JP6264947B2 - Process for producing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine - Google Patents

Process for producing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine Download PDF

Info

Publication number
JP6264947B2
JP6264947B2 JP2014040973A JP2014040973A JP6264947B2 JP 6264947 B2 JP6264947 B2 JP 6264947B2 JP 2014040973 A JP2014040973 A JP 2014040973A JP 2014040973 A JP2014040973 A JP 2014040973A JP 6264947 B2 JP6264947 B2 JP 6264947B2
Authority
JP
Japan
Prior art keywords
aqueous phase
organic
activated carbon
range
salt water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014040973A
Other languages
Japanese (ja)
Other versions
JP2015166322A (en
Inventor
健吾 岡嶌
健吾 岡嶌
教広 山本
教広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014040973A priority Critical patent/JP6264947B2/en
Publication of JP2015166322A publication Critical patent/JP2015166322A/en
Application granted granted Critical
Publication of JP6264947B2 publication Critical patent/JP6264947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、塩酸を触媒としてアニリンとホルムアルデヒドを反応させ、二環のジフェニルメタンジアミンと、高度に縮合したポリフェニレンポリメチレンポリアミンとの混合物を製造する方法に関するものである。尚、ジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物を総称して、以下「MDA」という場合がある。   The present invention relates to a method for producing a mixture of bicyclic diphenylmethanediamine and highly condensed polyphenylenepolymethylenepolyamine by reacting aniline with formaldehyde using hydrochloric acid as a catalyst. In addition, the mixture of diphenylmethanediamine and polyphenylene polymethylene polyamine may be collectively referred to as “MDA” hereinafter.

MDAは、エポキシ樹脂やポリウレタン樹脂の硬化剤として使用されたり、あるいはホスゲンと反応させて、イソシアネートとすることでポリウレタン樹脂の原料として使用されている重要な有機化合物である。   MDA is an important organic compound that is used as a curing agent for epoxy resins and polyurethane resins, or is used as a raw material for polyurethane resins by reacting with phosgene to form isocyanates.

このMDAは、一般的に酸を触媒としてアニリンとホルムアルデヒドを縮合反応させ、その後の転位反応によって製造する。特に酸としては塩酸が広く用いられている(例えば、特許文献1参照)。   This MDA is generally produced by a condensation reaction of aniline and formaldehyde using an acid as a catalyst, followed by a rearrangement reaction. In particular, hydrochloric acid is widely used as the acid (see, for example, Patent Document 1).

転位反応させた後の塩酸は水酸化ナトリウムで中和処理され、塩化ナトリウムが副生して水溶液(以下、塩水という)となり、MDAを主成分とする有機相と層分離される。   Hydrochloric acid after the rearrangement reaction is neutralized with sodium hydroxide, sodium chloride is by-produced into an aqueous solution (hereinafter referred to as salt water), and separated into an organic phase mainly composed of MDA.

この有機相にはMDA以外に、原料由来のアニリン等の不純物が含まれるため、これらを蒸留等で除去した後、精製MDAとして製品化される。   Since this organic phase contains impurities such as aniline derived from the raw material in addition to MDA, it is commercialized as purified MDA after removing these by distillation or the like.

一方、塩水中にはMDAやアニリン等の有機物が高濃度で含まれるため、公共水域へ排出する際には環境へのCOD(化学的酸素要求物質)負荷を軽減する必要性から、有機物を分離したり、除去する方法がとられる。しかしながら、効果的かつ効率的に有機物を分離したり、除去する方法として、従来法は必ずしも十分なものではなかった。   On the other hand, since organic substances such as MDA and aniline are contained in salt water at high concentrations, organic substances are separated from the need to reduce the COD (Chemical Oxygen Requirement Substance) load on the environment when discharging into public waters. Or a removal method is taken. However, the conventional method is not always sufficient as a method for separating and removing organic substances effectively and efficiently.

例えば、塩水に含まれる有機物をトルエンで抽出除去する方法が提案されている(例えば、特許文献2参照)。確かに、この方法により有機物の一部は除去できるが、殆どは塩水中に残存するため、環境へのCOD負荷を十分に軽減できないといった課題があった。   For example, a method of extracting and removing organic substances contained in salt water with toluene has been proposed (see, for example, Patent Document 2). Certainly, a part of the organic matter can be removed by this method, but most of it remains in the salt water, so that there is a problem that the COD load on the environment cannot be sufficiently reduced.

また、塩水を有機溶剤で抽出した後、比較的沸点が低い有機物を蒸留にて除去し、引き続き活性炭等の吸着剤で残りの有機物を吸着除去する方法が提案されている(例えば、特許文献3参照)。確かに、この方法により塩水中の有機物の多くは除去できるが、抽出や蒸留、更には活性炭等による吸着は塩水のpHに大きく影響を受ける。   Further, a method has been proposed in which salt water is extracted with an organic solvent, organic substances having a relatively low boiling point are removed by distillation, and the remaining organic substances are subsequently adsorbed and removed with an adsorbent such as activated carbon (for example, Patent Document 3). reference). Certainly, many organic substances in salt water can be removed by this method, but extraction, distillation, and adsorption by activated carbon or the like are greatly affected by the pH of the salt water.

このため、塩水のpHを8未満として抽出や蒸留等の精製を実施することで、処理塩水を食塩電解原料として再利用する方法が提案されている(特許文献4)。確かに、この方法によって、塩水はある程度精製できるが、pH8未満では有機物の種類によっては、十分に除去できず、その塩水をイオン交換膜法食塩電解の原料としてリサイクル利用すると、有機物がイオン交換膜の表面や内部に析出したり沈着して膜の抵抗が高まり、電解電圧を上昇させたり、イオン交換膜の寿命を短くさせるなどの弊害があった。更には、塩水中に残存している有機物の種類や濃度によっては、製品である苛性ソーダや塩素ガス中に不純物として混入し、品質の低下を招くこともあった。   For this reason, a method of reusing treated salt water as a salt electrolysis raw material by carrying out purification such as extraction or distillation at a pH of less than 8 has been proposed (Patent Document 4). Certainly, salt water can be purified to some extent by this method, but depending on the type of organic matter, it cannot be sufficiently removed at a pH of less than 8, and when the salt water is recycled as a raw material for salt electrolysis, the organic matter becomes an ion exchange membrane. The film deposited and deposited on the surface and inside of the film increased the resistance of the film, increasing the electrolysis voltage, and shortening the life of the ion exchange film. Furthermore, depending on the type and concentration of the organic matter remaining in the salt water, it may be mixed as impurities in the caustic soda and chlorine gas as products, leading to a reduction in quality.

特開平4−154744号公報Japanese Patent Laid-Open No. 4-154744 特開2004−26753号公報JP 2004-26753 A 特表2011−523648号公報Special table 2011-523648 gazette 特開2009−209144号公報JP 2009-209144 A

本発明は、上記の背景技術に鑑みてなされたものであり、その目的は、塩水中の有機物を高度に精製し、イオン交換膜法食塩電解の原料として利用できる、効果的かつ効率的なMDAの製造方法を提供することにある。   The present invention has been made in view of the above-mentioned background art, and its purpose is to effectively purify organic matter in salt water and use it as a raw material for ion-exchange membrane method salt electrolysis, which is effective and efficient MDA. It is in providing the manufacturing method of.

本発明者らは、MDAを製造する際に副生する塩水を高度に精製する方法について、鋭意検討した結果、特定の処理方法及び特定の処理条件にて塩水を精製することで、塩水中の有機物を、イオン交換膜法食塩電解の原料として利用できる程度の低濃度にまで除去できることを見出し、本発明を完成するに至った。   As a result of intensive investigations on a method for highly purifying salt water produced as a by-product when producing MDA, the present inventors have refined salt water under a specific treatment method and specific treatment conditions, and thereby, It has been found that organic substances can be removed to such a low concentration that it can be used as a raw material for salt exchange electrolysis by ion exchange membrane method, and the present invention has been completed.

即ち本発明は、以下に示すとおりのジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物の製造方法である。   That is, this invention is a manufacturing method of the mixture of diphenylmethane diamine and polyphenylene polymethylene polyamine as shown below.

[1]触媒として塩酸の存在下でアニリンとホルムアルデヒドとを反応させる工程1、
工程1で得られたジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物を含む反応液に水酸化ナトリウムを添加し、そのpHを10〜14の範囲とする工程2、
工程2で得られた反応液を、ジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物を含む有機相と塩化ナトリウムを主成分とする水相とに相分離する工程3、
工程3で得られた水相に有機溶剤を添加し、pH10〜14の範囲にて、当該水相中の有機物を抽出して、水相と有機相に相分離する工程4、
工程4で得られた水相を、pH10〜14の範囲にて、ストリッピングし、当該水相中の有機物を除去する工程5、
工程5で得られた水相を、pH10〜14の範囲にて、活性炭で吸着処理し、当該水相中の有機物を分離する工程6、並びに
工程6で得られた水相を、pH8〜10の範囲にて、活性炭で吸着処理し、当該水相中の有機物を除去する工程7、
を含むジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物の製造方法。
[1] Step 1 of reacting aniline and formaldehyde in the presence of hydrochloric acid as a catalyst,
Step 2, in which sodium hydroxide is added to the reaction solution containing the mixture of diphenylmethanediamine and polyphenylene polymethylene polyamine obtained in Step 1 to bring the pH to a range of 10-14,
Step 3, in which the reaction solution obtained in Step 2 is phase-separated into an organic phase containing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine and an aqueous phase mainly composed of sodium chloride.
Step 4, in which an organic solvent is added to the aqueous phase obtained in Step 3 and the organic matter in the aqueous phase is extracted within a pH range of 10 to 14 and phase-separated into an aqueous phase and an organic phase,
Step 5 of stripping the aqueous phase obtained in Step 4 in the range of pH 10 to 14 to remove organic substances in the aqueous phase,
The aqueous phase obtained in step 5 is subjected to adsorption treatment with activated carbon in the range of pH 10 to 14, and the organic phase in the aqueous phase is separated, and the aqueous phase obtained in step 6 is adjusted to pH 8 to 10 In the range of the step 7, adsorption treatment with activated carbon to remove organic matter in the aqueous phase,
Of a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine containing

[2]工程6及び工程7の活性炭吸着処理を、固定床で行うことを特徴とする上記[1]記載の製造方法。   [2] The production method according to [1] above, wherein the activated carbon adsorption treatment of Step 6 and Step 7 is performed on a fixed bed.

[3]工程6又は工程7で使用した活性炭を、再生液を通液することで再生し、再使用することを特徴とする上記[1]又は[2]に記載の製造方法。   [3] The production method according to the above [1] or [2], wherein the activated carbon used in Step 6 or Step 7 is regenerated by passing a regenerating solution and reused.

[4]工程7における水相のpHが9〜10の範囲であることを特徴とする上記[1]乃至[3]のいずれかに記載の製造方法。   [4] The method according to any one of [1] to [3], wherein the pH of the aqueous phase in step 7 is in the range of 9 to 10.

[5]工程7で得られた水相中のTOC(全有機体炭素)濃度が、8重量ppm以下であることを特徴とする上記[1]乃至[4]のいずれかに記載の製造方法。   [5] The method according to any one of [1] to [4], wherein the TOC (total organic carbon) concentration in the aqueous phase obtained in step 7 is 8 ppm by weight or less. .

[6]工程7で得られた水相を、イオン交換膜法食塩電解の原料として使用することを特徴とする上記[1]乃至[5]のいずれかに記載の製造方法。   [6] The production method according to any one of the above [1] to [5], wherein the aqueous phase obtained in step 7 is used as a raw material for salt electrolysis by ion exchange membrane method.

本発明の方法によれば、MDA製造時に副生する塩水を、高度に精製でき、環境への負荷低減のみならず、イオン交換膜法食塩電解の原料にすることで、資源の有効利用にもつながる。   According to the method of the present invention, salt water produced as a by-product during MDA production can be highly purified, and not only reducing the environmental load, but also using it as an ion exchange membrane salt electrolysis raw material for effective use of resources. Connected.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において工程1は、触媒として塩酸の存在下でアニリンとホルムアルデヒドとを反応させる工程であり、広く一般に知られている方法を用いることができる。具体的には、ホルムアルデヒドに対するアニリンのモル比を1〜5とし、アニリンに対する塩酸のモル比を0.05〜1とすることが好ましい。アニリンとホルムアルデヒドと縮合反応させ、その後の転位反応によりMDAを合成することができる。この縮合反応の温度は70℃以下であることが好ましく、また、転位反応の温度は90℃以上であることが好ましい。反応形式は連続式でもバッチ式でも好適に実施できる。   In the present invention, Step 1 is a step of reacting aniline and formaldehyde in the presence of hydrochloric acid as a catalyst, and a widely known method can be used. Specifically, the molar ratio of aniline to formaldehyde is preferably 1 to 5, and the molar ratio of hydrochloric acid to aniline is preferably 0.05 to 1. MDA can be synthesized by a condensation reaction between aniline and formaldehyde, followed by a rearrangement reaction. The condensation reaction temperature is preferably 70 ° C. or lower, and the rearrangement reaction temperature is preferably 90 ° C. or higher. The reaction mode can be preferably carried out continuously or batchwise.

本発明において工程2は、工程1で得られたMDAを含む反応液に水酸化ナトリウムを添加し、そのpHを10〜14の範囲とする工程である。ここで、pHが10より小さいと、水相と有機相の相分離性が低下し、14より大きいと、水酸化ナトリウムが大過剰に必要となり、薬剤コストがかさむため好ましくない。   In the present invention, Step 2 is a step in which sodium hydroxide is added to the reaction solution containing MDA obtained in Step 1 so that the pH is in the range of 10-14. Here, if the pH is less than 10, the phase separation between the aqueous phase and the organic phase is lowered, and if it is more than 14, sodium hydroxide is required in a large excess, which is not preferable because the drug cost increases.

本発明において工程3は、工程2で得られた反応液を、MDAを含む有機相と塩化ナトリウムを主成分とする水相(塩水)とに分離する工程である。有機相にはMDA以外に、原料由来のアニリン等の不純物が含まれるため、これらを蒸留等で除去することで、精製MDAを得ることができる。   In the present invention, Step 3 is a step of separating the reaction solution obtained in Step 2 into an organic phase containing MDA and an aqueous phase (brine) containing sodium chloride as a main component. Since the organic phase contains impurities such as aniline derived from the raw material in addition to MDA, purified MDA can be obtained by removing these by distillation or the like.

一方、水相には、塩化ナトリウム以外に有機物であるMDA、アニリン、ホルムアルデヒド、メタノール、フェノール等が混入する。   On the other hand, in addition to sodium chloride, organic substances such as MDA, aniline, formaldehyde, methanol, and phenol are mixed in the aqueous phase.

本発明において工程4は、工程3で得られた水相に有機溶剤を添加し、pH10〜14の範囲にて、当該水相中の有機物を抽出して、水相と有機相に相分離する工程である。   In the present invention, in step 4, an organic solvent is added to the aqueous phase obtained in step 3, and organic substances in the aqueous phase are extracted in the range of pH 10 to 14, and the phases are separated into an aqueous phase and an organic phase. It is a process.

抽出処理での水相のpHは10〜14を必須とする。このpH範囲とすることで有機物をより効率的に抽出できる。工程3で得られた水相に添加する有機溶剤としては、塩水に溶解しているMDAやアニリン等と反応せず、かつMDAやアニリンを溶解できるものであれば特に限定されない。MDAやアニリンの溶解性から芳香族系の有機溶媒が好ましく、具体的には、トルエン、ベンゼン、アニリン等を例示できる。これらのうち、特にアニリンはMDAの合成原料でもあることから好適に使用できる。   The pH of the aqueous phase in the extraction treatment is essentially 10-14. By setting this pH range, organic substances can be extracted more efficiently. The organic solvent added to the aqueous phase obtained in step 3 is not particularly limited as long as it does not react with MDA or aniline dissolved in salt water and can dissolve MDA or aniline. An aromatic organic solvent is preferable in view of the solubility of MDA and aniline, and specific examples include toluene, benzene, aniline and the like. Among these, aniline can be preferably used because it is also a synthetic raw material for MDA.

抽出温度については特に限定されず、反応時のままでも、蒸気や熱交換機などで加熱したり冷却したりしても構わない。ただし、温度が低すぎると抽出後の分相が悪くなり、高すぎると装置の腐食を抑制するため高級材質が必要となる。好ましくは10〜100℃、より好ましくは20〜95℃の範囲である。   The extraction temperature is not particularly limited, and it may be heated or cooled with steam, a heat exchanger or the like as it is during the reaction. However, if the temperature is too low, the phase separation after extraction becomes poor, and if it is too high, a high-grade material is required to suppress corrosion of the apparatus. Preferably it is 10-100 degreeC, More preferably, it is the range of 20-95 degreeC.

抽出処理する塩水の濃度については、通常のMDA製造時に排出される濃度でよく、特に限定されない。具体的には、好ましくは10〜25重量%で、より好ましくは12〜24重量%の範囲である。   About the density | concentration of the salt water to extract, the density | concentration discharged | emitted at the time of normal MDA manufacture may be sufficient, and it does not specifically limit. Specifically, it is preferably 10 to 25% by weight, more preferably 12 to 24% by weight.

本発明において工程5は、工程4で得られた水相を、pH10〜14の範囲にて、ストリッピングし、当該水相中の有機物を除去する工程である。   In the present invention, step 5 is a step of stripping the aqueous phase obtained in step 4 in the range of pH 10 to 14 to remove organic substances in the aqueous phase.

ここで、水相に溶解している有機物のうち、沸点が低いものや水への溶解度が低い有機物をストリッピングにて除去する。水相のpHを10〜14とすることで、ストリッピングの効率が高められる。ストリッピングには、蒸気又は不活性ガス(例えば、窒素ガス)を用いることができる。コスト面から好ましくは、水蒸気である。ここでの処理形式は、連続式でもバッチ式でも構わない。   Here, among organic substances dissolved in the aqueous phase, those having a low boiling point and organic substances having a low solubility in water are removed by stripping. By setting the pH of the aqueous phase to 10 to 14, the efficiency of stripping is enhanced. For stripping, steam or an inert gas (for example, nitrogen gas) can be used. From the viewpoint of cost, water vapor is preferable. The processing format here may be a continuous type or a batch type.

本発明において工程6は、工程5で得られた水相を、pH10〜14の範囲にて、活性炭で吸着処理し、当該水相中の有機物を分離する工程である。   In the present invention, Step 6 is a step of subjecting the aqueous phase obtained in Step 5 to adsorption treatment with activated carbon in the range of pH 10 to 14, and separating organic substances in the aqueous phase.

工程6では、工程5で得られた水相中の有機物を吸着するため、pH10〜14の範囲で、当該水相を活性炭で処理する。ここで使用可能な活性炭の形状は、例えば、粒状、破砕状、球状、粉末状等が挙げられ、特に限定されない。これらのうち、ハンドリングの容易さや有機物の吸着量を考慮すると、粒状、破砕状の活性炭が好ましい。   In step 6, in order to adsorb the organic matter in the aqueous phase obtained in step 5, the aqueous phase is treated with activated carbon in the range of pH 10-14. Examples of the shape of the activated carbon that can be used here include a granular shape, a crushed shape, a spherical shape, and a powder shape, and are not particularly limited. Of these, considering the ease of handling and the amount of organic matter adsorbed, granular and crushed activated carbon is preferred.

当該水相と活性炭とを接触させる反応器の形式としては、水相の処理量、活性炭の形状や使用量等によって適宜選定でき、特に限定されない。有機物の吸着性や設備コストの面から、粒状や破砕状活性炭を充填した固定床、又は粉末状の活性炭を懸濁させた攪拌槽が好適に使用できる。より好ましくは粒状や破砕状の活性炭を充填した固定床である。尚、粉末状の活性炭を懸濁させて処理した場合は、その後に活性炭を水相から分離することが必要である。   The type of the reactor in which the aqueous phase and activated carbon are brought into contact with each other can be appropriately selected depending on the amount of treatment of the aqueous phase, the shape and usage of the activated carbon, and is not particularly limited. From the standpoints of adsorbability of organic matter and equipment cost, a fixed bed filled with granular or crushed activated carbon, or a stirring tank in which powdered activated carbon is suspended can be suitably used. More preferred is a fixed bed filled with granular or crushed activated carbon. In addition, when processing by suspending powdery activated carbon, it is necessary to isolate | separate activated carbon from an aqueous phase after that.

活性炭の種類としては、例えば、椰子殻系、石炭系、一度使用した活性炭を再生処理した賦活炭等が挙げられ、特に限定されない。これらのうち、有機物の吸着性、価格面を考慮すると、椰子殻系や賦活炭が好ましく、より好ましくは椰子殻系である。   Examples of the activated carbon include, but are not limited to, coconut shell, coal, activated carbon obtained by regenerating activated carbon once used, and the like. Among these, in view of the adsorptivity of organic matter and price, coconut shell system and activated charcoal are preferable, and coconut shell system is more preferable.

当該水相の活性炭による吸着処理温度は特に限定されない。ストリッピング時の水相温度のままであっても、蒸気や熱交換機等で加熱したり冷却しても構わない。処理温度を高くすると有機物の活性炭への吸着速度を大きくできるが、吸着量がやや低下し、温度が低すぎると有機物の吸着速度が低下する。好ましい温度は10〜90℃、より好ましくは15〜80℃の範囲である。   The adsorption treatment temperature of the aqueous phase with activated carbon is not particularly limited. Even if the water phase temperature remains at the time of stripping, it may be heated or cooled with steam, a heat exchanger or the like. Increasing the treatment temperature can increase the adsorption rate of organic matter to activated carbon, but the amount of adsorption is slightly reduced, and if the temperature is too low, the adsorption rate of organic matter is reduced. A preferred temperature is in the range of 10 to 90 ° C, more preferably 15 to 80 ° C.

本発明において工程7は、工程6で得られた水相を、pH8〜10の範囲にて、活性炭で吸着処理し、当該水相中の有機物を除去する工程である。   In the present invention, Step 7 is a step of removing the organic matter in the aqueous phase by subjecting the aqueous phase obtained in Step 6 to adsorption treatment with activated carbon in the range of pH 8-10.

ここでは、当該水相中に含まれる、フェノールをはじめとする有機物を吸着除去する。pHの調整には、当該水相中に鉱酸を添加することで実施できる。pHが8より小さいと鉱酸の使用量が多くなるためコストがアップし、10より大きいと有機物の吸着量が低下する。好ましくはpH9〜10の範囲である。   Here, organic substances such as phenol contained in the aqueous phase are removed by adsorption. The pH can be adjusted by adding a mineral acid to the aqueous phase. If the pH is less than 8, the amount of mineral acid used increases, so the cost increases. If it is greater than 10, the amount of organic matter adsorbed decreases. Preferably it is the range of pH 9-10.

当該水相中に添加される鉱酸としては、特に限定するものではないが、例えば、薬剤コストの面から、好ましくは塩酸、硫酸、硝酸であり、より好ましくは塩酸である。   The mineral acid added to the aqueous phase is not particularly limited. For example, from the viewpoint of drug cost, hydrochloric acid, sulfuric acid, and nitric acid are preferable, and hydrochloric acid is more preferable.

活性炭の形状や種類、反応器の形式や温度については、前述の工程6での活性炭による処理条件を適用できる。   Regarding the shape and type of the activated carbon, the type and temperature of the reactor, the treatment conditions with activated carbon in Step 6 described above can be applied.

工程6又は工程7で使用した活性炭が飽和吸着量に達すると、それ以上有機物を吸着できなくなるため、飽和吸着量に達する前又は達した後、活性炭を交換することが好ましい。ここで好ましい方法は、交換される活性炭から有機物を脱着する等の再生処理を行うことである。再生処理に用いられる再生液としては、例えば、エタノール、メタノール等のアルコール溶液や水酸化アルカリ水溶液が適用できる。好ましい再生液は薬剤コストが安価な水酸化ナトリウム水溶液である。例えば、再生液として水酸化ナトリウムを用いる場合の濃度としては、特に限定するものではないが、低すぎると再生に時間を要し、高すぎるとコストが高くなるため、好ましくは0.1〜20重量%、より好ましくは0.2〜10重量%、更に好ましくは0.5〜5重量%の範囲である。   When the activated carbon used in Step 6 or Step 7 reaches the saturated adsorption amount, it becomes impossible to adsorb organic matter any more. Therefore, it is preferable to replace the activated carbon before or after reaching the saturated adsorption amount. Here, a preferable method is to perform a regeneration treatment such as desorption of organic substances from the activated carbon to be exchanged. As the regeneration solution used for the regeneration treatment, for example, an alcohol solution such as ethanol or methanol or an aqueous alkali hydroxide solution can be applied. A preferred regenerating solution is an aqueous sodium hydroxide solution having a low drug cost. For example, the concentration in the case of using sodium hydroxide as the regenerating solution is not particularly limited, but if it is too low, it takes time for regeneration, and if it is too high, the cost increases. % By weight, more preferably 0.2 to 10% by weight, still more preferably 0.5 to 5% by weight.

また、活性炭を固定床で使用する場合は、その再生液は連続式、半連続式又は回分式のいずれの方式で通液しても良いが、連続式、又は半連続式で通液することによって、再生処理の時間を短くでき、かつ再生液の使用量を少なくできるため好ましい。   In addition, when using activated carbon in a fixed bed, the regeneration solution may be passed through any of the continuous, semi-continuous, or batch systems, but it must be continuous or semi-continuous. Is preferable because the time for the regeneration treatment can be shortened and the amount of the regeneration solution used can be reduced.

以上の工程によって精製された当該水相中のTOC(全有機体炭素)濃度は、通常10重量ppm以下にまで低減でき、イオン交換膜法食塩電解の原料として使用できる。イオン交換膜法食塩電解の原料として、好ましくは8重量ppm以下、より好ましくは7重量ppm以下である。   The TOC (total organic carbon) concentration in the water phase purified by the above steps can be reduced to 10 ppm by weight or less, and can be used as a raw material for ion exchange membrane salt electrolysis. It is preferably 8 ppm by weight or less, more preferably 7 ppm by weight or less, as a raw material for ion exchange membrane method salt electrolysis.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれら実施例に限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is limited to these Examples and is not interpreted.

なお、本発明におけるTOC濃度の定量分析は、TOC分析計(島津製作所製、TOCーV)を用い、絶対検量線法にて実施した。   In addition, the quantitative analysis of the TOC concentration in the present invention was performed by an absolute calibration curve method using a TOC analyzer (manufactured by Shimadzu Corporation, TOC-V).

実施例1.
容積500Lのジャケット付反応槽に、アニリンを125.0kg、37重量%ホルマリンを50.6kg、35重量%塩酸を130.0kg仕込み、攪拌回転数40rpm、温度50℃にて2時間反応させた。その後、攪拌回転数120rpmに高め、反応槽のジャケットにスチームをフィードし、反応温度90℃に高めて3時間反応させた。反応終了後、40重量%水酸化ナトリウム水溶液にて、pH13.5とし、その後、静定して2層分離させた。上層の有機相はMDAが主成分で、これから不純物を除去して精製MDAとして製品とした。
Example 1.
A 500 L jacketed reaction vessel was charged with 125.0 kg of aniline, 50.6 kg of 37% by weight formalin and 130.0 kg of 35% by weight hydrochloric acid, and reacted at a stirring speed of 40 rpm and a temperature of 50 ° C. for 2 hours. Thereafter, the stirring speed was increased to 120 rpm, steam was fed to the jacket of the reaction vessel, the reaction temperature was raised to 90 ° C., and the reaction was carried out for 3 hours. After completion of the reaction, the pH was adjusted to 13.5 with a 40 wt% aqueous sodium hydroxide solution, and then the mixture was settled and separated into two layers. The upper organic phase is mainly composed of MDA, from which impurities are removed to obtain purified MDA as a product.

下層の水相は塩水で、286.3kg回収できた。この塩水のうち、250.3kgを、pH13.5のままトルエンで抽出した。引き続き、処理塩水をスチームにてストリッピングし、溶解しているトルエンをはじめとした有機物を除去して精製した。得られた塩水量は245.8kgで、NaCl濃度25.3重量%、TOC濃度10.3重量ppmであった。   The lower aqueous phase was salt water, and 286.3 kg could be recovered. Of this brine, 250.3 kg was extracted with toluene at pH 13.5. Subsequently, the treated salt water was stripped with steam to remove the dissolved organic substances such as toluene and purified. The amount of salt water obtained was 245.8 kg, the NaCl concentration was 25.3% by weight, and the TOC concentration was 10.3 ppm by weight.

処理塩水の温度を90℃にまで冷却した後、pH13.5で活性炭を充填した内径5cm、充填高さ1mの固定床カラムに塩水を10.2kg/hrの流量にて10hr連続的に通液処理し、アニリン等の有機物を吸着させた。   After cooling the treated salt water to 90 ° C., the salt water was continuously passed through a fixed bed column having an inner diameter of 5 cm and a packing height of 1 m filled with activated carbon at pH 13.5 at a flow rate of 10.2 kg / hr for 10 hours. It processed and adsorb | sucked organic substances, such as aniline.

ここで得られた処理塩水に塩酸を添加し、pH9.0とし、温度60℃で、別途準備した活性炭を充填した内径5cm、充填高さ1mの固定床カラムに10.2kg/hrの流量にて10hr連続通液処理した。得られた塩水のTOC濃度は4.1重量ppmであった。   Hydrochloric acid was added to the treated salt water obtained here to adjust the pH to 9.0, a temperature of 60 ° C., and a fixed bed column packed with activated carbon separately prepared and having an inner diameter of 5 cm and a packing height of 1 m to a flow rate of 10.2 kg / hr. For 10 hours. The TOC concentration of the obtained brine was 4.1 ppm by weight.

この処理塩水を膜面積30cmのイオン交換膜法食塩電解槽の陽極室に602g/hrの流量で連続的に供給し電解した。電流密度は6kA/mで100時間の連続運転を実施した結果、初期の槽電圧3.01V、電流効率96.8%、100時間後の槽電圧3.02V、電流効率96.9%で経時的な変化がみられず、処理塩水がイオン交換膜法食塩電解の原料として使用可能であることが判った。 This treated salt water was continuously supplied at a flow rate of 602 g / hr to the anode chamber of an ion exchange membrane salt solution electrolytic cell having a membrane area of 30 cm 2 and electrolyzed. As a result of continuous operation for 100 hours at 6 kA / m 2 , the initial cell voltage was 3.01 V, the current efficiency was 96.8%, the cell voltage after 100 hours was 3.02 V, and the current efficiency was 96.9%. No change over time was observed, and it was found that the treated salt water can be used as a raw material for salt electrolysis with ion exchange membrane method.

比較例1.
実施例1のスチームストリッピングで得られた塩水の温度を80℃まで冷却した後、塩酸を添加してpH4.1とした後、実施例1にて用いた活性炭を充填した固定床カラムに塩水を10.1kg/hrの流量にて10hr連続的に通液処理した。
Comparative Example 1
The temperature of the salt water obtained by steam stripping in Example 1 was cooled to 80 ° C., hydrochloric acid was added to pH 4.1, and then the salt water was applied to the fixed bed column packed with activated carbon used in Example 1. The solution was continuously passed for 10 hours at a flow rate of 10.1 kg / hr.

更に、ここで得られた処理塩水に塩酸を添加し、pH3.3とし、温度60℃で、実施例1に用いた活性炭を充填した固定床カラムに塩水を10.1kg/hrの流量にて10hr連続的に通液処理した。得られた塩水のTOC濃度は9.7重量ppmで、その内アニリンがTOC換算で4.9重量ppm残っていた。   Furthermore, hydrochloric acid was added to the treated salt water obtained here to adjust the pH to 3.3, the temperature was 60 ° C., and the salt water was fed to the fixed bed column packed with the activated carbon used in Example 1 at a flow rate of 10.1 kg / hr. The solution was continuously passed through for 10 hours. The TOC concentration of the obtained brine was 9.7 ppm by weight, and aniline remained 4.9 ppm by weight in terms of TOC.

この処理塩水を実施例1にて用いたイオン交換膜法食塩電解槽の原料として600g/hrの流量で連続的に供給し電解を開始したが、電解槽の陽極から生成する塩素ガス中に爆発の危険がある三塩化窒素が含まれることが判ったため、電解実験を直ぐに停止した。   Electrolysis was started by continuously supplying this treated salt water at a flow rate of 600 g / hr as a raw material for the ion exchange membrane method salt electrolytic cell used in Example 1, but the explosion occurred in the chlorine gas generated from the anode of the electrolytic cell. The electrolysis experiment was immediately stopped because it was found that nitrogen trichloride was present.

比較例2.
実施例1のスチームストリッピングで得られた塩水の温度を90℃まで冷却した後、pH13.5で実施例1にて用いた活性炭を充填した固定床カラムに塩水を10.1kg/hrの流量にて10hr連続的に通液処理した。
Comparative Example 2.
After the temperature of the salt water obtained by steam stripping in Example 1 was cooled to 90 ° C., a flow rate of 10.1 kg / hr of salt water was applied to a fixed bed column packed with activated carbon used in Example 1 at pH 13.5. For 10 hours continuously.

更に、pH13.5のまま、温度60℃で、別途準備した活性炭を充填した内径5cm、充填高さ1mの固定床カラムに10.2kg/hrの流量にて10hr連続通液処理した。得られた塩水のTOC濃度は10.2重量ppmであった。   Further, the solution was continuously passed for 10 hours at a flow rate of 10.2 kg / hr through a fixed bed column having an inner diameter of 5 cm and a packing height of 1 m filled with activated carbon prepared separately at a temperature of 60 ° C. while maintaining pH 13.5. The TOC concentration of the obtained salt water was 10.2 ppm by weight.

この処理塩水を実施例1にて用いたイオン交換膜法食塩電解槽の原料として603g/hrの流量で連続的に供給し電解を開始したが、電解した後の処理塩水中に黄色の油分の生成が認められたため、電解実験を停止した。   Electrolysis was started by continuously supplying this treated salt water at a flow rate of 603 g / hr as a raw material for the ion exchange membrane salt electrolyzer used in Example 1, but the yellow oil content was added to the treated salt water after electrolysis. Since formation was observed, the electrolysis experiment was stopped.

実施例2.
実施例1にて用いた容積500Lのジャケット付反応槽に、アニリンを192.3kg、37重量%ホルマリンを78.5kg、35重量%塩酸を40.5kg仕込み、攪拌回転数40rpm、温度40℃にて3時間反応させた。その後、攪拌回転数120rpmに高め、反応槽のジャケットにスチームをフィードし、反応温度95℃に高めて4時間反応させた。反応終了後、固形の水酸化ナトリウムにて、pH13.2とし、その後、静定して2層分離させた。上層の有機相はMDAが主成分で、これから不純物を除去して精製MDAとして製品とした。
Example 2
The reaction vessel with a jacket of 500 L used in Example 1 was charged with 192.3 kg of aniline, 78.5 kg of 37% by weight formalin, and 40.5 kg of 35% by weight hydrochloric acid, and the stirring speed was 40 rpm and the temperature was 40 ° C. For 3 hours. Thereafter, the stirring speed was increased to 120 rpm, steam was fed to the jacket of the reaction vessel, and the reaction temperature was raised to 95 ° C. for 4 hours. After completion of the reaction, the pH was adjusted to 13.2 with solid sodium hydroxide, and then settled to separate two layers. The upper organic phase is mainly composed of MDA, from which impurities are removed to obtain purified MDA as a product.

下層の水相は塩水で、115.3kg回収できた。この塩水のうち、100.6kgを、pH13.5のままベンゼンで抽出した。引き続き、処理塩水をスチームにてストリッピングし、溶解しているベンゼンをはじめとした有機物を除去して精製した。得られた塩水量は98.7kgで、NaCl濃度18.8重量%、TOC濃度22.5重量ppmであった。   The lower aqueous phase was salt water, and 115.3 kg could be recovered. Of this brine, 100.6 kg was extracted with benzene at pH 13.5. Subsequently, the treated brine was stripped with steam to remove the dissolved organic matter such as benzene and purified. The amount of salt water obtained was 98.7 kg, the NaCl concentration was 18.8 wt%, and the TOC concentration was 22.5 wt ppm.

処理塩水の温度を90℃にまで冷却した後、pH13.2で、実施例1にて用いた活性炭を充填した固定床カラムに塩水を9.5kg/hrの流量にて10hr連続的に通液処理し、アニリン等の有機物を吸着させた。   After cooling the temperature of the treated salt water to 90 ° C., the salt water was continuously passed through the fixed bed column filled with the activated carbon used in Example 1 at pH 13.2 at a flow rate of 9.5 kg / hr for 10 hours. It processed and adsorb | sucked organic substances, such as aniline.

ここで得られた処理塩水に塩酸を添加し、pH9.2とし、温度60℃で、実施例1にて用いた固定床カラムに9.3kg/hrの流量にて10hr連続通液処理した。得られた塩水のTOC濃度は6.2重量ppmであった。   Hydrochloric acid was added to the treated salt water obtained here to adjust the pH to 9.2, and the fixed bed column used in Example 1 was continuously passed through the fixed bed column used in Example 1 at a flow rate of 9.3 kg / hr for 10 hours. The TOC concentration of the obtained brine was 6.2 ppm by weight.

この処理塩水を膜面積30cmのイオン交換膜法食塩電解槽の陽極室に601g/hrの流量で連続的に供給し電解した。電流密度は6kA/m2で100時間の連続運転を実施した結果、初期の槽電圧3.04V、電流効率97.5%、100時間後の槽電圧3.04V、電流効率97.4%で経時的な変化がみられず、処理塩水がイオン交換膜法食塩電解の原料として使用可能と判った。 This treated salt water was continuously supplied to the anode chamber of an ion exchange membrane method salt electrolytic cell having a membrane area of 30 cm 2 at a flow rate of 601 g / hr for electrolysis. As a result of continuous operation for 100 hours at a current density of 6 kA / m2, the initial cell voltage was 3.04 V, the current efficiency was 97.5%, the cell voltage after 100 hours was 3.04 V, and the current efficiency was 97.4%. Thus, it was found that the treated salt water can be used as a raw material for salt electrolysis of ion-exchange membrane method.

実施例3.
実施例1にて用いた容積500Lのジャケット付反応槽に、アニリンを160.1kg、37重量%ホルマリンを65.4kg、35重量%塩酸を67.5kg仕込み、攪拌回転数50rpm、温度50℃にて2時間反応させた。その後、攪拌回転数150rpmに高め、反応槽のジャケットにスチームをフィードし、反応温度93℃に高めて4時間反応させた。反応終了後、48重量%水酸化ナトリウムにて、pH13.8とし、その後、静定して2層分離させた。上層の有機相はMDAが主成分で、これから不純物を除去して精製MDAとして製品とした。
Example 3 FIG.
The reaction vessel with a jacket of 500 L used in Example 1 was charged with 160.1 kg of aniline, 65.4 kg of 37% by weight formalin and 67.5 kg of 35% by weight hydrochloric acid, with a stirring speed of 50 rpm and a temperature of 50 ° C. For 2 hours. Thereafter, the stirring speed was increased to 150 rpm, steam was fed to the jacket of the reaction vessel, the reaction temperature was increased to 93 ° C., and the reaction was carried out for 4 hours. After completion of the reaction, the pH was adjusted to 13.8 with 48% by weight sodium hydroxide, and then the mixture was settled and separated into two layers. The upper organic phase is mainly composed of MDA, from which impurities are removed to obtain purified MDA as a product.

下層の水相は塩水で、177.6kg回収できた。この塩水のうち、120.7kgを、pH13.8のままアニリンで抽出した。引き続き、処理塩水をスチームにてストリッピングし、溶解しているアニリンをはじめとした有機物を除去して精製した。得られた塩水量は117.7kgで、NaCl濃度21.2重量%、TOC濃度12.4重量ppmであった。   The lower aqueous phase was salt water and 177.6 kg could be recovered. Of this brine, 120.7 kg was extracted with aniline at pH 13.8. Subsequently, the treated brine was stripped with steam to remove the dissolved aniline and other organic substances and purified. The amount of salt water obtained was 117.7 kg, the NaCl concentration was 21.2 wt%, and the TOC concentration was 12.4 wt ppm.

処理塩水の温度を80℃にまで冷却した後、pH13.2で実施例1にて用いた活性炭を充填した固定床カラムに塩水を11.3kg/hrの流量にて10hr連続的に通液処理し、アニリン等の有機物を吸着させた。   After cooling the temperature of the treated salt water to 80 ° C., the salt water is continuously passed through the fixed bed column filled with the activated carbon used in Example 1 at pH 13.2 at a flow rate of 11.3 kg / hr for 10 hours. Then, an organic substance such as aniline was adsorbed.

ここで得られた処理塩水に塩酸を添加し、pH9.1とし、温度60℃で、実施例1にて用いた固定床カラムに11.1kg/hrの流量にて10hr連続通液処理した。得られた塩水のTOC濃度は5.3重量ppmであった。   Hydrochloric acid was added to the treated brine obtained here to adjust the pH to 9.1, and the solution was continuously passed through the fixed bed column used in Example 1 at a temperature of 60 ° C. at a flow rate of 11.1 kg / hr for 10 hours. The TOC concentration of the obtained brine was 5.3 ppm by weight.

この処理塩水を膜面積30cmのイオン交換膜法食塩電解槽の陽極室に599g/hrの流量で連続的に供給し電解した。電流密度は6kA/mで100時間の連続運転を実施した結果、初期の槽電圧3.02V、電流効率97.3%、100時間後の槽電圧3.01V、電流効率97.2%で経時的な変化がみられず、処理塩水がイオン交換膜法食塩電解の原料として使用可能と判った。 This treated salt water was continuously supplied at a flow rate of 599 g / hr to the anode chamber of an ion exchange membrane salt solution electrolytic cell having a membrane area of 30 cm 2 and electrolyzed. As a result of continuous operation for 100 hours at 6 kA / m 2 , the initial cell voltage was 3.02 V, the current efficiency was 97.3%, the cell voltage after 100 hours was 3.01 V, and the current efficiency was 97.2%. No change over time was observed, and it was found that the treated salt water could be used as a raw material for salt exchange electrolysis by ion exchange membrane method.

本発明は、塩酸触媒の存在下でアニリンとホルムアルデヒドとを反応させて、ジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物を製造する方法であって、反応後の塩酸触媒を水酸化ナトリウムで中和処理することで得られる塩化ナトリウム水溶液(塩水)を高度に精製し、廃棄する際の環境への負荷を低減し、更には食塩電解の原料として再利用できるレベルにまで精製することができる。   The present invention is a method for producing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine by reacting aniline and formaldehyde in the presence of a hydrochloric acid catalyst, and neutralizing the hydrochloric acid catalyst after the reaction with sodium hydroxide Thus, the aqueous sodium chloride solution (salt water) obtained can be highly purified to reduce the burden on the environment when discarded, and further to a level that can be reused as a raw material for salt electrolysis.

Claims (6)

触媒として塩酸の存在下でアニリンとホルムアルデヒドとを反応させる工程1、工程1で得られたジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物を含む反応液に水酸化ナトリウムを添加し、そのpHを10〜14の範囲とする工程2、工程2で得られた反応液を、ジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物を含む有機相と塩化ナトリウムを主成分とする水相とに相分離する工程3、工程3で得られた水相に有機溶剤を添加し、pH10〜14の範囲にて、当該水相中の有機物を抽出して、水相と有機相に相分離する工程4、工程4で得られた水相を、pH10〜14の範囲にて、ストリッピングし、当該水相中の有機物を除去する工程5、工程5で得られた水相を、pH10〜14の範囲にて、活性炭で吸着処理し、当該水相中の有機物を分離する工程6、並びに工程6で得られた水相に鉱酸を添加してpH8〜10の範囲としてから、活性炭で吸着処理し、当該水相中の有機物を除去する工程7、を含むジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物の製造方法。 Sodium hydroxide is added to the reaction solution containing the mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine obtained in Step 1 and Step 1 in which aniline and formaldehyde are reacted in the presence of hydrochloric acid as a catalyst, and the pH is adjusted to 10 to 10. Step 2 in which the reaction liquid obtained in Step 2 and Step 2 in the range of 14 is phase-separated into an organic phase containing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine and an aqueous phase mainly composed of sodium chloride, An organic solvent is added to the aqueous phase obtained in step 3, the organic matter in the aqueous phase is extracted in the pH range of 10 to 14, and phase separation is performed into the aqueous phase and the organic phase. The aqueous phase obtained in Step 5 and Step 5 in which the obtained aqueous phase is stripped in the range of pH 10 to 14 and organic substances in the aqueous phase are removed is adjusted to pH Within a range of 0-14, and adsorption treatment with activated carbon, from a range of step 6 of separating the organic matter of the aqueous phase, and the aqueous phase obtained in step 6 with the addition of mineral acid pH 8-10, A method for producing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine, comprising a step 7 of performing adsorption treatment with activated carbon and removing organic substances in the aqueous phase. 工程6及び工程7の活性炭吸着処理を、固定床で行うことを特徴とする請求項1記載の製造方法。 The method according to claim 1, wherein the activated carbon adsorption treatment in steps 6 and 7 is performed on a fixed bed. 工程6又は工程7で使用した活性炭を、再生液を通液することで再生し、再使用することを特徴とする請求項1又は請求項2に記載の製造方法。 The production method according to claim 1 or 2, wherein the activated carbon used in step 6 or step 7 is regenerated and reused by passing a regenerated solution. 工程7における水相のpHが9〜10の範囲であることを特徴とする請求項1乃至請求項3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the pH of the aqueous phase in step 7 is in the range of 9 to 10. 工程7で得られた水相中のTOC(全有機体炭素)濃度が、8重量ppm以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein the TOC (total organic carbon) concentration in the aqueous phase obtained in step 7 is 8 ppm by weight or less. 工程7で得られた水相を、イオン交換膜法食塩電解の原料として使用することを特徴とする請求項1乃至請求項5のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the aqueous phase obtained in step 7 is used as a raw material for ion exchange membrane salt electrolysis.
JP2014040973A 2014-03-03 2014-03-03 Process for producing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine Active JP6264947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040973A JP6264947B2 (en) 2014-03-03 2014-03-03 Process for producing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040973A JP6264947B2 (en) 2014-03-03 2014-03-03 Process for producing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine

Publications (2)

Publication Number Publication Date
JP2015166322A JP2015166322A (en) 2015-09-24
JP6264947B2 true JP6264947B2 (en) 2018-01-24

Family

ID=54257405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040973A Active JP6264947B2 (en) 2014-03-03 2014-03-03 Process for producing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine

Country Status (1)

Country Link
JP (1) JP6264947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181027B (en) * 2022-07-25 2023-09-22 万华化学集团股份有限公司 Method for controlling refractory aniline impurities in waste brine in DAM production process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES356415A1 (en) * 1967-08-07 1970-01-01 Upjohn Co Preparation of di(Aminophenyl) Methane
DE4339887A1 (en) * 1993-11-23 1995-05-24 Solvay Deutschland Process for the treatment of waste water containing organic and inorganic compounds
JP3835613B2 (en) * 2003-10-02 2006-10-18 独立行政法人産業技術総合研究所 Method for treating electroless copper plating washing water and method for regenerating activated carbon used therein
DE102008012037A1 (en) * 2008-03-01 2009-09-03 Bayer Materialscience Ag Process for the preparation of methylene diphenyl diisocyanates
PT2288591E (en) * 2008-05-26 2014-10-07 Basf Se Method for producing diphenylmethane diamine
JP5838710B2 (en) * 2011-10-12 2016-01-06 東ソー株式会社 Salt water purification method

Also Published As

Publication number Publication date
JP2015166322A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP2005517624A (en) Method for preparing sodium chloride-containing wastewater used in chlor-alkali electrolysis
CN111742080B (en) Post-treatment and reuse method for salt-containing production water
EP2247533A1 (en) Process and apparatus for purifying solid salt compositions
JPH06184041A (en) Production of 1,4-cyclohexanedicarboxylic acid
JP2011523648A (en) Method for producing diphenylmethanediamine
KR20150139858A (en) Method for purifying silane compound or chlorosilane compound, method for producing polycrystalline silicon, and method for regenerating weakly basic ion-exchange resin
JP4552941B2 (en) Method for purifying and producing aniline
JP6264947B2 (en) Process for producing a mixture of diphenylmethanediamine and polyphenylenepolymethylenepolyamine
EP3247495B1 (en) Process for the recovery of cobalt and tungstic acid and/or their derivatives from aqueous solutions.
KR20040077701A (en) Method of purifying brine
JP6163487B2 (en) Method for producing bisphenol A
KR20090108594A (en) Method for the production of diphenylmethane diamine
JP5838710B2 (en) Salt water purification method
JP2013129613A (en) Method of producing trialkylene glycol
TWI488836B (en) Method for producing carbonyl compound
JP2016516809A (en) Process for regeneration of ionic compounds
KR102512256B1 (en) Wastewater treatment method to remove high-boiling-point organic matter and low-boiling-point organic matter
TW201350463A (en) A process for purifying organic product solution obtained from oxime synthesis section
JP5655055B2 (en) Pretreatment method of pyridine ring-containing chelate resin for catalyst recovery in terephthalic acid production process
CN110003137B (en) Method for removing impurities in HPPO (high pressure propylene oxide) process by using silane coupling agent modified material
JP4065714B2 (en) Method for purifying 1,2-dichloroethane
KR100930229B1 (en) Recovery of aromatic acid, catalyst and high purity water from wastewater of aromatic acid purification process
JPS6313933B2 (en)
RU2537564C1 (en) Method of amine production
KR101831738B1 (en) Pretreatment method for chelate resin having pyridine ring used for collecting catalyst in aromatic carboxylic acid production process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R151 Written notification of patent or utility model registration

Ref document number: 6264947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151