JP6277699B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP6277699B2
JP6277699B2 JP2013256476A JP2013256476A JP6277699B2 JP 6277699 B2 JP6277699 B2 JP 6277699B2 JP 2013256476 A JP2013256476 A JP 2013256476A JP 2013256476 A JP2013256476 A JP 2013256476A JP 6277699 B2 JP6277699 B2 JP 6277699B2
Authority
JP
Japan
Prior art keywords
circuit
power factor
voltage
mosfet
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013256476A
Other languages
English (en)
Other versions
JP2015116047A (ja
Inventor
悟朗 中尾
悟朗 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2013256476A priority Critical patent/JP6277699B2/ja
Publication of JP2015116047A publication Critical patent/JP2015116047A/ja
Application granted granted Critical
Publication of JP6277699B2 publication Critical patent/JP6277699B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、力率改善回路を有する電源装置に関する。
従来より、入力された交流電圧を直流電圧に変換して負荷回路へ供給する電源装置において、力率を改善して入力電流の実効値を減らすために、力率改善回路が利用されている。
力率改善回路では、電源装置に入力される電圧波形のピークの位置と電流波形のピークの位置が一致し、かつ、電圧波形に対して相似する電流波形を形成することで力率を改善するように、例えば、整流回路の正極側出力端子と負極側出力端子の間に、MOSFET(metal-oxide-semiconductor field-effect transistor)といったスイッチング素子が接続される。そして制御回路により、そのスイッチング素子のオン・オフを切り替えることで、電源装置に入力される電圧波形に対して相似形の電流波形を形成させる。
また、全波整流回路から負荷回路へ流れる電流によるロスを軽減するための技術として、同期整流技術が知られている(例えば、特許文献1を参照)。特許文献1に記載の力率改善回路は、全波整流回路の出力に直列接続されたインダクタの出力とグラウンドとの間の接続または非接続を切り替える第1のMOSFETと、インダクタの出力に直列接続され、インダクタと負荷回路間の接続または非接続を切り替える第2のMOSFETと、第1及び第2のMOSFETのオン/オフの切り替えを制御する制御回路とを有する。そしてこの力率改善回路では、制御回路が第1のMOSFETをオンにするよう指示したときに、第2のMOSFETは同期してオフになるのに対して、第1のMOSFETはそのタイミングから所定時間だけ遅延してオンにされる。また、制御回路が第1のMOSFETをオフにするよう指示したときに、第1のMOSFETは同期してオフになるのに対して、第2のMOSFETは、第1のMOSFETのソース−ドレイン間電圧が十分な電圧となるまでの所定時間だけ遅延してオンになる。これにより、同期整流が達成される。
特開2010−200410号公報
一般に、力率改善回路は、入力電圧よりも出力電圧の方が高くなる昇圧型の回路として動作する。しかし、例えば、多数の遊技機が設置される遊技場のように、一つの交流電力供給源から複数の装置が電力供給を受ける場合、個々の装置に供給される交流電圧は、頻繁に変動するおそれがある。このような場合において、力率改善回路の出力電圧よりも高い交流電圧が力率改善回路に印加されると、力率改善回路は同期整流を行うことができなくなる。
そこで、本発明は、入力される交流電圧が力率改善動作が十分に行えない程高くなる場合でも、負荷回路への電力供給を維持しつつ、電力のロスを軽減できる電源装置を提供することを目的とする。
本発明の一つの形態として、電源装置が提供される。この電源装置は、入力された交流電圧を直流電圧に変換する整流回路と、整流回路と負荷回路との間に接続され、電源装置の出力電圧が所定の基準電圧以下のときに力率改善動作し、一方、電源装置の出力電圧が基準電圧よりも高くなると力率改善動作を停止する力率改善回路と、整流回路と負荷回路との間に力率改善回路と並列に接続されるバイパス回路とを有する。そしてバイパス回路は、整流回路と負荷回路との間に力率改善回路と並列に接続され、オンになっている場合における抵抗がオフになっている場合の抵抗よりも小さいスイッチング素子と、力率改善回路が力率改善動作を停止するか、または、力率改善動作を停止している間においてスイッチング素子を介して整流回路から負荷回路へ電流が流れると、スイッチング素子をオンにし、力率改善回路が力率改善動作を実行している間、スイッチング素子をオフにする駆動回路とを有することを特徴とする。
この電源装置において、スイッチング素子はMOSFETであり、かつ、力率改善回路が力率改善動作を停止している間において、スイッチング素子がオフになっているとそのMOSFETのボディダイオードを介して整流回路から負荷回路へ電流が流れ、一方、スイッチング素子がオンになっているとそのMOSFETのソース−ドレインを介して整流回路から負荷回路へ電流が流れるようにそのMOSFETは配置されることが好ましい。
この場合において、バイパス回路は、スイッチング素子の整流回路側の端子電圧とスイッチング素子の負荷回路側の端子電圧を比較し、その比較結果を表す信号を駆動回路へ出力するコンパレータをさらに有し、駆動回路は、コンパレータからの信号が、スイッチング素子の整流回路側の端子電圧がスイッチング素子の負荷回路側の端子電圧よりも高いことを示している場合、スイッチング素子をオンにすることが好ましい。
あるいは、バイパス回路は、スイッチング素子を流れる電流を検知し、その検知結果を表す信号を駆動回路へ出力する電流検知素子をさらに有し、駆動回路は、電流検知素子からの信号が、スイッチング素子に電流が流れたことを示している場合、スイッチング素子をオンにすることが好ましい。
あるいはまた、この電源装置において、力率改善回路は、力率改善回路が力率改善動作を実行中か停止中かを示す信号をバイパス回路の駆動回路へ出力し、駆動回路は、力率改善回路からの信号が力率改善回路が力率改善動作を停止していることを示している場合、スイッチング素子をオンにすることが好ましい。
本発明に係る電源装置は、入力される交流電圧が力率改善動作が十分に行えない程高くなる場合でも、負荷回路への電力供給を維持しつつ、電力のロスを軽減できるという効果を奏する。
本発明の第1の実施形態による電源装置の概略構成図である。 第1の実施形態による、整流回路の出力電圧の時間変化と各MOSFETのゲート電圧及びバイパス回路のMOSFETのボディダイオードを流れる電流の時間変化の関係を示すタイミングチャートである。 第2の実施形態による電源装置の概略構成図である。 第3の実施形態による電源装置の概略構成図である。
以下、本発明の実施形態による電源装置を、図を参照しつつ説明する。
本発明による電源装置は、入力される交流電圧を直流電圧に変換し、かつ平滑化して得られる出力電圧が所定の基準電圧よりも低くなっている間、力率改善回路により同期整流動作を行って直流電圧を負荷回路へ供給する。またこの電源装置は、出力電圧が基準電圧よりも高くなると、力率改善回路の動作を停止させるとともに、力率改善回路の動作停止中に、整流回路から出力される電圧を負荷回路へ供給するために、整流回路と負荷回路の間に力率改善回路と並列に接続されるMOSFETを有するバイパス回路を有する。そしてこの電源装置は、力率改善回路が動作を停止することによってバイパス回路のMOSFETのボディダイオードを介して電流が流れ出すと、そのMOSFETをオンにすることで、バイパス回路を経由して負荷回路へ電圧が供給される間の電力のロスを軽減する。
図1は、本発明の第1の実施形態による電源装置の概略構成図である。図1に示されるように、電源装置1は、整流回路2と、力率改善回路3と、バイパス回路4と、チャージポンプ回路5と、平滑コンデンサ6とを有し、交流電源8(例えば、商用交流電源)から入力された交流電圧を直流電圧に変換して負荷回路9へその直流電圧を供給する。
整流回路2は、交流電源8から入力された交流電圧を、脈流の直流電圧に変換する。そのために、整流回路2は、例えば、ブリッジ型に接続された4個のダイオードを有する全波整流回路とすることができる。
力率改善回路3は、整流回路2の正極側出力端子2−1と負荷回路9との間に、正極側出力端子2−1側から順に直列に接続されるコイル31と、MOSFET32とを有する。本実施形態では、MOSFET32はnチャネル型のMOSFETであり、ソース端子がコイル31と接続され、ドレイン端子が電源装置1の正極側出力端子7−1と接続される。また、力率改善回路3は、コイル31とMOSFET32の間にドレイン端子が接続され、ソース端子が整流回路2の負極側出力端子2−2と接続されるMOSFET33を有する。さらに、力率改善回路3は、MOSFET32、33のオン/オフの切り替えを制御する制御回路34を有する。
制御回路34は、電源装置1の正極側出力端子7−1における、平滑コンデンサ6により平滑化された電源装置1の出力電圧を所定の基準電圧と比較する。そして制御回路34は、出力電圧が基準電圧以下となっている間、電源装置1に入力される電圧波形のピークの位置と電流波形のピークの位置が一致し、かつ、電圧波形に対して相似する電流波形を形成させるように、MOSFET32、33のオン/オフを制御することで、力率改善回路3に力率改善動作を実行させる。そのために、制御回路34からの制御電圧は、MOSFET32、33のゲート端子に入力される。
具体的には、制御回路34は、入力された脈流電圧を力率改善回路3が同期整流できるように、MOSFET32とMOSFET33とを交互にオンにする。その際、例えば、特開2010−200410号公報に開示されているように、制御回路34がMOSFET33をオンにする際、MOSFET32がオフになってから所定時間だけ遅延してからMOSFET33をはオンとする。また、制御回路34がMOSFET33をオフにする際、MOSFET33がオフになってから、MOSFETのソース−ドレイン間電圧が十分な電圧となるまでの所定時間だけ遅延して、MOSFET32をオンにしてもよい。
一方、正極側出力端子7−1における出力電圧が基準電圧よりも高くなっている間、制御回路34は、MOSFET32、33の両方ともオフにして、力率改善回路3による力率改善動作を停止する。これにより、力率改善回路3を介して電流が流れることが防止されるので、制御回路34は、交流電源8から入力された交流電圧が、力率改善回路3が力率改善動作をできないほど高くなっている間、力率改善回路3により電力ロスが生じることを防止できる。
なお、基準電圧は、例えば、交流電源8の実効電圧が、仕様などにより定まるその設定範囲の最大値である場合に、力率改善回路3による力率改善の結果として得られる電源装置1の出力電圧値に設定される。また、力率改善回路3は、上記の実施形態に示される構成に限られない。力率改善回路3として、出力電圧が基準電圧よりも高くなると力率改善動作を停止できる、様々な回路構成を採用できる。
バイパス回路4は、正極側出力端子7−1における出力電圧が基準電圧よりも高くなっている間、整流回路2からの脈流電圧を、力率改善回路3を介さずに、平滑コンデンサ6を介して負荷回路9へ供給する。そのために、バイパス回路4は、MOSFET41と、コンパレータ42と、駆動回路43とを有する。
MOSFET41は、スイッチング素子として機能する。本実施形態では、MOSFET41は、nチャネル型のMOSFETであり、ソース端子が整流回路2の正極側出力端子2−1と接続され、ドレイン端子が力率改善回路3のMOSFET32のドレイン端子と電源装置1の正極側出力端子7−1との間に接続される。またMOSFET41のゲート端子は、駆動回路43と接続される。したがって、力率改善回路3が力率改善動作を停止して、整流回路2の正極側出力端子2−1における電圧が電源装置1の正極側出力端子7−1における出力電圧以上となっている間、MOSFET41を介して整流回路2の正極側出力端子2−1から電源装置1の正極側出力端子7−1へ電流が流れる。
特に、MOSFET41がオフとなっている間、MOSFET41のボディダイオードを介して、整流回路2の正極側出力端子2−1から電源装置1の正極側出力端子7−1へ電流が流れる。一方、MOSFET41がオンになると、ボディダイオードを経由するよりも抵抗が小さい、MOSFET41のソース−ドレインを介して、整流回路2の正極側出力端子2−1から電源装置1の正極側出力端子7−1へ電流が流れる。
なお、力率改善回路3が力率改善動作を行っている間は、整流回路2の正極側出力端子2−1における電圧よりも、電源装置1の正極側出力端子7−1における出力電圧の方が高くなるので、MOSFET41には電流が流れない。
コンパレータ42の正極側入力端子は、整流回路2の正極側出力端子2−1及びMOSFET41のソース端子と接続される。一方、コンパレータ42の負極側入力端子は、電源装置1の正極側出力端子7−1及びMOSFET41のドレイン端子と接続される。すなわち、コンパレータ42は、MOSFET41の整流回路2側の端子電圧と、負荷回路9側の端子電圧を比較する。そしてコンパレータ42の出力端子は駆動回路43と接続され、コンパレータ42からの出力電圧は駆動回路43に入力される。
電源装置1の正極側出力端子7−1における出力電圧が基準電圧以下で、力率改善回路3が力率改善動作している間、力率改善動作による昇圧の結果、コンパレータ42の正極側入力端子の電圧よりも負極側入力端子の電圧の方が高くなる。そのため、コンパレータ42の出力電圧は低くなる。一方、力率改善回路3が力率改善動作を停止していると、整流回路2の正極側出力端子2−1の電圧の上昇に伴ってMOSFET41のボディダイオードに電流が流れるようになるので、そのボディダイオードによる電圧降下により、コンパレータ42の正極側入力端子の電圧が負極側入力端子の電圧よりも高くなる。そのため、コンパレータ42の出力電圧は高くなる。
駆動回路43は、チャージポンプ回路5から供給される、整流回路2の正極側出力端子2−1の電圧よりも高い電圧を利用して、MOSFET41のオン/オフを切り替えるための制御電圧を生成し、その制御電圧をMOSFET41のゲート端子に印加する。
本実施形態では、コンパレータ42の出力電圧が低い間、すなわち、MOSFET41に電流が流れていない間は、駆動回路43は、MOSFET41をオフにする制御電圧を出力する。一方、MOSFET41に電流が流れ、コンパレータ42の出力電圧が高くなっている間、駆動回路43は、MOSFET41をオンにする制御電圧を出力する。このように、バイパス回路4は、MOSFET41のボディダイオードを介して電流が流れ始めると、直ちにMOSFET41をオンにすることができるので、バイパス回路4を介して負荷回路9へ電圧が供給されるときのロスを抑制できる。
なお、駆動回路43は、コンパレータ42の出力電圧が高いときに、MOSFET41がオンになる制御電圧をMOSFET41のゲート端子に印加し、コンパレータ42の出力電圧が低いときに、MOSFET41がオフになる制御電圧をMOSFET41のゲート端子に印加できる、どのような構成を有していてもよい。また、コンパレータ42の二つの入力端子へ入力される電圧は入れ換えられてもよい。この場合、駆動回路43は、コンパレータ42の出力電圧が低いときに、MOSFET41がオンになる制御電圧をMOSFET41のゲート端子に印加できる、どのような構成を有していてもよい。
チャージポンプ回路5は、整流回路2の正極側出力端子2−1の電圧よりも高い電圧をバイパス回路4の駆動回路43に供給する。そのために、チャージポンプ回路5は、整流回路2の正極側出力端子2−1とバイパス回路4の駆動回路43との間に、アノード端子が正極側出力端子2−1側となるように直列に接続された二つのダイオードD1、D2を有する。さらに、チャージポンプ回路5は、交流電源8の一方の端子に一端が接続され、ダイオードD1とダイオードD2の間に他端が接続されるコンデンサC1と、整流回路2の負極側出力端子2−2に一端が接続され、ダイオードD2のカソード端子と駆動回路43の間に他端が接続されるコンデンサC2を有する。
整流回路2の正極側出力端子2−1からの電流によってコンデンサC1、C2がチャージされることで、コンデンサC1、C2の両端子間電圧が増加する。これにより、ダイオードD2のカソード端子の電圧が、整流回路2の正極側出力端子2−1の電圧よりも高くなるので、チャージポンプ回路5は、整流回路2の正極側出力端子2−1の電圧よりも高い電圧を駆動回路43に供給できる。
平滑コンデンサ6は、その一端が電源装置1の正極側出力端子7−1と接続され、他端が負極側出力端子7−2と接続される。そして平滑コンデンサ6は、整流回路2により出力され、力率改善回路3またはバイパス回路4を通って供給される脈流電圧を平滑化して、負荷回路9へ出力する。
図2は、整流回路2の出力電圧の時間変化と各MOSFETのゲート電圧及びバイパス回路4のMOSFET41を流れる電流の時間変化の関係を示すタイミングチャートである。図2において、横軸は時間を表す。一番上の波形201は、整流回路2からの出力電圧の時間変化を表す。上から2番目の波形202は、MOSFET41を流れる電流の時間変化を表す。また上から3番目の波形203は、MOSFET41のゲート端子に印加される制御電圧の時間変化を表す。下から2番目の波形204は、力率改善回路3のMOSFET32のゲート端子に印加される制御電圧の時間変化を表す。そして一番下の波形205は、力率改善回路3のMOSFET33のゲート端子に印加される制御電圧の時間変化を表す。なお、波形203〜205に関して、制御電圧がHighとなっているとき、対応するMOSFETはオンとなり、制御電圧がLowとなっているとき、対応するMOSFETはオフとなる。
時刻t0〜t1の期間では、交流電源8から入力される交流電圧の実効値が低く、電源装置1からの出力電圧が基準電圧以下となっている。そのため、この期間では、波形204及び205に示されるように、力率改善回路3の二つのMOSFET32、33が交互にオンとなり、力率改善回路3は、力率改善動作(この例では、同期整流動作)している。また、波形202及び203に示されるように、この期間中、バイパス回路4のMOSFET41には電流が流れないので、MOSFET41のゲート端子に印加される制御電圧はLowのままである。
一方、時刻t1〜t2の期間では、交流電源8から入力される交流電圧の実効値が高く、電源装置1からの出力電圧が基準電圧よりも高くなっている。そのため、この期間では、波形204及び205に示されるように、力率改善回路3の二つのMOSFET32、33はオフのままとなり、力率改善回路3は力率改善動作を停止している。一方、波形202に示されるように、この期間中では、整流回路2からの出力電圧が高くなってくるとMOSFET41に電流が流れ始める。そして波形203に示されるように、MOSFET41は、電流が流れている間のみオンとなる。
以上に説明してきたように、この電源装置は、交流電源からの入力交流電圧の実効値が上昇して、電源装置からの出力電圧が基準電圧より高くなると、力率改善回路の動作を停止して、バイパス回路を通じて負荷回路へ直流電圧を供給する。そのため、この電源装置は、交流電源からの入力交流電圧が上昇して、力率改善回路が十分に力率改善動作をすることができなくなったときの力率改善回路による電力のロスを軽減できる。さらに、この電源装置は、バイパス回路にMOSFETを利用し、そのMOSFETのボディダイオードを通じて電流が流れ出すと、そのMOSFETをオンにして、抵抗の小さいMOSFETのソース−ドレインを介して電流が流れるようにするので、バイパス回路を通じで負荷回路へ直流電圧が供給されるときの電力のロスも軽減できる。
次に、第2の実施形態による電源装置について説明する。第2の実施形態による電源装置は、バイパス回路のMOSFETに電流が流れたことを、電流検知素子として利用するホール素子により検知する。
図3は、第2の実施形態による電源装置の概略構成図である。図3に示されるように、電源装置11は、整流回路2と、力率改善回路3と、バイパス回路4’と、チャージポンプ回路5と、平滑コンデンサ6とを有する。
第2の実施形態による電源装置11は、図1に示された第1の実施形態による電源装置1と比較して、バイパス回路4’の構成が異なる。そこで以下では、バイパス回路4’について説明する。
電源装置11におけるバイパス回路4’も、第1の実施形態によるバイパス回路4と同様に、電源装置11の正極側出力端子7−1における出力電圧が基準電圧よりも高くなっている間、整流回路2からの脈流電圧を、力率改善回路3を介さずに、負荷回路9へ出力する。そのために、バイパス回路4’は、MOSFET41と、ホール素子44と、駆動回路43とを有する。バイパス回路4’は、第1の実施形態によるバイパス回路4と比較して、コンパレータ42の代わりにホール素子44を有する点で異なる。
ホール素子44は、MOSFET41を流れる電流により生じる磁界を検知することで、MOSFET41に電流が流れたことを検知する。そのために、ホール素子44は、MOSFET41、MOSFET41のソース端子と整流回路2の正極側出力端子2−1間を繋ぐ導線及びMOSFET41のドレイン端子と電源装置11の正極側出力端子7−1間を繋ぐ導線のうちの何れかに近接して配置される。そしてホール素子44は、MOSFET41を流れる電流に応じた信号を駆動回路43へ出力する。
この実施形態では、MOSFET41に電流が流れたことをホール素子44によって検知できる。そのため、駆動回路43は、ホール素子44から通知された信号により、MOSFET41に電流が流れたことを検知すると、MOSFET41のゲート端子に、MOSFET41をオンにする制御電圧を印加する。
また、駆動回路43は、ホール素子44から通知された信号により、MOSFET41に電流が流れなくなったことを検知すると、駆動回路43は、MOSFET41のゲート端子に、MOSFET41をオフにする制御電圧を印加する。
このように、第2の実施形態による電源装置も、バイパス回路のMOSFETに電流が流れたことを検知するとそのMOSFETをオンにするので、バイパス回路を経由して直流電圧が負荷回路へ供給される際のバイパス回路による電力のロスを軽減できる。
次に、第3の実施形態による電源装置について説明する。第3の実施形態による電源装置は、バイパス回路のMOSFETに電流が流れたことを検知する代わりに、力率改善回路の制御回路が、力率改善回路の力率改善動作を停止させている間、そのことをバイパス回路の駆動回路に通知することで、力率改善回路の力率改善動作の停止中に、バイパス回路のMOSFETのソース−ドレイン間を介して整流回路からの脈流電圧が負荷回路へ供給されるようにする。
図4は、第3の実施形態による電源装置の概略構成図である。図4に示されるように、電源装置12は、整流回路2と、力率改善回路3と、バイパス回路4”と、チャージポンプ回路5と、平滑コンデンサ6とを有する。
第3の実施形態による電源装置12は、図1に示された第1の実施形態による電源装置1と比較して、バイパス回路4”の構成が異なる。そこで以下では、バイパス回路4”について説明する。
電源装置12におけるバイパス回路4”も、第1の実施形態によるバイパス回路4と同様に、電源装置12の正極側出力端子7−1における出力電圧が基準電圧よりも高くなっている間、整流回路2からの脈流電圧を、力率改善回路3を介さずに、平滑コンデンサ6を介して負荷回路9へ出力する。そのために、バイパス回路4”は、MOSFET41と、駆動回路43とを有する。バイパス回路4”は、第1の実施形態によるバイパス回路4と比較して、コンパレータ42を有さない点で異なる。
この実施形態では、バイパス回路4”は、MOSFET41に電流が流れたことを検知しない。その代りに、力率改善回路3の制御回路34が、出力電圧が基準電圧よりも高いか否か、すなわち、力率改善回路3が力率改善動作を実行しているか否かを示す信号を駆動回路43へ出力する。
駆動回路43は、制御回路34から通知された信号が、出力電圧が基準電圧よりも高いこと、すなわち、力率改善回路3が力率改善動作を停止していることを示している間、MOSFET41のゲート端子に、MOSFET41をオンにする制御電圧を印加する。一方、駆動回路43は、制御回路34から通知された信号が、出力電圧が基準電圧以下であること、すなわち、力率改善回路3が力率改善動作を実行中であることを示している間、MOSFET41のゲート端子に、MOSFET41をオフにする制御電圧を印加する。
このように、第3の実施形態による電源装置は、力率改善回路が動作を停止している間、バイパス回路のMOSFETがオンになるので、バイパス回路を経由して直流電圧が負荷回路へ供給される際のバイパス回路による電力のロスを軽減できる。またこの実施形態による電源装置は、バイパス回路のMOSFETに流れる電流を検知するための構成を必要としないので、回路構成を簡単化できる。
なお、第3の実施形態の変形例では、バイパス回路のMOSFETに流れる電流を検知する必要が無いので、バイパス回路4が有するスイッチング素子として、MOSFETの代わりに、バイポーラトランジスタが用いられてもよい。例えば、npn型のトランジスタが利用される場合、そのトランジスタのコレクタ端子が整流回路2の正極側出力端子2−1と接続され、エミッタ端子が電源装置12の正極側出力端子7−1と接続されればよい。そして駆動回路43は、そのトランジスタをオンまたはオフとする制御信号を、そのトランジスタのベース端子に供給すればよい。
なお、上記の各実施形態において、バイパス回路のMOSFETとして、Pチャネル型のMOSFETを利用してもよい。この場合には、MOSFETのドレイン端子が整流回路2の正極側出力端子2−1と接続され、ソース端子が、電源装置の正極側出力端子7−1と接続される。またこの場合には、MOSFETをオンにするためにMOSFETのゲート端子に印加する電圧は、ソース端子の電位よりも低くてよいので、チャージポンプ回路は省略されてもよい。
上記の実施形態または変形例による電源装置は、弾球遊技機または回胴遊技機といった遊技機に搭載されてもよい。
このように、当業者は、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
1、11、12 電源装置
2 整流回路
2−1 正極側出力端子
2−2 負極側出力端子
3 力率改善回路
31 コイル
32、33 MOSFET
34 制御回路
4、4’、4” バイパス回路
41 MOSFET
42 コンパレータ
43 駆動回路
44 ホール素子
5 チャージポンプ回路
6 平滑コンデンサ
7−1 正極側出力端子
7−2 負極側出力端子
8 交流電源
9 負荷回路

Claims (4)

  1. 電源装置であって、
    入力された交流電圧を直流電圧に変換する整流回路と、
    前記整流回路と負荷回路との間に接続され、前記電源装置の出力電圧が所定の基準電圧以下のときに力率改善動作し、一方、前記出力電圧が前記基準電圧よりも高くなると力率改善動作を停止する力率改善回路と、
    前記整流回路と前記負荷回路との間に前記力率改善回路と並列に接続されるバイパス回路とを有し、
    前記バイパス回路は、
    前記整流回路と前記負荷回路との間に前記力率改善回路と並列に接続され、オンになっている場合における抵抗がオフになっている場合の抵抗よりも小さく、かつ、オフになっている場合でも前記整流回路から前記負荷回路へ電流を導通可能なスイッチング素子と、
    前記スイッチング素子を流れる電流を検知する電流検知回路と、
    前記力率改善回路が力率改善動作を停止している間において前記スイッチング素子を介して前記整流回路から前記負荷回路へ電流が流れたことが前記電流検知回路から通知されると、前記スイッチング素子をオンにし、前記力率改善回路が力率改善動作を実行している間、前記スイッチング素子をオフにする駆動回路とを有することを特徴とする電源装置。
  2. 前記スイッチング素子はMOSFETであり、かつ、前記力率改善回路が力率改善動作を停止している間において、前記スイッチング素子がオフになっていると当該MOSFETのボディダイオードを介して前記整流回路から前記負荷回路へ電流が流れ、一方、前記スイッチング素子がオンになっていると当該MOSFETのソース−ドレインを介して前記整流回路から前記負荷回路へ電流が流れるように当該MOSFETは配置される、請求項1に記載の電源装置。
  3. 前記電流検知回路は、前記スイッチング素子の前記整流回路側の端子電圧と前記スイッチング素子の前記負荷回路側の端子電圧を比較し、該比較結果を表す信号を前記駆動回路へ出力するコンパレータを有し、
    前記駆動回路は、前記コンパレータからの信号が、前記スイッチング素子の前記整流回路側の端子電圧が前記スイッチング素子の前記負荷回路側の端子電圧よりも高いことを示している場合、前記スイッチング素子をオンにする、請求項2に記載の電源装置。
  4. 前記電流検知回路は、前記スイッチング素子を流れる電流を検知し、該検知結果を表す信号を前記駆動回路へ出力する電流検知素子を有し、
    前記駆動回路は、前記電流検知素子からの信号が、前記スイッチング素子に電流が流れたことを示している場合、前記スイッチング素子をオンにする、請求項2に記載の電源装置。
JP2013256476A 2013-12-11 2013-12-11 電源装置 Active JP6277699B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256476A JP6277699B2 (ja) 2013-12-11 2013-12-11 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256476A JP6277699B2 (ja) 2013-12-11 2013-12-11 電源装置

Publications (2)

Publication Number Publication Date
JP2015116047A JP2015116047A (ja) 2015-06-22
JP6277699B2 true JP6277699B2 (ja) 2018-02-14

Family

ID=53529387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256476A Active JP6277699B2 (ja) 2013-12-11 2013-12-11 電源装置

Country Status (1)

Country Link
JP (1) JP6277699B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047711A1 (en) * 2008-10-23 2010-04-29 Leach International System and method for emulating an ideal diode in a power control device
JP2010115010A (ja) * 2008-11-06 2010-05-20 Toyota Motor Corp 電源制御装置
JP2011223755A (ja) * 2010-04-09 2011-11-04 Honda Motor Co Ltd Dc−dcコンバータ
CN103354972B (zh) * 2011-01-31 2016-01-20 新电元工业株式会社 功率因数改善电路
JP5884026B2 (ja) * 2011-08-05 2016-03-15 パナソニックIpマネジメント株式会社 電源装置

Also Published As

Publication number Publication date
JP2015116047A (ja) 2015-06-22

Similar Documents

Publication Publication Date Title
TWI501533B (zh) 一種離線電壓調節器、離線調節器積體電路及其電壓轉換方法
US20170179846A1 (en) Self-driven ac-dc synchronous rectifier for power applications
AU2015389306B2 (en) Step-up device and converter device
JP2007110869A (ja) 電力変換装置
CN103427701B (zh) 用于运行变流器的方法和变流器控制单元
JP2013085347A (ja) 交流直流変換器
US9001540B2 (en) Power source apparatus
JP2018060731A (ja) Led点灯装置及びled照明装置
JP6160354B2 (ja) 電源装置
JP6112747B2 (ja) 電源装置
US10164513B1 (en) Method of acquiring input and output voltage information
JP6015947B2 (ja) スイッチング電源装置、及びその制御方法
JP6277699B2 (ja) 電源装置
US8891263B2 (en) Inverter apparatus having power supply circuit
KR102060068B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
JP5824339B2 (ja) 三相整流装置
KR101227374B1 (ko) 인버터 과전류 검출 회로를 포함하는 모터 회로 및 인버터 과전류 검출 회로 전원 제공 방법
JPWO2011161728A1 (ja) スイッチング電源装置およびこれを用いた電源システム、電子装置
KR101832783B1 (ko) 대기 전력 기능을 포함하는 전원 장치 및 이를 포함하는 제습기
JP2015033296A (ja) 電力変換装置
JP6270698B2 (ja) Ledドライバ装置
JP6199253B2 (ja) 電力変換装置およびその制御方法
JP2014197943A (ja) スイッチング電源装置、及びその制御方法
JP2014230340A (ja) 制御方法
TWM437574U (en) Bridgeless power factor correction converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180101

R150 Certificate of patent or registration of utility model

Ref document number: 6277699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150