JP6284325B2 - Flexible copper clad laminate - Google Patents

Flexible copper clad laminate Download PDF

Info

Publication number
JP6284325B2
JP6284325B2 JP2013199806A JP2013199806A JP6284325B2 JP 6284325 B2 JP6284325 B2 JP 6284325B2 JP 2013199806 A JP2013199806 A JP 2013199806A JP 2013199806 A JP2013199806 A JP 2013199806A JP 6284325 B2 JP6284325 B2 JP 6284325B2
Authority
JP
Japan
Prior art keywords
copper
clad laminate
polyimide layer
thickness
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013199806A
Other languages
Japanese (ja)
Other versions
JP2014080021A (en
Inventor
建太郎 矢熊
建太郎 矢熊
伸悦 藤元
伸悦 藤元
和明 金子
和明 金子
真二 及川
真二 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2013199806A priority Critical patent/JP6284325B2/en
Publication of JP2014080021A publication Critical patent/JP2014080021A/en
Application granted granted Critical
Publication of JP6284325B2 publication Critical patent/JP6284325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、電子機器の筐体内に折り畳んで収納されるフレキシブル回路基板に用いられるフレキシブル銅張積層板に関する。   The present invention relates to a flexible copper clad laminate used for a flexible circuit board that is folded and accommodated in a casing of an electronic device.

近年、携帯電話、ノート型パソコン、デジタルカメラ、ゲーム機などに代表される電子機器は、小型化、薄型化、軽量化が急速に進み、これらに使用される材料に対して、小スペースにおいても部品を収納できる高密度で高性能な材料が望まれるようになっている。フレキシブル回路基板においても、スマートフォン等の高性能小型電子機器の普及に伴い、部品収納の高密度化が進展したため、今まで以上に、より狭い筐体内にフレキシブル回路基板を収納する必要が出てきている。そのためフレキシブル回路基板の材料であるフレキシブル銅張積層板においても材料面からの耐折り曲げ性の向上が求められて来ている。   In recent years, electronic devices represented by mobile phones, notebook computers, digital cameras, game machines, and the like have been rapidly reduced in size, thickness, and weight. High-density, high-performance materials that can accommodate components are desired. Also in flexible circuit boards, with the spread of high-performance small electronic devices such as smartphones, the density of parts storage has increased, so it has become necessary to store flexible circuit boards in smaller enclosures than ever before. Yes. Therefore, the flexible copper-clad laminate, which is a material for the flexible circuit board, has been demanded to improve the bending resistance from the material surface.

前記課題に対して、フレキシブル銅張積層板に使用するポリイミドベースフィルムやカバーフィルムの弾性率を制御することによって、フレキシブル回路基板トータルのスティフネス性を低減させることにより、耐折り曲げ性を向上させるという技術が知られている(特許文献1参照)。しかしながら、ポリイミドやカバーフィルムの特性の制御のみでは、電子機器内に折り畳んで収納するという厳しい屈曲モードに対しては不十分であり、十分な耐折り曲げ性に優れたフレキシブル回路基板に使用し得るフレキシブル銅張積層板を提供することができない。   Technology to improve the bending resistance by reducing the total stiffness of the flexible circuit board by controlling the elastic modulus of the polyimide base film and cover film used in the flexible copper-clad laminate, Is known (see Patent Document 1). However, controlling the properties of polyimide and cover film alone is not sufficient for the strict bending mode of folding and storing in electronic equipment, and it can be used for flexible circuit boards with excellent folding resistance. A copper clad laminate cannot be provided.

また、電子機器内への高密度化の観点から、銅箔側からのアプローチとして、銅箔の結晶粒径サイズに着目して、耐スプリングバック性を抑えた熱処理用銅箔が報告されている(特許文献2参照)。本技術は、銅箔中に種々の適切な添加剤を入れた圧延銅箔を用いて、結晶粒の肥大化に充分な熱量を加えることにより結晶粒径を大きく成長させ、その結果、銅箔の耐スプリングバック性を改良しようという技術である。   In addition, from the viewpoint of increasing the density in electronic equipment, as an approach from the copper foil side, focusing on the crystal grain size of the copper foil, a copper foil for heat treatment with reduced springback resistance has been reported. (See Patent Document 2). This technology uses a rolled copper foil with various appropriate additives in the copper foil to increase the crystal grain size by applying a sufficient amount of heat to enlarge the crystal grains. As a result, the copper foil It is a technology that tries to improve the spring back resistance.

しかしながら、スマートフォンに代表される小型電子機器に対しては、更なる高密度化が要請されている。そのため、前記従来技術だけでは、更なる高密度化の要請に応えることが難しい。   However, further miniaturization is demanded for small electronic devices typified by smartphones. For this reason, it is difficult to meet the demand for higher density with the conventional technology alone.

特開2007−208087号公報JP 2007-208087 A 特開2010−280191号公報JP 2010-280191 A

本発明は、前記の課題に鑑みてなされたものである。その目的は、狭い筐体内でも配線回路の断線や割れを防止し得る、優れた耐折り曲げ性を有するフレキシブル銅張積層板を提供するものである。   The present invention has been made in view of the above problems. The object is to provide a flexible copper-clad laminate having excellent bending resistance that can prevent disconnection and cracking of a wiring circuit even in a narrow housing.

前記問題点を解決するために、本発明者等が検討した結果、銅箔及びポリイミドフィルムの特性を最適化すると共に、銅張積層板を配線回路加工した配線回路基板の特性に着目することで、前記課題を解決し得る銅張積層板を提供し得ることを見出し、本発明を完成した。   As a result of the study by the present inventors to solve the above-mentioned problems, the characteristics of the copper foil and the polyimide film are optimized, and attention is paid to the characteristics of the wiring circuit board obtained by processing the copper-clad laminate. The present inventors have found that a copper-clad laminate that can solve the above-mentioned problems can be provided.

すなわち、本発明は、厚み10〜25μmであり、引張弾性率4〜10GPaのポリイミド層(A)の少なくとも一方の面に、厚み8〜20μmであり、引張弾性率10〜20GPaであって、かつ厚み方向の断面における平均結晶粒径が10μm以上の銅箔(B)を有して、電子機器の筐体内に折り畳んで収納されるフレキシブル回路基板に用いられるフレキシブル銅張積層板であって、当該フレキシブル銅張積層板の銅箔を配線回路加工して銅配線を形成した任意のフレキシブル回路基板のギャップ0.3mmでの折り曲げ試験での、下記式(I)によって計算される折れ癖係数[PF]が0.96±0.02の範囲にあることを特徴とするフレキシブル銅張積層板である。

Figure 0006284325
(式(I)において、|ε|は銅配線の屈曲平均ひずみ値の絶対値であり、e Cは銅配線の引張弾性限界ひずみである。) That is, the present invention has a thickness of 10 to 25 μm, a thickness of 8 to 20 μm, a tensile modulus of 10 to 20 GPa on at least one surface of the polyimide layer (A) having a tensile modulus of 4 to 10 GPa, and A flexible copper-clad laminate used for a flexible circuit board having a copper foil (B) having an average crystal grain size of 10 μm or more in a cross section in the thickness direction and being folded and housed in a casing of an electronic device, Folding coefficient [PF] calculated by the following formula (I) in a bending test at a gap of 0.3 mm of an arbitrary flexible circuit board in which copper wiring of a flexible copper-clad laminate is processed by wiring circuit processing Is a flexible copper-clad laminate characterized by having a range of 0.96 ± 0.02.
Figure 0006284325
(In formula (I), | ε | is the absolute value of the bending average strain value of the copper wiring, and e C is the tensile elastic limit strain of the copper wiring.)

上記フレキシブル銅張積層板は、ポリイミド層(A)が、熱膨張係数30×10-6/K未満の低熱膨張性のポリイミド層(i)と熱膨張係数30×10-6/K以上の高熱膨張性のポリイミド層(ii)とからなり、高熱膨張性のポリイミド層(ii)が直接銅箔(B)と接しているのが好ましい。加えて、好ましくは、高熱膨張性のポリイミド層(ii)と銅箔(B)との接触面における銅箔(B)の表面粗さ(Rz)が0.5〜1.5μmの範囲にあるのがよい。 The flexible copper-clad laminate, a polyimide layer (A), the thermal expansion coefficient of 30 × 10 -6 / K less than the low thermal expansion polyimide layer (i) and the thermal expansion coefficient of 30 × 10 -6 / K or more high heat It is preferably composed of an expandable polyimide layer (ii), and the high thermal expansion polyimide layer (ii) is in direct contact with the copper foil (B). In addition, preferably, the surface roughness (Rz) of the copper foil (B) at the contact surface between the high thermal expansion polyimide layer (ii) and the copper foil (B) is in the range of 0.5 to 1.5 μm. It is good.

また、上記ポリイミド層(A)は、引張弾性率が6〜10GPaの範囲であること、厚みが10〜15μmの範囲であることがそれぞれ好ましく、更には、上記銅箔(B)の厚み方向の断面における平均結晶粒径が10〜60μmの範囲であるのが好ましい。   The polyimide layer (A) preferably has a tensile modulus in the range of 6 to 10 GPa and a thickness in the range of 10 to 15 μm, and further, in the thickness direction of the copper foil (B). The average crystal grain size in the cross section is preferably in the range of 10 to 60 μm.

本発明のフレキシブル銅張積層板は、配線基板に要求される高い耐折り曲げ性を発現し得ることから、特に、スマートフォン等の小型液晶周りの折り曲げ部分等の耐折り曲げ性が要求される電子部品に好適に用いられる。   Since the flexible copper-clad laminate of the present invention can express the high bending resistance required for wiring boards, it is particularly suitable for electronic components that require bending resistance such as bent portions around small liquid crystals such as smartphones. Preferably used.

図1は、本発明のフレキシブル銅張積層板の銅箔を配線回路加工して得たフレキシブル回路基板を示す斜視説明図である。FIG. 1 is a perspective explanatory view showing a flexible circuit board obtained by processing a copper foil of the flexible copper-clad laminate of the present invention on a wiring circuit. 実施例で用いた試験回路基板片の銅配線の様子を示す平面説明図である。It is plane explanatory drawing which shows the mode of the copper wiring of the test circuit board piece used in the Example. 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(試料ステージ上に試験回路基板片を固定した状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (state figure which fixed the test circuit board piece on the sample stage). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(試験回路基板片の折り曲げ箇所をローラーで押さえる手前の状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (state figure before pressing the bending location of a test circuit board piece with a roller). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(試験回路基板片の折り曲げ箇所をローラーで押さえた状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (state figure which pressed the bending location of the test circuit board piece with the roller). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(折り曲げ箇所を開いて試験片を平らな状態に戻した状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (the state figure which opened the bending location and returned the test piece to the flat state). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(折り曲げ箇所の折り目部分をローラーで押さえて均す状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (state figure which presses and equalizes the crease | fold part of a bending location with a roller). フレキシブル回路基板の断面説明図(一部)である。It is a section explanatory view (part) of a flexible circuit board.

以下、本発明を詳細に説明する。
本発明のフレキシブル銅張積層板は、銅箔(B)とポリイミド層(A)とから構成される。銅箔(B)はポリイミド層(A)の片面又は両面に設けられている。このフレキシブル銅張積層板は、銅箔をエッチングするなどして配線回路加工して銅配線を形成し、フレキシブルプリント回路基板用として使用される。
Hereinafter, the present invention will be described in detail.
The flexible copper clad laminate of the present invention is composed of a copper foil (B) and a polyimide layer (A). The copper foil (B) is provided on one side or both sides of the polyimide layer (A). This flexible copper clad laminate is used for a flexible printed circuit board by forming a copper wiring by etching a copper foil to form a wiring circuit.

本発明のフレキシブル銅張積層板においては、ポリイミド層(A)の厚みが10〜25μmであることが必要であり、10〜20μmの範囲にあることが好ましく、10〜15μmの範囲にあることが特に好ましい。ポリイミド層(A)の厚みが10μmに満たないと、電気絶縁性が担保出来ないことや、ハンドリング性の低下により製造工程にて取扱いが困難になるなどの問題が生じる、一方、ポリイミド層(A)の厚みが25μmを超えるとフレキシブル回路基板を折り曲げた際に銅配線により曲げ応力が加わることとなり、その耐折り曲げ性を著しく低下させてしまう。   In the flexible copper clad laminate of the present invention, the polyimide layer (A) needs to have a thickness of 10 to 25 μm, preferably in the range of 10 to 20 μm, and in the range of 10 to 15 μm. Particularly preferred. If the thickness of the polyimide layer (A) is less than 10 μm, problems such as inability to secure electrical insulation and difficulty in handling in the manufacturing process due to a decrease in handling properties occur, while the polyimide layer (A ) Exceeds 25 μm, bending stress is applied by the copper wiring when the flexible circuit board is bent, and the bending resistance is remarkably lowered.

また、ポリイミド層(A)の引張弾性率は4〜10GPaであることが必要であり、好ましくは6〜10GPaであるのがよい。ポリイミド層(A)の引張弾性率が4GPaに満たないとポリイミド自体の強度が低下することによって、フレキシブル銅張積層板の加工時等のハンドリングの際にフィルムの裂けなどの問題が生じ、反対に10GPaを超えると銅張積層板の折り曲げに対する剛性が上昇する結果、銅張積層板を折り曲げた際に銅配線に加わる曲げ応力が上昇し、耐折り曲げ耐性が低下してしまう。   The tensile modulus of the polyimide layer (A) needs to be 4 to 10 GPa, preferably 6 to 10 GPa. If the tensile modulus of the polyimide layer (A) is less than 4 GPa, the strength of the polyimide itself will decrease, causing problems such as film tearing when handling flexible copper clad laminates. If it exceeds 10 GPa, the bending resistance of the copper-clad laminate is increased. As a result, the bending stress applied to the copper wiring when the copper-clad laminate is bent is increased, and the bending resistance is reduced.

また、銅箔(B)の厚みは8〜20μmであることが必要であり、10〜15μmの範囲が好ましい。銅箔(B)の厚みが8μmに満たないと、銅張積層板の製造時、銅箔上にポリイミド層を形成する工程において銅箔自体の剛性が低下し、その結果、銅張積層板上にシワ等が発生する問題が生じる。また、20μmを超えると、銅張積層板を折り曲げた際の銅箔に加わる曲げ応力が大きくなることにより耐折り曲げ性が低下することとなる。   Moreover, the thickness of copper foil (B) needs to be 8-20 micrometers, and the range of 10-15 micrometers is preferable. If the thickness of the copper foil (B) is less than 8 μm, the rigidity of the copper foil itself is lowered in the process of forming the polyimide layer on the copper foil during the production of the copper clad laminate, and as a result, on the copper clad laminate There arises a problem that wrinkles and the like occur. On the other hand, when the thickness exceeds 20 μm, the bending resistance is reduced due to an increase in bending stress applied to the copper foil when the copper clad laminate is bent.

また、銅箔(B)の引張弾性率については、10〜20GPaの範囲であることが必要である。銅箔(B)の引張弾性率が10GPaに満たないと、銅張積層板の製造時、銅箔上にポリイミド層を形成する工程において銅箔自体の剛性が低下し、その結果、銅張積層板上にシワ等が発生する問題が生じる。一方、引張弾性率が20Gpaを超えるとフレキシブル回路基板を折り曲げた際に銅配線により大きな曲げ応力が加わることとなり、その耐折り曲げ性が著しく低下する。   Moreover, about the tensile elasticity modulus of copper foil (B), it is required to be the range of 10-20 GPa. If the tensile modulus of the copper foil (B) is less than 10 GPa, the rigidity of the copper foil itself is lowered in the process of forming the polyimide layer on the copper foil during the production of the copper clad laminate, and as a result, the copper clad laminate The problem that wrinkles etc. generate | occur | produce on a board arises. On the other hand, when the tensile elastic modulus exceeds 20 GPa, a large bending stress is applied to the copper wiring when the flexible circuit board is bent, and the bending resistance is remarkably lowered.

更に、本発明では銅箔の厚み方向の断面における平均結晶粒径が10μm以上であることが必要であり、10〜60μmであることが好ましい。この平均結晶粒径が10μmより小さくなると、銅箔の結晶の粒界の割合が大きくなり、銅張積層板の折り曲げた際に発生するクラックの伸展がより促進されることとなり、結果として耐折り曲げ性の低下に繋がることとなる。なお、本発明で規定する銅箔断面における平均結晶粒径は、後記実施例に記載した測定方法によって求めることが出来る。   Furthermore, in this invention, it is required that the average crystal grain diameter in the cross section of the thickness direction of copper foil is 10 micrometers or more, and it is preferable that it is 10-60 micrometers. When this average crystal grain size is smaller than 10 μm, the ratio of the crystal grain boundaries of the copper foil is increased, and the extension of cracks generated when the copper-clad laminate is folded is further promoted. Will lead to a decline in sex. In addition, the average crystal grain diameter in the copper foil cross section prescribed | regulated by this invention can be calculated | required with the measuring method described in the postscript Example.

銅箔(B)の表面は、粗化処理されていてもよく、好ましくは、ポリイミド層(A)と接する銅箔表面の表面粗さ(Rz)は0.5〜1.5μmであるのがよい。表面粗さ(Rz)の値が、0.5μmに満たないとポリイミドフィルムとの接着信頼性の担保が困難となり、1.5μmを超えると銅張積層板を繰り返し折り曲げた際に、その粗化粒子の凹凸がクラック発生の起点となりやすく、その結果、銅張積層板の耐折り曲げ性を低下させることとなる。なお、表面粗さRzはJIS B0601の規定に準じて測定される値である。   The surface of the copper foil (B) may be roughened, and preferably the surface roughness (Rz) of the copper foil surface in contact with the polyimide layer (A) is 0.5 to 1.5 μm. Good. If the value of the surface roughness (Rz) is less than 0.5 μm, it will be difficult to ensure the reliability of adhesion to the polyimide film, and if it exceeds 1.5 μm, the copper-clad laminate will be roughened when it is repeatedly bent. The unevenness of the particles tends to be a starting point of crack generation, and as a result, the bending resistance of the copper clad laminate is lowered. The surface roughness Rz is a value measured according to JIS B0601.

本発明のフレキシブル銅張積層板は、上記ポリイミド層(A)と上記銅箔(B)により構成されるが、このフレキシブル銅張積層板の銅箔を配線回路加工して銅配線を形成した任意のフレキシブル回路基板の折り曲げ試験(ギャップ0.3mm)での、下記(I)によって計算される折れ癖係数[PF]が0.96±0.02の範囲にあることが必要であり、0.96±0.01の範囲にあることがより好ましい。この折れ癖係数[PF]が上記範囲から外れると耐折り曲げ性が低下する。
[PF]=(|ε|−εc)/|ε| …(I)
式(I)において、|ε|は銅配線の屈曲平均ひずみ値の絶対値であり、εcは銅配線の引張弾性限界ひずみである。
The flexible copper-clad laminate of the present invention is composed of the polyimide layer (A) and the copper foil (B). The copper foil of this flexible copper-clad laminate is processed by a wiring circuit to form a copper wiring. The bending coefficient [PF] calculated by (I) below in the flexible circuit board bending test (gap 0.3 mm) must be in the range of 0.96 ± 0.02, and in the range of 0.96 ± 0.01. It is more preferable. If this crease coefficient [PF] is out of the above range, the bending resistance decreases.
[PF] = (| ε | −εc) / | ε | (I)
In equation (I), | ε | is the absolute value of the bending average strain value of the copper wiring, and εc is the tensile elastic limit strain of the copper wiring.

上記のように、折れ癖係数[PF]は、銅配線の屈曲平均ひずみ値εの絶対値|ε|と銅配線の引張弾性限界ひずみεcとによって表され、屈曲平均ひずみ値εは、下記式(2)によって算出される。以下、図8に示した1層のポリイミドからなるポリイミド層11の片面側に1層の銅箔を配線回路加工した銅配線12が設けられた回路基板をモデルにし、第一層であるポリイミド層11の下面である基準面SPが下側に凸形状(屈曲部の外面)になるように回路基板を屈曲させる場合について説明する。なお、図8に示した回路基板は、回路基板の長手方向に対して垂直に切った断面(すなわち横断面)のうち、銅配線が存在する部分を示すものである。
ε=(yc−[NP]Line)/R …(2)
As described above, the bending coefficient [PF] is expressed by the absolute value | ε | of the bending average strain value ε of the copper wiring and the tensile elastic limit strain εc of the copper wiring. Calculated by (2). Hereinafter, a polyimide substrate, which is a first layer, is modeled on a circuit board provided with a copper wiring 12 in which a single layer of copper foil is processed into a wiring circuit on one side of a polyimide layer 11 made of one layer of polyimide shown in FIG. The case where the circuit board is bent so that the reference surface SP, which is the lower surface of No. 11, is convex downward (outer surface of the bent portion) will be described. The circuit board shown in FIG. 8 shows a portion where copper wiring exists in a cross section (that is, a transverse cross section) cut perpendicular to the longitudinal direction of the circuit board.
ε = (yc− [NP] Line ) / R (2)

ここで、式(2)について、屈曲平均ひずみεは、回路基板の長手方向を2つ折りした際の純曲げによって銅配線に生じる長手方向の屈曲平均ひずみであり、式中のycは、ポリイミド層11の下面である基準面SPから銅配線12の中央面までの距離である。また、符号NPは回路基板の中立面を表している。ここで、中立面NPと基準面SPとの距離を中立面位置[NP]とし、この中立面位置[NP]については、銅箔の配線回路加工によって形成された銅配線と銅配線間に形成されるスペース部とで別々に計算する。中立面位置[NP]は、次の式(3)によって算出される。

Figure 0006284325
Here, with respect to Equation (2), the bending average strain ε is the bending average strain in the longitudinal direction generated in the copper wiring by pure bending when the longitudinal direction of the circuit board is folded in half, and yc in the equation is the polyimide layer 11 is a distance from the reference plane SP, which is the lower surface of 11, to the center plane of the copper wiring 12. The symbol NP represents the neutral plane of the circuit board. Here, the distance between the neutral plane NP and the reference plane SP is defined as a neutral plane position [NP]. With respect to the neutral plane position [NP], a copper wiring and a copper wiring formed by wiring circuit processing of copper foil It calculates separately with the space part formed between. The neutral plane position [NP] is calculated by the following equation (3).
Figure 0006284325

ここで、Eは、回路基板における第i層(図8に示した例では、第1層がポリイミド層11であり、第2層が銅配線12である)を構成する材料の引張弾性率である。この弾性率Eは、本実施の形態における「各層における応力とひずみの関係」に対応する。Bは、第i層の幅であり、図8に示した幅B(第1層の下面に平行で、回路基板の長手方向に垂直な方向の寸法)に相当する。 Here, E i is the tensile modulus of the material constituting the i-th layer (in the example shown in FIG. 8, the first layer is the polyimide layer 11 and the second layer is the copper wiring 12) in the circuit board. It is. This elastic modulus E i corresponds to “relation between stress and strain in each layer” in the present embodiment. B i is the width of the i-th layer and corresponds to the width B shown in FIG. 8 (dimension in the direction parallel to the lower surface of the first layer and perpendicular to the longitudinal direction of the circuit board).

銅配線の中立面位置[NP]を求める場合には、Bとして銅配線の線幅LWの値を用い、スペース部の中立面位置[NP]を求める場合には、Bとして銅配線の線間幅SWの値を用いる。hは、第i層の中央面と基準面SPとの距離である。なお、第i層の中央面とは、第i層の厚み方向の中央に位置する仮想の面である。tは、第i層の厚みである。また、記号“Σi=1 ”は、iが1からnまでの総和を表す。また、銅配線における中立面位置については[NP]Lineと記す。 In case of obtaining the neutral plane position of the copper wiring [NP], when a B i using the values of the line width LW of the copper wiring, obtaining the neutral plane position of the space portion [NP], the copper as B i The value of the line width SW of the wiring is used. h i is the distance between the center plane of the i-th layer and the reference plane SP. The central surface of the i-th layer is a virtual surface located at the center in the thickness direction of the i-th layer. t i is the thickness of the i-th layer. Further, the symbol “Σ i = 1 n ” represents the sum of i from 1 to n. The neutral plane position in the copper wiring is denoted as [NP] Line .

また、式(2)中のRは有効曲率半径を表し、有効曲率半径Rは、折り曲げ試験において回路基板を折り曲げた際の、屈曲部における屈曲中心から銅配線の中立面NPまでの距離である。すなわち、有効曲率半径Rは、ギャップ間隔Gと銅配線の中立面位置[NP]Lineとから、次の式(4)によって算出される。
R=G/2−[NP]Line …(4)
Further, R in the expression (2) represents an effective radius of curvature, and the effective radius of curvature R is a distance from the bending center of the bent portion to the neutral plane NP of the copper wiring when the circuit board is bent in the bending test. is there. That is, the effective curvature radius R is calculated by the following equation (4) from the gap interval G and the neutral plane position [NP] Line of the copper wiring.
R = G / 2- [NP] Line (4)

上記のように、中立面位置、有効曲率半径、屈曲平均ひずみを求めることで、回路基板全体の折れ癖の程度を表す折れ癖係数[PF]が算出される。また、この折れ癖係数[PF]は、上記の説明のとおり、回路基板を構成する各層の厚みと、回路基板を構成する各層の弾性率と、折り曲げ試験におけるギャップ間隔Gと、銅配線12における線幅LW等の各情報を用いて算出することができる。   As described above, the crease coefficient [PF] representing the degree of crease of the entire circuit board is calculated by obtaining the neutral plane position, effective radius of curvature, and bending average strain. Further, as described above, the folding coefficient [PF] is the thickness of each layer constituting the circuit board, the elastic modulus of each layer constituting the circuit board, the gap interval G in the bending test, and the copper wiring 12. It can be calculated using each information such as the line width LW.

なお、上記(図8)では、便宜上、回路基板が2層であるモデルを示し説明したが、上記説明は、回路基板が2層以上から形成される場合にも当てはまる。すなわち、回路基板1の層の数をnとした場合、nは2以上の整数であり、この回路基板を構成する各層のうち基準面SPから数えてi番目(i=1,2,…,n)の層を第i層と呼ぶ。   In the above description (FIG. 8), for the sake of convenience, the model in which the circuit board has two layers has been described. However, the above description also applies to the case where the circuit board is formed of two or more layers. That is, when the number of layers of the circuit board 1 is n, n is an integer equal to or greater than 2, and the i-th (i = 1, 2,... The layer n) is called the i-th layer.

また、回路基板は、図1に示したように銅箔が配線回路加工によりパターニングされており、銅配線12が存在する部分と、銅配線12が存在しない部分とがある。ここで、銅配線12が存在する部分を配線部と呼び、銅配線12が存在しない部分をスペース部と呼べば、配線部とスペース部とでは、構成が異なる。例えば、図1に示した回路基板1の場合、配線部は10列の銅配線で構成され、スペース部は配線部以外で、主に銅配線間の隙間で構成される。以上より、折り癖係数の算出は、配線部とスペース部とを分けて行うことができる。   Further, as shown in FIG. 1, the circuit board has a copper foil patterned by wiring circuit processing, and has a portion where the copper wiring 12 is present and a portion where the copper wiring 12 is not present. Here, if a portion where the copper wiring 12 exists is called a wiring portion and a portion where the copper wiring 12 does not exist is called a space portion, the wiring portion and the space portion have different configurations. For example, in the case of the circuit board 1 shown in FIG. 1, the wiring part is constituted by 10 rows of copper wirings, and the space part is constituted by a gap between the copper wirings except for the wiring part. As described above, the folding coefficient can be calculated separately for the wiring portion and the space portion.

本発明のフレキシブル銅張積層板は、例えば、銅箔表面にポリイミド前駆体樹脂溶液(ポリアミド酸溶液ともいう。)を塗工し、次いで、乾燥、硬化させる熱処理工程を経て製造することができる。熱処理工程における熱処理条件は、塗工されたポリアミド酸溶液を160℃未満の温度でポリアミド酸中の溶媒を乾燥除去した後、更に、150℃から400℃の温度範囲で段階的に昇温し、硬化させることで行なわれる。このようにして得られた片面フレキシブル銅張積層板を両面銅張積層板とするには、前記片面フレキシブル銅張積層板と、これとは別に準備した銅箔とを300〜400℃にて熱圧着する方法が挙げられる。   The flexible copper-clad laminate of the present invention can be produced, for example, by applying a polyimide precursor resin solution (also referred to as a polyamic acid solution) to the surface of the copper foil, followed by drying and curing. The heat treatment condition in the heat treatment step is that after the solvent in the polyamic acid is dried and removed from the coated polyamic acid solution at a temperature of less than 160 ° C., the temperature is raised stepwise in a temperature range of 150 ° C. to 400 ° C., This is done by curing. In order to make the single-sided flexible copper-clad laminate obtained in this way into a double-sided copper-clad laminate, the single-sided flexible copper-clad laminate and a copper foil prepared separately were heated at 300 to 400 ° C. The method of crimping is mentioned.

本発明のフレキシブル銅張積層板に使用する銅箔は、上記特性を充足するものであれば特に限定されるものではなく、市販されている銅箔を用いることができる。その具体例としては、圧延銅箔としてはJX日鉱日石金属株式会社製のHA箔や、TP箔が挙げられ、電解銅箔としては、古河電気工業株式会社製WS箔、日本電解株式会社製HL箔、三井金属鉱業株式会社製HTE箔などが挙げられる。また、これらの市販品を含めて、それ以外のものを使用した場合であっても、前述した銅箔上へのポリイミド層(A)を形成する際の熱処理条件などにより、銅箔(B)の引張弾性率や平均結晶粒径は変化し得るので、本発明では結果として得られたフレキシブル銅張積層板がこれら所定の範囲になればよい。   The copper foil used for the flexible copper clad laminate of the present invention is not particularly limited as long as it satisfies the above characteristics, and a commercially available copper foil can be used. Specific examples include HA foil and TP foil manufactured by JX Nippon Mining & Metals Co., Ltd. as rolled copper foil, and WS foil manufactured by Furukawa Electric Co., Ltd. and Nippon Electrolytic Co., Ltd. as electrolytic copper foil. Examples include HL foil and HTE foil manufactured by Mitsui Mining & Smelting Co., Ltd. Moreover, even if it is a case where other than that including these commercial items is used, according to the heat processing conditions at the time of forming the polyimide layer (A) on copper foil mentioned above, copper foil (B) Since the tensile modulus of elasticity and the average crystal grain size can vary, the resulting flexible copper-clad laminate need only be in these predetermined ranges in the present invention.

ポリイミド層(A)は、市販のポリイミドフィルムをそのまま使用することも可能であるが、絶縁層の厚さや物性のコントロールのしやすさから、ポリアミド酸溶液を銅箔上に直接塗布した後、熱処理により乾燥、硬化する所謂キャスト法によるものが好ましい。また、ポリイミド層(A)は、単層のみから形成されるものでもよいが、ポリイミド層(A)と銅箔(B)との接着性等を考慮すると複数層からなるものが好ましい。ポリイミド層(A)を複数層とする場合、異なる構成成分からなるポリアミド酸溶液の上に他のポリアミド酸溶液を順次塗布して形成することができる。ポリイミド層(A)が複数層からなる場合、同一の構成のポリイミド前駆体樹脂を2回以上使用してもよい。   As the polyimide layer (A), a commercially available polyimide film can be used as it is. However, in order to easily control the thickness and physical properties of the insulating layer, the polyamic acid solution is directly applied on the copper foil, followed by heat treatment. It is preferable to use a so-called casting method that dries and hardens. Moreover, although a polyimide layer (A) may be formed only from a single layer, when the adhesiveness etc. of a polyimide layer (A) and copper foil (B) are considered, what consists of multiple layers is preferable. When the polyimide layer (A) has a plurality of layers, it can be formed by sequentially applying another polyamic acid solution on a polyamic acid solution composed of different components. When a polyimide layer (A) consists of multiple layers, you may use the polyimide precursor resin of the same structure twice or more.

ポリイミド層(A)について、より詳しく説明すると、上述した通りポリイミド層(A)は複数層とすることが好ましいが、具体的には、ポリイミド層(A)は、熱膨張係数30×10-6/K未満の低熱膨張性のポリイミド層(i)と熱膨張係数30×10-6/K以上の高熱膨張性のポリイミド層(ii)からなることが好ましい。より好ましくは、ポリイミド層(A)は、低熱膨張性のポリイミド層(i)の少なくとも一方、好ましくはその両側に高熱膨張性のポリイミド層(ii)を有し、高熱膨張性のポリイミド層(ii)が直接銅箔(B)と接するようにすることがよい。ここで、本発明でいう低熱膨張性のポリイミド層(i)とは、熱膨張係数30×10-6/K未満のポリイミド層を言い、好ましくは1×10-6〜25×10-6/K、特に好ましくは3×10-6〜20×10-6/Kのポリイミド層をいう。また、本発明でいう高熱膨張性のポリイミド層(ii)とは、熱膨張係数30×10-6/K以上のポリイミド層を言い、好ましくは30×10-6〜80×10-6/K、特に好ましくは30×10-6〜70×10-6/Kのポリイミド層をいう。このようなポリイミド層は、使用する原料の組合せ、厚み、乾燥・硬化条件を適宜変更することで所望の熱膨張係数を有するポリイミド層とすることができる。 The polyimide layer (A) will be described in more detail. As described above, the polyimide layer (A) is preferably a plurality of layers. Specifically, the polyimide layer (A) has a thermal expansion coefficient of 30 × 10 −6. It is preferably composed of a low thermal expansion polyimide layer (i) less than / K and a high thermal expansion polyimide layer (ii) having a thermal expansion coefficient of 30 × 10 −6 / K or more. More preferably, the polyimide layer (A) has a high thermal expansion polyimide layer (ii) having at least one of the low thermal expansion polyimide layers (i), preferably the high thermal expansion polyimide layers (ii) on both sides thereof. ) May be in direct contact with the copper foil (B). Here, the low thermal expansion polyimide layer (i) referred to in the present invention refers to a polyimide layer having a thermal expansion coefficient of less than 30 × 10 −6 / K, preferably 1 × 10 −6 to 25 × 10 −6 / K, particularly preferably a polyimide layer of 3 × 10 −6 to 20 × 10 −6 / K. The high thermal expansion polyimide layer (ii) in the present invention refers to a polyimide layer having a thermal expansion coefficient of 30 × 10 −6 / K or more, preferably 30 × 10 −6 to 80 × 10 −6 / K. Particularly preferably, it refers to a polyimide layer of 30 × 10 −6 to 70 × 10 −6 / K. Such a polyimide layer can be made into a polyimide layer having a desired thermal expansion coefficient by appropriately changing the combination of raw materials used, thickness, and drying / curing conditions.

上記ポリイミド層を与えるポリアミド酸溶液は、公知のジアミンと酸無水物とを溶媒の存在下で重合して製造することができ、この際、重合される樹脂粘度は、500cps以上35,000cps以下の範囲とすることが好ましい。   The polyamic acid solution that gives the polyimide layer can be produced by polymerizing a known diamine and acid anhydride in the presence of a solvent, and the viscosity of the polymerized resin ranges from 500 cps to 35,000 cps. It is preferable that

用いられるジアミンとしては、例えば、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、4,4'-メチレンジ-o-トルイジン、4,4'-メチレンジ-2,6-キシリジン、4,4'-メチレン-2,6-ジエチルアニリン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4'-ジアミノ-p-テルフェニル、3,3'-ジアミノ-p-テルフェニル、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,7-ジアミノジベンゾフラン、1,5-ジアミノフルオレン、ジベンゾ-p-ジオキシン-2,7-ジアミン、4,4'-ジアミノベンジルなどが挙げられる。   Examples of the diamine used include 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 4,4′-methylenedi-o-toluidine, 4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2,2-bis [ 4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4, 4'-diaminodiphenyl ether, 3, 3-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3 ' -Diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 4,4'-diamino-p-terphenyl, 3,3'-diamino-p-terphenyl Bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4- Aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino-t-butyl) Toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-chi Silylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,7-diaminodibenzofuran, 1,5-diaminofluorene, dibenzo-p-dioxin-2,7-diamine, 4,4′-diaminobenzyl and the like can be mentioned.

また、酸無水物としては、例えば、ピロメリット酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7-テトラカルボン酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、3,3'',4,4''-p-テルフェニルテトラカルボン酸二無水物、2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,3,3'',4''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ペリレン-2,3,8,9-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-4,5,10,11-テトラカルボン酸二無水物、ペリレン-5,6,11,12-テトラカルボン酸二無水物、フェナンスレン-1,2,7,8-テトラカルボン酸二無水物、フェナンスレン-1,2,6,7-テトラカルボン酸二無水物、フェナンスレン-1,2,9,10-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-,3,4,5-テトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。   Examples of the acid anhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, and 2,2 ′, 3,3′-benzophenone tetracarboxylic acid dianhydride. Anhydride, 2,3,3 ', 4'-benzophenonetetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic Acid dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3 , 5,6,7-Hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-2, 3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8- Tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic acid Anhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2, 2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3,3``, 4,4 ''-p-terphenyl Tetracarboxylic dianhydride, 2,2``, 3,3 ''-p-terphenyltetracarboxylic dianhydride, 2,3,3 '', 4 ''-p-terphenyltetracarboxylic dianhydride Anhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3-di Carboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3.4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) sulfone dianhydride Bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1- (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, perylene-2,3,8,9-tetracarboxylic dianhydride Perylene-3,4,9,10-tetracarboxylic dianhydride, perylene-4,5,10,11-tetracarboxylic dianhydride, perylene-5,6,11,12-tetracarboxylic dianhydride Phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene-1,2,6,7-tetracarboxylic dianhydride, phenanthrene-1,2,9,10-tetracarboxylic dianhydride Anhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic Acid dianhydride, thiophene-3,4,5-tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride It is done.

ジアミン及び酸無水物は、それぞれ1種のみを使用してもよく2種以上を併用することもできる。また、重合に使用される溶媒は、ジメチルアセトアミド、N-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、1種又は2種以上併用して使用することもできる。   Each diamine and acid anhydride may be used alone or in combination of two or more. Examples of the solvent used for the polymerization include dimethylacetamide, N-methylpyrrolidinone, 2-butanone, diglyme, xylene and the like, and they can be used alone or in combination of two or more.

本発明において、低熱膨張性のポリイミド層(i)とするには、原料の酸無水物成分としてピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物を、ジアミン成分としては、2,2'-ジメチル-4,4'-ジアミノビフェニル、2-メトキシ-4,4’-ジアミノベンズアニリドを用いることがよく、特に好ましくは、ピロメリット酸二無水物及び2,2'-ジメチル-4,4'-ジアミノビフェニルを原料各成分の主成分とするものがよい。また、熱膨張係数30×10-6/K以上の高熱膨張性のポリイミド層(ii)とするには、原料の酸無水物成分としてピロメリット酸二無水物、3,3',4,4’-ビフェニルテトラカルボン酸二無水物、3,3',4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4’-ジフェニルスルホンテトラカルボン酸二無水物を、ジアミン成分としては、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼンを用いることがよく、特に好ましくはピロメリット酸二無水物及び2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを原料各成分の主成分とするものがよい。 In the present invention, in order to obtain a low thermal expansion polyimide layer (i), pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride are used as the raw acid anhydride component. As the diamine component, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2-methoxy-4,4′-diaminobenzanilide is preferably used, and particularly preferably pyromellitic dianhydride and It is preferable that 2,2′-dimethyl-4,4′-diaminobiphenyl is a main component of each component. Further, in order to obtain a high thermal expansion polyimide layer (ii) having a thermal expansion coefficient of 30 × 10 −6 / K or more, pyromellitic dianhydride, 3,3 ′, 4,4 is used as the raw acid anhydride component. '-Biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride, diamine component 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-diaminodiphenyl ether, and 1,3-bis (4-aminophenoxy) benzene are particularly preferable. It is preferable that pyromellitic dianhydride and 2,2′-bis [4- (4-aminophenoxy) phenyl] propane are the main components of the raw materials.

また、ポリイミド層(A)を低熱膨張性のポリイミド層(i)と高熱膨張性のポリイミド層(ii)とした場合、好ましくは、低熱膨張性のポリイミド層(i)と高熱膨張性のポリイミド層(ii)との厚み比(低熱膨張性のポリイミド層(i)/高熱膨張性のポリイミド層(ii))が2〜15の範囲であるのがよい。この比の値が、2に満たないとポリイミド層全体に対する低熱膨張性ポリイミド層が薄くなるため、ポリイミドフィルムの寸法特性の制御が困難となり、銅箔をエッチングした際の寸法変化率が大きくなり、15を超えると高熱膨張性ポリイミド層が薄くなるため、ポリイミドフィルムと銅箔との接着信頼性が低下する。なお、ポリイミド層(A)が複数層からなる場合であっても、上記折れ癖係数[PF]の算出にあたっては、ポリイミド層(A)全体の厚み、弾性率を用いることができる。   When the polyimide layer (A) is a low thermal expansion polyimide layer (i) and a high thermal expansion polyimide layer (ii), preferably, the low thermal expansion polyimide layer (i) and the high thermal expansion polyimide layer are used. The thickness ratio (low thermal expansion polyimide layer (i) / high thermal expansion polyimide layer (ii)) to (ii) is preferably in the range of 2 to 15. If the value of this ratio is less than 2, the low thermal expansion polyimide layer with respect to the entire polyimide layer becomes thin, so it becomes difficult to control the dimensional characteristics of the polyimide film, and the dimensional change rate when the copper foil is etched increases. If it exceeds 15, the high thermal expansion polyimide layer becomes thin, so that the reliability of adhesion between the polyimide film and the copper foil is lowered. Even when the polyimide layer (A) is composed of a plurality of layers, the thickness and elastic modulus of the entire polyimide layer (A) can be used for calculating the folding coefficient [PF].

以下、実施例に基づき本発明をより詳細に説明する。なお、下記の実施例における各特性評価は、以下の方法により行った。   Hereinafter, based on an Example, this invention is demonstrated in detail. In addition, each characteristic evaluation in the following Example was performed with the following method.

[引張弾性率の測定]
東洋精機(株)製ストログラフR-1を用いて、温度23℃、相対湿度50%の環境下で引張弾性率の値を測定した。
[Measurement of tensile modulus]
The value of tensile elastic modulus was measured in an environment of a temperature of 23 ° C. and a relative humidity of 50% using Toyo Seiki Co., Ltd. Strograph R-1.

[熱膨張係数(CTE)の測定]
セイコーインスツルメンツ製のサーモメカニカルアナライザーを使用し、250℃まで昇温し、更にその温度で10分保持した後、5℃/分の速度で冷却し、240℃から100℃までの平均熱膨張係数(線熱膨張係数)を求めた。
[Measurement of thermal expansion coefficient (CTE)]
Using a thermomechanical analyzer manufactured by Seiko Instruments Inc., heated up to 250 ° C, held at that temperature for 10 minutes, cooled at a rate of 5 ° C / min, and an average coefficient of thermal expansion from 240 ° C to 100 ° C ( (Linear thermal expansion coefficient) was determined.

[表面粗さ(Rz)の測定]
接触式表面粗さ測定機((株)小坂研究所製SE1700)を用いて、銅箔のポリイミド層との接触面側の表面粗さを測定した。
[Measurement of surface roughness (Rz)]
The surface roughness of the contact surface side with the polyimide layer of copper foil was measured using the contact-type surface roughness measuring machine (SE1700 by Kosaka Laboratory).

[銅箔の平均結晶粒径の測定]
各実施例で製造されたフレキシブル銅張積層板について、IP(イオンポリッシュ)法により、銅箔の長手方向(MD方向)に沿って銅箔の断面形成を行い(厚み方向に切った断面)、TSL社製OIM(ソフトウェアVer5.2)を用いてEBSD(後方散乱電子線回折パターン法)により、銅箔断面の結晶粒径及び配向状態の分析を行った。その分析は、加速電圧20kV、試料傾斜角70°の条件にて行い、また、分析の範囲は、銅箔の長手方向に沿って500μmの幅で分析した。分析にて得られた逆極点図方位マップより、Σ3CSL(双晶粒界)を結晶粒界とし2〜5°の粒界を結晶粒界としない条件にて粒度分布解析を行い、結晶の面積比率による加重平均にて結晶粒径の算出を行った。
[Measurement of average crystal grain size of copper foil]
For the flexible copper-clad laminate produced in each example, by the IP (ion polish) method, the copper foil cross-section is formed along the longitudinal direction (MD direction) of the copper foil (cross-section cut in the thickness direction), The crystal grain size and orientation state of the copper foil cross section were analyzed by EBSD (backscattered electron diffraction pattern method) using OSL (software Ver5.2) manufactured by TSL. The analysis was performed under the conditions of an acceleration voltage of 20 kV and a sample inclination angle of 70 °, and the analysis range was analyzed with a width of 500 μm along the longitudinal direction of the copper foil. From the reverse pole figure orientation map obtained in the analysis, grain size distribution analysis is performed under the condition that Σ3CSL (twin grain boundary) is the grain boundary and 2-5 ° grain boundary is not the grain boundary. The crystal grain size was calculated by a weighted average based on the ratio.

[はぜ折りの測定(折り曲げ試験)]
銅張積層板の銅箔をエッチング加工し、その長手方向に沿ってライン幅100μm、スペース幅100μmにて長さが40mmの10列の銅配線を形成した試験片(試験回路基板片)を作製した(図2)。試験片における銅配線のみを表した図2に示したように、その試験片40における10列の銅配線51は、U字部52を介して全て連続して繋がっており、その両端には抵抗値測定用の電極部分(図示外)を設けている。その試験片40を、二つ折りが可能な試料ステージ20及び21上に固定し、抵抗値測定用の配線を接続して、抵抗値のモニタリングを開始した(図3)。折り曲げ試験は、10列の銅配線51に対して、長手方向のちょうど中央部分にて、ウレタン製のローラー22を用いて、折り曲げ箇所40CのギャップGが0.3mmとなるように制御しながら折り曲げた線と並行にローラーを移動させ10列の銅配線51を全て折り曲げた後(図4及び図5)、折り曲げ部分を開いて試験片を平らな状態に戻し(図6)、折り目がついている部分を再度ローラーにて抑えたまま移動させ(図7)、この一連の工程をもってはぜ折り回数1回とカウントするようにした。その常時配線の抵抗値をモニタリングしながら、折り曲げ試験を繰り返し、所定の抵抗(3000Ω)になった時点を配線の破断と判断し、その時までに繰り返した折り曲げ回数をはぜ折り測定値とした。
[Measurement of seam fold (bending test)]
Etching the copper foil of the copper-clad laminate to produce test pieces (test circuit board pieces) in which 10 rows of copper wiring with a line width of 100 μm and a space width of 100 μm and a length of 40 mm are formed along the longitudinal direction. (FIG. 2). As shown in FIG. 2 showing only the copper wiring in the test piece, ten rows of copper wirings 51 in the test piece 40 are all continuously connected via the U-shaped portion 52, and resistances are connected to both ends thereof. An electrode portion (not shown) for value measurement is provided. The test piece 40 was fixed on the sample stages 20 and 21 which can be folded in half, and a resistance value measurement wiring was connected to start monitoring of the resistance value (FIG. 3). In the bending test, 10 rows of copper wirings 51 were bent using a urethane roller 22 at a central portion in the longitudinal direction while controlling the gap G of the folding portion 40C to be 0.3 mm. After moving the roller parallel to the line and bending all 10 rows of copper wiring 51 (FIGS. 4 and 5), the bent portion is opened to return the test piece to a flat state (FIG. 6), and the creased portion Was moved again while being held down by the roller (FIG. 7), and the number of times of folding was counted by this series of steps. While constantly monitoring the resistance value of the wiring, the bending test was repeated, and when the predetermined resistance (3000 Ω) was reached, it was judged that the wiring was broken, and the number of repeated bendings up to that time was taken as the measured value of the folded fold.

実施例、比較例に記載のフレキシブル銅張積層板の製造方法について次に示す。   The method for producing the flexible copper-clad laminate described in Examples and Comparative Examples will be described below.

[ポリアミック酸溶液の合成]
(合成例1)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、この反応容器に2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を投入して容器中で撹拌しながら溶解させた。次に、ピロメリット酸二無水物(PMDA)をモノマーの投入総量が12wt%となるように投入した。その後、3時間撹拌を続けて重合反応を行い、ポリアミド酸aの樹脂溶液を得た。
ポリアミド酸aから形成された厚み25μmのポリイミドフィルムの熱膨張係数(CTE)は、55×10-6/Kであった。
[Synthesis of polyamic acid solution]
(Synthesis Example 1)
A reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen is charged with N, N-dimethylacetamide, and 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) is added to the reaction vessel. The solution was added and dissolved in the container with stirring. Next, pyromellitic dianhydride (PMDA) was added so that the total amount of monomers was 12 wt%. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a resin solution of polyamic acid a.
The thermal expansion coefficient (CTE) of the 25 μm thick polyimide film formed from the polyamic acid a was 55 × 10 −6 / K.

(合成例2)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、この反応容器に2,2'−ジメチル−4,4'−ジアミノビフェニル(m-TB)を投入して容器中で攪拌しながら溶解させた。次に、3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)およびピロメリット酸二無水物(PMDA)をモノマーの投入総量が15wt%、各酸無水物のモル比率(BPDA:PMDA)が20:80となるように投入した。その後、3時間撹拌を続けて重合反応を行い、ポリアミド酸bの樹脂溶液を得た。
ポリアミド酸bから形成された厚み25μmのポリイミドフィルムの熱膨張係数(CTE)は、22×10-6/Kであった。
(Synthesis Example 2)
N, N-dimethylacetamide is placed in a reaction vessel equipped with a thermocouple and a stirrer and into which nitrogen can be introduced, and 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB) is charged into this reaction vessel. And dissolved in the container with stirring. Next, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA) were added at a total monomer charge of 15 wt% and the molar ratio of each acid anhydride ( (BPDA: PMDA) was added so as to be 20:80. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a resin solution of polyamic acid b.
The thermal expansion coefficient (CTE) of the 25 μm thick polyimide film formed from the polyamic acid b was 22 × 10 −6 / K.

(合成例3)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、この反応容器に2,2'−ジメチル−4,4'−ジアミノビフェニル(m-TB)および4,4'−ジアミノジフェニルエーテル(DAPE)を各ジアミンのモル比率(m-TB:DAPE)が60:40となるように投入して容器中で攪拌しながら溶解させた。次に、ピロメリット酸二無水物(PMDA)をモノマーの投入総量が16wt%となるように投入した。その後、3時間撹拌を続けて重合反応を行い、ポリアミド酸cの樹脂溶液を得た。
ポリアミド酸cから形成された厚み25μmのポリイミドフィルムの熱膨張係数(CTE)は、22×10-6/Kであった。
(Synthesis Example 3)
A reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen was charged with N, N-dimethylacetamide, and 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB) and 4 , 4'-diaminodiphenyl ether (DAPE) was added so that the molar ratio of each diamine (m-TB: DAPE) was 60:40 and dissolved in the container with stirring. Next, pyromellitic dianhydride (PMDA) was added so that the total amount of monomers was 16 wt%. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a resin solution of polyamic acid c.
The thermal expansion coefficient (CTE) of the 25 μm thick polyimide film formed from the polyamic acid c was 22 × 10 −6 / K.

(実施例1)
厚さ12μmで長尺状の銅箔の片面(表面粗さRz=0.8μm)に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.2μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例2で調製したポリアミド酸bの樹脂溶液を硬化後の厚みが7.6μmとなるように均一に塗布し、135℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.2μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド層の厚みが12μmの片面フレキシブル銅張積層板を得た。
得られたフレキシブル銅張積層板を構成する銅箔の引張弾性率、銅箔断面の平均結晶粒径、ポリイミド層の引張弾性率等の物性値、折れ癖係数、フレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。なお、ポリイミド層の評価は製造された銅張積層板から銅箔をエッチング除去したものを用いた。
Example 1
The resin solution of polyamic acid a prepared in Synthesis Example 1 was uniformly applied to one side of a long copper foil having a thickness of 12 μm (surface roughness Rz = 0.8 μm) so that the thickness after curing was 2.2 μm. Then, the solvent was removed by heating and drying at 130 ° C. Next, the polyamic acid b resin solution prepared in Synthesis Example 2 was uniformly applied to the coated surface side so that the thickness after curing was 7.6 μm, and the solvent was removed by heating and drying at 135 ° C. Further, the same polyamic acid a resin solution as that applied in the first layer was applied on the coated surface side uniformly so that the thickness after curing was 2.2 μm, and the solvent was removed by heating at 130 ° C. . This continuous laminate was heat-treated over a period of about 6 minutes in a continuous curing furnace set so that the temperature gradually increased from 300 ° C to 300 ° C. A 12 μm single-sided flexible copper-clad laminate was obtained.
Properties of physical properties such as tensile elastic modulus of copper foil constituting the obtained flexible copper-clad laminate, average crystal grain size of copper foil cross-section, tensile elastic modulus of polyimide layer, folding coefficient, bending resistance of flexible copper-clad laminate Table 1 shows the evaluation results of the sex. In addition, evaluation of the polyimide layer used what removed the copper foil by etching from the manufactured copper clad laminated board.

ここで、実施例で製造した銅張積層板の折れ癖係数[PF]の算出について、実施例1を例に具体的な計算手順を説明する。
銅配線12が存在する配線部について図8に示すような2層構成を考え、第1層および第2層を構成する材料をそれぞれポリイミドおよび銅とする。表1(実施例1)に示した通り、各層の弾性率はE1=7.2GPa、E2=14GPa、厚みはt=t=12μmである。また、各層における厚さ方向での中央面と基準面SPとの距離はそれぞれh=6μm、h=18μmである。更に、幅Bについては、銅配線12の幅Bとスペース部の幅B2‘はともに100μmであり、また、銅配線12が存在する直下のポリイミドの幅Bも100μmとした(スペース部の直下のポリイミドの幅B1’も100μm)。
Here, a specific calculation procedure for the calculation of the folding coefficient [PF] of the copper-clad laminate manufactured in the example will be described using Example 1 as an example.
Considering a two-layer structure as shown in FIG. 8 for the wiring portion where the copper wiring 12 exists, the materials constituting the first layer and the second layer are polyimide and copper, respectively. As shown in Table 1 (Example 1), the elastic modulus of each layer is E 1 = 7.2 GPa, E 2 = 14 GPa, and the thickness is t 1 = t 2 = 12 μm. Further, the distance between the center plane and the reference plane SP in the thickness direction in each layer is h 1 = 6 μm and h 2 = 18 μm, respectively. Further, regarding the width B, the width B 2 of the copper wiring 12 and the width B 2 ′ of the space portion are both 100 μm, and the width B 1 of the polyimide immediately below the copper wiring 12 is also 100 μm (space portion) The width B 1 ′ of the polyimide immediately below is also 100 μm).

これらの値を式(3)に代入すると、先ず、銅配線12が存在する配線部での中立面位置は[NP]=13.9μmと計算される。次に、この中立面位置[NP]とギャップ間隔G=0.3mmを式(4)に代入して、有効屈曲半径R=0.136mmと計算される。さらに、基準面SPと銅配線12の中央面までの距離ycはyc=h=18μmであるから、屈曲平均ひずみεはこのycと先に求めた[NP]、Rの値を式(2)に代入してε=-0.02995と計算される。ここでマイナスの符号は圧縮ひずみであることを表している。実施例1での銅配線となっている銅箔の引張試験より得た応力−ひずみ曲線より銅配線の引張弾性限界ひずみεcはεc=0.0012と決定した。これと先に求めた屈曲平均ひずみεの値を式(I)に代入すると折れ癖係数[PF]は[PF]=0.960と計算される。なお、本実施例においては、スペース部はポリイミド層のみから構成されていることから[NP]を求める操作は必要とせず、表1中の他の実施例、比較例の折れ癖係数も以上の手順で計算された値である。 When these values are substituted into the expression (3), first, the neutral plane position in the wiring portion where the copper wiring 12 exists is calculated as [NP] = 13.9 μm. Next, the effective bending radius R = 0.136 mm is calculated by substituting the neutral surface position [NP] and the gap interval G = 0.3 mm into the equation (4). Further, since the distance yc from the reference plane SP to the center plane of the copper wiring 12 is yc = h 1 = 18 μm, the bending average strain ε is the value of [NP] and R obtained in the above equation (2) ) And calculated as ε = −0.02995. Here, a minus sign indicates a compressive strain. From the stress-strain curve obtained from the tensile test of the copper foil that is the copper wiring in Example 1, the tensile elastic limit strain εc of the copper wiring was determined to be εc = 0.0012. By substituting this and the value of the bending average strain ε obtained previously into equation (I), the folding coefficient [PF] is calculated as [PF] = 0.960. In this example, since the space part is composed only of the polyimide layer, the operation for obtaining [NP] is not required, and the folding coefficient of other examples and comparative examples in Table 1 is also the above. The value calculated in the procedure.

(実施例2)
銅箔として、表1に示した特性を有する厚さ12μmの市販の圧延銅箔(塗布面の表面粗さRz=1.0μm)を用いた以外は実施例1と同様にして、片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 2)
As the copper foil, a single-sided flexible copper-clad was applied in the same manner as in Example 1 except that a commercially available rolled copper foil having a characteristic shown in Table 1 and having a thickness of 12 μm (surface roughness Rz = 1.0 μm on the coated surface) was used. A laminate was obtained. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(実施例3)
銅箔として、表1に示した特性を有する厚さ18μmの市販の圧延銅箔(塗布面の表面粗さRz=1.1μm)を用いた以外は実施例1と同様にして、片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 3)
As a copper foil, a single-sided flexible copper-clad is carried out in the same manner as in Example 1 except that a commercially available rolled copper foil having a characteristic shown in Table 1 and having a thickness of 18 μm (surface roughness Rz = 1.1 μm of coated surface) is used. A laminate was obtained. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(実施例4)
表1に示した特性を有し、厚さ12μmで長尺状の市販の圧延銅箔(塗布面の表面粗さRz=1.0μm)上に、合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが20.0μmとなるように均一に塗布し、120℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド樹脂層厚み25μmの片面フレキシブル銅張積層板を得た。
得られたフレキシブル銅張積層板を構成する銅箔の引張弾性率、銅箔断面の平均結晶粒径、ポリイミド層の引張弾性率等の物性値、フレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。
Example 4
Resin solution of polyamic acid a prepared in Synthesis Example 1 on a commercially available rolled copper foil having a characteristic shown in Table 1 and having a thickness of 12 μm and a long surface (coating surface roughness Rz = 1.0 μm) Was applied uniformly so that the thickness after curing was 2.5 μm, and then dried by heating at 130 ° C. to remove the solvent. Next, the polyamic acid c resin solution prepared in Synthesis Example 3 was uniformly applied to the coated surface side so that the thickness after curing was 20.0 μm, and the solvent was removed by heating and drying at 120 ° C. Further, the same polyamic acid a resin solution as that applied in the first layer was applied uniformly on the coated surface so that the thickness after curing was 2.5 μm, and the solvent was removed by heating at 130 ° C. . This long laminate was heat-treated in a continuous curing furnace set so that the temperature gradually increased from 300 ° C to 300 ° C over a total time of about 6 minutes, and the polyimide resin layer thickness was 25 µm. A single-sided flexible copper-clad laminate was obtained.
Evaluation results of physical properties such as tensile elastic modulus of copper foil constituting the obtained flexible copper-clad laminate, average crystal grain size of copper foil cross section, tensile elastic modulus of polyimide layer, and bending resistance of flexible copper-clad laminate Is shown in Table 1.

(実施例5)
表1に示した特性を有し、厚さ12μmの圧延銅箔(塗布面の表面粗さRz=1.1μm)を用いた以外は実施例1と同様にして、片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 5)
A single-sided flexible copper-clad laminate is obtained in the same manner as in Example 1 except that a rolled copper foil having a characteristic shown in Table 1 and having a thickness of 12 μm (coating surface roughness Rz = 1.1 μm) is used. It was. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(実施例6)
表1に示した特性を有し、厚さ11μmの圧延銅箔(塗布面の表面粗さRz=0.8μm)を用いた以外は実施例1と同様にして、片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 6)
A single-sided flexible copper-clad laminate is obtained in the same manner as in Example 1 except that a rolled copper foil having a characteristic shown in Table 1 and a thickness of 11 μm (coating surface roughness Rz = 0.8 μm) is used. It was. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(比較例1)
表1に示した特性を有し、厚さ12μmの圧延銅箔(塗布面の表面粗さRz=1.1μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例4と同様にして、片面フレキシブル銅張積層板を得た。
ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが4.0μm、その上に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが42.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが4.0μmとなるようにした。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Comparative Example 1)
Example 4 except that a rolled copper foil having a characteristic shown in Table 1 and having a thickness of 12 μm (surface roughness Rz = 1.1 μm on the coated surface) was used, and the thickness of the polyimide layer was changed as follows. In the same manner, a single-sided flexible copper-clad laminate was obtained.
Here, the thickness structure of the polyimide layer is 4.0 μm after curing the polyamic acid a resin solution prepared in Synthesis Example 1 on a copper foil, and the polyamic acid c resin solution prepared in Synthesis Example 3 thereon. The thickness after curing was set to 42.0 μm, and the thickness after curing of the resin solution of polyamic acid a prepared in Synthesis Example 1 was set to 4.0 μm. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(比較例2)
表1に示した特性を有し、厚さ18μmの市販の圧延銅箔(塗布面の表面粗さRz=1.0μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例1と同様にして、片面フレキシブル銅張積層板を得た。
ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μm、その上に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが20.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるようにした。
(Comparative Example 2)
Except for using the characteristics shown in Table 1 and using a commercially available rolled copper foil with a thickness of 18 μm (surface roughness Rz = 1.0 μm on the coated surface) and changing the thickness of the polyimide layer as follows: In the same manner as in Example 1, a single-sided flexible copper-clad laminate was obtained.
Here, the thickness of the polyimide layer is 2.5 μm after curing the polyamic acid a resin solution prepared in Synthesis Example 1 on a copper foil, and the polyamic acid c resin solution prepared in Synthesis Example 3 thereon. The thickness after curing was 20.0 μm, and the thickness after curing of the polyamic acid a resin solution prepared in Synthesis Example 1 was 2.5 μm.

(比較例3)
表1に示した特性を有し、厚さ12μmの電解銅箔(塗布面の表面粗さRz=1.3μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例1と同様にして、片面フレキシブル銅張積層板を得た。
ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μm、その上に合成例2で調製したポリアミド酸bの樹脂溶液を硬化後の厚みが8.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μmとなるようにした。
(Comparative Example 3)
Example 1 except that the electrolytic copper foil having the characteristics shown in Table 1 and having a thickness of 12 μm (surface roughness Rz = 1.3 μm of the coated surface) was used and the thickness of the polyimide layer was changed as follows. In the same manner, a single-sided flexible copper-clad laminate was obtained.
Here, the polyimide layer has a thickness of 2.0 μm after curing the polyamic acid a resin solution prepared in Synthesis Example 1 on a copper foil, and the polyamic acid b resin solution prepared in Synthesis Example 2 thereon. The thickness after curing was 8.0 μm, and the thickness after curing of the polyamic acid a resin solution prepared in Synthesis Example 1 was 2.0 μm.

(比較例4)
表1に示した特性を有し、厚さ12μmの電解銅箔(塗布面の表面粗さRz=2.1μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例1と同様にして、片面フレキシブル銅張積層板を得た。
ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μm、その上に合成例2で調製したポリアミド酸bの樹脂溶液を硬化後の厚みが20.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるようにした。
(Comparative Example 4)
Example 1 except that the electrolytic copper foil having the characteristics shown in Table 1 and having a thickness of 12 μm (surface roughness Rz = 2.1 μm of the coated surface) was used and the thickness of the polyimide layer was changed as follows. In the same manner, a single-sided flexible copper-clad laminate was obtained.
Here, the thickness of the polyimide layer is 2.5 μm after curing the polyamic acid a resin solution prepared in Synthesis Example 1 on a copper foil, and the polyamic acid b resin solution prepared in Synthesis Example 2 thereon. The thickness after curing was 20.0 μm, and the thickness after curing of the polyamic acid a resin solution prepared in Synthesis Example 1 was 2.5 μm.

(比較例5)
表1に示した特性を有し、厚さ12μmで長尺状の電解銅箔(塗布面の表面粗さRz=1.4μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例4と同様にして、片面フレキシブル銅張積層板を得た。
ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが4.0μm、その上に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが42.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが4.0μmとなるようにした。
(Comparative Example 5)
Other than having the characteristics shown in Table 1 and using a long electrolytic copper foil with a thickness of 12 μm (surface roughness Rz = 1.4 μm on the coated surface) and changing the thickness of the polyimide layer as follows: Obtained a single-sided flexible copper-clad laminate in the same manner as in Example 4.
Here, the thickness of the polyimide layer is such that the thickness after curing the resin solution of polyamic acid a prepared in Synthesis Example 1 on a copper foil is 4.0 μm, and the resin solution of polyamic acid c prepared in Synthesis Example 3 thereon. The thickness after curing was set to 42.0 μm, and the thickness after curing of the resin solution of polyamic acid a prepared in Synthesis Example 1 was set to 4.0 μm.

Figure 0006284325
Figure 0006284325

1:回路基板
11:ポリイミド層
12、51:銅配線
20、21:試料ステージ
22:ローラー
40:試験片
40C:試験片の折り曲げ箇所
52:銅配線のU字部
1: Circuit board
11: Polyimide layer
12, 51: Copper wiring
20, 21: Sample stage
22: Roller
40: Test piece
40C: Bending part of the test piece
52: U-shaped part of copper wiring

Claims (6)

厚み10〜25μmであり、引張弾性率4〜10GPaのポリイミド層(A)の少なくとも一方の面に、厚み8〜20μmであり、引張弾性率10〜20GPaであって、かつ厚み方向の断面における平均結晶粒径が10μm以上の銅箔(B)のみからなり、電子機器の筐体内に折り畳んで収納されるフレキシブル回路基板に用いられるフレキシブル銅張積層板であって、当該フレキシブル銅張積層板の銅箔を配線回路加工して銅配線を形成した任意のフレキシブル回路基板のギャップ0.3mmでの折り曲げ試験での、下記式(I)によって計算される折れ癖係数[PF]が0.96±0.02の範囲にあることを特徴とするフレキシブル銅張積層板。
Figure 0006284325

(式(I)において、|ε|は銅配線の屈曲平均ひずみ値の絶対値であり、ε C は銅配線の引張弾性限界ひずみである。)
The thickness of the polyimide layer (A) having a thickness of 10 to 25 μm and a tensile elastic modulus of 4 to 10 GPa is 8 to 20 μm thick, has a tensile elastic modulus of 10 to 20 GPa, and is an average in a cross section in the thickness direction. grain size becomes only 10μm or more copper (B), a flexible copper clad laminate used in the flexible circuit board accommodated folded in a casing of an electronic device, the copper of the flexible copper-clad laminate Folding coefficient [PF] calculated by the following formula (I) in a bending test with a gap of 0.3 mm of an arbitrary flexible circuit board in which copper wiring is formed by processing a foil with a wiring of 0.96 ± 0 A flexible copper clad laminate characterized by being in the range of .02.
Figure 0006284325

(In the formula (I), | ε | is the absolute value of the bending average strain value of the copper wiring, and ε C is the tensile elastic limit strain of the copper wiring.)
ポリイミド層(A)が、熱膨張係数30×10-6/K未満の低熱膨張性のポリイミド層(i)と熱膨張係数30×10-6/K以上の高熱膨張性のポリイミド層(ii)とからなり、高熱膨張性のポリイミド層(ii)が直接銅箔(B)と接している請求項1に記載のフレキシブル銅張積層板。 The polyimide layer (A) is a low thermal expansion polyimide layer (i) having a thermal expansion coefficient of less than 30 × 10 −6 / K and a high thermal expansion polyimide layer (ii) having a thermal expansion coefficient of 30 × 10 −6 / K or more. The flexible copper-clad laminate according to claim 1, wherein the high thermal expansion polyimide layer (ii) is in direct contact with the copper foil (B). 高熱膨張性のポリイミド層(ii)と銅箔(B)との接触面における銅箔(B)の表面粗さ(Rz)が0.5〜1.5μmの範囲にある請求項1又は2に記載のフレキシブル銅張積層板。   3. The surface roughness (Rz) of the copper foil (B) at the contact surface between the high thermal expansion polyimide layer (ii) and the copper foil (B) is in the range of 0.5 to 1.5 [mu] m. The flexible copper clad laminate as described. ポリイミド層(A)の引張弾性率が6〜10GPaの範囲である請求項1〜3の何れかに記載のフレキシブル銅張積層板。   The flexible copper-clad laminate according to any one of claims 1 to 3, wherein the polyimide layer (A) has a tensile modulus of 6 to 10 GPa. ポリイミド層(A)の厚みが10〜15μmの範囲である請求項1〜4の何れかに記載のフレキシブル銅張積層板。   The flexible copper-clad laminate according to any one of claims 1 to 4, wherein the polyimide layer (A) has a thickness in the range of 10 to 15 µm. 銅箔(B)の厚み方向の断面における平均結晶粒径が10〜60μmの範囲である請求項1〜5の何れかに記載のフレキシブル銅張積層板。   The flexible copper-clad laminate according to any one of claims 1 to 5, wherein the average crystal grain size in the cross section in the thickness direction of the copper foil (B) is in the range of 10 to 60 µm.
JP2013199806A 2012-09-28 2013-09-26 Flexible copper clad laminate Active JP6284325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013199806A JP6284325B2 (en) 2012-09-28 2013-09-26 Flexible copper clad laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012217485 2012-09-28
JP2012217485 2012-09-28
JP2013199806A JP6284325B2 (en) 2012-09-28 2013-09-26 Flexible copper clad laminate

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2018007458A Division JP6581224B2 (en) 2012-09-28 2018-01-19 Flexible copper clad laminate
JP2018007432A Division JP6545302B2 (en) 2012-09-28 2018-01-19 Flexible circuit board

Publications (2)

Publication Number Publication Date
JP2014080021A JP2014080021A (en) 2014-05-08
JP6284325B2 true JP6284325B2 (en) 2018-02-28

Family

ID=50409411

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013199806A Active JP6284325B2 (en) 2012-09-28 2013-09-26 Flexible copper clad laminate
JP2018007458A Active JP6581224B2 (en) 2012-09-28 2018-01-19 Flexible copper clad laminate
JP2018007432A Active JP6545302B2 (en) 2012-09-28 2018-01-19 Flexible circuit board

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018007458A Active JP6581224B2 (en) 2012-09-28 2018-01-19 Flexible copper clad laminate
JP2018007432A Active JP6545302B2 (en) 2012-09-28 2018-01-19 Flexible circuit board

Country Status (4)

Country Link
JP (3) JP6284325B2 (en)
KR (1) KR102045089B1 (en)
CN (1) CN103716983B (en)
TW (1) TWI599277B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320031B2 (en) * 2012-12-28 2018-05-09 新日鉄住金化学株式会社 Flexible copper clad laminate
JP6360760B2 (en) * 2014-09-19 2018-07-18 新日鉄住金化学株式会社 Copper-clad laminate and circuit board
KR102404294B1 (en) * 2014-09-30 2022-05-31 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Flexible printed circuit board and electronic device
JP6440656B2 (en) 2016-07-12 2018-12-19 古河電気工業株式会社 Electrolytic copper foil
JP6682633B2 (en) * 2016-07-12 2020-04-15 株式会社フジクラ Stretchable substrate
CN106856646A (en) * 2016-11-13 2017-06-16 惠州市大亚湾科翔科技电路板有限公司 A kind of flexibility covers metal lamination
JP7256618B2 (en) * 2018-08-29 2023-04-12 タツタ電線株式会社 Electromagnetic wave shielding film with transfer film, method for producing electromagnetic wave shielding film with transfer film, and method for producing shield printed wiring board
JP2021009997A (en) 2019-06-28 2021-01-28 日鉄ケミカル&マテリアル株式会社 Polyimide film, metal-clad laminate, and flexible circuit board
CN111526613B (en) * 2020-05-18 2022-07-12 无锡格菲电子薄膜科技有限公司 Copper electrode graphene electrothermal film and preparation method thereof
CN113597144A (en) * 2021-07-28 2021-11-02 恒赫鼎富(苏州)电子有限公司 Multilayer FPC circuit board manufacturing process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193910B1 (en) * 1997-11-11 2001-02-27 Ngk Spark Plug Co., Ltd. Paste for through-hole filling and printed wiring board using the same
JP4486196B2 (en) * 1999-12-08 2010-06-23 イビデン株式会社 Single-sided circuit board for multilayer printed wiring board and manufacturing method thereof
US7263769B2 (en) * 2004-10-20 2007-09-04 Matsushita Electric Industrial Co., Ltd. Multi-layered flexible print circuit board and manufacturing method thereof
JP2007208087A (en) 2006-02-03 2007-08-16 Kaneka Corp High turnable flexible printed wiring board
JP2007273766A (en) * 2006-03-31 2007-10-18 Nippon Steel Chem Co Ltd Laminate for wiring board
KR101674226B1 (en) * 2008-07-22 2016-11-08 후루카와 덴키 고교 가부시키가이샤 Flexible copper-clad laminate
US20110149532A1 (en) * 2008-09-26 2011-06-23 Sumitomo Bakelite Co, Ltd. Laminate, circuit board and semiconductor device
JP2010280191A (en) 2009-06-08 2010-12-16 Hitachi Cable Ltd Copper foil for heat treatment, manufacturing method thereof and flexible printed wiring board
JP5689284B2 (en) * 2009-11-11 2015-03-25 新日鉄住金化学株式会社 Method for producing flexible double-sided copper-clad laminate
KR101690491B1 (en) * 2009-12-25 2016-12-28 신닛테츠 수미킨 가가쿠 가부시키가이샤 Flexible circuit board and structure of bend section of flexible circuit board
WO2012020677A1 (en) * 2010-08-09 2012-02-16 新日鐵化学株式会社 Flexible circuit board for repeated bending use, and electronic device and cellular phone using same

Also Published As

Publication number Publication date
KR102045089B1 (en) 2019-11-14
CN103716983B (en) 2017-12-12
JP6545302B2 (en) 2019-07-17
JP2014080021A (en) 2014-05-08
KR20140042684A (en) 2014-04-07
JP6581224B2 (en) 2019-09-25
TWI599277B (en) 2017-09-11
TW201424475A (en) 2014-06-16
CN103716983A (en) 2014-04-09
JP2018067740A (en) 2018-04-26
JP2018065395A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6581224B2 (en) Flexible copper clad laminate
JP6534471B2 (en) Flexible circuit board
KR102319574B1 (en) Method of manufacturing flexible copper-clad laminate
JP2014141083A5 (en)
JP5689277B2 (en) Flexible circuit board and multilayer circuit board
JP2015088631A (en) Flexible copper-clad laminate, flexible circuit board and use thereof
TWI660649B (en) Flexible circuit board and electronic equipment
JP6344914B2 (en) Flexible copper clad laminate and flexible circuit board
JP2015070237A (en) Flexible copper clad laminate and flexible circuit board
JP6732065B2 (en) Flexible copper clad laminate and flexible circuit board
JP6624756B2 (en) Flexible circuit board, method of using the same, and electronic equipment
JP2016215651A (en) Flexible copper-clad laminated sheet and flexible circuit board
JP6436809B2 (en) Flexible circuit board and electronic device
JP6461540B2 (en) Flexible circuit board, method of using the same, and electronic device
JP6360760B2 (en) Copper-clad laminate and circuit board
JP2021009997A (en) Polyimide film, metal-clad laminate, and flexible circuit board
JP2021009997A5 (en)
JP2008177214A (en) Laminate for flexible circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180130

R150 Certificate of patent or registration of utility model

Ref document number: 6284325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250