JP6276514B2 - セラミックマトリックス複合材料内の内部キャビティ及びそのためのマンドレルを作成する方法 - Google Patents

セラミックマトリックス複合材料内の内部キャビティ及びそのためのマンドレルを作成する方法 Download PDF

Info

Publication number
JP6276514B2
JP6276514B2 JP2013089883A JP2013089883A JP6276514B2 JP 6276514 B2 JP6276514 B2 JP 6276514B2 JP 2013089883 A JP2013089883 A JP 2013089883A JP 2013089883 A JP2013089883 A JP 2013089883A JP 6276514 B2 JP6276514 B2 JP 6276514B2
Authority
JP
Japan
Prior art keywords
mandrel
cmc
preform
mandrels
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013089883A
Other languages
English (en)
Japanese (ja)
Other versions
JP2013256436A5 (enExample
JP2013256436A (ja
Inventor
ポール・エドワード・グレイ
ハーバート・チッゼー・ロバーツ
グレン・カーティス・タクサチァー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2013256436A publication Critical patent/JP2013256436A/ja
Publication of JP2013256436A5 publication Critical patent/JP2013256436A5/ja
Application granted granted Critical
Publication of JP6276514B2 publication Critical patent/JP6276514B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D22/00Producing hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/54Producing shaped prefabricated articles from the material specially adapted for producing articles from molten material, e.g. slag refractory ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators or shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/30Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds
    • C04B26/32Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)
JP2013089883A 2012-04-27 2013-04-23 セラミックマトリックス複合材料内の内部キャビティ及びそのためのマンドレルを作成する方法 Expired - Fee Related JP6276514B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261639617P 2012-04-27 2012-04-27
US61/639,617 2012-04-27
US13/780,306 2013-02-28
US13/780,306 US10450235B2 (en) 2012-04-27 2013-02-28 Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor

Publications (3)

Publication Number Publication Date
JP2013256436A JP2013256436A (ja) 2013-12-26
JP2013256436A5 JP2013256436A5 (enExample) 2018-01-18
JP6276514B2 true JP6276514B2 (ja) 2018-02-07

Family

ID=48143215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089883A Expired - Fee Related JP6276514B2 (ja) 2012-04-27 2013-04-23 セラミックマトリックス複合材料内の内部キャビティ及びそのためのマンドレルを作成する方法

Country Status (6)

Country Link
US (1) US10450235B2 (enExample)
EP (1) EP2657209B1 (enExample)
JP (1) JP6276514B2 (enExample)
CN (1) CN103373862B (enExample)
BR (1) BR102013010197A2 (enExample)
CA (1) CA2813313A1 (enExample)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011043B2 (en) * 2012-04-27 2018-07-03 General Electric Company Method of producing an internal cavity in a ceramic matrix composite
US10450235B2 (en) 2012-04-27 2019-10-22 General Electric Company Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor
EP3004559B1 (en) 2013-05-29 2020-01-15 General Electric Company Method of forming a ceramic matrix composite component with cooling features
US9624138B2 (en) 2014-04-08 2017-04-18 United Technologies Corporation Formation of voids within components formed from porous substrates
US10808554B2 (en) 2016-11-17 2020-10-20 Raytheon Technologies Corporation Method for making ceramic turbine engine article
US10196315B2 (en) * 2017-01-11 2019-02-05 General Electric Company Melt infiltration with SiGa and/or siln alloys
US10562210B2 (en) 2017-03-22 2020-02-18 General Electric Company Method for forming passages in composite components
US11066335B2 (en) 2017-09-06 2021-07-20 General Electric Company Articles for creating hollow structures in ceramic matrix composites
US10895448B2 (en) * 2019-04-09 2021-01-19 General Electric Company System and method for collecting measurement data of shaped cooling holes of CMC components
US11867067B2 (en) 2022-06-03 2024-01-09 Rtx Corporation Engine article with ceramic insert and method therefor
US20250289762A1 (en) * 2024-03-13 2025-09-18 Ii-Vi Delaware, Inc. Silicon consumable core for internal features in reaction bonded ceramics

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907949A (en) 1970-10-27 1975-09-23 Westinghouse Electric Corp Method of making tubular polycrystalline oxide body with tapered ends
US4040849A (en) * 1976-01-06 1977-08-09 General Electric Company Polycrystalline silicon articles by sintering
US4615855A (en) 1984-03-15 1986-10-07 Programmed Composites, Inc. Process for forming composite article
JPS62227603A (ja) 1986-03-31 1987-10-06 日本碍子株式会社 セラミツクス焼結体の製造方法及び該製造方法に用いるための成形型
JPS62256605A (ja) 1986-04-30 1987-11-09 マツダ株式会社 セラミツク成形品の製造法
US5015540A (en) 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
US5330854A (en) 1987-09-24 1994-07-19 General Electric Company Filament-containing composite
JPH01198343A (ja) 1988-02-02 1989-08-09 Toray Ind Inc 筒状炭素・炭素複合材料の製造方法
US5336350A (en) 1989-10-31 1994-08-09 General Electric Company Process for making composite containing fibrous material
US5066454A (en) 1990-06-20 1991-11-19 Industrial Materials Technology, Inc. Isostatic processing with shrouded melt-away mandrel
US5177039A (en) 1990-12-06 1993-01-05 Corning Incorporated Method for making ceramic matrix composites
JPH07195147A (ja) 1993-12-29 1995-08-01 Masaru Nemoto 成形用特殊中子を用いた成形方法
US5725044A (en) 1994-08-30 1998-03-10 Hirokawa; Koji Casting method using a forming die
US5628938A (en) 1994-11-18 1997-05-13 General Electric Company Method of making a ceramic composite by infiltration of a ceramic preform
US6024898A (en) 1996-12-30 2000-02-15 General Electric Company Article and method for making complex shaped preform and silicon carbide composite by melt infiltration
US5910095A (en) 1997-02-21 1999-06-08 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite marine engine riser elbow
US6001436A (en) 1997-05-12 1999-12-14 Northrop Grumman Corporation Ceramic matrix composite turbocharger housing
DE19834571C2 (de) * 1998-07-31 2001-07-26 Daimler Chrysler Ag Verfahren zur Herstellung von Körpern aus faserverstärkten Verbundwerkstoffen und Verwendung des Verfahrens
US6280550B1 (en) 1998-12-15 2001-08-28 General Electric Company Fabrication of composite articles having an infiltrated matrix
US6403158B1 (en) 1999-03-05 2002-06-11 General Electric Company Porous body infiltrating method
US6627019B2 (en) 2000-12-18 2003-09-30 David C. Jarmon Process for making ceramic matrix composite parts with cooling channels
US6503441B2 (en) 2001-05-30 2003-01-07 General Electric Company Method for producing melt-infiltrated ceramic composites using formed supports
US6746755B2 (en) * 2001-09-24 2004-06-08 Siemens Westinghouse Power Corporation Ceramic matrix composite structure having integral cooling passages and method of manufacture
DE10164229B4 (de) * 2001-12-31 2006-03-09 Sgl Carbon Ag Reibscheiben, Verfahren zu ihrer Herstellung und ihre Verwendung
US20040067316A1 (en) 2002-10-04 2004-04-08 Paul Gray Method for processing silicon-carbide materials using organic film formers
US7043921B2 (en) 2003-08-26 2006-05-16 Honeywell International, Inc. Tube cooled combustor
US7153464B2 (en) 2003-12-01 2006-12-26 General Electric Company Method of making porous ceramic matrix composites
US7549840B2 (en) 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
US20070096371A1 (en) 2005-10-27 2007-05-03 General Electric Company Process of producing ceramic matrix composites
US7600979B2 (en) 2006-11-28 2009-10-13 General Electric Company CMC articles having small complex features
US7837914B2 (en) 2006-12-04 2010-11-23 General Electric Company Process of producing a composite component and intermediate product thereof
CN101224497B (zh) 2007-01-17 2010-05-26 富准精密工业(深圳)有限公司 动压轴承制造方法
US20080199661A1 (en) 2007-02-15 2008-08-21 Siemens Power Generation, Inc. Thermally insulated CMC structure with internal cooling
DE102007057198B4 (de) 2007-11-28 2017-04-20 Daimler Ag Verfahren zur Herstellung eines Faserverbund-Hohlkörpers mit kraftfluss- und spannungsoptimierter Faserausrichtung
US20100279845A1 (en) 2009-04-30 2010-11-04 General Electric Company Process of producing ceramic matrix composites
FR2955609B1 (fr) 2010-01-26 2012-04-27 Snecma Aube composite a canaux internes
NL2004209C2 (en) 2010-02-08 2011-08-09 Rgs Dev B V Apparatus and method for the production of semiconductor material foils.
US8980435B2 (en) 2011-10-04 2015-03-17 General Electric Company CMC component, power generation system and method of forming a CMC component
US9663404B2 (en) 2012-01-03 2017-05-30 General Electric Company Method of forming a ceramic matrix composite and a ceramic matrix component
CN102527601B (zh) 2012-03-02 2013-12-11 西安石油大学 一种雾化器喷头防堵涂层的制备方法
US9050769B2 (en) 2012-04-13 2015-06-09 General Electric Company Pre-form ceramic matrix composite cavity and method of forming and method of forming a ceramic matrix composite component
US10450235B2 (en) 2012-04-27 2019-10-22 General Electric Company Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor

Also Published As

Publication number Publication date
CN103373862A (zh) 2013-10-30
CN103373862B (zh) 2019-01-08
US10450235B2 (en) 2019-10-22
JP2013256436A (ja) 2013-12-26
EP2657209B1 (en) 2014-12-17
EP2657209A1 (en) 2013-10-30
US20140072736A1 (en) 2014-03-13
CA2813313A1 (en) 2013-10-27
BR102013010197A2 (pt) 2017-07-11

Similar Documents

Publication Publication Date Title
JP6276514B2 (ja) セラミックマトリックス複合材料内の内部キャビティ及びそのためのマンドレルを作成する方法
JP2013256436A5 (enExample)
RU2728429C1 (ru) Способ изготовления изделий из композитного C/C-SIC материала и продуктов на их основе
JP6538296B2 (ja) セラミックマトリックス複合材料内の内部キャビティを作成する方法
JP6411894B2 (ja) セラミックマトリックス複合材を製造する方法およびそれによって形成されたセラミックマトリックス複合材
JP4571369B2 (ja) 成形支持体を用いて溶融含浸セラミック複合体を製造する方法
EP2657207B1 (en) Method of producing a melt-infiltrated ceramic matrix composite article
JP2020506091A (ja) 複合材料部品の製造方法
CN110171976A (zh) 基于増材制造的SiC基陶瓷零件的制备方法及产品
RU2760807C2 (ru) Способ выполнения упрочненной волокнистой заготовки
CN105541364B (zh) 一种一步致密化生产碳陶汽车制动盘的方法
JP2015212215A (ja) セラミックマトリックス複合材料を生成する方法及びそれによって形成されるセラミックマトリックス複合材料
US10723660B2 (en) Carbon yielding resin for melt infiltration
CN114230347A (zh) 连续纤维增强ZrC/SiC复合零件的制备方法及产品
JP6884883B2 (ja) SiGa及び/又はSiIn合金での溶融含浸
JPH06316436A (ja) 繊維強化ガラス基材及びガラス/セラミックスを基材とする複合材物品の製造方法
CN105985113A (zh) 生产陶瓷基质复合物的工艺和由此形成的陶瓷基质复合物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20171201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180112

R150 Certificate of patent or registration of utility model

Ref document number: 6276514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees