion 30 such as the inclination angle and the axial length is determined by design in the same manner as the inclination angle θ of the inclined surface 29.

上述の様な本例によれば、止め輪20aを縮径する(かしめる)のに要する力を低減できる。即ち、本例の場合、この止め輪20aの軸方向片端面を、軸方向他側に向かうに従って内径が小さくなる方向に傾斜した傾斜面29としている。この為、前記止め輪20aをかしめ工具31により、玉軸受16を構成する内輪17に向けて押し付ける事に伴い、前記止め輪20aの軸方向他端寄り部分が縮径する方向に傾く傾向になる。この為、この止め輪20aの軸方向他端寄り部分を縮径する(かしめる)のに要する力を低減でき、前記かしめ工具31を軸方向に押圧する押圧装置を小型化できる。又、上述の様に止め輪20aを縮径するのに要する力を低減できる構造を、この止め輪20aの軸方向片端面を前記傾斜面29とする事で実現しており、この止め輪20aの製造コストが徒に増大する事はない。従って、例えばピニオン軸6及び前記玉軸受16を組み込んだラックアンドピニオン式のステアリングギヤユニット5(図8〜10参照)の製造コストを低減できる。   According to this example as described above, it is possible to reduce the force required for reducing (caulking) the retaining ring 20a. That is, in the case of this example, one end surface in the axial direction of the retaining ring 20a is an inclined surface 29 that is inclined in a direction in which the inner diameter becomes smaller toward the other side in the axial direction. For this reason, when the retaining ring 20a is pressed by the caulking tool 31 toward the inner ring 17 constituting the ball bearing 16, the portion near the other end in the axial direction of the retaining ring 20a tends to be inclined in the direction of reducing the diameter. . For this reason, it is possible to reduce the force required for reducing (caulking) the diameter of the portion closer to the other end in the axial direction of the retaining ring 20a, and to reduce the size of the pressing device that presses the caulking tool 31 in the axial direction. Further, as described above, a structure capable of reducing the force required to reduce the diameter of the retaining ring 20a is realized by using the one end surface in the axial direction of the retaining ring 20a as the inclined surface 29, and this retaining ring 20a. The manufacturing cost will not increase. Therefore, for example, the manufacturing cost of the rack and pinion type steering gear unit 5 (see FIGS. 8 to 10) incorporating the pinion shaft 6 and the ball bearing 16 can be reduced.

又、本例の場合、前記止め輪20aの縮径作業の完了状態では、前記内輪17の軸方向他端面と前記止め輪20aの軸方向片端面(傾斜面29)とは互いにほぼ平行な状態になって、これら両面同士が全周、全幅に亙り当接する。この為、これら両面同士の当接面積を確保でき、前記ピニオン軸6に対する前記内輪17の保持力を確保できる。   In the case of this example, when the diameter reduction operation of the retaining ring 20a is completed, the other axial end surface of the inner ring 17 and one axial end surface (inclined surface 29) of the retaining ring 20a are substantially parallel to each other. Thus, these two surfaces are in contact with each other over the entire circumference and width. For this reason, the contact area of these both surfaces can be secured, and the holding force of the inner ring 17 with respect to the pinion shaft 6 can be secured.

更に本例の場合には、前記内輪17の軸方向片端面を前記内径側段差面19に突き当てた状態での、この内輪17の軸方向他端面と前記係止溝28の軸方向他端縁との軸方向距離dと、前記止め輪20aの軸方向長さL20とをほぼ同じにしている。この為、この止め輪20aの縮径作業の途中段階で、図3の(B)に示す様に、この止め輪20aの軸方向他端部内周縁と、前記係止溝28の軸方向他端縁部とが干渉する(この止め輪20aの軸方向他端部内周縁がこの係止溝28の軸方向他端縁部に引っ掛かる)。この状態から前記かしめ工具31を軸方向片側に向かって変位させると、前記止め輪20aの軸方向片端部がこの止め輪20aの軸方向長さを縮める方向に塑性変形する(潰れる)。そして、前記かしめ工具31を更に軸方向片側に向かって変位させる事で、前記止め輪20aの軸方向他端部を前記係止溝28に係止する。本例の場合、この止め輪20aの軸方向片端面を前記傾斜面29とし、この止め輪20aの軸方向片端部の肉厚を小さくしている為、この軸方向片端部を塑性変形させる為に要する力を小さく抑えられる。更に、前記傾斜面29により前記止め輪20aの軸方向他端寄り部分が縮径する方向に傾く傾向となる為、この止め輪20aの軸方向他端部内周縁と、前記係止溝28の軸方向他端縁部との干渉を防止できる。この面からも前記止め輪20aを縮径するのに要する力の低減を図れる。又、この止め輪20aの軸方向片端部の肉厚を小さくする事で、塑性変形し易く(潰れ易く)している為、この止め輪20a及び前記係止溝28の軸方向長さに多少のばらつきが生じた場合でも、この止め輪20aの軸方向片端部を塑性変形させ、このばらつきを吸収する事ができる。
尚、図5に示す様に、止め輪20aの軸方向片端面の内外両周縁に面取り部32、32を設ければ、この止め輪20aの前記内輪17への押し付けに伴いこの内輪17の軸方向他端面が傷付くのを抑えられる。この様な面取り部32、32は、前記止め輪20aの軸方向片端面の両周縁のうち、何れか一方の周縁にのみ設ける事もできる。
Further, in the case of this example, the other end surface in the axial direction of the inner ring 17 and the other end in the axial direction of the locking groove 28 in a state where the one end surface in the axial direction of the inner ring 17 is abutted against the step surface 19 on the inner diameter side. the axial distance d between the edge, and the axial length L 20 of the retaining ring 20a at approximately the same. For this reason, in the middle of the diameter reducing operation of the retaining ring 20a, as shown in FIG. 3B, the inner peripheral edge of the retaining ring 20a and the other end in the axial direction of the locking groove 28 are provided. Interference with the edge (the inner peripheral edge of the other end in the axial direction of the retaining ring 20a is caught by the other end in the axial direction of the locking groove 28). When the caulking tool 31 is displaced toward one side in the axial direction from this state, the one end portion in the axial direction of the retaining ring 20a is plastically deformed (collapsed) in a direction of reducing the axial length of the retaining ring 20a. Then, by further displacing the caulking tool 31 toward one side in the axial direction, the other axial end portion of the retaining ring 20 a is locked in the locking groove 28. In the case of this example, the one end surface in the axial direction of the retaining ring 20a is the inclined surface 29, and the thickness of the one end portion in the axial direction of the retaining ring 20a is reduced, so that this one end portion in the axial direction is plastically deformed. The force required for this can be kept small. Furthermore, since the inclined surface 29 tends to incline in the direction in which the other end portion in the axial direction of the retaining ring 20a is reduced in diameter, the inner peripheral edge of the other end portion in the axial direction of the retaining ring 20a and the axis of the locking groove 28 Interference with the other end in the direction can be prevented. Also from this surface, the force required to reduce the diameter of the retaining ring 20a can be reduced. Further, since the thickness of one end portion in the axial direction of the retaining ring 20a is reduced, the retaining ring 20a and the retaining groove 28 are slightly lengthened in the axial direction. Even when the variation occurs, the one end portion in the axial direction of the retaining ring 20a can be plastically deformed to absorb the variation.
As shown in FIG. 5, if chamfered portions 32, 32 are provided on the inner and outer peripheral edges of one end surface in the axial direction of the retaining ring 20a, the shaft of the inner ring 17 is pushed along with the pressing of the retaining ring 20a against the inner ring 17. The other end surface in the direction can be prevented from being damaged. Such chamfered portions 32, 32 may be provided only on one of the peripheral edges of one end face in the axial direction of the retaining ring 20a.

[実施の形態の第2例]
図6〜7は、請求項1、3に対応する、本発明の実施の形態の第2例を示している。本例の場合、内周面の軸方向片端寄り部分に軸方向片側に向かう程内径が大きくなる方向に傾斜した傾斜面部30a、30aをそれぞれ設けた1対のかしめ金型33、33により、止め輪20aの軸方向他端部外周縁を径方向に押圧する。これにより、前記両傾斜面部30a、30aに沿って、前記止め輪20aを内輪17に向け押し付けつつ、この止め輪20aの軸方向他端寄り部分を縮径する(かしめる)。
その他の部分の構成及び作用は、上述した実施の形態の第1例の場合と同様であるから、重複する図示並びに説明は省略する。
[Second Example of Embodiment]
6 to 7 show a second example of an embodiment of the present invention corresponding to claims 1 and 3 . In the case of this example, it is stopped by a pair of caulking dies 33 and 33 each provided with inclined surface portions 30a and 30a inclined in a direction in which the inner diameter increases toward the one axial side at a portion closer to one axial end of the inner peripheral surface. The outer peripheral edge of the other end in the axial direction of the wheel 20a is pressed in the radial direction. As a result, the retaining ring 20a is pressed against the inner ring 17 along the inclined surface portions 30a and 30a, and the diameter of the portion closer to the other axial end of the retaining ring 20a is reduced (caulked).
Since the configuration and operation of other parts are the same as in the case of the first example of the embodiment described above, overlapping illustrations and descriptions are omitted.

上述した実施の形態の各例は、ピニオン軸に対し玉軸受の内輪を支持固定する場合に就いて説明した。これに対して、本発明は、回転軸或いは支持軸である軸に対し、玉軸受やころ軸受等の転がり軸受を構成する内輪を支持固定する場合に利用する事もできる。   Each example of embodiment mentioned above demonstrated about the case where the inner ring | wheel of a ball bearing is supported and fixed with respect to a pinion shaft. On the other hand, the present invention can also be used when an inner ring constituting a rolling bearing such as a ball bearing or a roller bearing is supported and fixed to a shaft that is a rotating shaft or a supporting shaft.

1 ステアリングホイール
2 ステアリングシャフト
3 自在継手
4 中間シャフト
5 ステアリングギヤユニット
6 ピニオン軸
7 ピニオン歯
8 ラック軸
9 ラック歯
10 ケーシング
11 主収納部
12 副収納部
13 球面継手
14 タイロッド
15 ラジアルニードル軸受
16 玉軸受
17 内輪
18 外輪
19 内径側段差面
20、20a 止め輪
21 外径側段差面
22 抑えねじ筒
23 シリンダ筒部
24 押圧ブロック
25 蓋体
26 ばね
27 嵌合面
28 係止溝
29 傾斜面
30、30a 傾斜面部
31 かしめ工具
32 面取り部
33 かしめ金型
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering shaft 3 Universal joint 4 Intermediate shaft 5 Steering gear unit 6 Pinion shaft 7 Pinion tooth 8 Rack shaft 9 Rack tooth 10 Casing 11 Main storage part 12 Sub-storage part 13 Spherical joint 14 Tie rod 15 Radial needle bearing 16 Ball bearing 17 Inner ring 18 Outer ring 19 Inner diameter side step surface 20, 20a Retaining ring 21 Outer diameter side step surface 22 Retaining screw cylinder 23 Cylinder cylinder part 24 Press block 25 Lid body 26 Spring 27 Fitting surface 28 Locking groove 29 Inclined surface 30, 30a Inclined surface part 31 Caulking tool 32 Chamfering part 33 Caulking die

Claims (3)

軸に対して転がり軸受の内輪を支持固定する為に、この軸の軸方向中間部に設けた段差面と、この軸の外周面に係止した止め輪とにより、前記内輪を軸方向両側から挟持する転がり軸受用内輪の固定方法に於いて、
前記止め輪の軸方向片端面を、軸方向他側に向かうに従って内径が小さくなる方向に傾斜した傾斜面としており、
前記段差面に、前記内輪の軸方向片端面を突き当てた状態で、前記軸の軸方向他端寄り部分を前記止め輪に挿通した後、この止め輪の軸方向片端面を前記内輪の軸方向他端面に押し付けつつ、この止め輪の少なくとも軸方向他端寄り部分を縮径し、この止め輪の軸方向他端部を前記軸の外周面に形成した係止溝に係止する事により、この止め輪を前記内輪の軸方向他端面とこの係止溝との間で突っ張らせて、この内輪の軸方向変位を阻止する事を特徴とする転がり軸受用内輪の固定方法。
In order to support and fix the inner ring of the rolling bearing with respect to the shaft, the inner ring is separated from both sides in the axial direction by a stepped surface provided at the axially intermediate portion of the shaft and a retaining ring locked to the outer peripheral surface of the shaft. In the method of fixing the inner ring for the rolling bearing to be sandwiched,
The one end surface in the axial direction of the retaining ring is an inclined surface that is inclined in a direction in which the inner diameter becomes smaller toward the other side in the axial direction,
In a state where the one end surface in the axial direction of the inner ring is abutted against the stepped surface, a portion closer to the other end in the axial direction of the shaft is inserted into the retaining ring, and then the one end surface in the axial direction of the retaining ring is used as the shaft of the inner ring. By pressing at least the other axial end portion of the retaining ring while pressing against the other end surface in the direction, and engaging the other axial end portion of the retaining ring in a retaining groove formed on the outer peripheral surface of the shaft. A method for fixing an inner ring for a rolling bearing, wherein the retaining ring is stretched between the other axial end surface of the inner ring and the engaging groove to prevent axial displacement of the inner ring.
前記軸の軸方向他端寄り部分を前記止め輪に挿通した後、この軸の軸方向他端寄り部分を、内周面に軸方向他側に向かう程内径が小さくなる方向に傾斜した傾斜面部を設けたかしめ工具に挿通し、このかしめ工具を軸方向片側に向け押圧する事により、前記止め輪を前記内輪に向けて押し付けると共に、この止め輪の少なくとも軸方向他端寄り部分を縮径する、請求項1に記載した転がり軸受用内輪の固定方法。   After inserting the portion closer to the other end in the axial direction of the shaft into the retaining ring, the inclined surface portion inclining the portion closer to the other end in the axial direction of the shaft toward the inner peripheral surface in a direction in which the inner diameter decreases. Is inserted into the caulking tool, and the caulking tool is pressed toward one side in the axial direction, thereby pressing the retaining ring toward the inner ring and reducing the diameter of at least the other axial end portion of the retaining ring. A method for fixing an inner ring for a rolling bearing according to claim 1. 前記軸の軸方向他端寄り部分を前記止め輪に挿通した後、この止め輪の少なくとも軸方向他端寄り部分を、内面に軸方向他側に向かう程内径が小さくなる方向に傾斜した傾斜面部を設けた1対のかしめ金型により径方向に押圧する事で、前記止め輪を前記内輪に向け押し付けると共に、この止め輪の少なくとも軸方向他端寄り部分を縮径する、請求項1に記載した転がり軸受用内輪の固定方法。   After inserting the portion near the other axial end of the shaft into the retaining ring, at least the portion near the other axial end of the retaining ring is inclined toward the inner surface so that the inner diameter decreases toward the other axial side. 2. The pressing ring is pressed against the inner ring by pressing in a radial direction with a pair of caulking dies provided with a ring, and at least a portion near the other end in the axial direction of the retaining ring is reduced in diameter. Method of fixing the inner ring for a rolling bearing.
JP2013267578A 2013-12-25 2013-12-25 Fixing method of inner ring for rolling bearing Active JP6287181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013267578A JP6287181B2 (en) 2013-12-25 2013-12-25 Fixing method of inner ring for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013267578A JP6287181B2 (en) 2013-12-25 2013-12-25 Fixing method of inner ring for rolling bearing

Publications (3)

Publication Number Publication Date
JP2015124787A JP2015124787A (en) 2015-07-06
JP2015124787A5 JP2015124787A5 (en) 2016-12-01
JP6287181B2 true JP6287181B2 (en) 2018-03-07

Family

ID=53535643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013267578A Active JP6287181B2 (en) 2013-12-25 2013-12-25 Fixing method of inner ring for rolling bearing

Country Status (1)

Country Link
JP (1) JP6287181B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019107989A (en) * 2017-12-18 2019-07-04 株式会社ジェイテクト Steering unit
DE102020215271A1 (en) * 2020-12-03 2022-06-09 Volkswagen Aktiengesellschaft Method of locating a split inner ring on a shaft

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971621A (en) * 1998-05-04 1999-10-26 Ford Motor Company Axial shaft retention design
JP2007009940A (en) * 2005-06-28 2007-01-18 Nsk Ltd Bearing fixing structure of steering device
JP2008057589A (en) * 2006-08-29 2008-03-13 Nsk Ltd Parts fixing structure to shaft
JP2012180860A (en) * 2011-02-28 2012-09-20 Nsk Ltd Bearing fixation structure
JP2012237403A (en) * 2011-05-12 2012-12-06 Nsk Ltd Fixing structure, and method of bearing

Also Published As

Publication number Publication date
JP2015124787A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5017927B2 (en) Electric power steering device
JP5454371B2 (en) Rack and pinion type steering gear unit and manufacturing method thereof
EP1818242A2 (en) Electric power steering apparatus
WO2013005713A1 (en) Bearing affixation structure and steering gear unit using bearing affixation structure
JP2018024366A (en) Steering device
JP6287181B2 (en) Fixing method of inner ring for rolling bearing
JP2010064519A (en) Rack shaft supporting device and vehicular steering device
EP3132869A1 (en) Method of making shaft
JP5618146B2 (en) Electric power steering device
JP2012117648A (en) Reduction gear, electric power steering device equipped with the same, and method of manufacturing reduction gear
JP5626144B2 (en) Steering device
JP6471552B2 (en) Retaining ring and worm reducer
JP4168337B2 (en) Spline fitting
JP5526655B2 (en) Electric power steering device
JP2007057012A (en) Rolling bearing device
JP2007016951A (en) Method for manufacturing telescopic shaft
JP6171738B2 (en) Tapered snap ring
JP6845786B2 (en) Power steering device
JP5626162B2 (en) Tapered snap ring fixing structure
JP5958202B2 (en) Manufacturing method of steering device
JP2017218071A (en) Rack-and-pinion type steering device, and method for manufacturing the same
JP2005132287A (en) Rack shaft support device, sealing member and its manufacturing method
JP5392559B2 (en) Rack shaft support device
JP2016097792A (en) Rack and pinion type steering gear unit
JP2009160961A (en) Rack-and-pinion type steering device, and method of forming sliding surface of guide member in the device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250