JP6269682B2 - Substrate bonding method - Google Patents

Substrate bonding method Download PDF

Info

Publication number
JP6269682B2
JP6269682B2 JP2015550525A JP2015550525A JP6269682B2 JP 6269682 B2 JP6269682 B2 JP 6269682B2 JP 2015550525 A JP2015550525 A JP 2015550525A JP 2015550525 A JP2015550525 A JP 2015550525A JP 6269682 B2 JP6269682 B2 JP 6269682B2
Authority
JP
Japan
Prior art keywords
metal
powder
metal layer
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015550525A
Other languages
Japanese (ja)
Other versions
JPWO2015079582A1 (en
Inventor
今泉 延弘
延弘 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2015079582A1 publication Critical patent/JPWO2015079582A1/en
Application granted granted Critical
Publication of JP6269682B2 publication Critical patent/JP6269682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11332Manufacturing methods by local deposition of the material of the bump connector in solid form using a powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • H01L2224/13019Shape in side view comprising protrusions or indentations at the bonding interface of the bump connector, i.e. on the surface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13563Only on parts of the surface of the core, i.e. partial coating
    • H01L2224/13564Only on the bonding interface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13798Fillers
    • H01L2224/13799Base material
    • H01L2224/138Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13838Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13847Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13798Fillers
    • H01L2224/13799Base material
    • H01L2224/138Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13863Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13864Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13798Fillers
    • H01L2224/13799Base material
    • H01L2224/1389Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13798Fillers
    • H01L2224/13899Coating material
    • H01L2224/139Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13901Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13911Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13798Fillers
    • H01L2224/13899Coating material
    • H01L2224/139Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13938Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13955Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13798Fillers
    • H01L2224/13999Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/1601Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/165Material
    • H01L2224/16505Material outside the bonding interface, e.g. in the bulk of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/165Material
    • H01L2224/16505Material outside the bonding interface, e.g. in the bulk of the bump connector
    • H01L2224/16507Material outside the bonding interface, e.g. in the bulk of the bump connector comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/8192Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Powder Metallurgy (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、基体の接合方法に関し、例えば基体に形成された金属層同士を結合する基体の接合方法に関する。   The present invention relates to a method for bonding substrates, and for example, relates to a method for bonding substrates in which metal layers formed on the substrates are bonded together.

基体同士を金属層を用い電気的および機械的に接続する接合方法が知られている。例えば、半導体素子を積層して高集積化する方法や半導体素子を回路基板に接合する方法が知られている。回路基板に銅端子を形成し、端子表面を錫に置換めっきする方法が知られている(例えば、特許文献1)。   A joining method is known in which substrates are electrically and mechanically connected to each other using a metal layer. For example, there are known a method for stacking semiconductor elements to achieve high integration and a method for bonding semiconductor elements to a circuit board. A method is known in which a copper terminal is formed on a circuit board, and the surface of the terminal is replaced with tin (for example, Patent Document 1).

特開2011−44563号公報JP 2011-44563 A

金属層が小径化すると、金属層同士の接合強度が低下し、基体同士の接合強度が低下する。本基体の接合方法は、金属層同士の接合強度を向上させることを目的とする。   When the diameter of the metal layer is reduced, the bonding strength between the metal layers decreases, and the bonding strength between the substrates decreases. The method for bonding the substrates is aimed at improving the bonding strength between the metal layers.

第1基体に形成された第1金属層と第2基体に形成された第2金属層とを、第1金属を含む多孔質体と接触させる工程と、前記接触させる工程の後、前記第1金属よりも標準電極電位の高い第2金属を含む液を用いて、前記多孔質体の表面の前記第1金属を第2金属に置換する工程と、前記第2金属を加熱することにより、前記第1金属層と前記第2金属層とを接合する工程と、を含むことを特徴とする基体の接合方法を用いる。 And a second metal layer formed on the first metal layer and a second substrate formed on the first substrate, a step of contacting a porous body comprising a first metal, after said contacting step, said first Using a liquid containing a second metal having a higher standard electrode potential than the metal, replacing the first metal on the surface of the porous body with the second metal, and heating the second metal, And a step of bonding the first metal layer and the second metal layer .

本基体の接合方法によれば、金属層同士の接合強度を向上させることができる。   According to the bonding method of the present substrate, the bonding strength between the metal layers can be improved.

図1(a)は、比較例1に係る半導体装置の断面図、図1(b)および図1(c)は、金属層と溶融金属の拡大斜視図である。1A is a cross-sectional view of a semiconductor device according to Comparative Example 1, and FIGS. 1B and 1C are enlarged perspective views of a metal layer and a molten metal. 図2(a)および図2(b)は、比較例2に係る半導体装置の断面図である。2A and 2B are cross-sectional views of the semiconductor device according to Comparative Example 2. FIG. 図3(a)および図3(b)は、比較例1に係る半導体装置の断面図である。3A and 3B are cross-sectional views of the semiconductor device according to Comparative Example 1. FIG. 図4(a)から図4(c)は、金属層の拡大図である。4A to 4C are enlarged views of the metal layer. 図5(a)から図5(d)は、実施例1に係る基体の接合方法を示す断面図である。FIG. 5A to FIG. 5D are cross-sectional views illustrating the substrate bonding method according to the first embodiment. 図6(a)および図6(b)は、実施例2に係る基体の接合方法を示す断面図(その1)である。FIG. 6A and FIG. 6B are cross-sectional views (part 1) illustrating the bonding method of the substrates according to the second embodiment. 図7(a)から図7(c)は、実施例2に係る基体の接合方法を示す断面図(その2)である。FIGS. 7A to 7C are cross-sectional views (part 2) illustrating the bonding method of the substrates according to the second embodiment. 図8(a)から図8(d)は、実施例3に係る基体の接合方法を示す断面図である。FIG. 8A to FIG. 8D are cross-sectional views illustrating a method for bonding substrates according to the third embodiment. 図9(a)および図9(b)は、実施例3の粉体の断面図である。FIG. 9A and FIG. 9B are cross-sectional views of the powder of Example 3. 図10(a)から図10(c)は、実施例4に係る基体の接合方法を示す断面図である。FIG. 10A to FIG. 10C are cross-sectional views illustrating the substrate bonding method according to the fourth embodiment. 図11(a)および図11(b)は、実施例4の粉体の断面図である。FIG. 11A and FIG. 11B are cross-sectional views of the powder of Example 4. 図12(a)から図12(c)は、実施例5に係る基体の接合方法を示す断面図である。FIG. 12A to FIG. 12C are cross-sectional views illustrating the substrate bonding method according to the fifth embodiment. 図13(a)および図13(b)は、実施例5の粉体の断面図である。FIG. 13A and FIG. 13B are cross-sectional views of the powder of Example 5. 図14(a)から図14(c)は、実施例6に係る基体の接合方法を示す断面図である。FIG. 14A to FIG. 14C are cross-sectional views illustrating the substrate bonding method according to the sixth embodiment. 図15(a)から図15(c)は、実施例7に係る基体の接合方法を示す断面図(その1)である。FIG. 15A to FIG. 15C are cross-sectional views (part 1) showing the bonding method of the substrates according to the seventh embodiment. 図16(a)から図16(c)は、実施例7に係る基体の接合方法を示す断面図(その2)である。FIG. 16A to FIG. 16C are cross-sectional views (part 2) illustrating the bonding method of the substrates according to the seventh embodiment. 図17(a)および図17(b)は、実施例7に係る基体の接合方法を示す断面図(その3)である。FIG. 17A and FIG. 17B are cross-sectional views (part 3) illustrating the bonding method of the substrates according to the seventh embodiment. 図18(a)から図18(c)は、実施例7に係る基体の接合方法を示す断面図(その4)である。FIG. 18A to FIG. 18C are cross-sectional views (part 4) illustrating the bonding method of the substrates according to the seventh embodiment.

図1(a)は、比較例1に係る半導体装置の断面図である。図1(b)および図1(c)は、金属層と溶融金属の拡大斜視図である。図1(a)を参照し、基体10上に金属層12が形成されている。基体20上(図面では下)に電極24、電極24上に金属層22が形成されている。金属層12と22とがはんだ等の溶融金属40を用い接合されている。図1(b)は、金属層22の例を示す。図1(b)を参照し、金属層22は、例えばCu(銅)を主に含む金属端子である。金属層22上には溶融金属40が形成されている。金属層22の幅W1(金属層22が円柱の場合は直径)は例えば35μm、金属層22の高さH1は例えば30μm、溶融金属40の高さH2は例えば13μmである。図1(c)を参照し、金属層22と溶融金属40との間にバリア層23が形成されている。バリア層23は、例えばNi(ニッケル)を主に含む。バリア層23の高さH3は例えば5μmである。バリア層23は、金属層22と溶融金属40との反応を抑制する。半導体装置等の微細化にともない、金属層22の幅W1に対する高さH1の比が大きくなり、例えば1以上となる。この比を大きくするのは、例えば基体10および20の熱膨張係数の差に起因する基体10および20の反りに対応するためである。   FIG. 1A is a cross-sectional view of a semiconductor device according to Comparative Example 1. FIG. 1B and FIG. 1C are enlarged perspective views of the metal layer and the molten metal. Referring to FIG. 1A, a metal layer 12 is formed on a substrate 10. An electrode 24 is formed on the substrate 20 (lower in the drawing), and a metal layer 22 is formed on the electrode 24. The metal layers 12 and 22 are joined using a molten metal 40 such as solder. FIG. 1B shows an example of the metal layer 22. Referring to FIG. 1B, the metal layer 22 is a metal terminal mainly including Cu (copper), for example. A molten metal 40 is formed on the metal layer 22. The width W1 of the metal layer 22 (diameter when the metal layer 22 is a cylinder) is, for example, 35 μm, the height H1 of the metal layer 22 is, for example, 30 μm, and the height H2 of the molten metal 40 is, for example, 13 μm. With reference to FIG. 1C, a barrier layer 23 is formed between the metal layer 22 and the molten metal 40. The barrier layer 23 mainly contains, for example, Ni (nickel). The height H3 of the barrier layer 23 is 5 μm, for example. The barrier layer 23 suppresses the reaction between the metal layer 22 and the molten metal 40. With the miniaturization of semiconductor devices and the like, the ratio of the height H1 to the width W1 of the metal layer 22 increases, for example, 1 or more. The reason for increasing this ratio is to cope with the warpage of the substrates 10 and 20 caused by the difference in the thermal expansion coefficients of the substrates 10 and 20, for example.

図2(a)および図2(b)は、比較例2に係る半導体装置の断面図である。図2(a)は、基体同士の接合前の図であり、図2(b)は、接合後の金属層の拡大図である。図2(a)を参照し、溶融金属40は、金属層22上(図面では下)に例えば電解めっき法により形成される。電解めっき法により形成された溶融金属40の表面は凹凸が大きい。図2(b)を参照し、溶融金属40と金属層12とを接触させ、加熱することにより、金属層12と22とを接合する。このとき、金属層22との界面に溶融金属40が接触していない領域が生じる。このため、溶融金属40内にボイド42が発生する。例えば、金属層22の表面の平坦性が高い場合、ボイド42が発生し易い。   2A and 2B are cross-sectional views of the semiconductor device according to Comparative Example 2. FIG. FIG. 2A is a view before joining the substrates, and FIG. 2B is an enlarged view of the metal layer after joining. Referring to FIG. 2A, the molten metal 40 is formed on the metal layer 22 (lower in the drawing) by, for example, electrolytic plating. The surface of the molten metal 40 formed by the electrolytic plating method has large irregularities. With reference to FIG.2 (b), the molten metal 40 and the metal layer 12 are made to contact, and the metal layers 12 and 22 are joined by heating. At this time, a region where the molten metal 40 is not in contact is formed at the interface with the metal layer 22. For this reason, a void 42 is generated in the molten metal 40. For example, when the flatness of the surface of the metal layer 22 is high, the void 42 is likely to occur.

図3(a)および図3(b)は、比較例1に係る半導体装置の断面図である。図3(a)は、基体同士の接合前の図であり、図3(b)は、接合後の金属層の拡大図である。図3(a)を参照し、このようなボイド42の発生を抑制するため、基体10および20を接合する前に、溶融金属40を融点以上の温度に加熱する。これにより、溶融金属40がドーム状(すなわち半球状)となる。図3(b)を参照し、金属層12と22とを接合した後、溶融金属40内でのボイドの発生が抑制される。   3A and 3B are cross-sectional views of the semiconductor device according to Comparative Example 1. FIG. FIG. 3A is a view before bonding of the substrates, and FIG. 3B is an enlarged view of the metal layer after bonding. Referring to FIG. 3A, in order to suppress the generation of such voids 42, the molten metal 40 is heated to a temperature equal to or higher than the melting point before the bases 10 and 20 are joined. Thereby, the molten metal 40 becomes dome shape (namely, hemispherical). Referring to FIG. 3B, after joining the metal layers 12 and 22, generation of voids in the molten metal 40 is suppressed.

図4(a)から図4(c)は、金属層の拡大図である。図4(a)から図4(c)を参照し、例えば、シリコンインターポーザ等の回路基板上に半導体素子を搭載する場合がある。または半導体素子を3次元的に積層することにより、半導体装置を高集積化する場合がある。このような場合、配線を半導体素子の配線形成工程に用いられる製造プロセスを利用して形成できる。このため、樹脂回路基板に比べ、50倍以上の配線密度が実現できる。よって、金属層12および22の径は、樹脂回路基板に比べ1/8の径となる。   4A to 4C are enlarged views of the metal layer. 4A to 4C, for example, a semiconductor element may be mounted on a circuit board such as a silicon interposer. Alternatively, semiconductor devices may be highly integrated by three-dimensionally stacking semiconductor elements. In such a case, the wiring can be formed by using a manufacturing process used in the wiring formation process of the semiconductor element. For this reason, a wiring density of 50 times or more can be realized as compared with the resin circuit board. Therefore, the diameters of the metal layers 12 and 22 are 1/8 of the diameter of the resin circuit board.

このように、金属層22の幅W1(金属層22が円柱の場合は直径)が小さくなると、溶融金属40の高さH2が低くなる。ドームの直径は、金属層22の幅とほぼ同じとなるため、金属層22上に形成できる球状溶融金属40の体積の上限は決まっているためである。一方、溶融金属40をドーム状とするために加熱すると、溶融金属40と金属層22とが反応し合金層44が形成される。合金層44の高さH4は、金属層22の幅によらず、加熱時の熱量で決まる。よって、合金層44の高さH4はほぼ一定である。金属層22の幅W1が小さくなると、合金層44の比率が増える。合金層44の融点は溶融金属40より高いため、金属層12と22との良好な接合が行なえなくなる。   Thus, when the width W1 of the metal layer 22 (or the diameter when the metal layer 22 is a cylinder) is decreased, the height H2 of the molten metal 40 is decreased. This is because the diameter of the dome is substantially the same as the width of the metal layer 22, and therefore the upper limit of the volume of the spherical molten metal 40 that can be formed on the metal layer 22 is determined. On the other hand, when the molten metal 40 is heated to form a dome shape, the molten metal 40 and the metal layer 22 react to form an alloy layer 44. The height H4 of the alloy layer 44 is determined by the amount of heat during heating regardless of the width of the metal layer 22. Therefore, the height H4 of the alloy layer 44 is substantially constant. As the width W1 of the metal layer 22 decreases, the ratio of the alloy layer 44 increases. Since the melting point of the alloy layer 44 is higher than that of the molten metal 40, the metal layers 12 and 22 cannot be bonded satisfactorily.

図5(a)から図5(d)は、実施例1に係る基体の接合方法を示す断面図である。図5(a)を参照し、基体10の上面に電極14を形成する。電極14上に金属層12を形成する。基体20の下面に電極24を形成する。電極24下に金属層22を形成する。基体10および20は、例えばシリコン基板等の半導体基板、または樹脂基板等の絶縁基板である。電極14および24は、例えばCuまたはAl(アルミニウム)等の金属を主に含む。金属層12および22は、例えばCu等を主に含む。金属層22の下面に複数の粉体32を固着させる。粉体32は粒子状であり、例えばCu等の金属35(第1金属)を含む。粉体32の粒径は例えば1μmから数μmである。複数の粉体32は一層の粉体32の層でもよいが2層以上の粉体32の層でもよい。粉体32は、例えばアドマイズ法を用い形成する。粉体32は、例えば超音波を用い、金属層22の表面に固着させる。   FIG. 5A to FIG. 5D are cross-sectional views illustrating the substrate bonding method according to the first embodiment. With reference to FIG. 5A, the electrode 14 is formed on the upper surface of the substrate 10. A metal layer 12 is formed on the electrode 14. An electrode 24 is formed on the lower surface of the substrate 20. A metal layer 22 is formed under the electrode 24. The bases 10 and 20 are, for example, a semiconductor substrate such as a silicon substrate or an insulating substrate such as a resin substrate. The electrodes 14 and 24 mainly contain a metal such as Cu or Al (aluminum). The metal layers 12 and 22 mainly contain Cu or the like, for example. A plurality of powders 32 are fixed to the lower surface of the metal layer 22. The powder 32 is particulate and includes a metal 35 (first metal) such as Cu, for example. The particle size of the powder 32 is, for example, 1 μm to several μm. The plurality of powders 32 may be a single layer of powder 32, but may be two or more layers of powder 32. The powder 32 is formed using, for example, an atomizing method. The powder 32 is fixed to the surface of the metal layer 22 using, for example, ultrasonic waves.

図5(b)を参照し、粉体32が金属層22の上面に接するように、金属層12および22を複数の粉体32を介し対向させ、接触させる。図5(c)を参照し、複数の粉体33の表面を溶融金属36(第2金属)に置換する。例えば粉体32内の金属35全体を溶融金属36に置換し粉体33とする。置換は例えば無電解めっきを用いた置換めっき法を用いる。置換めっき法は、標準電極電位が低い金属を高い金属に置換させる方法である。例えばSn(錫)に置換される金属としてはCu、In(インジウム)、Ni、Fe(鉄)、Mn(マンガン)、Zr(ジルコニウム)、Ti(チタン)、Al、Cr(クロム)およびZn(亜鉛)がある。そこで、金属35はSnを含み、溶融金属36は、Cu、In、Ni、Fe、Mn、Zr、Ti、Al、CrおよびZnの少なくとも1つを含む金属とすることができる。粉体32と、金属層12および22、電極14および24と、が同様の金属の場合、金属層12および22、電極14および24の側面の金属が溶融金属に置換され置換層16および26が形成される。   With reference to FIG. 5B, the metal layers 12 and 22 are opposed to and in contact with each other through the plurality of powders 32 so that the powder 32 contacts the upper surface of the metal layer 22. Referring to FIG. 5C, the surfaces of the plurality of powders 33 are replaced with molten metal 36 (second metal). For example, the entire metal 35 in the powder 32 is replaced with a molten metal 36 to obtain a powder 33. For the replacement, for example, a replacement plating method using electroless plating is used. The displacement plating method is a method of replacing a metal having a low standard electrode potential with a metal having a high standard electrode potential. For example, as a metal substituted for Sn (tin), Cu, In (indium), Ni, Fe (iron), Mn (manganese), Zr (zirconium), Ti (titanium), Al, Cr (chromium) and Zn ( Zinc). Therefore, the metal 35 includes Sn, and the molten metal 36 may be a metal including at least one of Cu, In, Ni, Fe, Mn, Zr, Ti, Al, Cr, and Zn. When the powder 32, the metal layers 12 and 22, and the electrodes 14 and 24 are the same metal, the metal on the side surfaces of the metal layers 12 and 22 and the electrodes 14 and 24 is replaced with molten metal, and the replacement layers 16 and 26 are formed. It is formed.

図5(d)を参照し、粉体33を溶融金属36の融点以上かつ金属層34の融点以下に加熱することにより、溶融金属36が溶融し金属層34となる。冷却することにより、金属層12と22とが金属層34により接合する。   With reference to FIG. 5 (d), the molten metal 36 is melted to become the metal layer 34 by heating the powder 33 to the melting point of the molten metal 36 or more and to the melting point of the metal layer 34 or less. By cooling, the metal layers 12 and 22 are joined by the metal layer 34.

実施例1によれば、図5(b)のように、複数の基体10および20上にそれぞれ形成された金属層12および22同士を、複数の粉体32を含む多孔質体を介して対向させる。図5(c)のように、複数の粉体32の表面の金属35を、溶融金属36に置換する。溶融金属36を加熱することにより、金属層12および22同士を接合する。これにより、比較例1のように、溶融金属40を金属層12と22とを接合する前に溶融しなくともよい。このため、図4(a)から図4(c)のように、合金層44が形成されない。よって、金属層12と22との接合強度を向上させることができる。   According to Example 1, as shown in FIG. 5B, the metal layers 12 and 22 formed on the plurality of substrates 10 and 20 are opposed to each other through the porous body including the plurality of powders 32. Let As shown in FIG. 5C, the metal 35 on the surface of the plurality of powders 32 is replaced with molten metal 36. The metal layers 12 and 22 are joined together by heating the molten metal 36. Thereby, like the comparative example 1, it is not necessary to melt the molten metal 40 before joining the metal layers 12 and 22 together. For this reason, the alloy layer 44 is not formed as shown in FIGS. Therefore, the bonding strength between the metal layers 12 and 22 can be improved.

また、複数の粉体32を含むような多孔質体は単位体積当りの表面積が大きいため、金属35を容易に溶融金属36に置換できる。   Further, since the porous body including the plurality of powders 32 has a large surface area per unit volume, the metal 35 can be easily replaced with the molten metal 36.

さらに、多孔質体として複数の粉体32を用いることにより、多孔質体を金属層12または22の表面に簡単に固着させることができる。   Furthermore, the porous body can be easily fixed to the surface of the metal layer 12 or 22 by using the plurality of powders 32 as the porous body.

実施例2は、基体を積層する例である。図6(a)から図7(c)は、実施例2に係る基体の接合方法を示す断面図である。図6(a)を参照し、基体10aおよび20a、金属層12aおよび22a、電極14aおよび24a並びに粉体32aは、実施例1の図5(b)の基体10および20、金属層12および22、電極14および24並びに粉体32と同じである。基体20aの上面に電極14bが形成され、電極14b上に金属層12bが形成されている。電極14bと電極24aとは、基体20a内に形成された貫通電極を介し電気的に接続されている。電極14bおよび電極24aは、基体20a内に形成された回路に電気的に接続されていてもよい。   Example 2 is an example in which substrates are laminated. FIG. 6A to FIG. 7C are cross-sectional views illustrating a method for bonding substrates according to the second embodiment. Referring to FIG. 6A, the bases 10a and 20a, the metal layers 12a and 22a, the electrodes 14a and 24a, and the powder 32a are the same as the bases 10 and 20 and the metal layers 12 and 22 shown in FIG. Same as electrodes 14 and 24 and powder 32. An electrode 14b is formed on the upper surface of the base body 20a, and a metal layer 12b is formed on the electrode 14b. The electrode 14b and the electrode 24a are electrically connected through a through electrode formed in the base body 20a. The electrode 14b and the electrode 24a may be electrically connected to a circuit formed in the base body 20a.

図6(b)を参照し、基体20a上に基体20bを積層する。各金属層12bは、複数の粉体32bを介し各金属層22bと対向している。図7(a)を参照し、基体20b上に基体20cを積層する。各金属層12cは、複数の粉体32cを介し各金属層22cに対向している。   With reference to FIG. 6B, the base body 20b is laminated on the base body 20a. Each metal layer 12b is opposed to each metal layer 22b with a plurality of powders 32b interposed therebetween. With reference to FIG. 7A, the base body 20c is laminated on the base body 20b. Each metal layer 12c is opposed to each metal layer 22c via a plurality of powders 32c.

図7(b)を参照し、実施例1の図5(c)と同様に、複数の粉体32aから32cの表面を溶融金属に置換する。これにより、溶融金属を含む粉体33aから33cが形成される。図7(c)を参照し、粉体33aから33bを融点以上に加熱することにより粉体33aから33cが溶融し金属層34aから34cが形成される。冷却することにより、金属層12aと22aとが金属層34aにより接合する。同時に、金属層12bと22bとが金属層34b、金属層12cと22cとが金属層34cにより接合する。   Referring to FIG. 7B, the surfaces of the plurality of powders 32a to 32c are replaced with molten metal, as in FIG. 5C of the first embodiment. Thereby, powders 33a to 33c containing molten metal are formed. Referring to FIG. 7C, the powders 33a to 33b are heated to the melting point or higher to melt the powders 33a to 33c and form the metal layers 34a to 34c. By cooling, the metal layers 12a and 22a are joined by the metal layer 34a. At the same time, the metal layers 12b and 22b are joined by the metal layer 34b, and the metal layers 12c and 22c are joined by the metal layer 34c.

3以上の基体を積層する際に、基体を積層するごとに、金属層を接合することも考えられる。しかしながら、積層初期に接合した金属層は、接合のための加熱工程を多く経ることになる。例えば、金属層34aは、3回の加熱工程を経る。このため、接合金属が変質し、硬くてもろくなり、クラックが入り易くなる。このように、接合の品質が金属層34aから34cによってばらついてしまう。実施例2によれば、図7(a)のように、金属層12aと22a同士、12bと22b同士、12cと22c同士が粉体32aから32cにより固着されている。このため、金属層12aと22aとを加熱する前に、基体20bから20cを積層しても、基体20aから20cは互いに固定されている。よって、基体20aから20cを積層した後に、図7(b)のように複数の粉体33aから33cを一括して加熱することにより、金属層12aと22a、12bと22bおよび12cと22c同士を接合することができる。これにより、接合の品質のばらつきを抑制できる。   When three or more substrates are stacked, it is also conceivable to join a metal layer each time the substrates are stacked. However, the metal layer bonded at the initial stage of the lamination undergoes many heating processes for bonding. For example, the metal layer 34a goes through three heating steps. For this reason, the joining metal changes in quality, becomes brittle, and is liable to crack. In this manner, the quality of the bonding varies depending on the metal layers 34a to 34c. According to Example 2, as shown in FIG. 7A, the metal layers 12a and 22a, 12b and 22b, and 12c and 22c are fixed by the powders 32a to 32c. For this reason, even if the bases 20b to 20c are laminated before the metal layers 12a and 22a are heated, the bases 20a to 20c are fixed to each other. Therefore, after laminating the bases 20a to 20c, the metal layers 12a and 22a, 12b and 22b, and 12c and 22c are bonded together by heating the plurality of powders 33a to 33c as shown in FIG. 7B. Can be joined. Thereby, the dispersion | variation in the quality of joining can be suppressed.

基体10を、例えばシリコンインターポーザまたは樹脂基板等の回路基板とし、基体20aから20cを例えば半導体チップとすることができる。基体20aから20cの積層数は、例えば2、4または8個とすることができる。基体20aから20cが半導体チップの場合、膜厚は例えば20μmから100μmである。   The base 10 can be a circuit board such as a silicon interposer or a resin substrate, and the bases 20a to 20c can be semiconductor chips, for example. The number of stacked base bodies 20a to 20c can be set to 2, 4, or 8, for example. When the bases 20a to 20c are semiconductor chips, the film thickness is, for example, 20 μm to 100 μm.

実施例3は、粉体32の表面の一部を溶融金属に置換する例である。図8(a)から図8(d)は、実施例3に係る基体の接合方法を示す断面図である。図9(a)および図9(b)は、実施例3の粉体の断面図である。図8(a)を参照し、基体20上(下面)に保護膜28が形成されている。保護膜28は、基体20の保護膜であり、例えばポリイミドまたはエポキシ等の樹脂を含む絶縁体である。その他の工程は、実施例1の図5(b)と同じであり説明を省略する。   Example 3 is an example in which a part of the surface of the powder 32 is replaced with molten metal. FIG. 8A to FIG. 8D are cross-sectional views illustrating a method for bonding substrates according to the third embodiment. FIG. 9A and FIG. 9B are cross-sectional views of the powder of Example 3. Referring to FIG. 8A, a protective film 28 is formed on the base 20 (lower surface). The protective film 28 is a protective film of the base 20 and is an insulator containing a resin such as polyimide or epoxy. Other steps are the same as those in FIG. 5B of the first embodiment, and a description thereof will be omitted.

図9(a)を参照し、粉体32は、全体が金属35である。金属35は例えばCuである。図8(b)および図9(b)を参照し、粉体32の表面の金属35を溶融金属36に置換することにより、粉体33が形成される。粉体33の表面は溶融金属36であり、粉体33の内部には金属35が残存する。例えば、内部に残存する金属35の径は、粉体33の径の1/2から1/4程度である。例えば、金属35がCu、溶融金属36がSnの場合、置換型無電解Snめっきを60℃で15分行なうことにより、粉体33の内部にSnを残存できる。   With reference to FIG. 9A, the powder 32 is entirely a metal 35. The metal 35 is, for example, Cu. With reference to FIG. 8B and FIG. 9B, the powder 33 is formed by replacing the metal 35 on the surface of the powder 32 with a molten metal 36. The surface of the powder 33 is a molten metal 36, and the metal 35 remains inside the powder 33. For example, the diameter of the metal 35 remaining inside is about ½ to ¼ of the diameter of the powder 33. For example, when the metal 35 is Cu and the molten metal 36 is Sn, Sn can remain in the powder 33 by performing substitutional electroless Sn plating at 60 ° C. for 15 minutes.

図8(c)を参照し、複数の粉体33を加熱することにより、溶融金属36を溶融させる。例えば、金属35がCu、溶融金属36がSn、金属層12および22がCuの場合、粉体33を300℃、3秒加熱する。これにより、残存した金属35を含む金属層34が形成される。   With reference to FIG. 8C, the molten metal 36 is melted by heating the plurality of powders 33. For example, when the metal 35 is Cu, the molten metal 36 is Sn, and the metal layers 12 and 22 are Cu, the powder 33 is heated at 300 ° C. for 3 seconds. Thereby, the metal layer 34 including the remaining metal 35 is formed.

図8(d)を参照し、溶融金属36と金属35と加熱することにより合金化する。例えば、金属35がCu、溶融金属36がSn、金属層12および22がCuの場合、リフロー炉を用いピークトップ温度を240℃以上とし、溶融金属36の融点以上の温度が30秒以上となるように加熱する。これにより、溶融金属36と金属35とが反応しCuとSnとの合金層45が形成される。金属層34に比べ合金層45は硬いため、実施例1より接合の強度を高くすることができる。   Referring to FIG. 8D, the molten metal 36 and the metal 35 are alloyed by heating. For example, when the metal 35 is Cu, the molten metal 36 is Sn, and the metal layers 12 and 22 are Cu, the peak top temperature is 240 ° C. or higher using a reflow furnace, and the temperature above the melting point of the molten metal 36 is 30 seconds or longer. To heat. As a result, the molten metal 36 and the metal 35 react to form an alloy layer 45 of Cu and Sn. Since the alloy layer 45 is harder than the metal layer 34, the bonding strength can be made higher than that of the first embodiment.

実施例3のように、複数の粉体32の表面の金属35を溶融金属36に置換し、粉体32の内部の金属35を溶融金属36に置換しなくともよい。粉体32の内部の金属35を溶融金属36に置換するか否かは、例えば置換めっきの時間で制御することができる。   As in the third embodiment, the metal 35 on the surface of the plurality of powders 32 may be replaced with the molten metal 36, and the metal 35 inside the powder 32 may not be replaced with the molten metal 36. Whether or not the metal 35 inside the powder 32 is replaced with the molten metal 36 can be controlled by, for example, the time of replacement plating.

図8(d)のように、溶融金属36に置換しない粉体33の内部と溶融金属36とを合金化することにより合金層45を形成する。溶融金属36は、柔らかいため、変形しやすい。合金層45を形成することにより、金属層12と22とを固く接合できる。合金層45は形成しなくともよい。さらに、保護膜28を設けてもよいし、設けなくともよい。   As shown in FIG. 8D, the alloy layer 45 is formed by alloying the inside of the powder 33 that is not replaced with the molten metal 36 and the molten metal 36. Since the molten metal 36 is soft, it is easily deformed. By forming the alloy layer 45, the metal layers 12 and 22 can be firmly joined. The alloy layer 45 may not be formed. Further, the protective film 28 may or may not be provided.

実施例4は、粉体32の内部が高融点金属であり粉体の表面の金属を溶融金属に置換する例である。図10(a)から図10(c)は、実施例4に係る基体の接合方法を示す断面図である。図11(a)および図11(b)は、実施例4の粉体の断面図である。図10(a)を参照し、基体10上に樹脂膜19が形成されている。基体20上(下面)に樹脂膜29が形成されている。樹脂膜19および29は、例えばエポキシ等の熱硬化樹脂を含む絶縁体である。粉体32は、高融点金属37の周囲にバリア層38を介し金属35が形成されている。その他の工程は、実施例1の図5(b)と同じであり説明を省略する。   Example 4 is an example in which the inside of the powder 32 is a refractory metal and the metal on the surface of the powder is replaced with a molten metal. FIG. 10A to FIG. 10C are cross-sectional views illustrating the substrate bonding method according to the fourth embodiment. FIG. 11A and FIG. 11B are cross-sectional views of the powder of Example 4. With reference to FIG. 10A, a resin film 19 is formed on the substrate 10. A resin film 29 is formed on the base 20 (lower surface). The resin films 19 and 29 are insulators including a thermosetting resin such as epoxy. In the powder 32, a metal 35 is formed around a refractory metal 37 via a barrier layer 38. Other steps are the same as those in FIG. 5B of the first embodiment, and a description thereof will be omitted.

図11(a)を参照し、粉体32は、高融点金属37の周囲がバリア層38で囲まれ、バリア層38が金属35で囲まれている。高融点金属37は、例えば径が1μmのPd(パラジウム)であり、アドマイズ法を用い形成する。高融点金属37の表面に、例えば無電解めっき法またはバレルめっき法を用いバリア層38を形成する。バリア層38は例えば膜厚が0.5μmのNi膜である。バリア層38の表面に、例えば無電解めっき法またはバレルめっき法を用い金属35を形成する。金属35は例えば膜厚が1μmのCuである。   Referring to FIG. 11A, in the powder 32, the refractory metal 37 is surrounded by a barrier layer 38 and the barrier layer 38 is surrounded by a metal 35. The refractory metal 37 is, for example, Pd (palladium) having a diameter of 1 μm, and is formed using an atomizing method. A barrier layer 38 is formed on the surface of the refractory metal 37 using, for example, an electroless plating method or a barrel plating method. The barrier layer 38 is, for example, a Ni film having a thickness of 0.5 μm. A metal 35 is formed on the surface of the barrier layer 38 using, for example, an electroless plating method or a barrel plating method. The metal 35 is, for example, Cu having a thickness of 1 μm.

図10(b)および図11(b)を参照し、金属35を溶融金属36に置換することにより、粉体33が形成される。バリア層38は置換されないため、時間を制御しなくとも置換めっきが停止する。例えば、金属35がCu、溶融金属36がSnの場合、置換型無電解Snめっきを60℃で15分行なう。図10(c)を参照し、粉体33の溶融金属36を溶融させることにより、高融点金属37およびバリア層38を含む金属層34が形成される。例えば、溶融金属36がSnの場合、粉体33を300℃、3秒加熱する。リフロー炉を用いピークトップ温度を240℃以上とし、30秒以上となるように加熱する。これにより、熱硬化樹脂膜19と29とが接した状態で硬化する。   With reference to FIG. 10B and FIG. 11B, powder 33 is formed by replacing metal 35 with molten metal 36. Since the barrier layer 38 is not replaced, the replacement plating stops without controlling the time. For example, when the metal 35 is Cu and the molten metal 36 is Sn, substitutional electroless Sn plating is performed at 60 ° C. for 15 minutes. Referring to FIG. 10C, the molten metal 36 of the powder 33 is melted to form the metal layer 34 including the refractory metal 37 and the barrier layer 38. For example, when the molten metal 36 is Sn, the powder 33 is heated at 300 ° C. for 3 seconds. Using a reflow furnace, the peak top temperature is set to 240 ° C. or higher, and heating is performed for 30 seconds or more. As a result, the thermosetting resin films 19 and 29 are cured in contact with each other.

実施例4によれば、複数の粉体32は高融点金属37と高融点金属37の表面に形成された金属35を主に含む。これにより、高融点金属37が金属層34を補強するため、実施例3のような合金化は行なわなくともよい。   According to the fourth embodiment, the plurality of powders 32 mainly include the refractory metal 37 and the metal 35 formed on the surface of the refractory metal 37. Thereby, since the refractory metal 37 reinforces the metal layer 34, the alloying as in the third embodiment may not be performed.

実施例5は、粉体32の内部が絶縁体であり粉体の表面の金属を溶融金属に置換する例である。図12(a)から図12(c)は、実施例5に係る基体の接合方法を示す断面図である。図13(a)および図13(b)は、実施例5の粉体の断面図である。図12(a)を参照し、粉体32は、絶縁体39の周囲にバリア層38を介し金属35が形成されている。その他の工程は、実施例4の図10(a)と同じであり説明を省略する。   In Example 5, the inside of the powder 32 is an insulator, and the metal on the surface of the powder is replaced with molten metal. FIG. 12A to FIG. 12C are cross-sectional views illustrating the substrate bonding method according to the fifth embodiment. FIG. 13A and FIG. 13B are cross-sectional views of the powder of Example 5. Referring to FIG. 12A, in the powder 32, a metal 35 is formed around an insulator 39 through a barrier layer 38. Other steps are the same as those in FIG.

図13(a)を参照し、粉体32は、絶縁体39の周囲がバリア層38で囲まれ、バリア層38が金属35で囲まれている。絶縁体39は、例えば径が1μmのポリイミド等の樹脂であり、アドマイズ法を用い形成する。その他の工程は、実施例4の図11(a)と同じであり説明を省略する。   Referring to FIG. 13A, in the powder 32, the insulator 39 is surrounded by a barrier layer 38, and the barrier layer 38 is surrounded by a metal 35. The insulator 39 is, for example, a resin such as polyimide having a diameter of 1 μm, and is formed by using an atomizing method. The other processes are the same as those in FIG.

図12(b)および図13(b)を参照し、金属35を溶融金属36に置換することにより、粉体33が形成される。その他の工程は、実施例4の図10(b)および図11(b)と同じであり説明を省略する。図12(c)を参照し、粉体33の溶融金属36を溶融させることにより、絶縁体39およびバリア層38を含む金属層34が形成される。その他の工程は、実施例4の図10(c)と同じであり説明を省略する。   With reference to FIG. 12B and FIG. 13B, powder 33 is formed by replacing metal 35 with molten metal 36. Other steps are the same as those in FIG. 10B and FIG. 11B of the fourth embodiment, and the description thereof is omitted. With reference to FIG. 12C, the metal layer 34 including the insulator 39 and the barrier layer 38 is formed by melting the molten metal 36 of the powder 33. The other steps are the same as those in FIG.

実施例5によれば、粉体32は、絶縁体39と絶縁体39の表面に形成された金属35を含む。これにより、絶縁体39が金属層34を補強するため、実施例3のような合金化は行なわなくともよい。   According to the fifth embodiment, the powder 32 includes the insulator 39 and the metal 35 formed on the surface of the insulator 39. Thereby, since the insulator 39 reinforces the metal layer 34, it is not necessary to perform alloying as in the third embodiment.

実施例4および5のように、樹脂膜19および29を用い基体10と20との間を封止してもよい。これにより、アンダーフィル材を用いなくてもよくなる。   As in Examples 4 and 5, the resin films 19 and 29 may be used to seal between the substrates 10 and 20. Thereby, it is not necessary to use an underfill material.

実施例1から5のように、多孔質体内の粉体32を、金属を主に含む粒子状(例えば球状)とすることができる。これにより、粉体32の表面積が大きくなるため、金属35を溶融金属36に容易に置換することができる。   As in Examples 1 to 5, the powder 32 in the porous body can be formed into particles (for example, spherical) mainly containing metal. Thereby, since the surface area of the powder 32 is increased, the metal 35 can be easily replaced with the molten metal 36.

実施例6は、粉体が繊維状の例である。図14(a)から図14(c)は、実施例6に係る基体の接合方法を示す断面図である。図14(a)を参照し、粉体32dは繊維状である。その他の工程は、実施例1の図5(b)と同じであり説明を省略する。   Example 6 is an example in which the powder is fibrous. FIG. 14A to FIG. 14C are cross-sectional views illustrating the substrate bonding method according to the sixth embodiment. Referring to FIG. 14 (a), the powder 32d is fibrous. Other steps are the same as those in FIG. 5B of the first embodiment, and a description thereof will be omitted.

図14(b)を参照し、繊維状粉体32dを溶融金属に置換することにより、繊維状粉体33dを形成する。その他の工程は実施例1の図5(c)と同じであり説明を省略する。図14(c)を参照し、粉体33dを溶融することにより金属層34を形成する。その他の工程は実施例1の図5(d)と同じであり説明を省略する。   Referring to FIG. 14B, the fibrous powder 33d is formed by replacing the fibrous powder 32d with molten metal. The other steps are the same as those in FIG. Referring to FIG. 14C, the metal layer 34 is formed by melting the powder 33d. The other processes are the same as those in FIG.

実施例6のように、多孔質体は、複数の繊維状粉体を含んでもよい。このように、実施例1から5の粉体は繊維状でもよい。   As in Example 6, the porous body may include a plurality of fibrous powders. Thus, the powders of Examples 1 to 5 may be fibrous.

実施例7は、実施例3に係る基体の接合方法を半導体装置の製造方法に適用した例である。図15(a)から図18(c)は、実施例7に係る基体の接合方法を示す断面図である。図15(a)を参照し、基体20に電子回路50を形成する。基体20はシリコン基板であり、複数のチップを含むウエハ状態である。基体20上に絶縁膜52を形成する。電子回路50は、基体20に形成されたトランジスタおよび絶縁膜52内に形成された配線を含む。絶縁膜52は例えば酸化シリコン膜であり、多層配線の層間絶縁膜を含む。絶縁膜52上に電極24を形成する。電極24はCuを含み、電子回路50に電気的に接続されている。チップサイズは、例えば8.5mm×8.5mmである。電極24の間隔は例えば50μmであり、1チップに400個の電極24が形成されている。   Example 7 is an example in which the substrate bonding method according to Example 3 is applied to a method for manufacturing a semiconductor device. FIG. 15A to FIG. 18C are cross-sectional views illustrating the substrate bonding method according to the seventh embodiment. Referring to FIG. 15A, the electronic circuit 50 is formed on the base 20. The substrate 20 is a silicon substrate and is in a wafer state including a plurality of chips. An insulating film 52 is formed on the substrate 20. The electronic circuit 50 includes a transistor formed on the base 20 and a wiring formed in the insulating film 52. The insulating film 52 is a silicon oxide film, for example, and includes an interlayer insulating film of multilayer wiring. The electrode 24 is formed on the insulating film 52. The electrode 24 contains Cu and is electrically connected to the electronic circuit 50. The chip size is, for example, 8.5 mm × 8.5 mm. The interval between the electrodes 24 is, for example, 50 μm, and 400 electrodes 24 are formed in one chip.

図15(b)を参照し、絶縁膜52上にポリイミドを含み膜厚が例えば5μmの保護膜28を形成する。図15(c)を参照し、電極24上の保護膜28に開口を形成する。電極24上にCuを含み高さが例えば15μmの金属層22を形成する。金属層22は、接続用のバンプ(突起端子)である。ウエハ状態の基体20の裏面を研削することにより、基体20の厚さを例えば100μmとする。ダイシング法を用い、ウエハを切断し、チップ状態とする。   Referring to FIG. 15B, a protective film 28 containing polyimide and having a film thickness of, for example, 5 μm is formed on the insulating film 52. With reference to FIG. 15C, an opening is formed in the protective film 28 on the electrode 24. A metal layer 22 containing Cu and having a height of, for example, 15 μm is formed on the electrode 24. The metal layer 22 is a bump (projection terminal) for connection. By grinding the back surface of the substrate 20 in the wafer state, the thickness of the substrate 20 is set to 100 μm, for example. Using a dicing method, the wafer is cut into a chip state.

図16(a)を参照し、基板54上にCuを主に含む粉体56を配置する。粉体56は、アドマイズ法を用い形成する。粉体56の平均粒径は、例えば3μmである。図16(b)を参照し、金属層22の表面と基板54の表面とを接触させる。超音波を印加することにより、粉体56を金属層22の表面に固着させる。超音波出力は100kHz、振幅は2μmである。図16(c)を参照し、基体20を基板54から剥離する。金属層22上に、Cuを主に含む粉体32が固着する。   With reference to FIG. 16A, a powder 56 mainly containing Cu is disposed on a substrate 54. The powder 56 is formed using an atomizing method. The average particle diameter of the powder 56 is, for example, 3 μm. Referring to FIG. 16B, the surface of the metal layer 22 and the surface of the substrate 54 are brought into contact with each other. The powder 56 is fixed to the surface of the metal layer 22 by applying ultrasonic waves. The ultrasonic output is 100 kHz and the amplitude is 2 μm. With reference to FIG. 16C, the base body 20 is peeled from the substrate 54. A powder 32 mainly containing Cu is fixed on the metal layer 22.

図17(a)を参照し、基体10として回路基板を準備する。基体10は、BT(Bismaleimide-Triazine)レジンを主に含み膜厚が例えば0.35mmである。基体10上には、電極14が形成されている。電極14は、Cuを主に含み電極24に対応するように配置されている。電極14上には、Cuを主に含み高さが例えば15μmの金属層12が形成されている。金属層12は、バンプである。基体10の裏面には、電極58が形成されている。電極58と電極14とは、基体10内に形成された配線を介し電気的に接続されている。フリップチップボンダを用い、基体10上に基体20を配置し、位置合わせする。図17(b)を参照し、粉体32を介し、金属層12と22とを接触させる。超音波を用いて、粉体32を介し、金属層12と22とを機械的に接続させる。   Referring to FIG. 17A, a circuit board is prepared as the base 10. The substrate 10 mainly contains BT (Bismaleimide-Triazine) resin and has a film thickness of, for example, 0.35 mm. An electrode 14 is formed on the base 10. The electrode 14 mainly includes Cu and is disposed so as to correspond to the electrode 24. On the electrode 14, a metal layer 12 mainly containing Cu and having a height of, for example, 15 μm is formed. The metal layer 12 is a bump. An electrode 58 is formed on the back surface of the substrate 10. The electrode 58 and the electrode 14 are electrically connected via a wiring formed in the base 10. Using a flip chip bonder, the base 20 is placed on the base 10 and aligned. With reference to FIG. 17B, the metal layers 12 and 22 are brought into contact with each other through the powder 32. The metal layers 12 and 22 are mechanically connected through the powder 32 using ultrasonic waves.

図18(a)を参照し、置換型無電解すずめっき液(例えば石原薬品製580MJ)を用い、粉体32の表面をSnに置換し粉体33を形成する。めっき処理は60℃において15分行なう。これにより、粉体32の表面約1μmのCuがSnに置換され、粉体32の中央にはCuが残存する。粉体33を加熱する。例として、基体20側から粉体33の温度が300℃となるように、3秒熱を加える。これにより、粉体33内のSnが溶融する。さらに、リフロー炉を用い、ピークトップ温度が240℃、Snの融点以上の時間が30秒以上となるように加熱する。これにより、粉体33内のSnとCuとが合金化し、合金層45が形成される。   Referring to FIG. 18A, the surface of the powder 32 is replaced with Sn by using a substitutional electroless tin plating solution (for example, 580MJ manufactured by Ishihara Pharmaceutical Co., Ltd.) to form the powder 33. The plating process is performed at 60 ° C. for 15 minutes. Thereby, Cu of about 1 μm on the surface of the powder 32 is replaced with Sn, and Cu remains in the center of the powder 32. The powder 33 is heated. As an example, heat is applied for 3 seconds from the substrate 20 side so that the temperature of the powder 33 becomes 300 ° C. Thereby, Sn in the powder 33 is melted. Further, using a reflow furnace, heating is performed so that the peak top temperature is 240 ° C. and the time above the melting point of Sn is 30 seconds or more. Thereby, Sn and Cu in the powder 33 are alloyed, and the alloy layer 45 is formed.

図18(b)を参照し、基体10と20との間にアンダーフィル材60を注入する。アンダーフィル材60は熱硬化型エポキシ樹脂を主に含む。恒温槽を用い150℃の温度で2時間加熱することにより、アンダーフィル材60を硬化させる。図18(c)を参照し、電極58にはんだボール62を形成する。はんだボール62はSn−Ag(錫銀)を主に含む。これにより、回路基板上にチップが搭載された半導体装置が完成する。   Referring to FIG. 18B, an underfill material 60 is injected between the substrates 10 and 20. The underfill material 60 mainly includes a thermosetting epoxy resin. The underfill material 60 is cured by heating at 150 ° C. for 2 hours using a thermostatic bath. With reference to FIG. 18C, solder balls 62 are formed on the electrodes 58. The solder ball 62 mainly contains Sn—Ag (tin silver). Thereby, the semiconductor device having the chip mounted on the circuit board is completed.

実施例7においては、金属層22の表面に複数の粉体32を固着させる例を説明したが、金属層12および22の少なくとも一方の表面に複数の粉体32を固着させればよい。また、実施例3に係る基体の接合方法を用いたが実施例1から6に係る基体の接合方法を用いてもよい。   In the seventh embodiment, the example in which the plurality of powders 32 are fixed to the surface of the metal layer 22 has been described. However, the plurality of powders 32 may be fixed to at least one surface of the metal layers 12 and 22. Further, although the substrate bonding method according to the third embodiment is used, the substrate bonding method according to the first to sixth embodiments may be used.

実施例1から実施例7において、金属層12および22としてバンプを例に説明したが、一方がバンプ、他方がパッドでもよい。   In the first to seventh embodiments, bumps have been described as examples of the metal layers 12 and 22, but one may be a bump and the other may be a pad.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10、20 基体
12、22 金属層
14、24 電極
32、33 粉体
34 金属層
45 合金層
10, 20 Base 12, 22 Metal layer 14, 24 Electrode 32, 33 Powder 34 Metal layer 45 Alloy layer

Claims (6)

第1基体に形成された第1金属層と第2基体に形成された第2金属層とを、第1金属を含む多孔質体と接触させる工程と、
前記接触させる工程の後、前記第1金属よりも標準電極電位の高い第2金属を含む液を用いて、前記多孔質体の表面の前記第1金属を第2金属に置換する工程と、
前記第2金属を加熱することにより、前記第1金属層と前記第2金属層とを接合する工程と、
を含むことを特徴とする基体の接合方法。
Contacting the first metal layer formed on the first substrate and the second metal layer formed on the second substrate with a porous body containing the first metal;
After the contacting step, using a liquid containing a second metal having a higher standard electrode potential than the first metal, replacing the first metal on the surface of the porous body with a second metal;
Joining the first metal layer and the second metal layer by heating the second metal ;
A method for bonding substrates, comprising:
前記多孔質体は、複数の粉体であることを特徴とする請求項記載の基体の接合方法。 The porous body, method of bonding substrates according to claim 1, characterized in that the plurality of powder. 前記複数の粉体を前記第1金属層および前記第2金属層の少なくとも一方の表面に固着させる工程を含むことを特徴とする請求項記載の基体の接合方法。 The method for bonding substrates according to claim 2 , further comprising a step of fixing the plurality of powders to at least one surface of the first metal layer and the second metal layer . 前記第1金属を前記第2金属に置換する工程は、前記多孔質体の内部を前記第2金属に置換しないことを特徴とする請求項1からのいずれか一項記載の基体の接合方法。 Step method of bonding substrates according to any one of claims 1 to 3, characterized in that not replace the inside of the porous body to the second metal to replace the first metal to the second metal . 前記第1金属層と前記第2金属層とを接合する工程は、前記多孔質体の内部の前記第1金属と前記第2金属とを合金化する工程を含むことを特徴とする請求項記載の基体の接合方法。 Process according to claim 4, characterized in that it comprises a step of alloying the interior of said first metal and said second metal of said porous body to bonding the second metal layer and the first metal layer The method for bonding substrates as described. 前記接触させる工程は、前記第1基体および前記第2基体を含む3以上の基体を積層させる工程を含み、
前記第1金属層と前記第2金属層とを接合する工程は、積層された前記3以上の基体の前記第2金属を一括して加熱する工程を含むことを特徴とする請求項1からのいずれか一項記載の基体の接合方法。
The contacting step includes a step of laminating three or more substrates including the first substrate and the second substrate ,
Wherein the step of the first metal layer for bonding the second metal layer 5 a second metal laminated least three base from claim 1, characterized in that it comprises the step of heating collectively The method for bonding substrates according to any one of the above.
JP2015550525A 2013-11-29 2013-11-29 Substrate bonding method Expired - Fee Related JP6269682B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082267 WO2015079582A1 (en) 2013-11-29 2013-11-29 Substrate joining method

Publications (2)

Publication Number Publication Date
JPWO2015079582A1 JPWO2015079582A1 (en) 2017-03-16
JP6269682B2 true JP6269682B2 (en) 2018-01-31

Family

ID=53198567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015550525A Expired - Fee Related JP6269682B2 (en) 2013-11-29 2013-11-29 Substrate bonding method

Country Status (3)

Country Link
JP (1) JP6269682B2 (en)
TW (1) TWI605740B (en)
WO (1) WO2015079582A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822659B (en) * 2016-10-27 2023-11-21 美商艾德亞半導體科技有限責任公司 Structures and methods for low temperature bonding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3542611B2 (en) * 1991-07-26 2004-07-14 積水化学工業株式会社 Conductive fine particles, electrode connection structure, and method of manufacturing the same
CN100477139C (en) * 2002-12-27 2009-04-08 富士通株式会社 Method for forming bumps, semiconductor device and method for manufacturing same, substrate processing apparatus and semiconductor manufacturing apparatus
EP1865549A4 (en) * 2005-03-29 2012-07-11 Panasonic Corp Flip chip mounting method and bump forming method
WO2013069798A1 (en) * 2011-11-11 2013-05-16 住友ベークライト株式会社 Manufacturing method for semiconductor device

Also Published As

Publication number Publication date
TW201521530A (en) 2015-06-01
JPWO2015079582A1 (en) 2017-03-16
WO2015079582A1 (en) 2015-06-04
TWI605740B (en) 2017-11-11

Similar Documents

Publication Publication Date Title
TWI331382B (en) Stacked package structure and method for manufacturing the same
US8450848B2 (en) Semiconductor device and method for fabricating the same
JP2016533651A (en) Method of embedding WLCSP components in e-WLB and e-PLB
KR20070001003A (en) Semiconductor device
US7679188B2 (en) Semiconductor device having a bump formed over an electrode pad
TW201201289A (en) Semiconductor device and semiconductor device manufacturing method
TWI381509B (en) Semiconductor package and method for manufacturing the same
CN102610537B (en) Method for low-temperature solid bonding of semiconductor device
JP5035134B2 (en) Electronic component mounting apparatus and manufacturing method thereof
TWI502666B (en) Electronic parts mounting body, electronic parts, substrate
US20140103522A1 (en) Semiconductor substrate, semiconductor device, and method of manfacturing semiconductor substrate
US8952537B2 (en) Conductive bump structure with a plurality of metal layers
JPWO2020090601A1 (en) Manufacturing method of wiring board for semiconductor package and wiring board for semiconductor package
KR20120058118A (en) Method of fabricating stacked package, and method of mounting stacked package fabricated by the same
JP2010525553A (en) Bump structure of semiconductor device
JP6269682B2 (en) Substrate bonding method
JPWO2003077307A1 (en) Electronic circuit device and manufacturing method thereof
JP2010267741A (en) Method for manufacturing semiconductor device
JP2018037520A (en) Semiconductor device, electronic device, method for manufacturing semiconductor device, and method for manufacturing electronic device
JP2012190939A (en) Semiconductor device and manufacturing method of the same
JP2013031864A (en) Solder ball and semiconductor device using solder ball
TWI500129B (en) Semiconductor flip-chip bonding structure and process
JP2011187635A (en) Semiconductor device, and method of manufacturing the same
JP4703356B2 (en) Multilayer semiconductor device
JP2009266972A (en) Laminated semiconductor module and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6269682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees