JP6278500B2 - Dielectric loaded antenna - Google Patents

Dielectric loaded antenna Download PDF

Info

Publication number
JP6278500B2
JP6278500B2 JP2013082282A JP2013082282A JP6278500B2 JP 6278500 B2 JP6278500 B2 JP 6278500B2 JP 2013082282 A JP2013082282 A JP 2013082282A JP 2013082282 A JP2013082282 A JP 2013082282A JP 6278500 B2 JP6278500 B2 JP 6278500B2
Authority
JP
Japan
Prior art keywords
dielectric
groove
waveguide
radiation
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013082282A
Other languages
Japanese (ja)
Other versions
JP2014207495A (en
Inventor
成夫 五島
成夫 五島
幹男 辻
幹男 辻
出口 博之
博之 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Doshisha Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Doshisha Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Doshisha Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2013082282A priority Critical patent/JP6278500B2/en
Publication of JP2014207495A publication Critical patent/JP2014207495A/en
Application granted granted Critical
Publication of JP6278500B2 publication Critical patent/JP6278500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Description

本発明は、誘電体装荷アンテナに関する。   The present invention relates to a dielectric loaded antenna.

近年、ミリ波帯の電波を利用して移動体(車両や人など)を検出するミリ波レーダ装置が普及してきている。このようなミリ波レーダ装置に搭載されるアンテナは、相対的に広い範囲を高利得・低損失でカバーし得る特性が必要であり、且つ小型なものが特に求められている。   In recent years, millimeter wave radar devices that detect moving objects (vehicles, people, etc.) using millimeter wave radio waves have become widespread. An antenna mounted on such a millimeter wave radar device is required to have a characteristic capable of covering a relatively wide range with high gain and low loss, and is particularly required to be small.

本発明者らは、上記目的を達成するため、同軸導波管モードを励振・制御して広角指向性を改善した同軸グルーブホーンアンテナに、誘電体レンズを装荷した誘電体装荷アンテナを開発した(非特許文献1参照)。   In order to achieve the above object, the present inventors have developed a dielectric-loaded antenna in which a dielectric lens is loaded on a coaxial groove horn antenna that has improved the wide-angle directivity by exciting and controlling the coaxial waveguide mode ( Non-patent document 1).

非特許文献1記載の従来例は、図8(a)に示すように同軸グルーブホーンアンテナからなる一次放射器100と、一次放射器100の開口(図中の右側)に装荷される誘電体レンズ110とで構成される。一次放射器100は、円形導波管101における開口の周りに同軸構造の溝(グルーブ)102が形成されてなる。誘電体レンズ110は、中心部の厚みが周辺部の厚みよりも十分に小さい円環形状であり、且つ一次放射器100の開口から内部に挿入された第1面111と、一次放射器100の開口から外部に露出する第2面112とが異なる曲面形状に形成されている。   As shown in FIG. 8A, the conventional example described in Non-Patent Document 1 includes a primary radiator 100 composed of a coaxial groove horn antenna, and a dielectric lens loaded in the opening (right side in the figure) of the primary radiator 100. It consists of 110. The primary radiator 100 is formed by forming a groove 102 having a coaxial structure around an opening in the circular waveguide 101. The dielectric lens 110 has an annular shape in which the thickness of the central portion is sufficiently smaller than the thickness of the peripheral portion, and the first surface 111 inserted into the inside from the opening of the primary radiator 100 and the primary radiator 100 The second surface 112 exposed to the outside from the opening is formed in a different curved surface shape.

図8(b)には、上記従来例の24GHzにおける放射パターンの測定値と計算値を比較して示している。同図の横軸は円形導波管101の中心からの角度を示し、縦軸は利得を示している。また、同図における実線IはH面の測定値、一点破線IIはE面の測定値、破線IIIはH面の計算値、点線IVはE面の計算値を示している。各測定値及び計算値から明らかなように、±60°方向における正面方向からの利得低下は数デシベル程度であり、十分に広角な放射特性が得られている。   FIG. 8B shows a comparison between the measured value and the calculated value of the radiation pattern at 24 GHz of the conventional example. In the figure, the horizontal axis indicates the angle from the center of the circular waveguide 101, and the vertical axis indicates the gain. Further, in the figure, a solid line I indicates a measured value on the H plane, a one-dot broken line II indicates a measured value on the E plane, a broken line III indicates a calculated value on the H plane, and a dotted line IV indicates a calculated value on the E plane. As is apparent from the respective measured values and calculated values, the gain reduction from the front direction in the ± 60 ° direction is about several decibels, and a sufficiently wide radiation characteristic is obtained.

小林 明広、大森 章弘、出口 博之、辻 幹男、「広角ビーム照射のための誘電体レンズホーンアンテナ」、電子情報通信学会総合大会講演論文集 2012年 通信(1)、58Akihiro Kobayashi, Akihiro Omori, Hiroyuki Deguchi, Mikio Tsuji, “Dielectric Lens Horn Antenna for Wide Angle Beam Irradiation”, Proceedings of the IEICE General Conference 2012 Communications (1), 58

非特許文献1記載の従来例は、上述のように小型化を図りつつ十分に広角な放射特性が得られるものではある。しかしながら、誘電体レンズを合成樹脂材料(例えば、ポリエチレン)の成形体で構成する場合、第1面111及び第2面112の形状が複雑なため、金型費などの製造コストが上昇するという問題が生じる。   The conventional example described in Non-Patent Document 1 can obtain sufficiently wide-angle radiation characteristics while achieving downsizing as described above. However, when the dielectric lens is made of a synthetic resin material (for example, polyethylene), the shape of the first surface 111 and the second surface 112 is complicated, which increases the manufacturing cost such as mold costs. Occurs.

本発明は、上記課題に鑑みて為されたものであり、従来よりも形状の複雑化を抑えながら小型化と広角な放射特性を得ることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to obtain a compact and wide-angle radiation characteristic while suppressing the complexity of the shape as compared with the prior art.

本発明の誘電体装荷アンテナは、給電面および電波を放射する放射面を備える誘電体装荷アンテナであって、前記給電面側から放射面側に向かって開いた開口を備える導波部および前記導波部の放射面側の前記開口の周りに同軸構造の溝が形成されてなる一次放射器と、前記一次放射器の前記放射面側に装荷される誘電体レンズとを備え、前記誘電体レンズは、前記一次放射器の前記開口及び前記溝を覆い且つ前方へ突出する円錐台形状に形成された主部と、前記主部の後面から突出して前記溝に挿入される挿入部とを含み、かつ、前記挿入部の先端と前記溝の内底面との間に空隙を設けてなり、前記主部および前記挿入部が誘電体である材料から一体に形成されていることを特徴とする。 The dielectric-loaded antenna of the present invention is a dielectric-loaded antenna including a feeding surface and a radiation surface for radiating radio waves, the waveguide including an opening opened from the feeding surface side toward the radiation surface side, and the conductor. A primary radiator in which a groove having a coaxial structure is formed around the opening on the radiation surface side of the wave portion; and a dielectric lens loaded on the radiation surface side of the primary radiator, the dielectric lens Includes a main part formed in a truncated cone shape that covers the opening and the groove of the primary radiator and protrudes forward, and an insertion part that protrudes from the rear surface of the main part and is inserted into the groove, In addition, a gap is provided between the distal end of the insertion portion and the inner bottom surface of the groove, and the main portion and the insertion portion are integrally formed of a dielectric material.

この誘電体装荷アンテナにおいて、前記開口と前記導波部とは、同軸上に存在することが好ましい。   In this dielectric-loaded antenna, it is preferable that the opening and the waveguide section are coaxial.

この誘電体装荷アンテナにおいて、前記誘電体レンズは、前記主部の後面における前記開口と対向する面が円錐面に形成されてなることが好ましい。   In this dielectric-loaded antenna, it is preferable that the dielectric lens has a conical surface formed on the rear surface of the main portion facing the opening.

この誘電体装荷アンテナにおいて、前記誘電体レンズは、前記主部の底面の中心と前記円錐面の頂点が前記導波部及び前記溝と同軸に位置するように形成されてなることが好ましい。 In this dielectric-loaded antenna, the dielectric lens is preferably formed so that the center of the bottom surface of the main portion and the apex of the conical surface are positioned coaxially with the waveguide portion and the groove.

本発明の誘電体装荷アンテナは、円錐台形状の主部と、一次放射器の溝に挿入される挿入部とを含み、主部および挿入部が何れも誘電体である材料で一体に形成された誘電体レンズを一次放射器に装荷した構造を有するので、従来例に比べて誘電体レンズの形状が簡素化されている。そのため、形状の複雑化を抑えることができ、且つ従来よりも小型化と広角な放射特性を得ることができるという効果がある。   The dielectric-loaded antenna of the present invention includes a truncated cone-shaped main portion and an insertion portion inserted into the groove of the primary radiator, and both the main portion and the insertion portion are integrally formed of a dielectric material. Since the dielectric lens is loaded on the primary radiator, the shape of the dielectric lens is simplified compared to the conventional example. For this reason, it is possible to suppress the complexity of the shape, and it is possible to obtain a more compact and wide-angle radiation characteristic than before.

本発明に係る誘電体装荷アンテナの実施形態を示し、(a)は断面図、(b)は24GHzにおける放射パターンの特性図である。1 shows an embodiment of a dielectric loaded antenna according to the present invention, where (a) is a cross-sectional view and (b) is a characteristic diagram of a radiation pattern at 24 GHz. 同上の斜視図である。It is a perspective view same as the above. 同上の電圧定在波比の周波数特性図である。It is a frequency characteristic figure of voltage standing wave ratio same as the above. 本発明に係る誘電体装荷アンテナの別の実施形態を示し、(a)は断面図、(b)は24GHzにおける放射パターンの特性図である。4 shows another embodiment of a dielectric loaded antenna according to the present invention, wherein (a) is a cross-sectional view and (b) is a characteristic diagram of a radiation pattern at 24 GHz. 本発明に係る誘電体装荷アンテナの比較例1を示し、(a)は断面図、(b)は24GHzにおける放射パターンの特性図である。FIG. 7 shows a comparative example 1 of a dielectric loaded antenna according to the present invention, in which (a) is a cross-sectional view and (b) is a characteristic diagram of a radiation pattern at 24 GHz. 本発明に係る誘電体装荷アンテナの比較例2を示し、(a)は断面図、(b)は24GHzにおける放射パターンの特性図である。Comparative Example 2 of the dielectric loaded antenna according to the present invention is shown, (a) is a cross-sectional view, and (b) is a characteristic diagram of a radiation pattern at 24 GHz. 本発明に係る誘電体装荷アンテナの比較例3を示し、(a)は断面図、(b)は24GHzにおける放射パターンの特性図である。Comparative Example 3 of the dielectric loaded antenna according to the present invention is shown, (a) is a cross-sectional view, and (b) is a characteristic diagram of a radiation pattern at 24 GHz. 従来例を示し、(a)は断面図、(b)は24GHzにおける放射パターンの特性図である。A conventional example is shown, (a) is a sectional view, and (b) is a characteristic diagram of a radiation pattern at 24 GHz.

以下、本発明に係る誘電体装荷アンテナの実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of a dielectric loaded antenna according to the present invention will be described in detail with reference to the drawings.

本実施形態の誘電体装荷アンテナは、図1(a)及び図2に示すように円形導波管の前面側の開口の周りに同軸構造の溝11が形成されてなる一次放射器1と、一次放射器1の前面側に装荷される誘電体レンズ2とを備える。ただし、一次放射器1の前側が自由空間側、すなわち、導波管を通じて誘電体レンズ側より放射される電波の進行方向側となって電波が放射され、一次放射器1の後側が給電面側となる。   The dielectric loaded antenna of this embodiment includes a primary radiator 1 in which a groove 11 having a coaxial structure is formed around an opening on the front side of a circular waveguide, as shown in FIGS. And a dielectric lens 2 loaded on the front side of the primary radiator 1. However, the front side of the primary radiator 1 is the free space side, that is, the traveling direction side of the radio wave radiated from the dielectric lens side through the waveguide, and the radio wave is radiated, and the rear side of the primary radiator 1 is the feeding surface side. It becomes.

一次放射器1は、金属材料からなり、中央の導波路10と円環状の溝11とが同軸に形成されている。導波路10は、給電面側から放射面側(前側)に向かって電波を伝搬する部材である。本実施形態における導波路10は、放射面と給電面とを結ぶ誘電体装荷アンテナの長軸(中心軸)に沿って均一な円を描く円柱状であって、給電面側から放射面側に向かって開いた開口を備える。ただし、導波路10の形状は円柱状に限定されるものではなく、放射面と給電面とを結ぶ誘電体装荷アンテナの長軸に沿って同一円周上に放射面と給電面が存在すればよい。電波の伝搬を均一に行う観点からは、導波路10は、さらに、その同一円周上にあって均等な形状であることが好ましい。具体的には、導波路10は、円柱形状のほかに、角柱形状などがあげられるが、なかでも、上記観点からは、円柱形状であることが好ましい。ここで、導波路10と溝11を隔てる壁を内周壁12と呼び、溝11の外周側の壁を外周壁13と呼ぶことにする。なお、溝11の内底面から内周壁12及び外周壁13の前端までの高さ寸法は、外周壁13の前端までの高さ寸法の方が僅かに大きくなっている(図1(a)参照)。   The primary radiator 1 is made of a metal material, and a central waveguide 10 and an annular groove 11 are formed coaxially. The waveguide 10 is a member that propagates radio waves from the feeding surface side toward the radiation surface side (front side). The waveguide 10 in this embodiment is a cylindrical shape that draws a uniform circle along the long axis (center axis) of the dielectric-loaded antenna that connects the radiation surface and the power feeding surface, from the power feeding surface side to the radiation surface side. It has an opening that opens toward it. However, the shape of the waveguide 10 is not limited to a cylindrical shape, and if the radiation surface and the feeding surface exist on the same circumference along the long axis of the dielectric loaded antenna connecting the radiation surface and the feeding surface, Good. From the viewpoint of performing radio wave propagation uniformly, the waveguide 10 is preferably on the same circumference and has a uniform shape. Specifically, the waveguide 10 may be a prismatic shape in addition to the cylindrical shape, and in particular, the cylindrical shape is preferable from the above viewpoint. Here, the wall separating the waveguide 10 and the groove 11 is referred to as an inner peripheral wall 12, and the outer peripheral wall of the groove 11 is referred to as an outer peripheral wall 13. The height dimension from the inner bottom surface of the groove 11 to the front ends of the inner peripheral wall 12 and the outer peripheral wall 13 is slightly larger than the height dimension to the front end of the outer peripheral wall 13 (see FIG. 1A). ).

誘電体レンズ2は、円錐台形状の主部20と、主部20の後面から突出する円筒形状の挿入部21とが誘電体である材料(例えば、ポリエチレンなどの合成樹脂材料)から一体に形成されてなる。主部20は、誘電体レンズ2において導波路10を伝搬する電波を自由空間側に放射するための部材であり、本部材の形状が電波の放射角を決定する。本実施形態における主部20は、後側の底面の半径r1が一次放射器1の半径r2とほぼ一致している(図1(a)参照)。   The dielectric lens 2 is formed integrally from a material (for example, a synthetic resin material such as polyethylene) in which a truncated cone-shaped main portion 20 and a cylindrical insertion portion 21 protruding from the rear surface of the main portion 20 are dielectric materials. Being done. The main portion 20 is a member for radiating a radio wave propagating through the waveguide 10 in the dielectric lens 2 to the free space side, and the shape of this member determines the radiation angle of the radio wave. In the main portion 20 in the present embodiment, the radius r1 of the bottom surface on the rear side substantially coincides with the radius r2 of the primary radiator 1 (see FIG. 1A).

挿入部21は、導波路10を伝搬する電波を自由空間側に放射するための部材であり、放射角を拡げるためのものである。本実施形態における挿入部21は、径方向の幅寸法が溝11の幅寸法よりも僅かに小さくなっており、前方から溝11に挿入される。また、挿入部21は、前後方向の高さ寸法が溝11の深さ寸法より小さくなっている。そのため、主部20の後面が一次放射器1の外周壁13の前端に当たった状態において、挿入部21の先端(後端)と溝11の内底面との間に空隙が生じている。さらに、誘電体レンズ2は、主部20の後面における開口(導波路10)と対向する面が円錐面22に形成されている。   The insertion portion 21 is a member for radiating radio waves propagating through the waveguide 10 to the free space side, and is for expanding the radiation angle. The insertion portion 21 in the present embodiment has a radial width dimension slightly smaller than the width dimension of the groove 11, and is inserted into the groove 11 from the front. Further, the insertion portion 21 has a height dimension in the front-rear direction smaller than the depth dimension of the groove 11. Therefore, when the rear surface of the main part 20 hits the front end of the outer peripheral wall 13 of the primary radiator 1, a gap is generated between the tip (rear end) of the insertion part 21 and the inner bottom surface of the groove 11. Further, the dielectric lens 2 has a conical surface 22 formed on the rear surface of the main portion 20 facing the opening (waveguide 10).

本実施形態における誘電体レンズ2は、主部20の底面の中心と円錐面22の頂点が導波路10及び溝11と同軸に位置するように形成されている。このように、主部20の底面の中心と円錐面22の頂点が導波路10及び溝11と同軸に位置するように形成すると、中心軸に対して対称構造なので、指向性が均一になるという効果が得られるので好ましい。   The dielectric lens 2 in this embodiment is formed so that the center of the bottom surface of the main portion 20 and the apex of the conical surface 22 are positioned coaxially with the waveguide 10 and the groove 11. As described above, when the center of the bottom surface of the main portion 20 and the apex of the conical surface 22 are formed so as to be coaxial with the waveguide 10 and the groove 11, the structure is symmetrical with respect to the central axis, so that the directivity is uniform. Since an effect is acquired, it is preferable.

また、本実施形態では、誘電体レンズ2の形状として、前側に位置する頂点が水平な形状を示したが、頂点を挟んで対向する誘電体レンズ2の傾斜面が後側に窪んでいない形状であればよい。例えば、両傾斜面が、前側に突出した状態で直線または曲線上でつなげられた形状でもよい。   Further, in the present embodiment, the shape of the dielectric lens 2 is such that the apex located on the front side is a horizontal shape, but the inclined surface of the dielectric lens 2 facing the apex is not recessed on the rear side. If it is. For example, the shape where both inclined surfaces were connected on the straight line or the curve in the state protruded to the front side may be sufficient.

また、誘電体レンズ2において、放射特性を向上させる観点からは、主部の半径r1、導波路10と一次放射器1の最外郭までの半径r2は、r1=r2であることが好ましい。   In the dielectric lens 2, from the viewpoint of improving the radiation characteristics, it is preferable that the radius r1 of the main part and the radius r2 to the outermost contour of the waveguide 10 and the primary radiator 1 are r1 = r2.

ここで、本実施形態の誘電体装荷アンテナを開発するに当たって、本発明者らが種々検討した比較例について簡単に説明する。ただし、下記の比較例における一次放射器1は全て本実施形態における一次放射器1と同一のものである。   Here, in developing the dielectric loaded antenna according to the present embodiment, a brief description will be given of comparative examples variously studied by the present inventors. However, all of the primary radiators 1 in the following comparative examples are the same as the primary radiator 1 in the present embodiment.

(比較例1)
最初の比較例1は、従来例における誘電体レンズ110の第1面111の簡略化(平面化)が放射特性に及ぼす影響を検討したものである。具体的には、比較例1は、図5(a)に示すように、従来例における誘電体レンズ110の第1面111に挿入部113を設けるとともに挿入部113の内側を平面としたものである。図5(b)は、この比較例1の24GHzにおける放射パターンの計算値を示している。なお、同図の横軸は導波路10の中心からの角度を示し、縦軸は利得を示している。また、同図における点線IはH面の計算値、実線IIはE面の計算値、破線IIIは交差偏波成分の計算値をそれぞれ示している。
(Comparative Example 1)
The first comparative example 1 examines the influence of simplification (planarization) of the first surface 111 of the dielectric lens 110 in the conventional example on the radiation characteristics. Specifically, in Comparative Example 1, as shown in FIG. 5A, an insertion portion 113 is provided on the first surface 111 of the dielectric lens 110 in the conventional example, and the inside of the insertion portion 113 is a flat surface. is there. FIG. 5B shows the calculated value of the radiation pattern of Comparative Example 1 at 24 GHz. In the figure, the horizontal axis indicates the angle from the center of the waveguide 10, and the vertical axis indicates the gain. In the figure, a dotted line I indicates a calculated value of the H plane, a solid line II indicates a calculated value of the E plane, and a broken line III indicates a calculated value of the cross polarization component.

図5(b)から判るように、従来例と比較して放射特性が若干変化するものの、誘電体レンズ110の第1面111の簡略化(平面化)が放射特性に及ぼす影響は小さいものと考えられる。   As can be seen from FIG. 5B, although the radiation characteristics are slightly changed as compared with the conventional example, the effect of the simplification (planarization) of the first surface 111 of the dielectric lens 110 on the radiation characteristics is small. Conceivable.

(比較例2)
2番目の比較例2は、比較例1における誘電体レンズ110の第2面112の簡略化が放射特性に及ぼす影響を検討したものである。具体的には、比較例2は、図6(a)に示すように、比較例1における誘電体レンズ110の第2面112の断面を直線に近似して簡略化したものである。図6(b)は、この比較例2の24GHzにおける放射パターンの計算値を示している。なお、同図の横軸は導波路10の中心からの角度を示し、縦軸は利得を示している。また、同図における点線IはH面の計算値、実線IIはE面の計算値、破線IIIは交差偏波成分の計算値をそれぞれ示している。
(Comparative Example 2)
The second comparative example 2 examines the influence of the simplification of the second surface 112 of the dielectric lens 110 in the comparative example 1 on the radiation characteristics. Specifically, in Comparative Example 2, as shown in FIG. 6A, the cross section of the second surface 112 of the dielectric lens 110 in Comparative Example 1 is simplified by approximating a straight line. FIG. 6B shows the calculated value of the radiation pattern of Comparative Example 2 at 24 GHz. In the figure, the horizontal axis indicates the angle from the center of the waveguide 10, and the vertical axis indicates the gain. In the figure, a dotted line I indicates a calculated value of the H plane, a solid line II indicates a calculated value of the E plane, and a broken line III indicates a calculated value of the cross polarization component.

図6(b)から判るように、誘電体レンズ110の第2面112の簡略化が放射特性に及ぼす影響も小さいものと考えられる。   As can be seen from FIG. 6B, the influence of simplification of the second surface 112 of the dielectric lens 110 on the radiation characteristics is considered to be small.

(比較例3)
3番目の比較例3は、比較例2における誘電体レンズ110の形状のさらなる簡素化を検討したものである。具体的には、比較例3は、図7(a)に示すように、比較例2における誘電体レンズ110の第2面112を円錐台形状に近付けたものである。図7(b)は、この比較例3の24GHzにおける放射パターンの計算値を示している。なお、同図の横軸は導波路10の中心からの角度を示し、縦軸は利得を示している。また、同図における点線IはH面の計算値、実線IIはE面の計算値、破線IIIは交差偏波成分の計算値をそれぞれ示している。
(Comparative Example 3)
The third comparative example 3 examines further simplification of the shape of the dielectric lens 110 in the comparative example 2. Specifically, in Comparative Example 3, as shown in FIG. 7A, the second surface 112 of the dielectric lens 110 in Comparative Example 2 is brought close to a truncated cone shape. FIG. 7B shows the calculated value of the radiation pattern of Comparative Example 3 at 24 GHz. In the figure, the horizontal axis indicates the angle from the center of the waveguide 10, and the vertical axis indicates the gain. In the figure, a dotted line I indicates a calculated value of the H plane, a solid line II indicates a calculated value of the E plane, and a broken line III indicates a calculated value of the cross polarization component.

図7(b)から判るように、E面とH面の放射パターンは非常によく一致し、±55°付近までは正面方向からの利得低下が殆ど見られない。しかも、交差偏波成分のピーク値は-20デシベル以下と低いレベルである。ただし、比較例3の誘電体レンズ110は、第2面112の中心軸の周りに楔状の溝114がある特殊な形状であるため、製造コストを抑えるには不利である。   As can be seen from FIG. 7B, the radiation patterns of the E plane and the H plane agree very well, and almost no gain decrease from the front direction is seen up to about ± 55 °. Moreover, the peak value of the cross polarization component is a low level of -20 dB or less. However, since the dielectric lens 110 of Comparative Example 3 has a special shape in which the wedge-shaped groove 114 is provided around the central axis of the second surface 112, it is disadvantageous for suppressing the manufacturing cost.

図4(a)は本発明に係る誘電体装荷アンテナの別の実施形態を示す断面図である。この実施形態は、比較例3における楔状の溝114を誘電体で埋めたものであり、図1(a)に示す実施形態とは、主部20の後面における開口と対向する面が円錐面22ではなく平面に形成されている点のみが異なる。   FIG. 4A is a sectional view showing another embodiment of the dielectric loaded antenna according to the present invention. In this embodiment, the wedge-shaped groove 114 in Comparative Example 3 is filled with a dielectric, and the embodiment shown in FIG. 1A differs from the embodiment shown in FIG. The only difference is that they are formed on a flat surface.

図4(b)は、この実施形態の24GHzにおける放射パターンの計算値を示している。なお、同図の横軸は導波路10の中心からの角度を示し、縦軸は利得を示している。また、同図における点線IはH面の計算値、実線IIはE面の計算値、破線IIIは交差偏波成分の計算値をそれぞれ示している。   FIG. 4B shows the calculated value of the radiation pattern at 24 GHz in this embodiment. In the figure, the horizontal axis indicates the angle from the center of the waveguide 10, and the vertical axis indicates the gain. In the figure, a dotted line I indicates a calculated value of the H plane, a solid line II indicates a calculated value of the E plane, and a broken line III indicates a calculated value of the cross polarization component.

図4(b)から判るように、比較例3の放射パターン及び交差偏波成分との差異は殆ど認められない。   As can be seen from FIG. 4B, there is almost no difference between the radiation pattern and the cross polarization component of Comparative Example 3.

従って、円錐台形状の主部20と、一次放射器1の溝11に挿入される挿入部21とが誘電体である材料で一体に形成された誘電体レンズ2を一次放射器1に装荷することにより、従来よりも小型化と広角な放射特性を得ることができる。しかも、従来例に比べて誘電体レンズ2の形状が簡素化されているため、形状の複雑化を抑えることができる。   Therefore, a dielectric lens 2 in which a main part 20 having a truncated cone shape and an insertion part 21 inserted into the groove 11 of the primary radiator 1 are integrally formed of a dielectric material is loaded on the primary radiator 1. As a result, it is possible to obtain a more compact and wide-angle radiation characteristic than before. In addition, since the shape of the dielectric lens 2 is simplified as compared with the conventional example, the complexity of the shape can be suppressed.

ここで、図4に示す実施形態では、24GHzにおける電圧定在波比が約1.9(反射係数が-10.2デシベル)となっている。   Here, in the embodiment shown in FIG. 4, the voltage standing wave ratio at 24 GHz is about 1.9 (reflection coefficient is −10.2 dB).

一方、図1に示す実施形態は、主部20の後面における開口と対向する面を円錐面22に形成することにより、放射パターンの特性劣化を極力抑えつつ電圧定在波比を改善(減少)することができる。   On the other hand, in the embodiment shown in FIG. 1, the voltage standing wave ratio is improved (decreased) while suppressing deterioration of the characteristics of the radiation pattern as much as possible by forming a conical surface 22 on the rear surface of the main portion 20 that faces the opening. can do.

図3は、主部20の後面における開口と対向する面が平面の場合(実線II)と、円錐面の場合(破線I)とで電圧定在波比の周波数特性を計算したものである。図3から判るように、24GHzにおける電圧定在波比の値は、円錐面22の方が平面よりも改善されている。   FIG. 3 shows the frequency characteristics of the voltage standing wave ratio calculated when the surface facing the opening on the rear surface of the main portion 20 is a plane (solid line II) and when it is a conical surface (broken line I). As can be seen from FIG. 3, the value of the voltage standing wave ratio at 24 GHz is improved on the conical surface 22 than on the flat surface.

また、図1(b)は、図1(a)に示した実施形態の24GHzにおける放射パターンの計算値を示している。なお、同図の横軸は導波路10の中心からの角度を示し、縦軸は利得を示している。また、同図における点線IはH面の計算値、実線IIはE面の計算値、破線IIIは交差偏波成分の計算値をそれぞれ示している。   Moreover, FIG.1 (b) has shown the calculated value of the radiation pattern in 24 GHz of embodiment shown to Fig.1 (a). In the figure, the horizontal axis indicates the angle from the center of the waveguide 10, and the vertical axis indicates the gain. In the figure, a dotted line I indicates a calculated value of the H plane, a solid line II indicates a calculated value of the E plane, and a broken line III indicates a calculated value of the cross polarization component.

図1(b)から判るように、±60°方向における正面方向からの利得低下も数デシベル程度であり、広角な放射特性が得られる。   As can be seen from FIG. 1 (b), the gain reduction from the front direction in the ± 60 ° direction is about several decibels, and a wide-angle radiation characteristic is obtained.

また、本実施形態の誘電体装荷アンテナは、一次放射器1と誘電体レンズ2の構成部材である挿入部21との間に溝11を設けているので、溝のない場合と比較して、レンズの周波数が変化した際の反射波の影響などを低減することができる。そのため、結果として、周波数特性を広くとることができるという効果が得られる。   In addition, since the dielectric loaded antenna of the present embodiment is provided with the groove 11 between the primary radiator 1 and the insertion portion 21 which is a constituent member of the dielectric lens 2, compared with the case without the groove, It is possible to reduce the influence of the reflected wave when the lens frequency changes. Therefore, as a result, an effect that a wide frequency characteristic can be obtained is obtained.

1 一次放射器
2 誘電体レンズ
10 導波路(開口)
11 溝
20 主部
21 挿入部
1 Primary radiator 2 Dielectric lens
10 Waveguide (aperture)
11 groove
20 Main part
21 Insertion section

Claims (4)

給電面および電波を放射する放射面を備える誘電体装荷アンテナであって、
前記給電面側から放射面側に向かって開いた開口を備える導波部および前記導波部の放射面側の前記開口の周りに同軸構造の溝が形成されてなる一次放射器と、前記一次放射器の前記放射面側に装荷される誘電体レンズとを備え、
前記誘電体レンズは、前記一次放射器の前記開口及び前記溝を覆い且つ前方へ突出する円錐台形状に形成された主部と、前記主部の後面から突出して前記溝に挿入される挿入部とを含み、かつ、前記挿入部の先端と前記溝の内底面との間に空隙を設けてなり、
前記主部および前記挿入部が誘電体である材料から一体に形成されていることを特徴とする誘電体装荷アンテナ。
A dielectric loaded antenna comprising a feeding surface and a radiation surface for radiating radio waves,
A primary radiator in which a waveguide having an opening opened from the feeding surface side toward the radiation surface side, a groove having a coaxial structure around the opening on the radiation surface side of the waveguide portion, and the primary A dielectric lens loaded on the radiation surface side of the radiator,
The dielectric lens includes a main part formed in a truncated cone shape that covers the opening and the groove of the primary radiator and protrudes forward, and an insertion part that protrudes from the rear surface of the main part and is inserted into the groove. And a gap is provided between the distal end of the insertion portion and the inner bottom surface of the groove,
The dielectric-loaded antenna, wherein the main portion and the insertion portion are integrally formed from a material that is a dielectric.
前記開口と前記導波部とは、同軸上に存在することを特徴とする請求項1記載の誘電体装荷アンテナ。   The dielectric-loaded antenna according to claim 1, wherein the opening and the waveguide section are coaxial. 前記誘電体レンズは、前記主部の後面における前記開口と対向する面が円錐面に形成されてなることを特徴とする請求項1又は2記載の誘電体装荷アンテナ。   The dielectric-loaded antenna according to claim 1 or 2, wherein the dielectric lens has a conical surface formed on a rear surface of the main portion facing the opening. 前記誘電体レンズは、前記主部の底面の中心と前記円錐面の頂点が前記導波部及び前記溝と同軸に位置するように形成されてなることを特徴とする請求項3記載の誘電体装荷アンテナ。 4. The dielectric according to claim 3, wherein the dielectric lens is formed so that a center of a bottom surface of the main portion and a vertex of the conical surface are positioned coaxially with the waveguide portion and the groove. Loading antenna.
JP2013082282A 2013-04-10 2013-04-10 Dielectric loaded antenna Expired - Fee Related JP6278500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082282A JP6278500B2 (en) 2013-04-10 2013-04-10 Dielectric loaded antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082282A JP6278500B2 (en) 2013-04-10 2013-04-10 Dielectric loaded antenna

Publications (2)

Publication Number Publication Date
JP2014207495A JP2014207495A (en) 2014-10-30
JP6278500B2 true JP6278500B2 (en) 2018-02-14

Family

ID=52120757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082282A Expired - Fee Related JP6278500B2 (en) 2013-04-10 2013-04-10 Dielectric loaded antenna

Country Status (1)

Country Link
JP (1) JP6278500B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033432B2 (en) 2017-10-31 2022-03-10 日清紡マイクロデバイス株式会社 Microwave antenna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434146A (en) * 1966-08-03 1969-03-18 Us Army Low profile open-ended waveguide antenna with dielectric disc lens
DE102008020036B4 (en) * 2008-04-21 2010-04-01 Krohne Meßtechnik GmbH & Co KG Dielectric antenna

Also Published As

Publication number Publication date
JP2014207495A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP3975445B2 (en) Fan beam antenna
EP3167510B1 (en) Horn lens antenna
JP2817714B2 (en) Lens antenna
JP4072280B2 (en) Dielectric loaded antenna
US10714834B2 (en) Broadband quad-ridge horn antennas
EP2565984B1 (en) Primary radiator and antenna apparatus
US10476166B2 (en) Dual-reflector microwave antenna
JP7099861B2 (en) Radar device
CN108390159B (en) Spherical dielectric lens sidelobe suppression by spherical aberration reduction
JP6278500B2 (en) Dielectric loaded antenna
EP2429034B1 (en) Antenna apparatus
US3216018A (en) Wide angle horn feed closely spaced to main reflector
JP4919423B2 (en) Antenna feeder
JP4178265B2 (en) Waveguide horn antenna, antenna device, and radar device
JP6051904B2 (en) Primary radiator for antenna device and antenna device
JP5653297B2 (en) Horn antenna
Khan et al. Design of an efficient high power microwave antenna
RU2435262C1 (en) Multi-beam mirror antenna
KR20150104366A (en) Antenna for reducing air resistance and weight
KR102055825B1 (en) Dielectric Insertion Type Waveguide Slot Array Antenna
JP6537387B2 (en) Feedome and Portable Parabola Antenna
JP7430443B2 (en) Radar antenna flares and radar antennas
US20080174504A1 (en) Reflector antenna feed device
JP2019186920A (en) Antenna device
KR100672968B1 (en) A feeder horn antenna for a reflector antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180112

R150 Certificate of patent or registration of utility model

Ref document number: 6278500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees