JP6278220B2 - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP6278220B2
JP6278220B2 JP2016256085A JP2016256085A JP6278220B2 JP 6278220 B2 JP6278220 B2 JP 6278220B2 JP 2016256085 A JP2016256085 A JP 2016256085A JP 2016256085 A JP2016256085 A JP 2016256085A JP 6278220 B2 JP6278220 B2 JP 6278220B2
Authority
JP
Japan
Prior art keywords
negative electrode
alloy
mass
electrode plate
ear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016256085A
Other languages
Japanese (ja)
Other versions
JP2017092038A (en
Inventor
朋子 松村
朋子 松村
力郎 小嶋
力郎 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2016256085A priority Critical patent/JP6278220B2/en
Publication of JP2017092038A publication Critical patent/JP2017092038A/en
Application granted granted Critical
Publication of JP6278220B2 publication Critical patent/JP6278220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、制御弁式鉛蓄電池の負極溶接部の品質に関するものである。   The present invention relates to the quality of a negative electrode weld of a control valve type lead-acid battery.

鉛蓄電池には、極板群を挿入した電槽の中に電解液を注液して構成される開放型の液式電池と、微細ガラスマットセパレータ(リテーナーマット)に電解液を保持させ、正極で発生する酸素ガスを負極活物質上で水に還元する、いわゆる酸素サイクルと呼ばれる原理を利用した制御弁式電池とがある。 For lead-acid batteries, the electrolyte is held in an open-type liquid battery that is made by injecting an electrolyte into a battery case in which an electrode plate group is inserted, and a fine glass mat separator (retainer mat). In other words, there is a control valve type battery using a so-called oxygen cycle, in which oxygen gas generated in the above is reduced to water on the negative electrode active material.

液式電池は、充電中に起こる水の電気分解反応や自然蒸発によって電解液中の水分が失われるため、適宜精製水を補給する必要があり、保守が面倒であるという難点を持つ。これに対して、制御弁式鉛蓄電池は、正極板と負極板の間にリテーナーマットを介在させた極板群を電槽に収納し、前記極板群に電解液を保持しているから、メンテナンスフリーとすることができるため、近年その利用が進んでいる。   The liquid battery has a problem that maintenance of the liquid battery is troublesome because it is necessary to replenish purified water as appropriate because water in the electrolyte is lost due to electrolysis of water and natural evaporation that occur during charging. On the other hand, the control valve type lead-acid storage battery stores a plate group in which a retainer mat is interposed between a positive electrode plate and a negative electrode plate in a battery case, and holds an electrolyte solution in the electrode plate group. Therefore, its use is progressing in recent years.

制御弁式鉛蓄電池においては、負極板の耳部とストラップの溶接部が電解液から露出しているため、充電時においても、鉛の平衡電位より貴な状態におかれる。そのため、耳部やストラップを這い上がった硫酸と正極から発生した酸素によって、耳部やストラップで腐食が進行して、溶接界面で破断する問題があり、これまでに耐食性を向上させる目的で様々な合金組成が検討されている。   In the control valve type lead-acid battery, since the ear part of the negative electrode plate and the welded part of the strap are exposed from the electrolyte, the lead-acid battery is placed in a noble state from the equilibrium potential of lead even during charging. For this reason, there is a problem that the corrosion of the ear and the strap progresses due to the sulfuric acid that scoops up the ear and the strap and the oxygen generated from the positive electrode and breaks at the weld interface. Alloy compositions are being studied.

特許文献1には、Pb−Ca−Sn系合金からなる負極板格子の耳部相互を、Seを10〜200ppm添加したPb−Sn系合金からなるストラップで溶接することが記載されており、Seが溶接時に鉛合金粒子の結晶の核となり、結晶粒の微細化を促すため、ストラップ棚部の結晶粒界部分に沿って発生する応力腐食割れが抑制できるメカニズムが記載されている。   Patent Document 1 describes that the ears of a negative electrode plate lattice made of a Pb—Ca—Sn alloy are welded to each other with a strap made of a Pb—Sn alloy added with 10 to 200 ppm of Se. Describes the mechanism that can suppress the stress corrosion cracking that occurs along the crystal grain boundary portion of the strap shelf, because the nuclei become the core of the crystal of the lead alloy particles during welding and promote the refinement of the crystal grains.

特許文献2には、正極板と負極板の枚数を同数とした極板群を備え、正極板の表面積の総和(S)と極板群の体積値(V)との比率S/Vを2.2cm- 1以上とすることで寿命特性を向上させる鉛蓄電池において、耐食性向上を目的に、液式電池で一般的に用いられるPb−Sb系合金の代わりに、Pb−Sn系合金を用いる負極ストラップとPb−Ca−Sn系合金を用いる負極板を接合することが記載されている。なお、効果が得られる負極ストラップ合金のSn量は0.1質量%以上とされているが、実施例に示されているのはSnを2.5質量%含有するストラップ合金のみであって、接合部の耐食性とSn含有量との関連を示すデータはない。 Patent Document 2 includes an electrode plate group having the same number of positive and negative electrode plates, and a ratio S / V between the total surface area (S) of the positive electrode plate and the volume value (V) of the electrode plate group is 2 In a lead-acid battery whose life characteristics are improved by setting it to 2 cm −1 or more, a negative electrode using a Pb—Sn alloy instead of a Pb—Sb alloy generally used in a liquid battery for the purpose of improving corrosion resistance It describes that a strap and a negative electrode plate using a Pb—Ca—Sn alloy are joined. In addition, although the Sn amount of the negative electrode strap alloy that can obtain the effect is 0.1% by mass or more, only the strap alloy containing 2.5% by mass of Sn is shown in the examples, There is no data showing the relationship between the corrosion resistance of the joint and the Sn content.

特許文献3には、Pb−Ca−Sn系合金の負極格子体を用い、負極ストラップ6に純鉛、又はSnが1.3質量%以下のPb−Sn系合金を用いることにより、耳部とストラップの溶接部、及びストラップ本体の耐食性を向上させることが記載されており、負極格子合金中のCa量は、ストラップとの溶接部分の耐食性が低下するため、0.065質量%以下が望ましいとされている。   Patent Document 3 uses a Pb—Ca—Sn alloy negative electrode grid and pure lead or a Pb—Sn alloy having a Sn content of 1.3 mass% or less for the negative electrode strap 6. It is described that the corrosion resistance of the welded portion of the strap and the strap body is improved, and the Ca content in the negative electrode lattice alloy is preferably 0.065% by mass or less because the corrosion resistance of the welded portion with the strap decreases. Has been.

特開平8−339794号公報JP-A-8-339794 特開2009−104914号公報JP 2009-104914 A 特開2002−175798号公報JP 2002-175798 A

制御弁式鉛蓄電池においては、極板群に適度な緊圧を加えることによって極板の表面を強力に押圧し、極板群の接触抵抗を低下させるとともに、正極格子の腐食にともなうグロースを抑制することにより、電池の長寿命化を図っている。図1に、化成後の緊圧とフロート寿命の関係を示す。化成後の緊圧は、気密状態で極板群積層方向の電槽外寸を測定した後、電池を解体して極板群を取り出し、気密時の電槽内寸(気密時の電槽外寸−電槽厚み)まで極板群を圧迫した時の圧力を測定して求めることができる。   In a control valve type lead-acid battery, the surface of the electrode plate is strongly pressed by applying moderate pressure to the electrode plate group, reducing the contact resistance of the electrode plate group, and suppressing the growth caused by corrosion of the positive electrode grid. By doing so, the battery life is extended. FIG. 1 shows the relationship between the pressure after formation and the float life. After forming, the tight pressure is measured in the airtight state after measuring the outer dimensions of the battery case in the electrode plate stacking direction. The battery is disassembled and the electrode plate group is taken out. It can be determined by measuring the pressure when the electrode plate group is pressed down to (dimension-battery thickness).

緊圧が20kPa以上であると、平均的には10年以上のフロート寿命が得られ、20kPa以下では著しく短寿命になる。緊圧が60kPaを上回ると、製造不良や電池膨れといった問題が発生する。したがって、実用的な緊圧は20kPa以上60kPa以下である。   When the tension pressure is 20 kPa or more, a float life of 10 years or more is obtained on average, and when the pressure is 20 kPa or less, the life becomes remarkably short. When the tension pressure exceeds 60 kPa, problems such as manufacturing defects and battery swelling occur. Therefore, practical tension is 20 kPa or more and 60 kPa or less.

ところで、上記の範囲の緊圧を加えた制御弁式鉛蓄電池であっても、しばしば寿命特性にばらつきが見られた。寿命の短い電池では、負極板耳部と負極ストラップとの溶接部で、腐食がそれほど進行していないにもかかわらず、短期間で溶接部が破断していることが観察された。
本発明は、上記の問題を解決しようとするものであり、制御弁式鉛蓄電池において、溶接部の破断を抑制することを目的とする。
By the way, even in the case of the control valve type lead-acid battery to which the tight pressure in the above range is applied, the life characteristics often vary. In a battery having a short life, it was observed that the welded portion between the negative electrode tab and the negative electrode strap was broken in a short period of time even though corrosion did not progress so much.
The present invention is intended to solve the above problem, and an object of the present invention is to suppress breakage of a welded portion in a control valve type lead-acid battery.

本発明は、上記課題を解決するために、以下の手段を採用する。
(1)正極板と負極板の間にリテーナ―マットを介在させた極板群を電槽に収納し、前記極板群に電解液を保持した制御弁式鉛蓄電池において、負極板耳部の厚さ(d)と負極板耳部の長さ(l)との比(d/l)が、0.07≦(d/l)≦0.14であり、前記負極板耳部の合金組成が、Caを0.06〜0.13質量%、Snを0.9質量%以下含むPb−Ca−Sn系合金、又はPb-Ca系合金であり、且つ、前記負極板耳部に溶接される負極ストラップの合金組成が、純鉛、又はSnを0.4質量%以下含むPb−Sn系合金であることを特徴とする制御弁式鉛蓄電池。
(2)前記負極板耳部の合金組成が、Caを0.07〜0.12質量%、Snを0.75質量%以下含むPb−Ca−Sn系合金、又はPb-Ca系合金であり、且つ、前記負極ストラップの合金組成が、純鉛、又はSnを0.3質量%以下含むPb−Sn系合金である前記(1)の制御弁式鉛蓄電池。
(3)前記負極板の耳厚さ(d)と負極板の耳長さ(l)との比(d/l)が、0.09≦(d/l)≦0.13である前記(1)又は(2)の制御弁式鉛蓄電池。
(4)前記負極板耳部の合金組成が、Ca:0.09〜0.12質量%、Sn:0.75質量%以下のPb−Ca−Sn系合金、又はPb−Ca系合金である前記(1)〜(3)のいずれかの制御弁式鉛蓄電池。
(5)50℃、2.23Vのフロート電圧で27日間充電後、25℃で3日間放置を1サイクルとして、18サイクル実行する条件で試験を行った後において、負極板耳部と負極ストラップとの溶接部に破断が生じない前記(1)〜(4)のいずれかの制御弁式鉛蓄電池。
(6)前記極板群の負極板の集電体が鋳造集電体である前記(1)〜(5)のいずれかの制御弁式鉛蓄電池。
The present invention employs the following means in order to solve the above problems.
(1) In a control valve type lead storage battery in which an electrode plate group in which a retainer mat is interposed between a positive electrode plate and a negative electrode plate is housed in a battery case and an electrolyte is held in the electrode plate group, the ratio of (d) and a negative electrode plate ear length of (l) (d / l) is Ri 0.07 ≦ (d / l) ≦ 0.14 der, the alloy composition of the negative electrode plate ears , Pb—Ca—Sn alloy containing 0.06 to 0.13 mass% of Ca and 0.9 mass% or less of Sn, or Pb—Ca alloy, and welded to the negative electrode plate ear. alloy composition of the negative electrode strap, pure lead, or a valve-regulated lead-acid battery, characterized in Pb-Sn alloy der Rukoto containing 0.4 wt% of Sn.
(2) The alloy composition of the negative electrode tab is a Pb—Ca—Sn alloy or a Pb—Ca alloy containing 0.07 to 0.12 mass% of Ca and 0.75 mass% or less of Sn. And the control valve type lead acid battery of said (1) whose alloy composition of the said negative electrode strap is Pb-Sn type alloy which contains 0.3 mass% or less of pure lead or Sn.
(3) The ratio (d / l) between the ear thickness (d) of the negative electrode plate and the ear length (l) of the negative electrode plate is 0.09 ≦ (d / l) ≦ 0.13 ( The control valve type lead acid battery of 1) or (2).
(4) The alloy composition of the said negative electrode plate ear | edge part is Pb-Ca-Sn type alloy or Pb-Ca type alloy of Ca: 0.09-0.12 mass%, Sn: 0.75 mass% or less. The control valve type lead-acid battery according to any one of (1) to (3).
(5) After performing the test under the condition of performing 18 cycles of charging at a float voltage of 50 ° C. and 2.23 V for 27 days and then leaving at 25 ° C. for 3 days as one cycle, The valve-regulated lead-acid battery according to any one of (1) to (4), wherein no breakage occurs in the welded part.
(6) The valve-regulated lead-acid battery according to any one of (1) to (5) , wherein the current collector of the negative electrode plate of the electrode plate group is a cast current collector.

本発明によれば、制御弁式鉛蓄電池において、負極溶接部が破断することがない電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the battery in which a negative electrode welding part does not fracture | rupture in a control valve type lead acid battery can be provided.

緊圧とフロート寿命年数との関係を示すグラフGraph showing the relationship between tension and float life years 粒界割れによる負極耳部の破断を示す顕微鏡写真Photomicrograph showing fracture of negative electrode ear due to intergranular cracking 耳部の厚さ(d)及び長さ(l)を示す図The figure which shows the thickness (d) and length (l) of an ear | edge part 耳長さ(l)と耳部腐食量の関係を示すグラフGraph showing the relationship between ear length (l) and ear corrosion amount 耳厚さ(d)と耳長さ(l)の比(d/l)と溶接部に生じる応力の関係を示すグラフThe graph which shows the relationship between the ratio (d / l) of the ear thickness (d) and the ear length (l) and the stress generated in the welded portion Pb−Ca合金におけるCa濃度と耐食性との関係を示すグラフGraph showing the relationship between Ca concentration and corrosion resistance in Pb-Ca alloys Pb−Ca−Sn合金における異なるCa濃度でのSn濃度と耐食性の関係を示すグラフGraph showing the relationship between Sn concentration and corrosion resistance at different Ca concentrations in Pb-Ca-Sn alloys Pb−Sn合金におけるSn濃度と引張強度との関係を示すグラフThe graph which shows the relationship between Sn density | concentration and tensile strength in a Pb-Sn alloy Pb−Ca−Sn合金における異なるSn濃度でのCa濃度と引張強度との関係を示すグラフGraph showing the relationship between Ca concentration and tensile strength at different Sn concentrations in Pb-Ca-Sn alloys

本発明者らは、制御弁式鉛蓄電池における前記の溶接部の破断の原因について調査した結果、通常フロート充電されている際は、ガス発生により電池の内圧は外気圧よりも若干高くなるが、充電休止や放電等で電池内圧が外気圧よりも低くなった場合、電槽に凹みが生じ、極板群への圧迫がより強くなるため、負極ストラップと負極板耳部との溶接部に応力が集中し、腐食があまり進行していなくても粒界に亀裂が入って破断に至ると推定した。さらに、鋭意調査した結果、負極板耳部の厚さと長さが、腐食の進行速度や溶接部の応力発生に影響を及ぼしていることが分かった。   As a result of investigating the cause of the breakage of the welded portion in the control valve type lead-acid battery, the present inventors usually have a float charge, the internal pressure of the battery is slightly higher than the external pressure due to gas generation, When the battery internal pressure becomes lower than the external air pressure due to charging suspension or discharge, a dent is generated in the battery case and the pressure on the electrode plate group becomes stronger, so stress is applied to the weld between the negative electrode strap and the negative electrode plate ear. It was estimated that cracks occurred at the grain boundaries and led to fracture even though corrosion was concentrated and corrosion did not progress much. Furthermore, as a result of earnest investigation, it has been found that the thickness and length of the negative electrode tab have an effect on the rate of progress of corrosion and the generation of stress in the weld.

図3は、負極板の耳厚さ(d)と耳長さ(l)を示している。負極板耳長さは、負極ストラップ下端から負極板上部枠骨と耳のR部下側の距離である。   FIG. 3 shows the ear thickness (d) and the ear length (l) of the negative electrode plate. The negative electrode plate ear length is the distance from the lower end of the negative electrode strap to the lower frame of the upper plate frame of the negative electrode plate and the R portion below the ear.

負極板の耳厚さ(d)と耳長さ(l)の比(d/l)が小さいと、耳長さに対して耳厚さが薄いため、腐食による破断が起こりやすい。また、耳厚さに対して耳長さ(l)が長いため、負極耳の露出部分が多くなり、腐食が進行しやすい。図4は、後述する実施例において、耳厚さ(d)2.1mmに対して耳長さと耳部腐食量の関係を、2種類の負極格子合金について示している。また、耳長さ(l)が長いとストラップと極板群とのあいだの空間が増大するので、体積エネルギー密度が低下する問題もある。
耐食性を考慮した(d/l)の下限は0.07であり、好ましくは0.09である。
When the ratio (d / l) between the ear thickness (d) and the ear length (l) of the negative electrode plate is small, the ear thickness is thin with respect to the ear length, so that breakage due to corrosion tends to occur. Further, since the ear length (l) is longer than the ear thickness, the exposed portion of the negative electrode ear increases and corrosion tends to proceed. FIG. 4 shows the relationship between the ear length and the ear corrosion amount with respect to the ear thickness (d) of 2.1 mm for two types of negative electrode lattice alloys in Examples to be described later. In addition, if the ear length (l) is long, the space between the strap and the electrode plate group increases, so that there is a problem that the volume energy density decreases.
The lower limit of (d / l) considering the corrosion resistance is 0.07, preferably 0.09.

一方、(d/l)が大きいと、耳長さに対して耳厚さが厚くなるため、耐食性には有利であるが、負極耳の機械的強度が大きくなり、極板群に高い緊圧がかかった場合に、負極耳で応力が緩和されず、負極板耳−ストラップ溶接部に応力が集中して、粒界割れが発生しやすくなる。また、耳厚さに対して耳部が短いから、負極板耳−ストラップ溶接部と極板群とのあいだの距離が短くなり、極板群に高い緊圧がかかった場合に、負極耳部で応力が分散されないため、溶接部に粒界割れが発生しやすくなる。図5は、(d/l)とCAE解析で求めた溶接部に生じる応力の関係を示しており、(d/l)が0.14を超えると、応力曲線が立ち上がっていることを示している。
したがって、(d/l)の上限は0.14であり、好ましくは0.13である。
On the other hand, when (d / l) is large, the thickness of the ear becomes thicker than the length of the ear, which is advantageous in terms of corrosion resistance. However, the mechanical strength of the negative electrode ear is increased, and high tension is applied to the electrode plate group. When stress is applied, stress is not relieved at the negative electrode ears, stress concentrates on the negative electrode plate ear-strap welded portion, and intergranular cracking is likely to occur. In addition, since the ear part is short with respect to the ear thickness, the distance between the negative electrode plate ear-strap welded part and the electrode plate group is shortened, and when the electrode plate group is subjected to high tension pressure, the negative electrode ear part In this case, the stress is not dispersed, so that intergranular cracking is likely to occur in the weld. FIG. 5 shows the relationship between (d / l) and the stress generated in the weld obtained by CAE analysis. When (d / l) exceeds 0.14, the stress curve rises. Yes.
Therefore, the upper limit of (d / l) is 0.14, preferably 0.13.

負極板耳部とストラップの合金組成に関しては、耐食性に優れ、且つ、極板群の高圧迫により負極板耳−ストラップ溶接部に生じる応力を緩和することができる組み合わせが好ましい。
様々な合金組成の組み合わせを検討した結果、負極格子に耐食性に優れた合金を用い、負極ストラップに機械的強度が低く応力を吸収しやすい合金を用いることで、負極耳腐食を抑制するとともに、負極ストラップ-格子耳溶接部にかかる応力を緩和して、粒界割れを抑制できることが分かった。
Regarding the alloy composition of the negative electrode plate ear and the strap, a combination that is excellent in corrosion resistance and that can relieve stress generated in the negative electrode plate ear-strap weld due to the high pressure of the electrode plate group is preferable.
As a result of examining combinations of various alloy compositions, the use of an alloy with excellent corrosion resistance for the negative electrode grid and the use of an alloy with low mechanical strength and easy absorption of stress for the negative electrode strap suppresses negative electrode ear corrosion and It was found that the stress applied to the strap-lattice ear welds can be relaxed to suppress grain boundary cracking.

図6は、Pb−Ca合金におけるCa濃度と耐食性との関係を示し、図7は、Pb−Ca−Sn合金における異なるCa濃度でのSn濃度と耐食性の関係を示している。耐食性の試験は以下の条件で行った。
75℃定電位通電試験(+40mV vs Pb/PbSO
試験極:各種鉛合金片(厚さ2.1mm)
対極 :純鉛
参照極:Pb/PbSO電極
電解液:比重1.28硫酸
試験後に試験片の断面観察を行い、腐食していない部分の厚みを、Ca:0.09%、Sn:0.3%の結果を100とした相対値で表した。
FIG. 6 shows the relationship between Ca concentration and corrosion resistance in the Pb—Ca alloy, and FIG. 7 shows the relationship between Sn concentration and corrosion resistance at different Ca concentrations in the Pb—Ca—Sn alloy. The corrosion resistance test was performed under the following conditions.
75 ° C constant potential energization test (+40 mV vs Pb / PbSO 4 )
Test electrode: Various lead alloy pieces (thickness 2.1mm)
Counter electrode: Pure lead Reference electrode: Pb / PbSO 4 electrode Electrolyte: Specific gravity 1.28 Sulfuric acid The cross section of the test piece was observed after the test, and the thickness of the uncorroded portion was determined as follows: Ca: 0.09%, Sn: 0. The result was expressed as a relative value with the result of 3% as 100.

図6、図7から、Caを0.07〜0.12質量%、Snを0.75質量%以下含むPb−Ca−Sn系合金、又はPb-Ca系合金が高い耐食性を有していることが分かる。これは、この組成範囲の合金が微細な結晶粒を形成し、腐食による粒界割れを抑制していることによる。したがって、この組成範囲が負極板耳部の合金として好ましい。 From FIG. 6 and FIG. 7, Pb—Ca—Sn alloy or Pb—Ca alloy containing 0.07 to 0.12% by mass of Ca and 0.75% by mass or less of Sn has high corrosion resistance. I understand that. This is because an alloy having this composition range forms fine crystal grains and suppresses intergranular cracking due to corrosion. Therefore, this composition range is preferable as the alloy of the negative electrode tab portion.

図8は、Pb−Sn合金におけるSn濃度と引張強度との関係を示している。図9は、Pb−Ca−Sn合金における異なるSn濃度でのCa濃度と引張強度との関係を示している。引張強度の測定は以下のように行った。Ca濃度およびSn濃度が異なる試験片を鋳造し、室温で1か月エージングした後に、JIS13B号の試験片形状に打ち抜くことで引張強度試験片を製作し、引張速度を10mm/minとして引張強度の測定を行った。   FIG. 8 shows the relationship between the Sn concentration and the tensile strength in the Pb—Sn alloy. FIG. 9 shows the relationship between the Ca concentration and the tensile strength at different Sn concentrations in the Pb—Ca—Sn alloy. The tensile strength was measured as follows. After casting test pieces with different Ca and Sn concentrations and aging at room temperature for one month, a tensile strength test piece was manufactured by punching into a test piece shape of JIS13B, and the tensile strength was 10 mm / min. Measurements were made.

図8によると、純鉛にSnを0.3質量%超えて添加すると、引張強度が著しく大きくなることが分かり、また、図9によると、純鉛、又Pb−Sn合金にCaを添加しても、引張強度の増大が起こることが分かる。したがって、負極ストラップに好ましいのは、純鉛、又はSnを0.3質量%以下含むPb−Sn系合金である。   According to FIG. 8, it can be seen that when Sn is added to pure lead in an amount exceeding 0.3 mass%, the tensile strength is remarkably increased. According to FIG. 9, Ca is added to pure lead or Pb—Sn alloy. However, it can be seen that an increase in tensile strength occurs. Therefore, preferable for the negative electrode strap is pure lead or a Pb—Sn alloy containing 0.3 mass% or less of Sn.

なお、負極ストラップ−格子耳溶接部では、合金組成が混ざり合うから、本発明でいう負極板耳部の合金組成は、負極耳下部の組成であり、負極ストラップの合金組成は、溶接面と反対側のストラップ上部の合金組成である。   Since the alloy composition is mixed in the negative electrode strap-lattice ear weld, the alloy composition of the negative electrode plate ear in the present invention is the composition of the lower portion of the negative electrode ear, and the alloy composition of the negative electrode strap is opposite to the weld surface. The alloy composition of the upper side strap.

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

(正極板の作製)
Caを0.06質量%、Snを1.5質量%、Alを0.02質量%以下含有し、残部がPbと不可避不純物である厚さ3.8mmの正極格子を鋳造して正極集電体とした。なお、正極格子の合金組成、寸法、デザイン、および鋳造、圧延シート打抜き等の製造方法は任意である。
未化成の正極活物質として、ボールミル法による鉛粉99.9質量%と、合成樹脂繊維0.1質量%とを、25℃で比重が1.16の硫酸でペースト化し、正極格子に充填して、熟成と乾燥を行った。正極活物質の組成と密度等は任意である。
(Preparation of positive electrode plate)
A positive electrode current collector is prepared by casting a positive electrode grid having a thickness of 3.8 mm containing 0.06% by mass of Ca, 1.5% by mass of Sn, and 0.02% by mass of Al, and the balance being Pb and inevitable impurities. The body. It should be noted that the alloy composition, dimensions, design, and manufacturing method of casting, rolling sheet punching, etc. are arbitrary.
As an unformed positive electrode active material, 99.9% by mass of lead powder by ball milling and 0.1% by mass of synthetic resin fiber are pasted with sulfuric acid having a specific gravity of 1.16 at 25 ° C. and filled into a positive electrode grid. Aged and dried. The composition and density of the positive electrode active material are arbitrary.

(負極板の作製)
Caを0.06〜0.13質量%、及びSnを0〜0.9質量%含有し、他にAlを0.02質量%以下含有し、残部がPbと不可避不純物であるPb−Ca−Sn系合金、又はPb-Ca系合金から厚さ1.8mm、1.9mm、及び2.1mmの負極格子を鋳造して負極集電体とした。なお、負極格子の寸法、デザイン等は任意である。
負極活物質として、ボールミル法の鉛粉98.3質量%と、合成樹脂繊維0.1質量%、カーボンブラック0.1質量%、BaSO1.4質量%、及びリグニン0.1質量%を、25℃で比重が1.14の硫酸でペースト化し、負極格子に充填して、熟成と乾燥を行った。負極活物質の組成と密度等は任意である。
(Preparation of negative electrode plate)
Pb-Ca- containing 0.06 to 0.13 mass% of Ca and 0 to 0.9 mass% of Sn, and additionally containing 0.02 mass% or less of Al with the balance being Pb and inevitable impurities A negative electrode grid having a thickness of 1.8 mm, 1.9 mm, and 2.1 mm was cast from a Sn-based alloy or a Pb—Ca-based alloy to obtain a negative electrode current collector. The dimensions and design of the negative electrode grid are arbitrary.
As a negative electrode active material, 98.3% by mass of lead powder of ball mill method, 0.1% by mass of synthetic resin fiber, 0.1% by mass of carbon black, 1.4% by mass of BaSO 4 , and 0.1% by mass of lignin The paste was made into a paste with sulfuric acid having a specific gravity of 1.14 at 25 ° C., filled in a negative electrode lattice, and aged and dried. The composition and density of the negative electrode active material are arbitrary.

(電池の組立)
正極板と負極板との間に微細ガラスマットセパレータ(リテーナーマット)を配置して極板群を形成した。
負極板の耳厚さ(d)と溶接後の耳長さ(l)の比(d/l)が、0.06〜0.15になるように、極板耳部を所定寸法に切断し、負極群の足からストラップ下面までの高さと、溶接後の正極群の足からストラップ下面までの高さとが同じになるように正極板の耳部も所定寸法に切断した。
負極板の耳厚さおよび耳長さは、電池容量や電槽寸法等により適宜変更が可能である。
正極板には、足し鉛に純鉛を用いて正極ストラップを形成し、負極板には、足し鉛に純鉛、Snを0.1〜0.4質量%含有するPb−Sn合金、又はCaを0.01質量%含有するPb−Ca合金を用いて負極ストラップを形成した。
極板群の長さが電槽内寸寸法になるまで、圧迫を加えて電槽内に収容し、電解液として硫酸を加え、電槽化成を施して、容量が200A・hの制御弁式鉛蓄電池とした。
(Battery assembly)
A fine glass mat separator (retainer mat) was disposed between the positive electrode plate and the negative electrode plate to form an electrode plate group.
The electrode plate ears were cut to a predetermined size so that the ratio (d / l) of the ear thickness (d) of the negative electrode plate to the ear length (l) after welding was 0.06 to 0.15. The ears of the positive electrode plate were also cut to a predetermined size so that the height from the foot of the negative electrode group to the lower surface of the strap was the same as the height from the foot of the positive electrode group after welding to the lower surface of the strap.
The ear thickness and the ear length of the negative electrode plate can be appropriately changed depending on the battery capacity, the battery case size, and the like.
A positive electrode strap is formed by using pure lead as the additional lead for the positive electrode plate, and a Pb—Sn alloy containing pure lead and 0.1 to 0.4 mass% of Sn in the additional lead, or Ca. A negative electrode strap was formed using a Pb—Ca alloy containing 0.01% by mass.
Pressure is applied until the length of the electrode plate group reaches the inside dimension of the battery case, and the battery is accommodated in the battery case. Sulfuric acid is added as the electrolyte, and the battery case is formed. A lead-acid battery was used.

(鉛蓄電池の評価)
上記のようにして作製したNo.1〜149の鉛蓄電池について、以下の条件で加速試験を行った。
試験条件:50℃、2.23Vのフロート電圧で27日間充電後、25℃で3日間放置を1サイクルとして、18サイクル実行(25℃換算で7.5年相当)
試験後の電池から切り出した負極ストラップと耳部の溶接部断面を金属顕微鏡で負極溶接部の粒界割れと負極耳部の腐食量を観察した。
粒界割れの進行度を、以下の4段階で評価し、4を不合格とした。
1 :粒界割れなし
2 :粒界割れの進行が耳厚みの30%未満
3 :粒界割れの進行が耳厚みの30%以上(ただし、破断していない)
4 :破断
負極耳腐食量を以下の式により求めた。
負極耳腐食量(%)=(初期耳厚み−試験後耳厚み)/初期耳厚み×100
(Evaluation of lead-acid battery)
About the lead storage battery of No. 1-149 produced as mentioned above, the acceleration test was done on condition of the following.
Test conditions: After charging for 27 days at a float voltage of 50 ° C. and 2.23 V, left for 3 days at 25 ° C. for 18 cycles (equivalent to 7.5 years in terms of 25 ° C.)
A cross section of the welded portion of the negative electrode strap and ear part cut out from the battery after the test was observed with a metal microscope for intergranular cracking of the negative electrode welded part and corrosion amount of the negative electrode ear part.
The degree of progress of intergranular cracking was evaluated in the following four stages, and 4 was rejected.
1: No intergranular cracking 2: Progression of intergranular cracking is less than 30% of ear thickness 3: Progression of intergranular cracking is 30% or more of ear thickness (but not broken)
4: Breakage The amount of negative electrode ear corrosion was determined by the following equation.
Negative electrode ear corrosion amount (%) = (initial ear thickness−ear thickness after test) / initial ear thickness × 100

(評価結果)
(負極板の耳厚さ(d)と耳長さ(l)の比(d/l))
表1は、負極板の耳厚さ(d)と耳長さ(l)の比(d/l)について評価した結果である。
(Evaluation results)
(Ratio of ear thickness (d) and ear length (l) of negative electrode plate (d / l))
Table 1 shows the results of evaluating the ratio (d / l) of the ear thickness (d) and the ear length (l) of the negative electrode plate.

No.1〜10は、ストラップが機械的強度の低い純鉛からなり、負極板耳部が耐食性に優れたCa:0.09質量%、Sn:0.3質量%の合金からなっている。しかし、負極耳厚さと耳長さの比(d/l)が0.06と小さいNo.1は、負極耳が厚さに対して長いため、露出部分が多くなり、腐食および粒界割れが進行したと考えられる。
(d/l)が0.15と大きいNo.10は、負極耳が厚さに対して短いため、高圧迫により生じる応力が負極耳部で分散されないため、腐食は進行していないものの、溶接部の粒界割れが進行したと考えられる。
これらに対して、(d/l)が0.07〜0.14であるNo.2〜9ではそのような問題が生じない。
No. In Nos. 1 to 10, the strap is made of pure lead with low mechanical strength, and the negative electrode plate ear is made of an alloy of Ca: 0.09% by mass and Sn: 0.3% by mass with excellent corrosion resistance. However, the ratio of the negative electrode ear thickness to the ear length (d / l) is as small as 0.06. No. 1 is considered that since the negative electrode ear was long with respect to the thickness, the exposed portion increased, and corrosion and intergranular cracking progressed.
No. (d / l) as large as 0.15 In No. 10, since the negative electrode ear is short with respect to the thickness, the stress caused by the high pressure is not dispersed in the negative electrode ear, so that although the corrosion has not progressed, it is considered that the intergranular cracking of the weld has progressed.
On the other hand, No. whose (d / l) is 0.07 to 0.14. 2 to 9 do not cause such a problem.

No.11〜20の電池は、ストラップにCa:0.01質量%、Sn:0.1質量%のPb−Ca−Sn系合金を用いており、Ca添加により機械的強度が若干高い合金を用いているため(図9参照)、高圧迫により生じる応力が緩和されにくく、ストラップが純鉛であるNo.1〜10の電池より溶接部に粒界割れが発生しやすい。しかし、(d/l)が0.07〜0.14であるNo.12〜19の電池は、破断に至っていない。No.11は、No.1と同様に負極耳厚さと耳長さの比(d/l)が0.06と小さく耳厚さに対して耳長さが長いため、露出部分が多くなり、腐食及び粒界割れが進行し、破断したと考えられる。No.20は、(d/l)が0.15と大きく、応力が分散されにくいから、応力が緩和されにくいストラップの合金組成と相まって、腐食量は少ないものの、粒界割れによる破断に至ったと考えられる。   No. The batteries of Nos. 11 to 20 use a Pb—Ca—Sn alloy of Ca: 0.01 mass% and Sn: 0.1 mass% for the strap, and use an alloy having a slightly high mechanical strength by adding Ca. (See FIG. 9), the stress caused by the high pressure is less likely to be relaxed, and intergranular cracking is more likely to occur in the weld than the No. 1-10 batteries whose strap is pure lead. However, the batteries No. 12 to 19 having (d / l) of 0.07 to 0.14 have not been broken. No. 11 is No. As in 1, the ratio of negative electrode ear thickness to ear length (d / l) is as small as 0.06, and the ear length is long with respect to the ear thickness, so the exposed part increases and corrosion and intergranular cracking progress. It is thought that it broke. No. 20 has a large (d / l) of 0.15, and the stress is not easily dispersed. Therefore, coupled with the alloy composition of the strap, in which the stress is not easily relaxed, the amount of corrosion is small, but the fracture due to intergranular cracking has been reached. Conceivable.

No.21〜30は、負極板耳部(負極格子)に耐食性が低いCa:0.06質量%、Sn:0.3質量%のPb−Ca−Sn系合金を用いた以外は、それぞれNo.1〜10と同様の電池である。これらの電池では、負極板耳部の耐食性が低いため(図7参照)、No.1〜10の電池と比べて耳腐食量が大きくなっている。しかし、負極耳厚さと耳長さの比(d/l)が小さく露出部分の長いNo.21の電池や、(d/l)が大きく応力分散が十分でないNo.30の電池を除き、(d/l)が0.07〜0.14のNo.22〜29の電池では、破断が起きていなかった。   No. Nos. 21 to 30 are No. 1 except that Ca: 0.06 mass% and Sn: 0.3 mass% of Pb—Ca—Sn based alloys having low corrosion resistance were used for the negative electrode tab (negative electrode lattice). 10 to the same battery. In these batteries, since the corrosion resistance of the negative electrode tab portion is low (see FIG. 7), the amount of ear corrosion is larger than those of Nos. 1-10. However, the ratio of the negative electrode ear thickness to the ear length (d / l) is small and the exposed portion is long. No. 21 battery, No. 21 with large (d / l) and insufficient stress dispersion. With the exception of 30 batteries, no breakage occurred in the batteries Nos. 22 to 29 having (d / l) of 0.07 to 0.14.

表2は、負極板の耳厚さが1.9mmである電池における(d/l)についての評価結果を示す。   Table 2 shows the evaluation results for (d / l) in a battery having a negative electrode plate with an ear thickness of 1.9 mm.

耳厚さが1.9mmの場合も、(d/l)が0.07以上0.14以下の範囲内のNo.31〜38の電池であれば、腐食量が小さく、粒界割れによる破断を起こさないことが確認された。   Even when the ear thickness is 1.9 mm, the battery of No. 31 to 38 with (d / l) in the range of 0.07 or more and 0.14 or less has a small amount of corrosion and breakage due to intergranular cracking. It was confirmed that it does not cause.

(ストラップの合金組成)
表3は、ストラップの合金組成について評価した結果である。
No.40〜44、No.45〜49、No.50〜54は、ストラップの合金組成を変化させた以外は、それぞれ、表1におけるNo.2、No.5,No.9と同じ電池である。
(Alloy composition of strap)
Table 3 shows the evaluation results of the alloy composition of the strap.
No. 40-44, no. 45-49, no. Nos. 50 to 54 are No. 1 in Table 1 except that the alloy composition of the strap was changed. 2, No. 5, no. 9 is the same battery.

Snを0.3質量%以下含むPb−Sn合金(図8参照)であって、機械的強度が低い合金組成のストラップを有するNo.41〜43、No.46〜48、No.51〜53の電池は、No.2、No.5、No.9の電池とほぼ同程度の耐食性を示し、粒界割れが抑制されている。
ストラップ中にCaが0.01%添加されたNo.40、No.45、No.50や、Snが0.4質量%添加されたNo.44、No.49、No.54の電池では、ストラップの機械的強度が高いため(図8,図9参照)、高圧迫により生じる応力が緩和されにくく、No.2、No.No5、No.9よりは粒界割れが起こりやすいが、破断には至っていないのは、(d/l)が適度な比であるためである。
以上の結果から、ストラップ合金は、純鉛か、Snを0.3質量%以下含むPb−Sn合金であることが好ましい。
No. 41-43, No. 46-48, No. 51-53 which is a Pb—Sn alloy containing 0.3% by mass or less of Sn (see FIG. 8) and has a strap having an alloy composition with low mechanical strength. The batteries of No. 2, No. 5, and No. 9 have almost the same degree of corrosion resistance and the intergranular cracking is suppressed.
In No. 40, No. 45, No. 50 with 0.01% Ca added to the strap, and No. 44, No. 49, No. 54 with 0.4% by mass Sn added, Since the mechanical strength of the strap is high (see FIG. 8 and FIG. 9), the stress caused by high pressure is less likely to be relaxed, and intergranular cracking is more likely to occur than in No.2, No.5, and No.9. This is because (d / l) is an appropriate ratio.
From the above results, the strap alloy is preferably pure lead or a Pb—Sn alloy containing 0.3 mass% or less of Sn.

(負極板耳部の合金組成)
表4〜表6は、負極板耳部の厚さと長さの比(d/l)がそれぞれ0.07、0.10、0.14であり、ストラップの合金組成が純鉛、又はSnが0.3質量%のPb−Sn合金である場合に、負極板耳部の合金組成中のCaとSnの添加量を様々に変えた電池を評価したものである。
(Alloy composition of negative electrode tab)
Tables 4 to 6 show that the ratio (d / l) of the thickness and length of the negative electrode plate ears is 0.07, 0.10, and 0.14, respectively, and the alloy composition of the strap is pure lead or Sn In the case of a 0.3% by mass Pb—Sn alloy, a battery was evaluated in which the amounts of Ca and Sn added in the alloy composition of the negative electrode tab portion were varied.

負極板耳部(負極格子)の合金組成において、Caが0.06質量%であるNo.55、No.56、No.70〜72、No.87〜89、No.103〜105、No.119、No.120、No.134〜136、及びCaが0.13質量%であるNo.68、No.69、No.85、No.86、No.101、No.102、No.117、No.118、No.132、No.133、No.148、No.149は、合金の結晶粒が粗大になる組成であるため、腐食が進行しやすく(図6参照)、粒界割れも生じやすい。しかし、(d/l)が0.07〜0.14と適度であるため、破断には至っていない。   In the alloy composition of the negative electrode plate lug (negative electrode lattice), No. 1 in which Ca is 0.06% by mass. 55, no. 56, no. 70-72, no. 87-89, no. 103-105, no. 119, no. 120, no. 134-136, and Ca No. which is 0.13 mass%. 68, No. 69, No. 85, No. 86, No. 101, No. 102, No. 117, No. 118, No. 86 132, no. 133, no. 148, no. Since 149 is a composition in which the crystal grains of the alloy are coarse, corrosion is likely to proceed (see FIG. 6), and intergranular cracking is likely to occur. However, since (d / l) is appropriate at 0.07 to 0.14, it does not break.

負極板耳部の合金組成中のSnが0.9質量%であるNo.60、No.63、No.67、No.76、No.80、No.84、No.93、No.96、No.100、No.109、No.112、No.116、No.124、No.127、No.131、No.140、No.143、No.147は、組成中のCaが0.07〜0.12質量%であっても、合金の結晶粒が大きいため、腐食が進行しやすく、粒界割れも生じやすい(図7参照)。しかし、(d/l)が0.07〜0.14と適度であるため、破断には至っていない。   No. in which Sn in the alloy composition of the negative electrode tab portion is 0.9% by mass. 60, no. 63, no. 67, no. 76, no. 80, no. 84, no. 93, no. 96, no. 100, no. 109, no. 112, no. 116, no. 124, no. 127, no. 131, no. 140, no. 143, no. No. 147, even if Ca in the composition is 0.07 to 0.12% by mass, because the crystal grains of the alloy are large, corrosion tends to proceed and intergranular cracking is likely to occur (see FIG. 7). However, since (d / l) is appropriate at 0.07 to 0.14, it does not break.

これらの電池に対して、負極板耳部の合金組成中のCaが0.07〜0.12質量%であり、かつSnが0.75質量%以下であるNo.57〜59、No.61、No.62、No.64〜66、No.73〜75、No.77〜79、No.81〜83、No.90〜92、No.94、No.95、No.97〜99、No.106〜108、No.110、No.111、No.113〜115、No.121〜123、No.125、No.126、No.128〜130、No.137〜139、No.141、No.142、No.144〜146では、耳部合金の耐食性が高いため、特に腐食量が抑制され、(d/l)の効果と相まって、粒界割れの進行も抑制されている。   For these batteries, No. in which the Ca in the alloy composition of the negative electrode tab portion is 0.07 to 0.12% by mass and Sn is 0.75% by mass or less. 57-59, no. 61, no. 62, no. 64-66, no. 73-75, no. 77-79, no. 81-83, no. 90-92, no. 94, no. 95, no. 97-99, no. 106-108, no. 110, no. 111, no. 113-115, no. 121-123, no. 125, no. 126, no. 128-130, no. 137-139, no. 141, no. 142, no. In 144 to 146, since the corrosion resistance of the ear part alloy is high, the amount of corrosion is particularly suppressed, and the progress of intergranular cracking is also suppressed in combination with the effect of (d / l).

したがって、負極板耳部の合金組成は、Ca:0.07〜0.12質量%、Sn:0.75質量%以下のPb−Ca−Sn系合金、又はPb−Ca系合金であることが好ましく、さらにCa:0.09〜0.12質量%、Sn:0.75質量%以下のPb−Ca−Sn系合金、又はPb−Ca系合金であるとより好ましい。   Therefore, the alloy composition of the negative electrode tab is Ca: 0.07 to 0.12% by mass, Sn: 0.75% by mass or less of Pb—Ca—Sn alloy or Pb—Ca alloy. Preferably, it is more preferably a Pb—Ca—Sn based alloy or a Pb—Ca based alloy of Ca: 0.09 to 0.12 mass% and Sn: 0.75 mass% or less.

以上の結果から、負極板耳部の厚さと長さの比(d/l)を0.07〜0.14、好ましくは0.09〜0.13とすることにより、負極溶接部の破断が防止され、長寿命の電池を提供することができることがわかった。
また、ストラップの組成と負極板耳部の合金組成を最適化すると、より負極溶接部が破断しにくく、長寿命の電池を得られることがわかった。
なお、容量が200A・h以外の鉛蓄電池においても、(d/l)の範囲が上記の範囲であれば、同様の傾向を示すことが確認された。また、ストラップの組成と負極板耳部の合金組成についても、同様の傾向であった。
From the above results, the negative electrode welded portion was fractured by setting the ratio (d / l) of the thickness and length of the negative electrode plate edge to 0.07 to 0.14, preferably 0.09 to 0.13. It has been found that a battery that is prevented and has a long life can be provided.
Further, it was found that when the strap composition and the alloy composition of the negative electrode plate ear were optimized, the negative electrode welded portion was more difficult to break and a long-life battery could be obtained.
In addition, it was confirmed that even in lead storage batteries with capacities other than 200 A · h, the same tendency is exhibited if the range of (d / l) is the above range. The same tendency was found for the strap composition and the alloy composition of the negative electrode tab.

本発明は、負極溶接部の破断を防止することにより、長寿命の制御弁式鉛蓄電池電池を提供することができるから、据置用途やサイクル用途のVRLA電池として有用である。また、自動車用VRLA電池に用いても良い。 The present invention can provide a long-life control valve type lead-acid battery by preventing breakage of the negative electrode weld, and thus is useful as a VRLA battery for stationary use and cycle use. Moreover, you may use for the VRLA battery for motor vehicles.

Claims (5)

正極板と負極板の間にリテーナ―マットを介在させた極板群を電槽に収納し、前記極板群に電解液を保持した制御弁式鉛蓄電池において、
負極板耳部の厚さ(d)と負極板耳部の長さ(l)との比(d/l)が、
0.07≦(d/l)≦0.14であり、
前記負極板耳部の合金組成が、Caを0.06〜0.13質量%、Snを0.9質量%以下含むPb−Ca−Sn系合金、又はPb-Ca系合金であり、
且つ、前記負極板耳部に溶接される負極ストラップの合金組成が、純鉛、又はSnを0.4質量%以下含むPb−Sn系合金であることを特徴とする制御弁式鉛蓄電池。
In the control valve type lead-acid storage battery in which the electrode plate group in which the retainer mat is interposed between the positive electrode plate and the negative electrode plate is stored in the battery case, and the electrolyte solution is held in the electrode plate group ,
The ratio (d / l) between the thickness (d) of the negative electrode tab and the length (l) of the negative electrode tab is:
0.07 ≦ (d / l) ≦ 0.14,
The alloy composition of the negative electrode tab is a Pb—Ca—Sn alloy or a Pb—Ca alloy containing 0.06 to 0.13 mass% of Ca and 0.9 mass% or less of Sn,
And the alloy composition of the negative electrode strap welded to the said negative electrode plate ear | edge part is a Pb-Sn type alloy containing 0.4 mass% or less of pure lead or Sn, The control valve type lead acid battery characterized by the above-mentioned.
前記負極板耳部の合金組成が、Caを0.07〜0.12質量%、Snを0.75質量%以下含むPb−Ca−Sn系合金、又はPb-Ca系合金であり、
且つ、前記負極板耳部に溶接される負極ストラップの合金組成が、純鉛、又はSnを0.3質量%以下含むPb−Sn系合金であることを特徴とする請求項1記載の制御弁式鉛蓄電池。
The alloy composition of the negative electrode tab is a Pb—Ca—Sn alloy or a Pb—Ca alloy containing 0.07 to 0.12% by mass of Ca and 0.75% by mass or less of Sn,
2. The control valve according to claim 1, wherein the alloy composition of the negative electrode strap welded to the negative electrode tab is pure lead or a Pb—Sn alloy containing 0.3 mass% or less of Sn. Lead acid battery.
前記負極板耳部の厚さ(d)と負極板耳部の長さ(l)との比(d/l)が、0.09≦d/l≦0.13であることを特徴とする請求項1又は2に記載の制御弁式鉛蓄電池。   The ratio (d / l) between the thickness (d) of the negative electrode tab and the length (l) of the negative electrode tab is 0.09 ≦ d / l ≦ 0.13. The control valve type lead-acid battery according to claim 1 or 2. 50℃、2.23Vのフロート電圧で27日間充電後、25℃で3日間放置を1サイクルとして、18サイクル実行する条件で試験を行った後において、負極板耳部と負極ストラップとの溶接部に破断が生じないことを特徴とする請求項1〜3のいずれかに記載の制御弁式鉛蓄電池。 After the test was conducted under the conditions of 18 cycles of charging at 50 ° C. and a float voltage of 2.23 V for 27 days and then leaving at 25 ° C. for 3 days as a cycle, the welded portion between the negative electrode tab and the negative strap The control valve type lead-acid battery according to any one of claims 1 to 3, wherein the battery is not broken . 前記極板群の負極板の集電体が鋳造集電体であることを特徴とする請求項1〜4のいずれかに記載の制御弁式鉛蓄電池。   The control valve type lead acid battery according to any one of claims 1 to 4, wherein the current collector of the negative electrode plate of the electrode plate group is a cast current collector.
JP2016256085A 2016-12-28 2016-12-28 Control valve type lead acid battery Active JP6278220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016256085A JP6278220B2 (en) 2016-12-28 2016-12-28 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016256085A JP6278220B2 (en) 2016-12-28 2016-12-28 Control valve type lead acid battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014259855A Division JP6070684B2 (en) 2014-12-24 2014-12-24 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2017092038A JP2017092038A (en) 2017-05-25
JP6278220B2 true JP6278220B2 (en) 2018-02-14

Family

ID=58770996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016256085A Active JP6278220B2 (en) 2016-12-28 2016-12-28 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP6278220B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093788B2 (en) * 2017-11-14 2022-06-30 昭和電工マテリアルズ株式会社 Lead-acid battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331446A1 (en) * 1993-09-16 1995-03-23 Vb Autobatterie Gmbh Plate block for lead accumulators
JP2001102082A (en) * 1999-09-30 2001-04-13 Japan Storage Battery Co Ltd Retained airtight type lead acid storage battery and method for manufacturing it
JP2002175798A (en) * 2000-12-08 2002-06-21 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2002289168A (en) * 2001-03-27 2002-10-04 Shin Kobe Electric Mach Co Ltd Control valve type lead storage battery
JP2003230982A (en) * 2002-02-06 2003-08-19 Shin Kobe Electric Mach Co Ltd Flux for lead alloy welding and lead storage battery using it
JP2004164955A (en) * 2002-11-12 2004-06-10 Japan Storage Battery Co Ltd Lead-acid storage battery
JPWO2005045956A1 (en) * 2003-11-07 2007-05-24 株式会社ジーエス・ユアサコーポレーション Lead-acid battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017092038A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6504055B2 (en) Control valve type lead storage battery
JP6099001B2 (en) Lead acid battery
JP6032498B2 (en) Control valve type lead acid battery
JP6836315B2 (en) Control valve type lead acid battery
JP6278220B2 (en) Control valve type lead acid battery
JP6070684B2 (en) Control valve type lead acid battery
JP6455105B2 (en) Lead acid battery
JP6759988B2 (en) Lead-acid battery
JP6601654B2 (en) Control valve type lead acid battery
CN109075346B (en) Lead storage battery, cast grid and manufacturing method thereof
JP2010205572A (en) Lead acid battery
JP5772497B2 (en) Lead acid battery
JP2005228685A (en) Lead-acid storage battery
JP2015088289A (en) Valve-regulated lead-acid battery and casting collector thereof
JP6830615B2 (en) Control valve type lead acid battery
JP6406457B2 (en) Lead-acid battery, cast grid, and manufacturing method thereof
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP6982593B2 (en) Lead-acid battery
JP2007157610A (en) Lead-acid battery
JP2018152360A (en) Lead storage battery, cast grid, and manufacturing method thereof
JP6210294B2 (en) Control valve type lead acid battery and its negative electrode current collector
JP2000021413A (en) Positive electrode lattice body for lead-acid battery
JPS5910420B2 (en) Lead-based alloy for storage battery electrode plates
JP2008288039A (en) Lead alloy expanded grid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180102

R150 Certificate of patent or registration of utility model

Ref document number: 6278220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150