JP6272051B2 - 光学検知装置及びそれを備える画像形成装置 - Google Patents

光学検知装置及びそれを備える画像形成装置 Download PDF

Info

Publication number
JP6272051B2
JP6272051B2 JP2014014192A JP2014014192A JP6272051B2 JP 6272051 B2 JP6272051 B2 JP 6272051B2 JP 2014014192 A JP2014014192 A JP 2014014192A JP 2014014192 A JP2014014192 A JP 2014014192A JP 6272051 B2 JP6272051 B2 JP 6272051B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
optical detection
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014014192A
Other languages
English (en)
Other versions
JP2015141113A (ja
JP2015141113A5 (ja
Inventor
圭佑 石角
圭佑 石角
進介 小林
進介 小林
健男 河波
健男 河波
昭範 三又
昭範 三又
中川 健
健 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014014192A priority Critical patent/JP6272051B2/ja
Priority to US14/606,419 priority patent/US9304083B2/en
Publication of JP2015141113A publication Critical patent/JP2015141113A/ja
Publication of JP2015141113A5 publication Critical patent/JP2015141113A5/ja
Application granted granted Critical
Publication of JP6272051B2 publication Critical patent/JP6272051B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5054Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt
    • G03G15/5058Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt using a test patch
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N2021/556Measuring separately scattering and specular

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、電子写真プロセス等を利用したレーザビームプリンタ(LBP)、複写機等の画像形成装置に関するものである。
現在、コンピュータネットワーク技術の進展により、画像出力端末としてのプリンタが急速に普及しており、近年は、出力画像カラー化の進展に伴い、カラープリンタの画質の安定性向上やカラープリンタ相互間のカラー画質の均一化等の要求が高まっている。
特に、色の再現性や各色間の重ね合わせ精度に関しては、設置環境変化や経時変化、あるいは機差によらない高度な安定性が求められている。しかし、電子写真方式の画像形成装置は、装置の置かれた環境条件の変化や感光体、現像剤の経時劣化、装置内の温度変化により、画像濃度やカラーレジストレーションが変動するので、初期設定のままでは、そのような高い要求値を満たすことができない。
そこで、画像濃度やカラーレジストレーションを最適に保つフィードバック制御を行うトナー検知装置として光学センサを用いることが一般的である。このフィードバック制御は、以下のように行われる。試験用のトナー画像(以下、「テストパターン」と称する)を、例えば感光体、中間転写体、転写搬送ベルト等の循環移動体上に形成し、そのテストパターンの濃度及び各色間の相対位置をトナー検知装置としての光学センサで計測する。
その計測結果とテストパターンを形成した時の条件から、実際の印刷の際の画像濃度やカラーレジストレーションが適切になるように画像濃度及びカラーレジストレーションを制御する。その因子として、例えば、潜像形成時の露光パターン、露光書き出し位置、画像形成倍率、現像バイアス、帯電バイアス等を制御する。
このようなトナー検知装置(トナー検知センサ)としての光学センサとして、テストパターンに光を照射して反射される光から光学的にトナー量またはトナー像の位置を測定するセンサが多く用いられている。
特許文献1には、光学素子として、測定対象物の被照射面に光を照射する発光素子(LED)、及び、正反射光を受光するための受光素子、及び散乱反射光を受光するための受光素子をそれぞれ1つずつ有する光学センサが記載されている。各発光素子及び受光素子は所謂砲弾型の光学素子で、発光部または受光部を備える半導体チップと砲弾型のレンズ部と、回路基板に接続されるリードフレームとが設けられている。この砲弾型の光学素子はリードフレームを折り曲げる角度を変えることで素子の向きをある程度自由に変更できる。このため、各光学素子をハウジングに嵌合することで各光学素子の向きが所望の向きとなる。しかし、砲弾型の光学素子は、素子の向きを変えるために有る程度長いリードフレームやレンズ部を有する場合があるため、半導体チップから回路基板まで一定の体積が必要となり、センサの小型化という観点では不利である。
そこで、センサの小型化のために、特許文献2では回路基板表面に実装するタイプのチップ部品である光学素子を用いて、回路基板上に導光路を形成したハウジングを被せるタイプの光学センサが開示されている。回路基板の表面(実装面)上に直接実装するタイプの光学素子を用いた場合、リードフレームやレンズ部がないため、回路基板上に光学素子を直接実装する際に必要とされる体積は大幅に少なくなりセンサを小型化することができる。一般的にチップタイプの発光素子は、砲弾型の発光素子のように発光部と一体的なレンズ部が無い為、発光指向角が広い。このため、特許文献2に記載されている構成では、集光レンズを用いて発光素子からの光を集光して被照射面へ光を照射している。しかし、特許文献2のようなチップタイプの光学素子を回路基板の表面上に実装した光学センサでは、発光素子を回路基板表面上に実装する位置バラつきが生じやすい。このため、集光レンズの光軸に対して発光素子の位置がずれた場合、被照射面上での光照射位置がずれやすく、被照射面の所望の位置に所望の光量の光を照射できないことから受光素子で受光する光量が落ち、検知精度が悪化する虞がある。
そこで、特許文献3には、レンズを用いず、発光素子からの光を、発光素子を覆うハウジングに設けた絞りを介して被照射面へ光を照射する構成が開示されている。この構成によれば、発光素子が実装される位置がバラついても、被照射面上での光照射位置がずれにくい。
特開2006‐267644 特開2006‐208266 特開2013‐191835
しかしながら、絞りを介して発光素子からの光を照射する構成の場合、ハウジングの形状によっては、迷光が発生する虞がある。つまり、発光素子から発せられた光の一部が、絞りから出射される前にハウジング内で反射し、本来意図していた方向と異なる方向で絞りを通過して被照射面の所望の位置と異なる位置に照射され正反射し、迷光として散乱反射光を受光する受光素子に到達する。このような場合、迷光が散乱反射光を受光する受光素子の受光量を変化させてしまい、受光素子から正しい出力を得られず、その結果、光学検知装置を用いた被照射面の検知精度が劣化する可能性がある。
そこで本発明は、迷光の発生を抑制して良好な精度の出力を得られる光学検知装置を提供することを目的とする。
そこで本発明は、被照射面に光を照射し、基板に実装されることで位置が決まった発光素子と、光素子と、前記発光素子から発せられ光が通過する第1の絞り及び前記受光素子で受光する光が通過する第2の絞りを備え、前記発光素子及び前記受光素子を内包したハウジングと、を有し、前記発光素子から発せられた光が前記第1の絞りを通過し被照射面で射した後に前記第2の絞りを通過して前記受光素子へ到達する光学検知装置において、前記ハウジングは傾斜面を備えており前記傾斜面は、前記被照射面の法線方向に見て前記発光素子と前記受光素子との配列方向に直交する方向に対して傾斜しており、前記発光素子からの光の照射方向に関して前記第1の絞りよりも上流側で、且つ前記配列方向に関して前記発光素子と対向し、且つ前記発光素子から出射された光が入射する部分に配置されていることを特徴とする。
本発明によれば、迷光の発生を抑制して光学検知装置から良好な精度の出力を得られる。
実施例1における画像形成装置の構成の概略を示す図。 画像形成装置の動作を制御するための制御ブロック図。 実施例1における回路構成を示す図。 レジストレーション補正用のテストパターンを示す図。 散乱反射光を受光素子でテストパターンを検知した時の検知波形を示す図。 濃度補正用のテストパターンを示す図。 トナー量を変化させた時の受光素子の検知出力を示す図。 実施例1における光学センサ60の断面図。 発光素子61の指向角特性を示す図。 受光素子62、64の指向角特性を示す図。 発光素子からみた実施例1の光学センサ60の底面図。 実施例1の比較例となる光学センサの断面と内壁で反射した光の光跡を示す図。 実施例1と比較例の構成で検知波形を比較した図。 実施例1のその他の構成である光学センサ60の底面図。 実施例2における光学センサ60の断面図。 実施例2の光学センサの絞りで反射した光の光跡を示す図。 実施例2のより好適な光学センサ60の断面図。 実施例2の光学センサ60のその他構成の断面図とハウジング65を型から抜く際の模式図。
以下に、本発明に係る光学センサを備える画像形成装置の実施例を具体的に説明する。
<実施例1>
[画像形成装置]
まず、画像形成装置100について説明する。図1は、画像形成装置100の概略構成図である。画像形成装置100は、第1〜第4の画像形成ステーションより構成され、各画像形成ステーションで異なる色のトナー像を形成し、それらを合成することで、カラーの画像形成を行うことができる。第1ステーションaはイエロー、第2ステーションbはマゼンタ、第3ステーションcはシアン、第4ステーションdはブラックのトナー像をそれぞれ形成する。各画像形成ステーションは、第1の像担持体として感光ドラム1(1a、1b、1c、1d)を有し、それぞれ矢印方向に不図示のモータにより感光ドラム1の直径が中心値である場合に表面速度が100mm/secとなるように回転駆動する。各画像形成ステーションの感光ドラム1から、順次第2の像担持体である中間転写ベルト10にトナー像を一次転写する。このように画像形成装置100は所謂インライン方式のプリンタである。
以下、画像形成装置100による画像形成動作について説明する。なお、各画像形成ステーションでは同様の動作をする為、第1ステーションaにおける画像形成動作について説明し、他の画像形成ステーションの動作の説明は省略する。感光ドラム1aは、帯電ローラ2aにより所定の電位に一様に帯電される。次に、露光手段3aによりレーザービームが照射される。以下では、レーザービームの感光ドラム1aの表面上のスポットが移動する走査方向を主走査方向、照射方向と直交する方向を副走査方向と呼ぶ。なお、主走査方向とは感光ドラム1aの回転軸方向と平行である。これにより、カラー画像のイエロー色に対応した静電潜像が形成される。次に、静電潜像は現像位置において第1の現像器(イエロー現像器)4aにより現像され、イエロートナー像が可視化される。
尚、レーザービームの照射方向は、イエローとマゼンタについては、記録媒体上の画像を正面に見た時に、左から右方向、シアンとブラックについては、右から左方向に走査される。感光ドラム1a上に形成されたイエロートナー像は、感光ドラム1aと中間転写ベルト10との当接部である一次転写部を通過する時に、トナー像を担持可能な中間転写ベルト10上に転写される(一次転写工程)。この一次転写工程は、一次転写高圧電源7aにより一次転写ローラ6aに一次転写電圧を印加することによって行われる。感光ドラム1aに残留した一次転写残トナーは、クリーニング装置5aにより清掃される。プリントを継続する場合は、再び帯電以降の画像形成プロセスに戻る。以下、同様にして、第2色のマゼンタトナー像、第3色のシアントナー像、第4色のブラックトナー像が形成され、中間転写ベルト10上に順次重ねて転写されて、カラートナー像を得る。中間転写ベルト10上の4色のカラートナー像は、中間転写ベルト10と二次転写ローラ20との当接部である二次転写部を通過する時に、給紙手段50により給紙された記録材Pの表面に一括転写される(二次転写工程)。この二次転写工程は、二次転写高圧電源21により二次転写ローラ20に二次転写電圧を印加することによって行われる。その後、4色のトナー像を担持した記録材Pは定着器30に搬送され、そこで加熱および加圧されることにより4色のトナーが溶融混色して記録材Pに定着される。以上の動作により、フルカラー画像が形成される。
一方、二次転写後の中間転写ベルト10上には、正極性トナーと負極性トナーの二次転写残留トナーが混在している。二次転写残留トナーは、導電性ブラシ16により均一に散らされ、且つ帯電される。導電性ブラシ16には導電性ブラシ高圧電源60より正極性電圧を印加することで、二次転写残トナーを正極性に帯電する。さらに導電性ローラ高圧電源70により導電性ローラ17に、正極性電圧を印加することで二次転写残トナーを更に正極性に帯電する。正極性に帯電された二次転写残留トナーは、一次転写部において、感光ドラム1に転写され、感光ドラム1に配置されたクリーニング装置5に回収される。また、駆動ローラ11の対向面上には光学センサ60がレーザービームの主走査方向に別れて2つ配置されている。光学センサ60は赤外光を照射する発光素子と主に散乱反射光を受光する受光素子と主に正反射光を受光する受光素子とを有する。通常プリント時とは異なるタイミングで中間転写ベルト10上に形成されたテストパターンを光学センサ60で検知することで、異なる色間の相対位置ずれ量を補正するレジストレーション補正や濃度補正を行う。
[中間転写ベルト]
次に、中間転写ベルト10について説明する。中間転写ベルト10は周長が中心値で650mmであり、駆動ローラ11、テンションローラ12、二次転写対向ローラ13の3軸で張架され、感光ドラム1を回転駆動するモータと同一のモータで駆動ローラ11を回転させることによって回転駆動される。駆動ローラ11の直径が中心値である場合に表面速度が100mm/secとなるように設定されており、駆動ローラ11の製造上発生する外径バラつきによって表面速度は変動する。また、光学センサ60から照射された赤外光が中間転写ベルト10の表面上で正反射するよう、表面光沢度が30以上のものを使用している(堀場製作所製:ハンディ光沢度計IG−320で測定)。
[制御ブロック図の説明]
次に、制御ブロックについて説明する。図2は画像形成装置100の動作を制御するための制御ブロック図である。ホストコンピュータであるPC271は、画像形成装置100の内部にあるフォーマッタ273に対して印刷指令を出し、印刷画像の画像データをフォーマッタ273に送信する。フォーマッタ273はPC271からの画像データを露光データに変換し、DCコントローラ274内にある露光制御部277に転送する。露光制御部277はCPU276からの指示により、露光データのオンオフを制御することにより露光手段の制御を行なう。CPU276はフォーマッタ273から印刷指令を受け取ると画像形成シーケンスをスタートさせる。DCコントローラ274にはCPU276、メモリ275等が搭載されており、予めプログラムされた動作を行う。CPU276は帯電高圧、現像高圧、転写高圧を制御して静電潜像の形成や、現像されたトナー像の転写等を制御することで画像形成を行う。
またCPU276はキャリブレーションにおける光学センサ60からの信号を受ける処理も行う。キャリブレーションでは、中間転写ベルト10表面や、中間転写ベルト10上に形成したテストパッチからの反射光量を計測する。光学センサ60の受光素子で受光したテストパッチからの光信号、光信号の立ち上がり、立ち下りエッジを検出し、検出した信号はメモリ275に蓄えられる。キャリブレーション終了後にCPU276を介して演算を実施し、各種画像形成条件の設定を行う。光学センサ60は通常の印字シーケンスでは動作せず、レジストレーション補正制御や濃度制御等のキャリブレーション時に動作する。
[光学センサ]
画像形成装置100はレジストレーション補正制御、濃度制御を行う為に光学センサ(光学検知装置)60を備えている。光学センサ60は、上述した第1〜第4画像形成ステーションを用いて中間転写ベルト10の表面上に形成されるトナーパッチからなるテストパターンを検知する。
まず、光学センサ60の構成について説明する。図8は、被照射面80の表面に平行な方向から見た時の光学センサ60の断面図である。X方向が主走査方向と平行な方向、Z方向が主走査方向に直交する方向である。なお、被照射面80は中間転写ベルト10の表面である。光学センサ60は、基板64上に直接実装されたチップタイプの発光素子61とチップタイプの受光素子62、63を備える。受光素子62は、散乱反射光を受光する為の受光素子で、受光素子63は正反射光を受光する為の受光素子である。基板64上にハウジング65を発光素子61、受光素子62、63を覆うように被せることで、ハウジング65と基板64との間の空間(ハウジング65の内側の空間)に発光素子61、受光素子62、63をそれぞれ内包する。ハウジング65には、各々の素子61、62、63に対応する導光路(絞り)が形成されている。発光素子61に対応する発光絞り71の径はφ0.8mmであり、受光素子62に対応する受光絞り72の径はφ2.5mmであり、受光素子63に対応する受光絞り73の径はφ1.0mmである。本実施例では、発光素子61として、サンケン電気社製の赤外発光ダイオードSEC1G01Cを用いているがその他の発光素子でも良い。また、受光素子62、および63として、ローム社製のフォトトランジスタSML−810TBを用いているがこれもその他の受光素子でも良い。本実施例では光学センサ60を、発光素子61、受光素子62、63がレーザーの主走査方向と平行な一直線上に並ぶように配置している。即ち、主走査方向に関しては、被照射面80の表面と基板64の表面とが平行となっている。
また、発光素子61、受光素子62、63はそれぞれチップタイプであるため、基板64に実装された時の位置は、基板64の表面又は基板表面に設けられた回路部、半田部等によって決まる。本実施例では、各素子61、62、63自体の光学的な中心軸61a、62a、63aがそれぞれ、基板64の表面に対して垂直となるように位置が決まるようになっている。また、中心軸61a、62a、63aはそれぞれ被照射面80の検知位置DPにおける法線と平行である。
次に光軸について説明する。発光素子61の中心(発光点)と被照射面80の検知位置DPとを結んだ軸L1を照射光の中心光軸と定義する。受光素子62の中心(受光点)と検知位置DPとを結んだ軸L2を散乱反射光の中心光軸と定義する。受光素子63の中心(受光点)と検知位置DPとを結んだ軸L3を正反射光の中心光軸と定義する。これら中心光軸L1、L2、L3の向きは各素子に対応する絞り(発光絞り71、受光絞り72、受光絞り73)の形状により決まり、それぞれの中心光軸L1、L2、L3は被照射面80上の検知位置DPで交わるように設定されている。また、発光素子61から出射された光は、レンズ等の集光部材を通過することなく、被照射面80へ照射され、被照射面80で反射した光はレンズ等の集光部材を通過することなく、受光素子62、63へ到達する。
中心光軸L1が被照射面80表面の検知位置DPにおける法線方向と成す角度θ1は15°である。中心光軸L3が被照射面80表面の検知位置DPにおける法線方向と成す角度θ3も15°とすることで受光素子63には被照射面80の検知位置DPでの正反射した光が入光する。また、中心光軸L2が被照射面80表面の検知位置DPにおける法線方向と成す角度θ2を35°とすることで、受光素子62には主に被照射面80の検知位置DPでの散乱反射した光が入光する。尚、被照射面80としての中間転写ベルト10上の検知位置DPに相当する位置にイエロー、マゼンタ、又は、シアンのトナーパッチがある場合、発光素子61からの照射光は主に散乱反射し、その散乱反射光の一部が受光素子62により受光される。また、中間転写ベルト10上の検知位置DPに相当する位置にトナーパッチが無い場合、発光素子61からの照射光は主に正反射し、その正反射光が受光素子63により受光される。
次に、発光素子61の発光強度の指向特性について説明する。発光素子61からは広がりを持った赤外光が照射されるが、照射光の強度は一様ではなく、発光素子61から出射する角度が異なれば発光素子61からの距離が同じであっても、照射強度が異なる。これを発光強度の指向特性と呼ぶ。
図9は発光素子61の発光強度の指向特性を示している。中心軸61aが発光指向角0°と一致する。発光強度は0°から±45°まではほぼ同等の強度であり、正負それぞれの方向で±45°より大きな角度になると発光強度は急激に低下している。このように発光素子61が比較的広い発光強度の指向特性を持つ。このため、発光素子61を基板64上へ実装した際の実装位置バラつき等により発光素子61と発光絞り71との位置関係が称呼の位置関係から多少ずれても、発光絞り71からは十分な強度の赤外光が出射される。
次に、受光素子62、63の受光感度の指向特性について説明する。受光素子62、63の受光感度は、発光素子61からの距離が同じであっても、入射する角度によって異なる。これを受光感度の指向特性と呼ぶ。図10は受光素子62、および63の受光感度の指向特性を示した図である。中心軸62a、63aが受光角0°と一致する。受光感度は0°から±50°まではほぼ同等の感度となっており、正負それぞれの方向で±50°より大きな角度になると受光感度は急激に低下している。このよう広い受光感度の指向角特性を持つため、受光素子62のθ2が35°であっても、良好な受光感度を得ることができる。つまり受光素子62、63が比較的広い角度で受光感度の指向特性を持つ。このため、受光素子62、63の基板64上での実装位置バラつき等により受光素子62、63と受光絞り72、73との位置関係が称呼の位置関係から多少ずれても、十分な感度で入射光を受光できる。
[光学センサ60の回路構成の説明]
次に光学センサ60の回路構成について説明する。図3に光学センサ60の回路構成の一例を示す。
発光素子61から赤外光を被照射面(中間転写ベルト10)に向けて照射し、被照射面からの反射光を受光素子62、63で受光する。受光素子62、63の検出電流はIV(電流/電圧)変換回路によってV1に変換され、図2に示すDCコントローラ274に設けられたCPUのAD変換ポートに入力され、アナログの電圧値がデジタルデータに変換されて演算に用いられる。
また、発光素子61のオン/オフ動作及び光量調整は、DCコントローラ274に設けられたCPUのPWM制御(パルス幅制御)によって、図3の入力端子に入力されるLED駆動電流を可変することにより行う。
[レジストレーション補正制御の説明]
次にレジストレーション補正制御について説明する。
図4は、中間転写ベルト10の表面上に形成されるレジストレーション補正用のテストパターンである。テストパターン300は、イエロー、マゼンタ、シアン、ブラックのトナーでそれぞれ形成された平行四辺形のトナーパッチ(検知用のトナー像)の集合である。これらトナーパッチは、中間転写ベルト10上で主走査方向中央を通り、主走査方向に直交する基準線に対して対称となるよう主走査方向に離れた位置に2つ配置されたものである。なお、主走査方向は、駆動ローラ11の回転軸方向と平行である。光学センサ60は中間転写ベルト10の対向し、且つ主走査方向に別れて2つ形成されるテストパターン300に対応して主走査方向に離れた2つの位置にそれぞれ光学センサ60が配置されている。
レジストレーション補正は、上述した画像形成動作を行ってテストパターン300を中間転写ベルト10に形成し、光学センサ60で中間転写ベルト10上のテストパターンを検知した結果を基に行う。発光素子で照射された赤外光がトナー像の形成されていない中間転写ベルト10の表面で反射する場合は、ほとんどが正反射であるため、散乱反射光を受光する受光素子62では中間転写ベルト10からの反射光は検知されない。一方で発光素子から照射された赤外光が、中間転写ベルト10上に形成されテストパターン300のイエロー、マセンタ、及びシアンのトナー像部分で反射する場合は、反射光は主に散乱反射光となる。このため、トナー像部分からは受光素子62で反射光を検知できる。図5(a)は、中間転写ベルト10の表面を移動させながらテストパターン300のイエロー、マゼンタ、シアンのトナーパッチが光学センサ60の対向位置(検知位置80a)を通過する際の受光素子62の出力波形(検知波形)を示す。トナーパッチが被検知位置を通過中、発光素子は赤外光を検知位置へ向けて照射している。出力波形は反射光を受光した光量に対応するものである。
テストパターンの検知結果が予め設定された閾値をまたいだタイミングをトナーパッチのエッジと見なす。具体的には、テストパターンのパッチ検知出力が立ち上がる際に閾値をまたぐタイミングをパッチの上流エッジと定義する。また、パッチ検知出力が立ち下がる際に閾値をまたぐタイミングをパッチの下流エッジと定義する。そして、上下流エッジタイミングの中点をパッチの位置と定義する。検知位置DPのトナーパッチが有る時と無い時の検知出力との差であるダイナミックレンジが広いほど、外部ノイズ等に左右されずに安定してエッジの検知が可能となる。一方、ブラックトナーは主に赤外光を吸収するため、散乱反射光を検知することによる位置の特定が難しい。このため、図5(b)に示すように、イエローパッチの副走査方向両端を覆うように、イエローパッチ上にブラックパッチを重ねて形成する。これにより、イエローパッチ部分での散乱反射光の検知の有無により検知出力が閾値を跨ぐタイミングをブラックパッチのエッジと見なすことができ、そのエッジからブラックパッチの位置を算出できる。
中間転写ベルト10やテストパターンの検知結果は、DCコントローラ274に出力される。DCコントローラ274は光学センサ60からの出力に基づいてテストパターンの通過タイミングを検出し、位置を算出する。そして、それを所定のタイミングと比較することにより、各色間の主走査方向と副走査方向の相対的な色ずれ量や、主走査方向の倍率、相対的な傾き等を計算する。その結果に応じて、各色の相対的な色ずれ量が小さくなるように画像形成条件を設定(変更)する。具体的な画像形成条件としては、露光手段3のレーザービームの発光開始タイミング等がある。
[濃度補正制御の説明]
図6は、濃度補正制御用のテストパターンを示している。イエロー、マゼンタ、シアン、ブラックそれぞれで複数の階調パターンを形成している。図7は、トナー量に対するイエロー、マゼンタ、シアンの検知出力を示している。
図7の(a)のグラフは、正反射光を受光する受光素子63の検知結果である。最初はトナー量の増加に伴い検知出力は低下しているが、低下量は少しずつ減少し、さらにトナー量が増加すると検知出力は増加し始める。これは、トナー量が増加するに従って、中間転写ベルト10からの正反射光量が減少した結果、検知出力が低下するが、トナーからの散乱反射光が増加し、あるトナー量を境界に散乱反射光量が正反射光量を上回り、検知出力が増加するためである。このため、正反射光の検知ではトナー量と検知出力とが1対1に対応しないため最適な濃度補正を行うことができない。
図7の(b)のグラフは、散乱反射光を受光する受光素子62の検知結果である。検知結果はトナー量の増加に伴い線形に増加している。これはトナー量の増加によって散乱反射光量が増加するためである。散乱反射光の検知では、トナー量と検知出力とが1対1に対応する。しかし、ブラックトナーは赤外光をほとんど吸収し、トナー量に対する検知出力はわずかであり、検知出力とトナー量を1対1に対応させた時の誤差が大きい。このため、散乱反射光の検知だけでは最適な濃度補正を行うことは難しい。
このため、本実施例では、散乱反射光の検知結果、及び、正反射光の検知結果を用いて濃度補正を行う。つまり光学センサ60は、テストパターンのトナー像のトナー濃度に関する情報として、散乱反射光の検知結果に対応する受光素子62の検知出力、及び、正反射光の検知結果に対応する受光素子63の検知出力を出力する。
具体的には、ベタトナーのテストパッチにおける正反射の検知結果と散乱反射の検知出力が等しくなるように検知出力を規格化し、正反射出力と散乱反射出力との差分を求めることで正味の正反射光量を算出する。このような演算を行うことで、イエロー、マゼンタ、シアン、ブラック全てで、同一の計算方法でトナー量と検知結果とを1対1に対応させることができ、対応した結果を基に各色の濃度を行う。
テストパターンの検出結果はDCコントローラ274で処理する。光学センサ60の受光光量信号はA/D(アナログ/デジタル)変換された後、DCコントローラ42内へ出力され、DCコントローラ42内のCPU276で正味の正反射光量を計算する。この結果をもとに、画像形成条件を設定(変更)する。具体的な画像形成条件とは帯電電圧、現像電圧、露光光量等の濃度因子である。これらの濃度因子の設定結果は、DCコントローラ274内のメモリ275に格納され、通常作像時や次回の濃度制御時等に用いられる。
以上のようにして、光学センサ60を用いてレジストレーション補正制御、濃度制御を行うことができる。
[迷光対策]
次に、光学センサ6における迷光対策のための構成について説明する。まず、本実施例の示す迷光対策を行っていない比較例の構成について説明する。
図12は、比較例の光学センサ60´の断面図である。比較例の光学センサ60´において本実施例と異なる部分については番号の後に「´」を付す。「´」を付していない構成については本実施例と同等である。
迷光LM1は、発光素子61から出射され、発光絞り71から出る前にハウジング65´の内壁66´で正反射した光の光路の一例を示している。内壁66´で反射した正反射した光lmは発光絞り71から出射され、被照射面80の表面の検知位置DPと異なる位置DP´で正反射して受光絞り72内に入光し、受光素子62に到達する。このように、受光素子62には、本来検出した検知位置DPでの散乱反射光だけでなく、迷光として位置DP´で正反射した光lmが入射する。このため、受光素子62からの出力に位置DP´での正反射光を成分とするノイズが混じることにより、受光素子62から正確な出力(良好な精度の出力)を得られない虞がある。
そこで、本実施例では、発光素子61から出射した光の一部(光lm)が、発光素子61からの光の出射方向に関して発光絞り71よりも上流側にある内壁66で正反射し、被照射面80の検知位置DPと異なる位置で正反射して受光素子62に入射しないようにしている。具体的には、迷光が発生しないようハウジング65の内壁66の形状を工夫している。
図11は、ハウジング65の内部をZ方向(図8参照)で発光素子61側から発光絞り側71へ向かって見た時の部分断面図を表している。X方向が主走査方向と平行な方向、Y方向が主走査方向に直交する方向である。Y方向は便宜上、矢印の方向を+、その反対方向を−とする。発光素子61を基準として受光素子62とは反対側のハウジング65の内壁66は断面が直角二等辺形状となる2つ(複数)の傾斜面67を有する。つまり、2つの傾斜面67は直角に交わる。2つの傾斜面67は、それぞれ被照射面80の法線方向で見て、発光素子61と受光素子62の配列方向(X方向)に直交する方向(Y方向)に対して傾斜している。また、2つの傾斜面67の発光素子61と受光素子62の配列方向に直交する方向(Y方向)に対する角度が異なる。
発光素子61から出射した光のうち、内壁66に向かう光lmは2つの傾斜面67で正反射する。光lmは2つの傾斜面67で正反射し、図11に示すように略+Y方向、もしくは略−Y方向に反射されるため、絞り71には入射しない。このため、比較例のように、内壁66で正反射した光lmがそのまま絞り71を通って被照射面80に照射され、迷光となることを抑制することができる。
図13は、本実施例と比較例とにおいて、受光素子62でイエロー、マゼンタ、又はシアンのテストパッチを検知した時の出力波形を比較している。(a)が本実施例、(b)が比較例である。中間転写ベルト10上にトナーパッチが有る時と無い時との出力差であるダイナミックレンジは、本実施例の方が比較例よりも大きい。これは、比較例の場合、内壁66´での正反射光が、中間転写ベルト10上にトナーパッチが無い時は中間転写ベルト10で正反射して受光素子62に到達して受光素子62の出力が大きく上昇する。その一方で、中間転写ベルト10上にトナーパッチが有る時は、内壁66´での正反射光がトナーパッチで散乱反射され、そのうちの大部分は受光素子62に到達せず受光素子62の出力は少ししか上昇しないことによる。このように本実施例のように傾斜面67を形成することにより、受光素子62へ迷光の入射を低減でき、受光素子62の出力において大きいダイナミックレンジを得ることができ、良好な精度の出力を得ることができる。このため、中間転写ベルト10上のテストパッチの検知精度が安定する。
また、傾斜面67は上述した構成に限定されない。つまり、傾斜面67は、発光素子61から出射して傾斜面67に入射する光lmが、傾斜面67で正反射した後で受光素子62に対応する絞り72に入射しないようなで形状であれば、その数や向き(角度)は限定されない。
図14は別構成を示す図11と同様のZ方向断面である。別の構成として、例えば、図14(a)のZ方向断面図に示すような2つの傾斜面67が45°で交わるような構成でも良い。また、図14(b)のZ方向断面図に示すように1つの傾斜面67のみを設けてもよい。また、図14(c)のように断面が円弧となるような円弧面を設けてもよい。この場合は円弧面が傾斜面67に相当する。
なお、傾斜面67は、内壁66のうちY方向に関して発光素子61の幅W(図14(c)参照)の部分と重なる位置に少なくとも存在していれば良い。換言すれば、傾斜面67は、内壁66のうちX方向で発光素子61の幅Wの部分と対向する部分に少なくとも存在していればよい。
また、傾斜面67は、発光素子61から出射して傾斜面67で正反射する光lmが受光素子62に対応する絞り72に入射しないようなで形状であればよい。しかし、より好ましくは、光lmが傾斜面67で正反射した後で発光絞り71に入射しないようなで形状である方がよい。このような構成であれば、より確実に受光素子62へ光lmが入射することが抑制できる。
また、図11、図14(a)、(c)に示すように、内壁66に発光素子62に向かって断面が凸形状となる部分を設け、凸形状の部分の表面を傾斜面67とすることで、より効果的に迷光の発生を抑制できる。
また、本実施例では光学センサ60は受光素子として、散乱反射光を受光する受光素子62と正反射光を受光する受光素子63を有する構成について説明した。しかし、光学センサの構成はこれに限定されない。つまり、濃度制御に関して光学センサからの出力を使用しない場合等は、正反射光を受光する受光素子63が存在せず、発光素子61と散乱反射光を受光する受光素子62となからなる構成でも良い。このような、光学センサの構成においても上述した傾斜面67を設ける構成を適用可能である。
また、内壁66には、傾斜面67に加え、例えば反射を低減する為に微細な凹凸を設ける等の反射防止加工を施していても良い。
以上説明したように、本実施例によれば、発光素子61を包含するハウジング65の内壁に傾斜面67を配置することで、内壁66で正反射した光lmが迷光として受光素子62には到達することを抑制できる。その結果、受光素子62から正確な出力(良好な精度の出力)を得ることができる。また、テストパッチを検知した時と中間転写ベルト10の表面を検知した時との受光素子62の出力差であるダイナミックレンジが大きくなり、テストパッチの検知精度を良好なもととすることができる。
<実施例2>
次に実施例2について説明する。実施例1と同様の構成に対しては同様の符号を付し、説明を省略する。本実施例では、実施例1とは異なる経路で発生する迷光を抑制するための構成について説明する。図15(a)は被照射面80の表面に平行な方向から見た時の光学センサ60の断面図である。図15(b)は図15(a)発光絞り71付近の部分拡大図である。本実施例では、発光絞り71の内面のうちの受光素子63側にある内面76が、発光素子61からの光の出射方向に関して上流から下流にかけて受光素子62の反対側に向かって傾いている。次に、発光絞り内面76に到達する光線の軌跡について説明する。図16(a)は被照射面80の表面に平行な方向から見た時の光学センサ60の断面図であり、発光絞り内面76で正反射した光の軌跡の一例を記した図である。図16(b)は図16(a)発光絞り71付近の部分拡大図である。発光素子61の実装位置バラつきにより、発光素子61から照射された赤外光の一部である光laは発光絞り71の内面76で正反射して中間転写ベルト80に到達する場合がある。このような場合でも、本実施例では、発光絞り内面76で正反射した光laが後に中間転写ベルト80でさらに正反射しても、受光素子62には到達しないように構成している。
具体的には、図16(b)に示すように、α1は光laの内面76への入射角であり、α2は内面76の傾きと被照射面80の法線Nとが成す角を表している。角度α1で発光絞り内面76に入光した光laは、内面76に対して角度α1方向に正反射する。ここで、α1<α2である場合、内面76での正反射した光laは内面76への光laへの入射点Iを通過する被照射面80の法線Nを基準として受光素子62側に正反射されることはない。このため、内面76での正反射した光laが被照射面80で正反射しても受光素子62に到達することがない。
ない、内面76には、例えば反射を低減する為に微細な凹凸を設ける等の反射防止加工を施していても良い。
以上説明したように、内面76を、発光素子61からの光の出射方向に関して上流から下流にかけて受光素子62の反対側に向かって傾けることにより、受光素子62へ迷光が入射することを抑制し、受光素子62から正確な出力(良好な精度の出力)を得ることができる。また、テストパッチを検知した時と中間転写ベルト10の表面を検知した時との受光素子62の出力差であるダイナミックレンジが大きくなり、テストパッチの検知精度を良好なもととすることができる。
また、実施例2の別構成として、より発光絞り71の内面76で正反射した光が迷光となることを良く抑制する構成について説明する。より発光絞り71の内面76で正反射した光が迷光となることを良く抑制するためには、発光素子61から内面76へ光が直接入射しないようにすることが有効である。光が内面76へ直接入射するとは、発光素子61から出射した光が、ハウジング65の内面76以外の部分や基板64等で反射することなく内面76へ入射することである。そのための条件について説明する。図17は、被照射面80の表面に平行な方向から見た時の別の形態の光学センサ60を示す断面図である。受光素子62から内面76へ直接光が入射しない為には、発光素子61の少なくとも発光点61bが、内面76を延長した補助線E1より基板64側に配置されていればよい。このような構成では、受光素子62から内面76へ直接光が入射しない。このため、受光素子62へ迷光が入射することを抑制し、受光素子62から正確な出力(良好な精度の出力)を得ることができる。また、テストパッチを検知した時と中間転写ベルト10の表面を検知した時との受光素子62の出力差であるダイナミックレンジが大きくなり、テストパッチの検知精度を良好なもととすることができる。
また、ハウジング65の量産性を考慮すると図18に示す断面図のようにハウジング65を第1ハウジング部材65aと第2ハウジング部材65bからなる2体構成としても良い。図18(a)は被照射面80の表面に平行な方向から見た時の光学センサ60の断面図である。図18(a)に示すように、第1ハウジング部材65aは、発光素子61を内側の空間(第1ハウジング部材65aと基板64で囲まれた空間)に内包し、発光絞り71と受光絞り72、73のうちの発光絞り61側に対応する部分が形成されている。第2ハウジング部材65bは、第1ハウジング部材65aの外側にある受光素子62、63を内側の空間(第2ハウジング部材65bと第1ハウジング部材65aと基板64で囲まれた空間)に内包する。第2ハウジング部材65bには、受光絞り72、73のうちの発光絞り61とは反対側に対応する部分が形成されている。第1ハウジング部材65aと第2ハウジング部材65bは不図示の係合部で互いに係合して位置を決めることで、1つのハウジング65となる。このようにハウジング65を2つの部材に分割して構成とすることで、ハウジング65の成型精度と生産効率を良好にすることができる。
図18(b)は、第1ハウジング部材65aを樹脂成形する様子を示す断面図である。図18(c)は、第2ハウジング部材65bを樹脂成形する様子を示す断面図である。第1ハウジング部材65aと第2ハウジング部材65bはそれぞれ樹脂成型された部材である。第1ハウジング部材65aは、図18(b)に示す型M1、M2によって成型される。成型方法は、まず型M1と型M2とを閉じた状態で、2つの型の間の空間に成形材料(樹脂)を流し込む。次に、成型材料を冷却し、型M1を+Z方向に、型M2を−Z方向に抜いて、型M1、M2から第1ハウジング部材65aを離形する。また、第2ハウジング部材65bは、図18(c)に示す型M3、型M4によって成型される。成型方法は、まず型M3と型M4とを閉じた状態で、2つの型の間の空間に成形材料(樹脂)を流し込む。次に、成型材料を冷却し、型M3を+Z方向に、型M4を−Z方向に抜いて、型M3、M4から第2ハウジング部材65bを離形する。
このように、ハウジング65を2つの部材(第1ハウジング部材65a、第2ハウジング部材65b)に分割して構成とすることで、それぞれを簡易なモールド成型によって製造できる。このため、複数の発光素子や受光素子をそれぞれ内包する複雑な形状のハウジング65であっても、低コストで良好な成型精度でハウジング65を製造することができる。
なお、実施例2で説明した光学センサ60が、実施例1で説明した傾斜面67を有していてもよい。
60 光学センサ
61 発光素子
62 受光素子
63 受光素子
65 ハウジング
65a 第1ハウジング部材
65b 第2ハウジング部材
66 内壁
67 傾斜面
71 発光絞り
72 受光絞り
73 受光絞り
76 内面
80 被照射面
100 画像形成装置

Claims (14)

  1. 被照射面に光を照射し、基板に実装されることで位置が決まった発光素子と、光素子と、前記発光素子から発せられ光が通過する第1の絞り及び前記受光素子で受光する光が通過する第2の絞りを備え、前記発光素子及び前記受光素子を内包したハウジングと、を有し、前記発光素子から発せられた光が前記第1の絞りを通過し被照射面で射した後に前記第2の絞りを通過して前記受光素子へ到達する光学検知装置において、
    前記ハウジングは傾斜面を備えており前記傾斜面は、前記被照射面の法線方向に見て前記発光素子と前記受光素子との配列方向に直交する方向に対して傾斜しており、前記発光素子からの光の照射方向に関して前記第1の絞りよりも上流側で、且つ前記配列方向に関して前記発光素子と対向し、且つ前記発光素子から出射された光が入射する部分に配置されていることを特徴とする光学検知装置。
  2. 前記ハウジングは複数の前記傾斜面を備え、前記複数の前記傾斜面は、前記配列方向に直交する方向に対する角度が互いに異なることを特徴とする請求項1に記載の光学検知装置。
  3. 前記ハウジングは、前記発光素子に向かって凸形状の部分を備え、前記傾斜面は前記凸形状の部分の表面に設けられていることを特徴とすることを特徴とする請求項2に記載の光学検知装置。
  4. 前記凸形状の部分の表面は円弧面であることを特徴とする請求項3に記載の光学検知装置。
  5. 前記傾斜面は、前記配列方向に関して前記ハウジングの前記発光素子に対向する部分に設けられていることを特徴とする請求項1乃至4のいずれか一項に記載の光学検知装置。
  6. 前記受光素子は前記基板に実装されていることを特徴とする請求項1乃至5のいずれか一項に記載の光学検知装置。
  7. 前記発光素子から出射され前記傾斜面で正反射した光は、前記第1の絞りに入射しない、又は前記第2の絞りに入射しないことを特徴とする請求項1乃至6のいずれか一項に記載の光学検知装置。
  8. 前記ハウジングの光路を形成する面は、前記発光素子から光の出射方向で上流から下流に向うに連れて、前記受光素子の反対側に向かって傾斜することを特徴とする請求項1乃至7のいずれか一項に記載の光学検知装置。
  9. 前記発光素子から出射した光は前記ハウジングの光路を形成する面へ直接入射しないことを特徴とする請求項1乃至8のいずれか一項に記載の光学検知装置。
  10. 前記ハウジングは第1ハウジング部材と第2ハウジング部材を備え、前記発光素子は前記第1ハウジング部材の内側の空間に内包され、前記受光素子は前記第1ハウジング部材の外側で前記第2ハウジング部材の内側の空間に内包されることを特徴とする請求項1乃至9のいずれか一項に記載の光学検知装置。
  11. 前記被照射面の定の位置で正反射した光を受光する別の受光素子を有することを特徴とする請求項1乃至10のいずれか一項に記載の光学検知装置。
  12. 請求項1乃至11のいずれか一項に記載の前記光学検知装置と、トナー像を形成する画像形成手段と、前記画像形成手段に設けられ、表面が前記被照射面であり、トナー像を担持可能な像担持体と、前記光学検知装置からの出力に基づき前記画像形成手段の画像形成条件を制御する制御部と、を有し、記録材にトナー像を転写することにより記録材に画像形成を行う画像形成装置。
  13. 前記制御部は、前記光学検知装置からの出力のタイミングに基づき画像形成条件を制御することを特徴とする請求項12に記載の画像形成装置。
  14. 前記光学検知装置は、前記像担持体の担持するトナー像のトナー濃度に関する情報を出力することを特徴とする請求項12に記載の画像形成装置。
JP2014014192A 2014-01-29 2014-01-29 光学検知装置及びそれを備える画像形成装置 Active JP6272051B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014014192A JP6272051B2 (ja) 2014-01-29 2014-01-29 光学検知装置及びそれを備える画像形成装置
US14/606,419 US9304083B2 (en) 2014-01-29 2015-01-27 Optical detection device and image forming apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014014192A JP6272051B2 (ja) 2014-01-29 2014-01-29 光学検知装置及びそれを備える画像形成装置

Publications (3)

Publication Number Publication Date
JP2015141113A JP2015141113A (ja) 2015-08-03
JP2015141113A5 JP2015141113A5 (ja) 2017-03-09
JP6272051B2 true JP6272051B2 (ja) 2018-01-31

Family

ID=53678771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014014192A Active JP6272051B2 (ja) 2014-01-29 2014-01-29 光学検知装置及びそれを備える画像形成装置

Country Status (2)

Country Link
US (1) US9304083B2 (ja)
JP (1) JP6272051B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6793449B2 (ja) 2015-11-06 2020-12-02 キヤノン株式会社 画像形成装置
JP6964972B2 (ja) * 2016-10-20 2021-11-10 キヤノン株式会社 画像形成装置
JP6630309B2 (ja) * 2017-04-10 2020-01-15 キヤノン株式会社 光学センサ及び画像形成装置
EP3655758B1 (en) * 2017-07-19 2024-05-15 Siemens Healthcare Diagnostics, Inc. Stray light compensating methods and apparatus for characterizing a specimen
CN108132138A (zh) * 2017-11-23 2018-06-08 矽力杰半导体技术(杭州)有限公司 光学检测组件
JP7277264B2 (ja) * 2019-06-05 2023-05-18 キヤノン株式会社 判別装置及び画像形成装置
US11579081B2 (en) * 2020-02-17 2023-02-14 Canon Kabushiki Kaisha Structure of optical sensor having light-emitting element and plurality of light-receiving elements
US11674893B2 (en) 2020-02-17 2023-06-13 Canon Kabushiki Kaisha Structure of optical sensor having light-emitting element and light-receiving element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148819A (ja) * 1985-12-23 1987-07-02 Anritsu Corp 分光測色計の光検出プロ−ブ
US5748221A (en) * 1995-11-01 1998-05-05 Xerox Corporation Apparatus for colorimetry gloss and registration feedback in a color printing machine
US6832824B1 (en) * 1998-10-30 2004-12-21 Hewlett-Packard Development Company, L.P. Color-calibration sensor system for incremental printing
JP2001264173A (ja) * 2000-03-14 2001-09-26 Minolta Co Ltd 反射特性測定装置
JP2005091252A (ja) * 2003-09-19 2005-04-07 Ricoh Co Ltd 光学センサ
JP2005241933A (ja) * 2004-02-26 2005-09-08 Canon Inc テストパターン濃度検知装置及び画像形成装置
JP4422039B2 (ja) 2005-01-31 2010-02-24 ニチコン株式会社 トナー付着量測定装置
JP4661247B2 (ja) * 2005-02-04 2011-03-30 富士ゼロックス株式会社 画像形成装置
JP2006267644A (ja) 2005-03-24 2006-10-05 Canon Inc 画像形成装置
JP2007085963A (ja) * 2005-09-26 2007-04-05 Fuji Xerox Co Ltd 光学測定装置及びこれを用いた画像形成装置
JP4815322B2 (ja) * 2006-10-06 2011-11-16 株式会社リコー 画像形成装置
JP6061703B2 (ja) * 2012-02-13 2017-01-18 キヤノン株式会社 光学センサ及び画像形成装置
JP6119246B2 (ja) * 2012-03-12 2017-04-26 株式会社リコー 画像形成装置
JP6004812B2 (ja) * 2012-07-30 2016-10-12 キヤノン株式会社 光学検知装置及び画像形成装置

Also Published As

Publication number Publication date
JP2015141113A (ja) 2015-08-03
US20150211992A1 (en) 2015-07-30
US9304083B2 (en) 2016-04-05

Similar Documents

Publication Publication Date Title
JP6272051B2 (ja) 光学検知装置及びそれを備える画像形成装置
JP6061703B2 (ja) 光学センサ及び画像形成装置
US8896846B2 (en) Reflective optical sensor and image forming apparatus
US6847791B2 (en) Image formation controlling method and image forming apparatus
JP4367085B2 (ja) フォトセンサ装置
US20060274628A1 (en) Method and apparatus for image forming capable of accurately detecting displacement of transfer images and image density
JP2017090597A (ja) 光学センサ及び画像形成装置
JP6793449B2 (ja) 画像形成装置
US20180234573A1 (en) Light scanning apparatus and image forming apparatus
US11614695B2 (en) Image forming apparatus and optical sensor
JP5906026B2 (ja) レーザ光出射装置及び該レーザ光出射装置を備える画像形成装置
US7428388B2 (en) Image formation apparatus with image correction capability
US10866542B2 (en) Image forming apparatus
US7860439B2 (en) Image forming apparatus, an image forming method and an image detecting method
US20090060544A1 (en) Image Forming Apparatus, an Image Forming Method and an Image Detecting Method
JP6675344B2 (ja) 光学センサ及び画像形成装置
US7796146B2 (en) Image forming apparatus, an image forming method and an image detecting method
JP2006162884A (ja) 画像形成装置、画像形成方法、及びプログラム
JP2007248483A (ja) センサ搭載基板の位置調整方法、装置及び画像形成装置
US20090060542A1 (en) Image Forming Apparatus and an Image Forming Method
JP6849889B2 (ja) 光学センサ及び画像形成装置
JP2002162803A (ja) カラー画像形成装置
US8023844B2 (en) Image forming apparatus and method for stably detecting an image
JP2006159502A (ja) 画像形成装置
JP2002244371A (ja) 濃度測定装置および画像形成装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R151 Written notification of patent or utility model registration

Ref document number: 6272051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151