JP4072280B2 - Dielectric loaded antenna - Google Patents

Dielectric loaded antenna Download PDF

Info

Publication number
JP4072280B2
JP4072280B2 JP08365399A JP8365399A JP4072280B2 JP 4072280 B2 JP4072280 B2 JP 4072280B2 JP 08365399 A JP08365399 A JP 08365399A JP 8365399 A JP8365399 A JP 8365399A JP 4072280 B2 JP4072280 B2 JP 4072280B2
Authority
JP
Japan
Prior art keywords
dielectric
wave
radiation source
phase
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08365399A
Other languages
Japanese (ja)
Other versions
JP2000278030A (en
Inventor
嘉彦 杉尾
哲雄 津川
光司 石見
Original Assignee
嘉彦 杉尾
哲雄 津川
Dxアンテナ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉彦 杉尾, 哲雄 津川, Dxアンテナ株式会社 filed Critical 嘉彦 杉尾
Priority to JP08365399A priority Critical patent/JP4072280B2/en
Publication of JP2000278030A publication Critical patent/JP2000278030A/en
Application granted granted Critical
Publication of JP4072280B2 publication Critical patent/JP4072280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、誘電体装荷アンテナに関し、特に装荷される誘電体の形状に関するものである。
【0002】
【従来の技術】
誘電率の低い誘電体を装荷した誘電体装荷アンテナの代表的なものとして、従来、誘電体ロッドアンテナと、レンズアンテナとがある。誘電体ロッドアンテナは、図11(a)、(b)に示すように、放射源として超高周波の電波を放射する導波管2の開口の前面に、導波管2と対向するように、円柱状の誘電体4を配置したものである。
【0003】
従来の誘電体ロッドアンテナは、誘電体4としては、例えばポリスチレン(比誘電率2.54)の円柱形のものを使用した場合、図11(a)に示すように、その直径dが0.8波長では、長さLが約1波長において、利得が最大となり、その値は約12dBiである。誘電体4の直径dが0.5波長では、長さが約2.3波長の場合に、利得が最大となり、その値は約14dBiである。また、図11(b)に示すように、誘電体の給電部の直径dを1波長とし、この部分から数波長分の長さまでテーパー状に先端に向かって細くし、直径が約0.4波長になった部分から、その太さを一定に保って数波長分延長し、更にテーパー状に先端付近まで細くするなどの工夫をして、合計長Lを約15波長としたアンテナにおいて、20dBiの利得を得ている例がある。
【0004】
誘電体ロッドアンテナは、軸方向、即ち正面方向に伝搬する表面波のみを利用しているので、誘電体柱の先端部の面積が広い場合には、この部分から、誘電体の内部を伝搬した電波の透過波を放射し、その一部は反射波となって誘電体内を波源に向かって伝搬すると同時に、表面波に対しても反射波を励振し、定在波となる。これらにより、多くのサイドローブが発生し、高利得を望めない。そこで、一般には、太い部分においても1波長以下の誘電体柱を用い、誘電体柱の中心軸に対して2.5度から4度位の緩やかなテーパーを施して、誘電体の先端部の面積を小さくすることによって、この部分からの放射を極力抑えている。
【0005】
誘電体4の直径を1波長より太くしていくと、利得は2から3波長くらいまでは高くなるが、多重モードの電波が励振されるため、より多くのサイドローブが生じ、指向性が乱れ、それ以上になると、利得は直径によって大きく変動し、所望の利得が得られない。このように、誘電体の直径を1波長よりも太くしていくと、誘電体内に多重モードの電波を発生するため、その理論解析は非常に複雑となり、太くするメリットもないと思われていたので、その研究は乏しい。
【0006】
レンズアンテナには、光学的レンズ状の大口径レンズと、球形をした小型のレンズアンテナとがある。しかし、いずれも透過波が主役となるレンズ効果のみを利用しているので、その開口効率は、100パーセント以下である。
【0007】
【発明が解決しようとする課題】
上述したように、誘電体ロッドアンテナでは、誘電体の軸方向の直交した断面積を大きくすると、誘電体の先端部の面から方面方向に放射される電波の多重モードのため、波面が複雑になり、効率の高いアンテナは望めない。例えば、比誘電率が2.26の場合、誘電体の直径が3波長を超えると、急激に利得が低下する。また、レンズアンテナでは、上述したように透過波を主に使用しているので、開口効率が低い。
【0008】
本発明は、利得及び開口効率を向上させた誘電体装荷アンテナを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するために、本発明による誘電体装荷アンテナは、電波の放射源と、この放射源に装荷された誘電体とを有している。該誘電体は、対向する2つの端面を有する柱状体であって、その一方の端面が前記放射源と対向している。例えば、誘電体は、その中心軸を、波源の正面方向に軸に合わせて装荷されている。柱状体としては、例えば円柱、多角柱状のものを使用できる。前記放射源からの放射電波の位相をアンテナの正面方向に揃えるように、前記誘電体の他方の端面である誘電体先端面における前記誘電体の中心軸に直交する断面形状を、前記放射源から離れるに従って前記誘電体の中心軸に向かって減少させている。更に、この誘電体先端面から正面方向に放射される電波を平面波に近づけ、この平面波の位相と前記誘電体の正面方向に伝搬する表面波の位相とが、ほぼ同相となるように、前記誘電体の軸方向の長さが決定されている。
【0010】
柱状の誘電体の中心軸を波面の正面方向の軸に合わせて装荷した場合、誘電体の波源の端面の中央から放射状に入射された電波は、誘電体先端面を波源から見た視野角内を伝搬する電波と、この視野角外、即ち、誘電体の側面に向かって伝搬する電波とに分けて考えることができる。
【0011】
誘電体先端面を見た視野角内を伝搬する電波のうち、波源の中心から誘電体の中心軸に沿った電波の方が、波源の中心から誘電体先端面の周囲方向に伝搬する電波よりも伝搬距離が短いので、位相が進んでいる。このため、放射される電波は平面波とならない。従って、誘電体の直径を大きくしても、利得の向上が望めない。そこで、誘電体先端面の付近において、その中心軸に直交する方向の断面積が波源から離れるに従って、減少するようにして、波源の中心から誘電体先端面の周囲方向へ伝搬する電波の誘電体内径路を短くし、誘電体の中心軸上の先端部に直交する平面上にほぼ誘電体を投影した面積において、波源からの電波の位相を揃えて、平面波となるように、誘電体先端面を形成している。即ち、誘電体にレンズ効果を持たせ、誘電体からの放射波先端面を積極的に利用している。
【0012】
しかし、波源の中心から誘電体柱の側面に向かう電波、即ち、誘電体先端面を波源から見た視野角外を伝搬する電波は、側面に対する入射角が臨界角より小さい場合には、その一部は透過し、誘電体の外部に放射され、また一部は誘電体内に反射する。臨界角より大きい入射波は誘電体の側面で全反射される。この結果、誘電体の側面付近に表面波を生成する。また、全反射された電波は、誘電体内を伝搬して、誘電体先端面に到達する。この反射波の伝搬経路は、前記誘電体内をその中心軸に沿って伝搬する電波の伝搬経路よりも長くなるので、この電波誘電体先端面に到達したときの位相は、前記の伝搬経路を伝搬した電波の位相よりも遅れる。従って、このことを加味して、アンテナ利得が最大になるように、誘電体先端面を補正することが望ましい。
【0013】
この誘電体先端面形状は、誘電体の直径が比較的小さい場合、例えば1波長から2.5波長くらいまでは誘電体先端面を、頂角が約140度くらいの円錐面、或いは、この円錐の先端に一部平面を残して、円錐台とすることで、レンズ効果が得られる。直径が大きくなるに従って、円錐や複数の円錐台を組み合わせた形状、或いは階段状部の組み合わせで、近似的にレンズ効果を持たせることができる。しかし、補正された曲面で正確にレンズを形成することが望ましいことは言うまでもない。
【0014】
誘電体の側面を誘電体の中心軸方向に沿って伝搬する表面波の位相と、誘電体先端面から正面方向に放射される電波を平面波に近づけ、この平面波の位相が同相となるように、誘電体の軸方向の長さが決定されている。これは、表面波の位相速度と誘電体内の位相速度が異なるので、誘電体の先端で誘電体の中心軸と直交する平面上で位相が同相になるようにするためである。例えば、誘電体の比誘電率が2.26の場合、誘電体の直径に対する軸方向の長さの比を、直径によって多少異なるが、1.07乃至1.17くらいまでの間とすればよい。
【0015】
以上のように、誘電体先端のレンズ効果が充分に得られれば、この部分からの放射に、誘電体の側面を伝搬する表面波が同相で加わるため、等価的な実行開口面積が大きくなる。従って、誘電体の断面積をアンテナの開口面積とすると、アンテナの開口効率は、100パーセントを超えさせることが可能となる。
【0016】
図10は、図9に示すレンズ効果を持たない単なる円柱誘電体4を導波管2に装荷したアンテナの利得と開口効率を示したもので、誘電体の直径が3波長を超えると、利得が急激に低下する。上記のように、レンズ効果を持たせた誘電体を使用すれば、図7のように誘電体の直径にほぼ比例した利得が望める。実験的に誘電体の直径が7波長において、誘電体先端面を段状にして、レンズに近似させることによって、動作利得が26.27dBiも得られ、開口効率は、約88パーセントであり、電磁ホーンアンテナよりもよくなっている。少なくともこの直径以下の誘電体を使用したアンテナの開口効率は、直径が図7のように小さくなるほど良くなっているので、電磁ホーンよりも効率が良く、従って、小型のアンテナを実現できる。
【0017】
装荷される波源の開口面積が誘電体の断面積よりも比較的小さい場合には、波源から放射する電波は球面波に近づき、誘電体の側面に向かう入射波が増加する。側面に対する入射角が臨界角より小さく入射する電波は、側壁部分から外部に放射されて、サイドローブを作り、アンテナとしての効率が低下する。従って、この部分から電波が透過しないように、波源の中央部からの放射波が側面に入射する角度が臨界角になる側面部分から放射源側の端面にかけて、曲面或いは、何段かの円錐台形を形づくる。例えば、図8に示すように、波源の中心0から放射される電波が誘電体の側面に臨界角θcで入射する位置をPとする。0−P間の距離をRとし、Pから法線上に距離Rの点にA点をとる。A点を中心として半径Rで円を描き、この円が誘電体の放射源側の端面163aと交差する点をBとする。P−Bの曲線を、誘電体軸を中心として回転させてできる曲面164を形成すれば、0点から放射され、この曲面に入射する電波は全反射されるので、透過はなく、これによるサイドローブは抑制される。波源の開口の大きさは半径を0−Bとする誘電体の波源と対面した平坦な面積内に収まることが望ましい。従って、この曲線が適用できる波源の最大径は誘電体の直径の0.66倍以内である。しかし、これより大きい波源に装荷する場合には、例えば波源の最大径がa’であれば、この波源の端B’から垂直に曲線B−P上の点Cまで線を引き、線B’−C−Pを、誘電体の軸を中心として回転させてできる形に成型すればよい。この場合、波源の中心からB’−C間に向かって放射される電波は外へ透過するが、波源の大きさが大きい場合、波源からこの角度で放射する電波は少なくなり、その影響は小さい。なお、曲面部分は円錐台形を多段重ねた形でテーパー面を形成し、この面によって近似しても良い。誘電体の波源に対向する平坦部分163aには、装荷する波源によって整合性をよくするために、テーパー状の突起部を設けても良い。
【0018】
上述したように、波源の中心から前記曲面又はテーパー面を形成していない誘電体の側面に向かう電波のうち、側面に対する入射角が臨界角より小さい場合、その一部が透過する。この透過波を減少させるため、即ち、放射源からの電波が全反射するように構成してある。全反射波は、誘電体側面付近に表面波を生成すると共に、誘電体先端面まで伝搬される。
【0019】
また、本発明の誘電体装荷アンテナの他の態様は、上記の誘電体装荷アンテナと同様な放射源と誘電体とを有している。この誘電体の他方の端面から正面方向に放射される電波の位相と前記誘電体の正面方向に伝搬する表面波の位相とが、ほぼ同相となるように、前記誘電体の軸方向の長さが決定されている。誘電体の放射源に対向する端面には、放射源からの電波が誘電体柱の側面を透過することを極力抑えるように、曲面或いはテーパー面が形成されている。この曲面或いはテーパー面の角度は、誘電体の側面及びテーパー面において、前記放射源からの電波が全反射する角度に決定されている。
【0020】
上述したように、曲面又はテーパー面を設けていない誘電体を装荷した場合、波源の中心から誘電体の側面に向かう電波のうち、側面に対する入射角が臨界角よりも小さいものの一部が透過する。この透過波を減少させるために、即ち、放射源からの電波が全反射するように、曲面又はテーパー面が形成されている。更に、全反射波は、誘電体側面付近に表面波を形成し、かつ、誘電体先端面に到達する。この表面波が誘電体側面を誘電体の中心軸方向に沿って伝搬するときの位相と、誘電体先端面から正面方向に評者される電波の位相とが同相となるように、誘電体の軸方向の長さを決定し、表面波の位相と誘電体内の電波の位相とが、誘電体の先端で誘電体の中心軸と直交する平面で同相となるようにしてある。
【0021】
【発明の実施の形態】
本発明の1実施の形態の誘電体装荷アンテナの一例は、図1に示すように、矩形導波管12によって給電された方形の放射導波管14を波源として使用し、先端部がレンズ状に形成された誘電体16を装荷した直線偏波アンテナである。波源としては、上記の放射導波管14の他に、スリットアンテナ、同軸線路、マイクロストリップ線路、或いはコプレナー線路によって給電されたバッチアンテナ、さらにはループアンテナや、スパイラルアンテナであっても良い。また、この誘電体装荷アンテナはいくつかの素子を配列した平面アンテナとしても、使用できる。
【0022】
なお、矩形導波管12は、本体10の2枚の導電体、例えば金属板10a、10bの合わせ面に溝を形成することによって形成されている。この給電用導波管12の先端部に、放射源、例えば放射用導波管14が形成されている。この金属板は、プラスチックに金属メッキを施したものでもよく、その広さも誘電体16の断面積、或いはそれよりも小さいものでもよい。また、図2(a)、(b)に示すように、導波管開口や、導波管開口を少し広げたものに誘電体を装荷しても良い。導波管開口を、例えば誘電体の断面までホーンとして広げて誘電体を装荷すると、この誘電体は平面波に近いもので、給電されるために円筒状の誘電体でよいが、全体としての長さが長くなる。
【0023】
この放射用導波管14の開口面上に誘電体16が配置されている。この誘電体16は、ほぼ円柱状に形成されている。即ち、相対向する円形の端面16a、16bを有し、一方の端面16aが放射用導波管14の開口に接するように配置されている。なお、端面16aは、必ずしも放射用導波管14の開口に接するとは限らない。波源の設計は、誘電体が波源に接着或いは近傍に配置することを考慮して行うので、接着するか、わずかに間隙を設けるかは、波源によって考慮される。更に、端面16aの中心部には、波源との整合をとるための突起部、例えば円錐形や円錐台の突起部を設けても良い。
【0024】
このように誘電体16を装荷したアンテナでは、上述したように直径dを3λ以上としても、利得は向上しない。そこで、この誘電体装荷アンテナでは、誘電体16の他方の端面16b、即ち、放射用導波管14の開口から離れた端面に、図1、図2(a)、(b)に示すように、誘電体レンズ、例えば凸レンズ面が形成されている。或いは、図3に示すように、複数、例えば4段の段部18a乃至18dが形成されている。これら段部18a乃至18dも、短円柱状に形成されており、端面16bと一体に形成されている。これら段部18a乃至18dは、いずれも誘電体16の中心軸と同心に配置されており、端面16bに最も接近している段部18aの直径が最も大きく、以下、18b、18c、18dと、端面16bから離れるに従って、直径が小さくなっている。このように段部を設けることによって、擬似的に段部18a乃至18dによって、図1、図2(a)、(b)に示すような凸レンズと同等な凸レンズが形成されている。上述した各誘電体16は、その端面に誘電体レンズを有するものとなるので、例えば受信アンテナとして使用した場合、良好に電波を集束することができ、動作利得が向上する。また、誘電体16の軸方向に、この誘電体先端面から正面方向に放射される電波を平面波に近づけ、この平面波の位相と前記誘電体16の正面方向に伝搬する表面波の位相とが、ほぼ同相となるように、誘電体16の全高さ寸法tが決定されているので、この表面波が誘電体を取り巻いている分だけ、等価的な実効開口面積が大きくなる。
【0025】
3.5λの直径を持つ誘電体16の各部の寸法は、使用周波数が、例えば11.85GHzの場合、図4に示すようにt0は、83.5mm(3.3λ)、dは88.55mm(3.5λ)、段部18aの直径d1は、75.9mm(3λ)、同高さt1は、6.2mm(0.25λ)、段部18bの直径d2は、63.25mm(2.5λ)、同高さt2は、5.2mm(0.21λ)、段部18cの直径d3は、50.6mm(2λ)、同高さ寸法t3は、6.2mm(0.25λ)、段部18dの直径d4は、28.5mm(1.125λ)、同高さ寸法t4は、7.3mm(0.29λ)である。この場合、誘電体の全長tは、dの約1.22倍である。
【0026】
また、4λの直径dを持つ誘電体161を使用する場合、図5に示すように、段部161a、161bの2段の段部が形成される。この場合、誘電体161の高さ寸法t0は、103.2mm(4.08λ)、段部161aの直径d1は、75.9mm(3λ)、同高さ寸法t1は、11mm(0.44λ)、段部161bの直径d2は、50.6mm(2λ)、同高さ寸法t2は、4mm(0.16λ)である。この場合、誘電体161の全長tは、dの約1.17倍である。
【0027】
また、3λ(75.9mm)の直径dを持つ誘電体162を使用する場合、図6に示すように、段部162a、162b、162cの3段の段部が形成される。この場合、誘電体162の高さ寸法t0は、70.13mm(2.78λ)、段部162aの直径d1は、63.25mm(2.5λ)、同高さ寸法t1は、5.2mm(0.21λ)、段部162bの直径d2は、50.6mm(2λ)、同高さ寸法t2は、5.0mm(0.20λ)、段部162cの直径d3は、28.5mm(1.125λ)、同高さ寸法t3は、3.0mm(0.12λ)である。この場合、誘電体162の全長tは、dの約1.11倍である。
【0028】
上述したような誘電体16、161、162のような誘電体を使用した場合の動作利得及び開口効率と誘電体の直径との関係を図7に示す。図7から明らかなように、誘電体飯野直径が3λ以上となっても、誘電体16、161、162のような誘電体を使用していると、動作利得を増加させることができるし、100パーセント以上の開口効率を維持できる。なお、図7の特性は、使用周波数を11.8GHz、放射用導波管14の放射開口の一辺の長さA(図1参照)を15.4mmとし、伝送用導波管12の深さdeを22.18mmとした場合のものである。
【0029】
上記の実施の形態では、誘電体として円柱状のものを使用したが、角柱状のものを使用することもできる。上記の実施の形態の誘電体装荷アンテナでは、放射用導波管を1個だけ設けたが、これらを複数個設け、各放射用導波管それぞれに誘電体を装荷しても良い。
【0030】
図8に第2の実施の形態において使用する誘電体163を示す。この誘電体163でも、曲面による誘電体レンズ163bが先端面に形成されている。
【0031】
また、電波の放射源側になる端面163aの全域には、曲面164が形成されている。この曲面164は、次のようにして形成されている。放射源Oから放射される電波が誘電体の側面に臨界角で入射する位置をPとする。O−P間の距離をRとし、Pから法線上に距離Rの所にA点をとる。A点を中心に半径Rで円を描き、この円が誘電体の放射源側の端面163aと交差する点をBとする。誘電体軸を中心としてP−Bの曲線を回転させて、曲面164ができる。この曲面は何段かの円錐台で近似しても良い。なお、臨界角θcはsin-1(1/√εs )と計算されるので、誘電体の比誘電率εs が2.26であれば、41.7度となる。波源の開口の最大径がa’であれば、波源の端B’から垂直に曲線B−P上の点Cまで線を引き、線B’−C−Pを、誘電体の軸を中心として回転させてできる形に形成されている。なお、曲面部分は、円錐台形を多段重ねた形で近似しても良い。
【0032】
この曲面164は、端面の中央から放射される電波の誘電体163の側面163cに対する入射角がほぼ臨界角θcとなる位置まで形成されている。
【0033】
このように誘電体163が形成されているので、放射源から放射された電波のうち曲面164に向かった電波の曲面164に対する入射角θは、臨界角θcに等しいかそれよりも大きい。従って、この電波は透過することなく、全反射し、誘電体163内部を端面163b側に向かって伝搬する。これは曲面164のいずれの位置に置いても生じる。
【0034】
また曲面164の形成位置が上述したように設定されているので、誘電体163の側面163cに入射した電波の入射角θ1は、臨界角θc以上となり、全反射する。これも、誘電体163の側面163cのいずれの部分でも生じる。従って、誘電体163の側面163cから電波が外部に透過することはない。
【0035】
なお、曲面164や側面163cによって全反射したことにより、上述したように表面波が発生する。この表面波は、側面163cを先端面163b側に向かって伝搬する。この表面波の先端面163bにおける位相が、誘電体163の内部を伝搬した電波の位相と同相となるように、誘電体163の高さ寸法tが決定されている。この寸法tも、第1の実施の形態に関連して、説明した値とほぼ同様な値である。
【0036】
第2の実施の形態の誘電体装荷アンテナでは、誘電体レンズを備えるので、第1の実施の形態の誘電体装荷アンテナと同様に、誘電体163内を伝搬した電波の位相は、誘電体レンズ163bから放射されて揃い、放射波は平面波に近くなる。また、誘電体163の側面163cや曲面164に向かって伝搬された電波は、側面163cや曲面164によって全反射され、外部に透過されずに、誘電体163内を誘電体レンズ163b側に伝搬するので、スピルオーバーが殆ど生じない。また、全反射された電波によって生じた表面波の位相が、誘電体レンズ163bから正面方向に放射される電波の位相とほぼ同相となるように、誘電体の軸方向の長さが決定されているので、利得が向上し、開口効率も向上する。
【0037】
なお、第2の実施の形態では、誘電体レンズ163bを形成したが、誘電体の直径が約3波長以下の場合には、これを除去して、誘電体163の波源と反対側の端面を平面とすることもできる。第2の実施の形態では、曲面164を使用したが、テーパー面を使用しても良い。また、両実施の形態では、直線偏波の電波を放射したが、円偏波の電波を放射してもよい。
【0038】
【発明の効果】
以上のように、誘電体先端部が平面の場合には、直径が3波長を超えれば、急激に利得が向上する。しかし、本発明による誘電体装荷アンテナによれば、装荷される誘電体柱の先端部にレンズ効果を持たせることや、表面波と誘電体柱内の伝搬波の位相を揃えるように誘電体の長さを調整したことにより、直径が約1波長以上において、利得の向上を直径にほぼ比例させることができる。例えば、直径が1.17波長では約0.3dB、3.5波長では約2.8dBの利得を向上させることができる。誘電体柱の直径が3波長を超えると、その効果が顕著になり、4波長では3.5dBも向上できる。更に、直径7波長の本発明において使用した誘電体を用いれば、1素子でも26.27dBであるのに対し、例えば素子間隔が0.6波長、開口効率が70パーセントの128素子のマイクロストリップパッチアンテナの利得が26.08dBであるので、本発明のアンテナであれば、1素子でよいことになる。
【0039】
このアンテナは、周波数が倍になれば、誘電体の体積は1/4ですむので、周波数が高くなれば、非常に有利となり、その上、構造が簡単であり、製造が容易で、低コストのアンテナを実現できる。
【0040】
また、例えば比誘電率2.26の場合、直径が1波長から1.3波長くらいの誘電体の先端部にレンズ効果等を持たせることにより、1素子で約0.2dB程度の利得を向上させることができるので、この誘電体を使用して、配列アンテナを構成すると、利得、効率の高い平面アンテナを構成することができる。特に、素子の利得が高いので、素子間隔が1波長以上になっても、グレーティングローブを低く抑えられ、導波管による並列給電回路網の使用が可能であるため、100GHz以上のアンテナであっても、効率の非常に高いアンテナの実現が可能となる。
【0041】
更に、誘電体の放射源側の端面に曲面又はテーパー面を形成することにより、誘電体の側面や曲面またはテーパー面に伝搬した電波が全反射されて、誘電体の外部に透過することがなく、サイドローブが抑制されて、更に利得を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の1例の誘電体装荷アンテナの斜視図である。
【図2】本発明の第1の実施の形態の他の例の誘電体装荷アンテナの斜視図である。
【図3】第1の実施の形態の誘電体装荷アンテナに使用する誘電体の一例の斜視図である。
【図4】第1の実施の形態の誘電体装荷アンテナに使用する誘電体の他の例の正面図である。
【図5】第1の実施の形態の誘電体装荷アンテナに使用する誘電体の別の例の正面図である。
【図6】第1の実施の形態の誘電体装荷アンテナに使用する誘電体の更に別の例の正面図である。
【図7】第1の実施の形態の誘電体装荷アンテナの直径と動作利得及び開口効率との関係を示す図である。
【図8】本発明の第2の実施の形態の誘電体装荷アンテナで使用する誘電体の正面図である。
【図9】従来の誘電体装荷アンテナの一例の斜視図である。
【図10】図9の誘電体装荷アンテナの直径と動作利得及び開口効率との関係を示す図である。
【図11】従来の誘電体装荷アンテナの他の例の正面図である。
【符号の説明】
14 放射用導波管(放射源)
16 161 162 163 誘電体
18a、18b、18c、18d 段部
161a、161b 段部
162a、162b、162c 段部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric loaded antenna, and more particularly to a shape of a loaded dielectric.
[0002]
[Prior art]
Conventionally, there are a dielectric rod antenna and a lens antenna as typical dielectric loaded antennas loaded with a dielectric having a low dielectric constant. As shown in FIGS. 11 (a) and 11 (b), the dielectric rod antenna is opposed to the waveguide 2 in front of the opening of the waveguide 2 that radiates super-high frequency radio waves as a radiation source. A cylindrical dielectric 4 is arranged.
[0003]
In the case of using a conventional dielectric rod antenna having a cylindrical shape made of, for example, polystyrene (relative dielectric constant 2.54) as the dielectric 4, the diameter d is 0. As shown in FIG. At 8 wavelengths, the gain is maximum when the length L is about 1 wavelength, and the value is about 12 dBi. When the diameter d of the dielectric 4 is 0.5 wavelength, the gain is maximum when the length is about 2.3 wavelengths, and the value is about 14 dBi. Further, as shown in FIG. 11B, the diameter d of the dielectric power feeding portion is set to one wavelength, and the length from this portion to the length of several wavelengths is tapered toward the tip, and the diameter is about 0.4. In an antenna with a total length L of about 15 wavelengths, the thickness is kept constant and extended by several wavelengths while keeping the thickness constant, and further tapered down to the vicinity of the tip. There is an example that has gained.
[0004]
Since the dielectric rod antenna uses only the surface wave propagating in the axial direction, that is, in the front direction, when the area of the tip of the dielectric column is wide, the dielectric rod antenna propagates from the inside of the dielectric. A transmitted wave of a radio wave is radiated, and a part of the wave is reflected and propagates through the dielectric body toward the wave source. At the same time, the reflected wave is excited also to the surface wave to become a standing wave. As a result, many side lobes are generated, and a high gain cannot be expected. Therefore, in general, a dielectric column having a wavelength of 1 wavelength or less is used even in a thick portion, and a gentle taper of about 2.5 to 4 degrees is applied to the central axis of the dielectric column, so that the tip of the dielectric is By reducing the area, radiation from this part is suppressed as much as possible.
[0005]
If the diameter of the dielectric 4 is made thicker than one wavelength, the gain increases from about 2 to 3 wavelengths, but because multiple mode radio waves are excited, more side lobes are generated and the directivity is disturbed. If it exceeds this value, the gain greatly varies depending on the diameter, and a desired gain cannot be obtained. In this way, when the diameter of the dielectric is made thicker than one wavelength, multimode radio waves are generated in the dielectric, so the theoretical analysis becomes very complicated, and it seems that there is no merit of making it thicker. So that research is scarce.
[0006]
The lens antenna includes an optical lens-like large-diameter lens and a small spherical lens antenna. However, since both use only the lens effect in which the transmitted wave plays a leading role, the aperture efficiency is 100% or less.
[0007]
[Problems to be solved by the invention]
As described above, in the dielectric rod antenna, if the cross-sectional area perpendicular to the axial direction of the dielectric is increased, the wave front is complicated due to the multiple modes of radio waves radiated in the direction from the front surface of the dielectric. Therefore, an efficient antenna cannot be expected. For example, when the relative dielectric constant is 2.26, when the diameter of the dielectric exceeds 3 wavelengths, the gain decreases rapidly. Further, since the lens antenna mainly uses the transmitted wave as described above, the aperture efficiency is low.
[0008]
An object of the present invention is to provide a dielectric loaded antenna with improved gain and aperture efficiency.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a dielectric loaded antenna according to the present invention includes a radio wave radiation source and a dielectric loaded on the radiation source. The dielectric is a columnar body having two opposing end faces, and one end face thereof faces the radiation source. For example, the dielectric is loaded with its central axis aligned with the front direction of the wave source. As the columnar body, for example, a columnar or polygonal columnar one can be used. A cross-sectional shape perpendicular to the central axis of the dielectric on the dielectric front end surface, which is the other end surface of the dielectric, is arranged from the radiation source so that the phase of the radiated radio wave from the radiation source is aligned with the front direction of the antenna. As the distance increases, the distance decreases toward the central axis of the dielectric. Further, the radio wave radiated from the front end surface of the dielectric is brought close to a plane wave, and the phase of the plane wave and the phase of the surface wave propagating in the front direction of the dielectric are substantially in phase. The length of the body in the axial direction has been determined.
[0010]
When loaded with the central axis of the columnar dielectric aligned with the front axis of the wavefront, radio waves that are radiated from the center of the end surface of the dielectric wave source are within the viewing angle when the dielectric front surface is viewed from the wave source. And a radio wave propagating out of the viewing angle, that is, toward the side surface of the dielectric.
[0011]
Of the radio waves propagating within the viewing angle when looking at the dielectric tip, the radio waves from the center of the wave source along the central axis of the dielectric are more propagated from the center of the wave source toward the periphery of the dielectric tip. However, since the propagation distance is short, the phase is advanced. For this reason, the emitted radio wave does not become a plane wave. Therefore, even if the diameter of the dielectric is increased, improvement in gain cannot be expected. Therefore, in the vicinity of the dielectric tip surface, the cross-sectional area in the direction perpendicular to the central axis decreases as the distance from the wave source decreases, and the electromagnetic wave propagates from the center of the wave source toward the periphery of the dielectric tip surface. In the area where the path is shortened and the dielectric is projected onto a plane orthogonal to the tip on the central axis of the dielectric, the phase of the dielectric is adjusted so that the phase of the radio wave is aligned and a plane wave is obtained. Forming. In other words, the dielectric has a lens effect, and the radiation wave front surface from the dielectric is actively used.
[0012]
However, a radio wave traveling from the center of the wave source toward the side surface of the dielectric pillar, that is, a radio wave propagating outside the viewing angle when the front end surface of the dielectric is viewed from the wave source is less than the critical angle. The part is transmitted and radiated to the outside of the dielectric, and a part is reflected inside the dielectric. Incident waves greater than the critical angle are totally reflected at the side of the dielectric. As a result, a surface wave is generated near the side surface of the dielectric. The totally reflected radio wave propagates in the dielectric and reaches the dielectric tip surface. Since the propagation path of this reflected wave is longer than the propagation path of the radio wave propagating along the central axis in the dielectric, the phase when reaching the front end surface of the radio wave dielectric propagates through the propagation path. Delayed from the phase of the radio wave. Therefore, in consideration of this, it is desirable to correct the dielectric front end surface so that the antenna gain is maximized.
[0013]
For example, when the diameter of the dielectric is relatively small, the dielectric tip surface shape is such that, for example, from 1 to 2.5 wavelengths, the dielectric tip surface is a conical surface with an apex angle of about 140 degrees, or this cone. A lens effect can be obtained by leaving a part of the flat surface at the tip of the lens to form a truncated cone. As the diameter increases, a lens effect can be provided approximately by a shape combining a cone or a plurality of truncated cones, or a combination of stepped portions. However, it goes without saying that it is desirable to accurately form a lens with a corrected curved surface.
[0014]
The phase of the surface wave propagating along the side of the dielectric along the central axis direction of the dielectric and the radio wave radiated in the front direction from the front end surface of the dielectric are brought close to the plane wave, so that the phase of this plane wave is in phase. The axial length of the dielectric is determined. This is because the phase velocity of the surface wave is different from the phase velocity in the dielectric, so that the phase is in phase on a plane perpendicular to the central axis of the dielectric at the tip of the dielectric. For example, when the relative permittivity of the dielectric is 2.26, the ratio of the length in the axial direction to the diameter of the dielectric is slightly different depending on the diameter, but may be between 1.07 and 1.17. .
[0015]
As described above, if the lens effect at the tip of the dielectric is sufficiently obtained, the surface wave propagating on the side surface of the dielectric is added to the radiation from this portion in phase, so that the equivalent effective aperture area is increased. Therefore, when the sectional area of the dielectric is the opening area of the antenna, the opening efficiency of the antenna can exceed 100%.
[0016]
FIG. 10 shows the gain and aperture efficiency of an antenna in which a simple cylindrical dielectric 4 having no lens effect shown in FIG. 9 is loaded on the waveguide 2, and when the diameter of the dielectric exceeds three wavelengths, the gain is increased. Decreases rapidly. As described above, if a dielectric having a lens effect is used, a gain substantially proportional to the diameter of the dielectric can be expected as shown in FIG. Experimentally, when the diameter of the dielectric is 7 wavelengths, by making the front end of the dielectric stepwise and approximating the lens, an operating gain of 26.27 dBi is obtained, the aperture efficiency is about 88 percent, Better than a horn antenna. The aperture efficiency of an antenna using a dielectric having a diameter less than or equal to this diameter is improved as the diameter becomes smaller as shown in FIG. 7, so that the efficiency is higher than that of an electromagnetic horn.
[0017]
When the opening area of the loaded wave source is relatively smaller than the cross-sectional area of the dielectric, the radio wave radiated from the wave source approaches a spherical wave, and the incident wave toward the side surface of the dielectric increases. A radio wave incident on the side surface with an incident angle smaller than the critical angle is radiated to the outside from the side wall portion, creating a side lobe, and the efficiency as an antenna is reduced. Therefore, in order not to transmit radio waves from this part, from the side part where the angle at which the radiated wave from the central part of the wave source is incident on the side face is a critical angle, from the side part to the end face on the radiation source side, a curved surface or several frustoconical shapes Shape. For example, as shown in FIG. 8, P is a position where a radio wave radiated from the center 0 of the wave source is incident on the side surface of the dielectric at a critical angle θc. Let the distance between 0-P be R, and take point A at a point of distance R on the normal line from P. A circle is drawn with a radius R around the point A, and B is a point where the circle intersects the end face 163a of the dielectric on the radiation source side. If the curved surface 164 formed by rotating the curve of PB around the dielectric axis is formed, the radio wave radiated from the zero point and totally incident on the curved surface is totally reflected, so there is no transmission, and the side by this Lobes are suppressed. The size of the opening of the wave source is preferably within a flat area facing the dielectric wave source having a radius of 0-B. Therefore, the maximum diameter of the wave source to which this curve can be applied is within 0.66 times the diameter of the dielectric. However, when loading a wave source larger than this, for example, if the maximum diameter of the wave source is a ′, a line is drawn vertically from the end B ′ of the wave source to a point C on the curve BP, and the line B ′. What is necessary is just to shape | mold -C-P in the form which can be rotated centering on the axis | shaft of a dielectric material. In this case, the radio wave radiated from the center of the wave source toward B′-C is transmitted to the outside. However, when the size of the wave source is large, the radio wave radiated at this angle from the wave source is reduced, and the influence is small. . The curved surface portion may be approximated by a tapered surface formed by stacking a truncated cone shape in multiple stages. The flat portion 163a facing the dielectric wave source may be provided with a tapered protrusion in order to improve the matching depending on the wave source to be loaded.
[0018]
As described above, when the incident angle with respect to the side surface is smaller than the critical angle, a part of the radio wave traveling from the center of the wave source toward the side surface of the dielectric not forming the curved surface or the tapered surface is transmitted. In order to reduce the transmitted wave, that is, the radio wave from the radiation source is totally reflected. The total reflection wave generates a surface wave near the dielectric side surface and propagates to the dielectric tip surface.
[0019]
Another aspect of the dielectric-loaded antenna of the present invention includes a radiation source and a dielectric similar to the above-described dielectric-loaded antenna. The axial length of the dielectric so that the phase of the radio wave radiated in the front direction from the other end face of the dielectric and the phase of the surface wave propagating in the front direction of the dielectric are substantially in phase. Has been determined. A curved surface or a tapered surface is formed on the end face of the dielectric radiation source so as to suppress the radio wave from the radiation source from passing through the side surface of the dielectric column as much as possible. The angle of the curved surface or the tapered surface is determined so that the radio wave from the radiation source is totally reflected on the side surface and the tapered surface of the dielectric.
[0020]
As described above, when a dielectric that is not provided with a curved surface or a tapered surface is loaded, a part of the radio wave that travels from the center of the wave source toward the side of the dielectric has an incident angle smaller than the critical angle is transmitted. . In order to reduce the transmitted wave, that is, a curved surface or a tapered surface is formed so that the radio wave from the radiation source is totally reflected. Further, the total reflected wave forms a surface wave near the dielectric side surface and reaches the dielectric tip surface. The axis of the dielectric is such that the phase when the surface wave propagates along the dielectric side surface along the direction of the central axis of the dielectric and the phase of the radio wave evaluated in the front direction from the front surface of the dielectric are in phase. The length of the direction is determined so that the phase of the surface wave and the phase of the radio wave in the dielectric are in phase on a plane perpendicular to the central axis of the dielectric at the tip of the dielectric.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An example of a dielectric loaded antenna according to an embodiment of the present invention uses a rectangular radiation waveguide 14 fed by a rectangular waveguide 12 as a wave source as shown in FIG. It is a linearly polarized antenna loaded with the dielectric 16 formed in the above. As a wave source, in addition to the radiation waveguide 14 described above, a slit antenna, a coaxial line, a microstrip line, a batch antenna fed by a coplanar line, a loop antenna, or a spiral antenna may be used. This dielectric loaded antenna can also be used as a planar antenna in which several elements are arranged.
[0022]
The rectangular waveguide 12 is formed by forming a groove on the mating surfaces of two conductors of the main body 10, for example, the metal plates 10a and 10b. A radiation source, for example, a radiation waveguide 14 is formed at the tip of the power supply waveguide 12. This metal plate may be a metal plate plated with plastic, and the width thereof may be smaller than the cross-sectional area of the dielectric 16 or smaller. Further, as shown in FIGS. 2A and 2B, a dielectric may be loaded on a waveguide opening or a widened waveguide opening. When the waveguide opening is expanded as a horn up to the cross section of the dielectric, for example, and the dielectric is loaded, the dielectric is close to a plane wave and may be a cylindrical dielectric for power supply. Lengthens.
[0023]
A dielectric 16 is disposed on the opening surface of the radiation waveguide 14. The dielectric 16 is formed in a substantially cylindrical shape. In other words, the circular end faces 16 a and 16 b are opposed to each other, and one end face 16 a is disposed so as to be in contact with the opening of the radiation waveguide 14. Note that the end face 16a is not necessarily in contact with the opening of the radiation waveguide 14. The design of the wave source is performed in consideration of the fact that the dielectric is adhered to or disposed in the vicinity of the wave source. Therefore, whether to adhere or to provide a slight gap is considered by the wave source. Furthermore, a protrusion for matching with the wave source, for example, a conical or truncated cone protrusion may be provided at the center of the end face 16a.
[0024]
Thus, the antenna loaded with the dielectric 16 does not improve the gain even if the diameter d is 3λ or more as described above. Therefore, in this dielectric loaded antenna, the other end face 16b of the dielectric 16, that is, the end face away from the opening of the radiating waveguide 14, is shown in FIGS. 1, 2A, and 2B. A dielectric lens, for example, a convex lens surface is formed. Alternatively, as shown in FIG. 3, a plurality of, for example, four steps 18a to 18d are formed. These step portions 18a to 18d are also formed in a short cylindrical shape, and are formed integrally with the end surface 16b. These step portions 18a to 18d are all arranged concentrically with the central axis of the dielectric 16, and the step portion 18a closest to the end face 16b has the largest diameter, hereinafter referred to as 18b, 18c, 18d, As the distance from the end face 16b increases, the diameter decreases. By providing the step portion in this way, a convex lens equivalent to the convex lens as shown in FIGS. 1, 2A and 2B is formed by the step portions 18a to 18d in a pseudo manner. Since each dielectric 16 described above has a dielectric lens on its end face, for example, when used as a receiving antenna, it is possible to focus radio waves well and improve the operating gain. Further, in the axial direction of the dielectric 16, radio waves radiated from the front end surface of the dielectric toward the front direction are brought close to a plane wave, and the phase of the plane wave and the phase of the surface wave propagating in the front direction of the dielectric 16 are: Since the total height t of the dielectric 16 is determined so as to be substantially in phase, the equivalent effective opening area is increased as much as the surface wave surrounds the dielectric.
[0025]
The dimensions of each part of the dielectric 16 having a diameter of 3.5λ are 83.5 mm (3.3λ) and d is 88.55 mm when the operating frequency is 11.85 GHz, for example, as shown in FIG. (3.5λ), the diameter d1 of the step portion 18a is 75.9 mm (3λ), the height t1 is 6.2 mm (0.25λ), and the diameter d2 of the step portion 18b is 63.25 mm (2. 5λ), the same height t2 is 5.2 mm (0.21λ), the diameter d3 of the step portion 18c is 50.6 mm (2λ), and the same height t3 is 6.2 mm (0.25λ). The diameter d4 of the portion 18d is 28.5 mm (1.125λ), and the height dimension t4 is 7.3 mm (0.29λ). In this case, the total length t of the dielectric is about 1.22 times d.
[0026]
When the dielectric 161 having a diameter d of 4λ is used, two stepped portions 161a and 161b are formed as shown in FIG. In this case, the height 161 of the dielectric 161 is 103.2 mm (4.08λ), the diameter d1 of the stepped portion 161a is 75.9 mm (3λ), and the height t1 is 11 mm (0.44λ). The step portion 161b has a diameter d2 of 50.6 mm (2λ) and a height dimension t2 of 4 mm (0.16λ). In this case, the total length t of the dielectric 161 is about 1.17 times d.
[0027]
Further, when the dielectric 162 having a diameter d of 3λ (75.9 mm) is used, as shown in FIG. 6, three step portions 162a, 162b, and 162c are formed. In this case, the height 162 of the dielectric 162 is 70.13 mm (2.78λ), the diameter d1 of the stepped portion 162a is 63.25 mm (2.5λ), and the height t1 is 5.2 mm ( 0.21λ), the diameter d2 of the step portion 162b is 50.6 mm (2λ), the height t2 is 5.0 mm (0.20λ), and the diameter d3 of the step portion 162c is 28.5 mm (1. 125λ) and the height t3 is 3.0 mm (0.12λ). In this case, the total length t of the dielectric 162 is about 1.11 times d.
[0028]
FIG. 7 shows the relationship between the operating gain and the aperture efficiency and the diameter of the dielectric when using dielectrics such as the dielectrics 16, 161, 162 as described above. As is apparent from FIG. 7, even when the dielectric Iino diameter is 3λ or more, the use of dielectrics such as the dielectrics 16, 161, 162 can increase the operating gain, and 100 An opening efficiency of more than a percentage can be maintained. The characteristics shown in FIG. 7 are that the frequency used is 11.8 GHz, the length A of one side of the radiation opening of the radiation waveguide 14 (see FIG. 1) is 15.4 mm, and the depth of the transmission waveguide 12 is as follows. In this case, de is 22.18 mm.
[0029]
In the above embodiment, a cylindrical material is used as the dielectric, but a prismatic material can also be used. In the dielectric-loaded antenna of the above embodiment, only one radiation waveguide is provided, but a plurality of these may be provided, and a dielectric may be loaded on each radiation waveguide.
[0030]
FIG. 8 shows a dielectric 163 used in the second embodiment. Also in this dielectric 163, a dielectric lens 163b having a curved surface is formed on the tip surface.
[0031]
Further, a curved surface 164 is formed over the entire area of the end surface 163a on the radio wave radiation source side. The curved surface 164 is formed as follows. Let P be the position at which the radio wave radiated from the radiation source O enters the side surface of the dielectric at a critical angle. Let the distance between OP be R, and take point A at a distance R on the normal line from P. A circle is drawn with a radius R around the point A, and a point where the circle intersects the end face 163a of the dielectric on the radiation source side is defined as B. A curved surface 164 is formed by rotating the curve of PB about the dielectric axis. This curved surface may be approximated by a number of truncated cones. The critical angle θc is sin -1 Since (1 / √εs) is calculated, if the relative dielectric constant εs of the dielectric is 2.26, then 41.7 degrees. If the maximum diameter of the opening of the wave source is a ′, a line is drawn vertically from the end B ′ of the wave source to a point C on the curve BP, and the line B′-CP is centered on the dielectric axis. It is formed into a shape that can be rotated. Note that the curved surface portion may be approximated in a shape in which a truncated cone shape is stacked in multiple stages.
[0032]
The curved surface 164 is formed up to a position where the incident angle of the radio wave radiated from the center of the end surface with respect to the side surface 163c of the dielectric 163 is substantially the critical angle θc.
[0033]
Since the dielectric 163 is formed in this way, the incident angle θ of the radio wave radiated from the radiation source toward the curved surface 164 with respect to the curved surface 164 is equal to or larger than the critical angle θc. Therefore, this radio wave is totally reflected without being transmitted, and propagates in the dielectric 163 toward the end face 163b side. This occurs regardless of where the curved surface 164 is placed.
[0034]
Further, since the formation position of the curved surface 164 is set as described above, the incident angle θ1 of the radio wave incident on the side surface 163c of the dielectric 163 is equal to or greater than the critical angle θc and is totally reflected. This also occurs in any part of the side surface 163c of the dielectric 163. Therefore, the radio wave does not penetrate to the outside from the side surface 163c of the dielectric 163.
[0035]
Note that surface waves are generated as described above due to total reflection by the curved surface 164 and the side surface 163c. The surface wave propagates on the side surface 163c toward the front end surface 163b. The height dimension t of the dielectric 163 is determined so that the phase of the surface wave at the front end surface 163b is in phase with the phase of the radio wave propagated through the dielectric 163. This dimension t is also a value substantially similar to the value described in relation to the first embodiment.
[0036]
Since the dielectric loaded antenna of the second embodiment includes a dielectric lens, the phase of the radio wave propagated in the dielectric 163 is the same as that of the dielectric loaded antenna of the first embodiment. The radiated waves are aligned and radiated from 163b. Further, the radio wave propagated toward the side surface 163c and the curved surface 164 of the dielectric 163 is totally reflected by the side surface 163c and the curved surface 164, and propagates through the dielectric 163 toward the dielectric lens 163b without being transmitted to the outside. Therefore, almost no spillover occurs. Further, the axial length of the dielectric is determined so that the phase of the surface wave generated by the totally reflected radio wave is substantially in phase with the phase of the radio wave radiated from the dielectric lens 163b in the front direction. Therefore, the gain is improved and the aperture efficiency is also improved.
[0037]
In the second embodiment, the dielectric lens 163b is formed. However, when the diameter of the dielectric is about 3 wavelengths or less, the dielectric lens 163b is removed and the end surface of the dielectric 163 opposite to the wave source is removed. It can also be a plane. Although the curved surface 164 is used in the second embodiment, a tapered surface may be used. In both embodiments, linearly polarized radio waves are radiated, but circularly polarized radio waves may be radiated.
[0038]
【The invention's effect】
As described above, when the dielectric tip is a flat surface, the gain is drastically improved if the diameter exceeds three wavelengths. However, according to the dielectric-loaded antenna according to the present invention, the tip of the dielectric column to be loaded has a lens effect and the phase of the dielectric wave is adjusted so that the surface wave and the propagating wave in the dielectric column are aligned. By adjusting the length, the gain improvement can be made substantially proportional to the diameter when the diameter is about one wavelength or more. For example, it is possible to improve the gain of about 0.3 dB at a wavelength of 1.17 and about 2.8 dB at a wavelength of 3.5. When the diameter of the dielectric pillar exceeds 3 wavelengths, the effect becomes remarkable, and at 4 wavelengths, it can be improved by 3.5 dB. Furthermore, if the dielectric material used in the present invention having a diameter of 7 wavelengths is used, even if one element is 26.27 dB, for example, a 128 element microstrip patch with an element spacing of 0.6 wavelength and an aperture efficiency of 70 percent. Since the gain of the antenna is 26.08 dB, one element is sufficient for the antenna of the present invention.
[0039]
This antenna has a dielectric volume of 1/4 when the frequency is doubled. Therefore, if the frequency is high, it is very advantageous, and the structure is simple, easy to manufacture, and low cost. Can be realized.
[0040]
For example, in the case of a relative dielectric constant of 2.26, a gain of about 0.2 dB can be improved with one element by giving a lens effect or the like to the tip of a dielectric having a diameter of about 1 to 1.3 wavelengths. Therefore, when an array antenna is configured using this dielectric, a planar antenna with high gain and efficiency can be configured. In particular, since the gain of the element is high, the grating lobe can be kept low even when the element interval is one wavelength or more, and a parallel feeding network using a waveguide can be used. However, it is possible to realize a highly efficient antenna.
[0041]
Furthermore, by forming a curved surface or a tapered surface on the end surface of the dielectric on the radiation source side, the radio wave propagated to the side surface, curved surface or tapered surface of the dielectric is totally reflected and does not pass outside the dielectric. The side lobe is suppressed, and the gain can be further improved.
[Brief description of the drawings]
FIG. 1 is a perspective view of an example of a dielectric loaded antenna according to a first embodiment of the present invention.
FIG. 2 is a perspective view of another example of a dielectric loaded antenna according to the first embodiment of the present invention.
FIG. 3 is a perspective view of an example of a dielectric used in the dielectric loaded antenna according to the first embodiment.
FIG. 4 is a front view of another example of a dielectric used in the dielectric loaded antenna according to the first embodiment.
FIG. 5 is a front view of another example of a dielectric used in the dielectric loaded antenna according to the first embodiment.
FIG. 6 is a front view of still another example of the dielectric used in the dielectric loaded antenna according to the first embodiment.
FIG. 7 is a diagram showing the relationship between the diameter of the dielectric loaded antenna, the operating gain, and the aperture efficiency of the first embodiment.
FIG. 8 is a front view of a dielectric used in a dielectric loaded antenna according to a second embodiment of the present invention.
FIG. 9 is a perspective view of an example of a conventional dielectric loaded antenna.
10 is a diagram showing the relationship between the diameter, operating gain, and aperture efficiency of the dielectric loaded antenna of FIG.
FIG. 11 is a front view of another example of a conventional dielectric loaded antenna.
[Explanation of symbols]
14 Radiation waveguide (radiation source)
16 161 162 163 Dielectric
18a, 18b, 18c, 18d Step
161a, 161b Stepped part
162a, 162b, 162c Stepped part

Claims (3)

基部の平板状の面に設けられ、前記基部から離れる方向に電波を放射する放射源と、この放射源にほぼ接して設けられた柱状の誘電体とを、有し、
該誘電体は、対向する2つの端面を有する柱状体であって、
その一方の端面が前記放射源とほぼ接して位置し、かつ前記放射源よりも幅が大きく、
前記誘電体は、前記放射源からの放射電波を平面波として前記誘電体の他方の端面方向に向かって放射するように、前記他方の端面における前記誘電体の中心軸に直交する断面形状が、前記放射源から離れるに従って前記誘電体の中心軸に向かって減少し、
この波源から離れた端面の先端から正面方向に放射される電波の位相と、前記誘電体の側面を正面方向に伝播する表面波の位相とが、ほぼ同相になるように、前記誘電体の軸方向の長さと前記誘電体の幅との比が1.097乃至1.225とされた
誘電体装荷アンテナ。
A radiation source that is provided on a flat plate-like surface of the base, and emits radio waves in a direction away from the base; and a columnar dielectric provided substantially in contact with the radiation source,
The dielectric is a columnar body having two opposing end faces,
One end face thereof is located substantially in contact with the radiation source and is wider than the radiation source,
The dielectric has a cross-sectional shape perpendicular to the central axis of the dielectric on the other end surface so that the radio wave radiates from the radiation source as a plane wave toward the other end surface of the dielectric. Decreases toward the central axis of the dielectric as it moves away from the radiation source;
The axis of the dielectric so that the phase of the radio wave radiated in the front direction from the tip of the end face away from the wave source and the phase of the surface wave propagating in the front direction on the side surface of the dielectric are substantially in phase. A dielectric-loaded antenna in which the ratio of the length in the direction to the width of the dielectric is 1.097 to 1.225 .
請求項1記載の誘電体装荷アンテナにおいて、前記誘電体の波源側の端面には曲面またはこの曲面に近似した形状が形成され、前記曲面は、前記放射源の中心からの放射電波が前記誘電体内の側面に臨界角で入射する入射位置から、前記入射位置での法線上に、前記入射位置と前記放射源の中心との距離だけ隔てた位置を中心として前記距離を半径とする円を描き、その円の前記一方の端面の交差位置と前記入射位置との間の円弧の少なくとも一部を、前記誘電体の軸を中心として回転させて形成されている
誘電体装荷アンテナ。
2. The dielectric-loaded antenna according to claim 1, wherein a curved surface or a shape approximate to the curved surface is formed on an end surface of the dielectric on the wave source side, and a radiation wave from the center of the radiation source is formed on the curved surface. Draw a circle with the radius as the center around a position separated by a distance from the incident position and the center of the radiation source on the normal line at the incident position from the incident position incident on the side of A dielectric-loaded antenna formed by rotating at least a part of an arc between an intersection position of the one end face of the circle and the incident position about an axis of the dielectric.
基部の平板状の面に設けられ、前記基部から離れる方向に電波を放射する放射源と、この放射源にほぼ接して設けられた柱状の誘電体とを、有し、
該誘電体は、対向する2つの端面を有する柱状体であって、
その一方の端面が前記放射源とほぼ接して位置し、かつ前記放射源よりも幅が大きく、
前記誘電体の波源から離れた端面の先端から正面方向に放射される電波の位相と、前記誘電体の側面を正面方向に伝播する表面波の位相とが、ほぼ同相になるように、前記誘電体の軸方向の長さと前記誘電体の幅との比が1.097乃至1.225とされ、
前記誘電体の波源側の端面には曲面またはこの曲面に近似した形状が形成され、前記曲面は、前記放射源の中心からの放射電波が前記誘電体内の側面に臨界角で入射する入射位置から、前記入射位置での法線上に、前記入射位置と前記放射源の中心との距離だけ隔てた位置を中心として前記距離を半径とする円を描き、その円の前記一方の端面の交差位置と前記入射位置との間の円弧の少なくとも一部を、前記誘電体の軸を中心として回転させて形成されている
誘電体装荷アンテナ。
A radiation source that is provided on a flat plate-like surface of the base, and emits radio waves in a direction away from the base; and a columnar dielectric provided substantially in contact with the radiation source,
The dielectric is a columnar body having two opposing end faces,
One end face thereof is located substantially in contact with the radiation source and is wider than the radiation source,
The phase of the radio wave radiated in the front direction from the tip of the end face away from the dielectric wave source and the phase of the surface wave propagating in the front direction on the side surface of the dielectric are substantially in phase. The ratio of the axial length of the body to the width of the dielectric is 1.097 to 1.225 ;
A curved surface or a shape approximate to the curved surface is formed on the end surface of the dielectric on the wave source side, and the curved surface is formed from an incident position where a radiated radio wave from the center of the radiation source is incident on a side surface of the dielectric at a critical angle. A circle having a radius as the center of a position separated by a distance between the incident position and the center of the radiation source is drawn on the normal line at the incident position, and an intersection position of the one end face of the circle; A dielectric-loaded antenna formed by rotating at least a part of an arc between the incident position and an axis of the dielectric.
JP08365399A 1999-03-26 1999-03-26 Dielectric loaded antenna Expired - Fee Related JP4072280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08365399A JP4072280B2 (en) 1999-03-26 1999-03-26 Dielectric loaded antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08365399A JP4072280B2 (en) 1999-03-26 1999-03-26 Dielectric loaded antenna

Publications (2)

Publication Number Publication Date
JP2000278030A JP2000278030A (en) 2000-10-06
JP4072280B2 true JP4072280B2 (en) 2008-04-09

Family

ID=13808423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08365399A Expired - Fee Related JP4072280B2 (en) 1999-03-26 1999-03-26 Dielectric loaded antenna

Country Status (1)

Country Link
JP (1) JP4072280B2 (en)

Cited By (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9467870B2 (en) 2013-11-06 2016-10-11 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9479266B2 (en) 2013-12-10 2016-10-25 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525210B2 (en) 2014-10-21 2016-12-20 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9531427B2 (en) 2014-11-20 2016-12-27 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9699785B2 (en) 2012-12-05 2017-07-04 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9755697B2 (en) 2014-09-15 2017-09-05 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10396887B2 (en) 2015-06-03 2019-08-27 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3415817B2 (en) * 2000-08-28 2003-06-09 アーベル・システムズ株式会社 Solar cell
JP3851842B2 (en) * 2002-05-10 2006-11-29 ミツミ電機株式会社 Array antenna
US7088290B2 (en) 2002-08-30 2006-08-08 Matsushita Electric Industrial Co., Ltd. Dielectric loaded antenna apparatus with inclined radiation surface and array antenna apparatus including the dielectric loaded antenna apparatus
US7161555B2 (en) 2003-09-11 2007-01-09 Matsushita Electric Industrial Co., Ltd. Dielectric antenna and radio device using the same
JP2005204023A (en) * 2004-01-15 2005-07-28 Nippon Telegr & Teleph Corp <Ntt> High-frequency electromagnetic wave antenna
DE102008008715A1 (en) * 2008-02-11 2009-08-13 Krohne Meßtechnik GmbH & Co KG Dielectric antenna
DE102008020036B4 (en) * 2008-04-21 2010-04-01 Krohne Meßtechnik GmbH & Co KG Dielectric antenna
JP5941854B2 (en) 2013-02-13 2016-06-29 日立オートモティブシステムズ株式会社 Millimeter-wave dielectric lens antenna and speed sensor using the same
JP2019193042A (en) * 2018-04-23 2019-10-31 シャープ株式会社 High frequency device
JP7065401B2 (en) * 2018-04-27 2022-05-12 パナソニックIpマネジメント株式会社 Radio sensor and mobile
KR102560762B1 (en) 2019-02-13 2023-07-28 삼성전자주식회사 Electronic device comprising antenna

Cited By (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9699785B2 (en) 2012-12-05 2017-07-04 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10194437B2 (en) 2012-12-05 2019-01-29 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10091787B2 (en) 2013-05-31 2018-10-02 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9661505B2 (en) 2013-11-06 2017-05-23 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9467870B2 (en) 2013-11-06 2016-10-11 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9794003B2 (en) 2013-12-10 2017-10-17 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9876584B2 (en) 2013-12-10 2018-01-23 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9479266B2 (en) 2013-12-10 2016-10-25 At&T Intellectual Property I, L.P. Quasi-optical coupler
US10096881B2 (en) 2014-08-26 2018-10-09 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9755697B2 (en) 2014-09-15 2017-09-05 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9998932B2 (en) 2014-10-02 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9525210B2 (en) 2014-10-21 2016-12-20 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9571209B2 (en) 2014-10-21 2017-02-14 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9596001B2 (en) 2014-10-21 2017-03-14 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9577307B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9531427B2 (en) 2014-11-20 2016-12-27 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9712350B2 (en) 2014-11-20 2017-07-18 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10396887B2 (en) 2015-06-03 2019-08-27 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10142010B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9882657B2 (en) 2015-06-25 2018-01-30 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10090601B2 (en) 2015-06-25 2018-10-02 At&T Intellectual Property I, L.P. Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9947982B2 (en) 2015-07-14 2018-04-17 At&T Intellectual Property I, Lp Dielectric transmission medium connector and methods for use therewith
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10074886B2 (en) 2015-07-23 2018-09-11 At&T Intellectual Property I, L.P. Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10225842B2 (en) 2015-09-16 2019-03-05 At&T Intellectual Property I, L.P. Method, device and storage medium for communications using a modulated signal and a reference signal
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10349418B2 (en) 2015-09-16 2019-07-09 At&T Intellectual Property I, L.P. Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Also Published As

Publication number Publication date
JP2000278030A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP4072280B2 (en) Dielectric loaded antenna
US5757323A (en) Antenna arrangements
US5173714A (en) Slot array antenna
US6992639B1 (en) Hybrid-mode horn antenna with selective gain
US6011520A (en) Geodesic slotted cylindrical antenna
US4963878A (en) Reflector antenna with a self-supported feed
US4658258A (en) Taperd horn antenna with annular choke channel
US20020067315A1 (en) Aperture coupled slot array antenna
JP6642862B2 (en) Reflector antenna including dual band splash plate support
US10714834B2 (en) Broadband quad-ridge horn antennas
JP5616103B2 (en) Antenna device and radar device
AU620426B2 (en) Slot array antenna
KR100964623B1 (en) Waveguide slot array antenna and planar slot array antenna
USH584H (en) Dielectric omni-directional antennas
KR102279931B1 (en) Planar linear phase array antenna with enhanced beam scanning
JP6337171B1 (en) Antenna device
JP4178265B2 (en) Waveguide horn antenna, antenna device, and radar device
JP4004674B2 (en) Dielectric loaded antenna
JP4027775B2 (en) Slot array antenna
US5231414A (en) Center-fed leaky wave antenna
JPS6363122B2 (en)
GB2303491A (en) Antenna arrangement
JPH0680971B2 (en) Dielectric loaded antenna with reflector
JP2023550639A (en) Reducing ripple in geodesic antenna element patterns
JP2006115063A (en) Primary radiator and designing method for primary radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees