JPS6313933B2 - - Google Patents

Info

Publication number
JPS6313933B2
JPS6313933B2 JP12464280A JP12464280A JPS6313933B2 JP S6313933 B2 JPS6313933 B2 JP S6313933B2 JP 12464280 A JP12464280 A JP 12464280A JP 12464280 A JP12464280 A JP 12464280A JP S6313933 B2 JPS6313933 B2 JP S6313933B2
Authority
JP
Japan
Prior art keywords
solution
chloride
aqueous alkali
aqueous
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12464280A
Other languages
Japanese (ja)
Other versions
JPS5751101A (en
Inventor
Kazuo Sato
Ikuo Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP12464280A priority Critical patent/JPS5751101A/en
Publication of JPS5751101A publication Critical patent/JPS5751101A/en
Publication of JPS6313933B2 publication Critical patent/JPS6313933B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は1,1,2−トリクロルエタンの脱塩
酸反応により得られる塩化アルカリ水溶液から精
製塩化アルカリ水溶液を製造する方法に関するも
のであり、その目的とするところはC.O.Dを高度
に減少させた精製塩化アルカリ水溶液を製造する
ことである。 近年、塩素化炭化水素の製造は目覚しいものが
あり、1,1,1−トリクロルエタン、トリクロ
ルエチレン、パークロルエチレン等の塩素系有機
溶剤、ポリ塩化ビニル、ポリ塩化ビニリデン等の
樹脂の使用は極めて多量となつている。塩素化炭
化水素の一つである塩化ビニリデンもまた製造量
が増加している。塩化ビニリデンは、ポリ塩化ビ
ニリデン樹脂の原料として、また、1,1,1−
トリクロルエタンの中間原料として、多量に製造
されている。塩化ビニリデンの製造方法は、一般
に1,1,2−トリクロルエタンをアルカリ水溶
液で脱塩酸する方法であり、通常、アルカリ水溶
液として水酸化カルシウム水溶液が用いられてい
る。 塩化ビニリデンの製造で水酸化カルシウムを使
用する反応は次式の如く進行し、 CH2C・CHC2+1/2Ca(OH)2→ CH2=CC2+1/2CaC2+H2O −(1) 目的とする塩化ビニリデンはほゞ100%の選択
率で得られる。しかしながら、脱離した塩化水素
は水酸化カルシウムと中和して(1)式の如く塩化カ
ルシウムとなつて廃棄されている。塩化ビニリデ
ンを選択的に得る代り等モルの塩酸分が損失とな
つているのが実情である。省資源の観点からこの
塩酸分は有効に回収される必要がある。例えば水
酸化カルシウムの代りに水酸化ナトリウムで脱塩
酸反応を行えば、脱離した塩酸分は(2)式の如く塩
化ナトリウムとなる。 CH2C・CHC2+NaOH→ CH2=CC2+NaC+H2O −(2) また水酸化カルシウムの代りに水酸化カリウム
を用いて脱塩酸反応を行なえば次の(3)式の如く塩
化カリウムが得られる。 CH2C・CHC2+KOH→ CH2=CC2+KC+H2O −(3) 脱塩酸反応後に生成した反応液から塩化ビニリ
デンを除去すれば塩化ナトリウム水溶液(食塩
水)または塩化カリウム水溶液が得られ、これら
を例えば各々塩化ナトリウムの電解、塩化カリウ
ムの電解に供すれば有効な塩素として回収、利用
することができる。 しかしながらこのような方法は未だ実用化され
ていない。 その理由の1つは苛性アルカリ水溶液を用いて
脱塩酸反応を行なつた後、回収される塩化アルカ
リ水溶液が例えば塩化アルカリ水溶液電解用とし
て使用できる程高度に精製されたものが得られな
いためである。特に苛性ソーダは通常、水酸化カ
ルシウムよりも高価であるため、脱塩酸反応後生
じる塩化ナトリウム水溶液(食塩水)が回収利用
されない限り使用する価値は工業的にない。 1,1,2−トリクロルエタンを苛性アルカリ
水溶液で脱塩酸反応を行い塩化ビニリデンを得る
場合、反応終了後の水溶液中には塩化ビニリデン
や1,1,2−トリクロルエタン等の塩素化炭化
水素が溶解しているため、このまま利用すること
は出来ない。苛性アルカリ水溶液を用いて反応を
行い回収した塩化アルカリ水溶液を例えば電解に
利用するには、上記の如き、塩素化炭化水素は除
去されねばならない。これらは電解反応に悪影響
を及ぼす。従つて電解反応にこの回収塩化アルカ
リ水溶液を使用するには電解用に通常用いられる
塩化アルカリ水溶液と同程度の清浄なものにする
必要がある。 本発明者らは苛性アルカリ溶液を用いて上記脱
塩酸反応で塩化ビニリデンを得る際、回収される
塩化アルカリ水溶液を清浄化すべく鋭意検討を進
めたところ、さらに以下の如き問題点があること
が判明した。即ち1,1,2−トリクロルエタン
を苛性アルカリ溶液で脱塩酸反応を行なつて得ら
れる塩化アルカリ水溶液中の前記塩素化炭化水素
を除去するには、通常用いられる水蒸気蒸留と同
じく該塩化アルカリ水溶液を単蒸留する方法があ
る。即ち該塩化アルカリ水溶液を蒸留して、その
重量の3〜10wt%留出させれば溶解している塩
素化炭化水素は水分と一緒に留出し、残存する塩
化アルカリ水溶液中には殆ど皆無となる。しかし
ながらこうした蒸留を行つたあとの塩化アルカリ
水溶液中のC.O.Dを測定してみると50〜100ppm
存在することが判つた。このC.O.Dの値は水蒸気
蒸留の留出割合により若干異なるが、留出量を10
%以上例えば20〜50%とし、溶解している塩化ア
ルカリが析出する程、留出させても減少しない。
このC.O.Dの原因となる物質は何であるかは現在
のところ判明していないが、通常、隔膜法食塩電
解工場で使用されている塩水中のC.O.Dは15ppm
以下であるため、該塩化アルカリ水溶液を回収利
用するにはC.O.Dを15ppm以下にする必要があ
る。数+ppmという徴量のC.O.Dを減少させる場
合、一般に排水処理等では高次の処理が行われて
いる。例えば活性炭吸着による物理的処理、ある
いは活性汚泥の如き生物学的処理、あるいはオゾ
ン分解による化学的処理等である。しかし、これ
らは本反応により得られる回収塩化アルカリ水溶
液を精製するには適さない。塩化アルカリ水溶液
の精製方法はC.O.Dが低下すれば良いだけではな
く、経済的に実施しうることは勿論のこと処理
後、電解反応等の用途に供しうる必要がある。こ
の場合、生物学的処理はこの目的には不向きであ
る。活性炭やモレキユラーシープの如き吸着剤は
何ら効果はなく、C.O.Dを減少させるに至らなか
つた。オゾン、過酸化水素および次亜塩素酸ソー
ダ等による化学的処理も若干減少するにすぎず、
例えば上記隔膜法食塩電解に使用するには適当で
はない。 本発明者等は、このような問題点の解決に意を
注ぎ、該塩化アルカリ水溶液中のC.O.Dを実際的
にかつ経済的に減少しうる方法を見出して本発明
を完成した。 即ち本発明は、1,1,2−トリクロルエタン
を苛性アルカリ溶液で脱塩酸反応を行なつて得ら
れる塩化アルカリ水溶液から、塩素化炭化水素を
蒸留により除去し、次いで得られた塩化アルカリ
水溶液を、ニツケル酸化物の存在下で次亜塩素酸
アルカリ溶液と接触させることを特徴とする精製
塩化アルカリ水溶液の製造方法である。 本発明の好ましい実施態様を述べると、1,
1,2−トリクロルエタンを苛性アルカリ溶液で
脱塩酸反応を行なつて得られる反応液を分液槽に
て有機層と水層に分液する。水層は塩化アルカリ
水溶液であつて、これをそのまま、望ましくは溶
解している微量の塩素化炭化水素を除去するため
に単蒸留を行なつて得られた回収塩化アルカリ水
溶液(C.O.D60〜100ppm含有)をニツケル酸化
物の存在下で次亜塩素酸アルカリと接触させるこ
とにより、高度に精製された精製塩化アルカリ水
溶液を製造することができる。ニツケル酸化物の
形態はそのものだけでもよくまた、珪藻土の如き
不活性な多孔質物体に担持されたものでもよい。
酸化物の状態はNi2O3とNiO2の両者が考えられ
るがいずれでもよい。C.O.D原因物質と次亜塩素
酸アルカリの存在によりNi2O3とNiO2とへ交互
に変化しているものと考えられる。ニツケル酸化
物は一般に市販されているもの例えばパニオンと
いう商品名(有恒金属(株)製)で市販されているも
のが使用できる。 ニツケル酸化物の存在下で作用させる次亜塩素
酸アルカリとしては、例えば次亜塩素酸ナトリウ
ム、次亜塩素酸カルウム等があげられ、その使用
量は、C.O.Dによつて示される酸素量と同量以上
の酸素を系に供給し得る量の次亜塩素酸アルカリ
量を添加すればよい。 また塩化アルカリ水溶液に対しニツケル酸化物
の存在下で次亜塩素酸アルカリ溶液を接触させる
方法としては、塩化アルカリ水溶液に対しニツケ
ル酸化物と次亜塩素酸アルカリ溶液を添加し、撹
拌、混合する方法および充填塔にニツケル酸化物
を充填し、次亜塩素酸アルカリ溶液を添加した塩
化アルカリ水溶液を充填塔内を通過させる方法等
があげられるが、これら以外の方法でもさしつか
えない。 ニツケル酸化物の存在下で次亜塩素酸アルカリ
溶液と接触させる場合の温度は室温から80℃の範
囲が好ましく、接触時間は数分から数時間(充填
塔式の場合は平均滞留時間が0.5〜5時間)が好
ましく、ニツケル酸化物の添加量は回収塩化アル
カリ水溶液100ml当り1g以上(充填塔式の場合
は空間速度が0.5〜5Hr-1となる量)が好ましい。 本発明によればC.O.D濃度15ppm以下の精製塩
化アルカリ水溶液が容易かつ円滑に得られ、得ら
れた精製塩化アルカリ水溶液は、アスベスト隔膜
法、イオン交換膜法、水銀法等の電解用その他
種々の用途に使用することができる。 次に実施例および比較例をあげて本発明をさら
に具体的に説明する。 実施例1、比較例1および比較例2 1,1,2−トリクロルエタンを苛性ソーダ溶
液と接触させて脱塩化水素反応を行い塩化ビニリ
デンを製造した際、得られた食塩を含む反応液を
先づ分液槽にて有機物を分離し、次いで加熱単蒸
留を行つて溶解有機物を水と共に留出させた。反
応液は始め白濁していたが全体の約3%留出させ
たところ残液は無色透明となつた。この液を分析
したところ食塩の濃度は303g/、苛性ソーダ
6g/及びC.O.D65ppmであつた。この液を以
下回収食塩水と称する。 この回収食塩水200mlを500ml容ビーカーにとり
過酸化ニツケル含有物(パニオン:有恒金属(株)の
商品名、5mm径×5mm柱状、成分:Ni2O3
3H2Oが70重量%、残部はセメント)を4.0gと次
亜塩素酸ソーダ(12%液)2.0ml加え室温で3時
間撹拌し、通常の濾過を行なつた後C.O.Dを分析
した。比較のためパニオンのみの場合(比較例
1)と次亜塩素酸ソーダのみの場合(比較例2)
とについて同様に実施した。その結果は次表の如
くであつた。
The present invention relates to a method for producing a purified aqueous alkali chloride solution from an aqueous alkali chloride solution obtained by the dehydrochlorination reaction of 1,1,2-trichloroethane. The purpose is to produce an alkaline aqueous solution. In recent years, there has been a remarkable progress in the production of chlorinated hydrocarbons, and the use of chlorinated organic solvents such as 1,1,1-trichloroethane, trichlorethylene, and perchlorethylene, and resins such as polyvinyl chloride and polyvinylidene chloride has become extremely difficult. It is becoming abundant. Vinylidene chloride, a chlorinated hydrocarbon, is also being produced in increasing quantities. Vinylidene chloride is also used as a raw material for polyvinylidene chloride resin.
It is produced in large quantities as an intermediate raw material for trichloroethane. The method for producing vinylidene chloride is generally a method of dehydrochlorinating 1,1,2-trichloroethane with an aqueous alkali solution, and usually an aqueous calcium hydroxide solution is used as the aqueous alkali solution. The reaction using calcium hydroxide in the production of vinylidene chloride proceeds as shown in the following formula: CH 2 C・CHC 2 + 1/2Ca(OH) 2 → CH 2 = CC 2 + 1/2CaC 2 + H 2 O −(1) The target vinylidene chloride can be obtained with almost 100% selectivity. However, the released hydrogen chloride is neutralized with calcium hydroxide and is discarded as calcium chloride as shown in equation (1). The reality is that in exchange for selectively obtaining vinylidene chloride, equimolar amounts of hydrochloric acid are lost. From the viewpoint of resource conservation, this hydrochloric acid content needs to be effectively recovered. For example, if the dehydrochloric acid reaction is performed using sodium hydroxide instead of calcium hydroxide, the released hydrochloric acid becomes sodium chloride as shown in equation (2). CH 2 C・CHC 2 +NaOH→ CH 2 = CC 2 + NaC + H 2 O −(2) Also, if the dehydrochlorination reaction is performed using potassium hydroxide instead of calcium hydroxide, potassium chloride will be produced as shown in the following equation (3). can get. CH 2 C・CHC 2 +KOH→ CH 2 =CC 2 +KC+H 2 O −(3) If vinylidene chloride is removed from the reaction solution generated after the dehydrochloric acid reaction, an aqueous sodium chloride solution (saline solution) or an aqueous potassium chloride solution can be obtained. For example, by subjecting these to electrolysis of sodium chloride and electrolysis of potassium chloride, they can be recovered and utilized as effective chlorine. However, such a method has not yet been put into practical use. One of the reasons for this is that after performing the dehydrochlorination reaction using a caustic alkali aqueous solution, the alkali chloride aqueous solution recovered cannot be purified to a high enough degree that it can be used, for example, for electrolysis of an aqueous alkali chloride solution. be. In particular, since caustic soda is usually more expensive than calcium hydroxide, it has no industrial value unless the aqueous sodium chloride solution (saline solution) produced after the dehydrochlorination reaction is recovered and reused. When vinylidene chloride is obtained by dehydrochlorinating 1,1,2-trichloroethane with an aqueous caustic alkali solution, chlorinated hydrocarbons such as vinylidene chloride and 1,1,2-trichloroethane are present in the aqueous solution after the reaction. Since it is dissolved, it cannot be used as is. In order to perform a reaction using a caustic alkali aqueous solution and use the recovered alkali chloride aqueous solution for, for example, electrolysis, chlorinated hydrocarbons as described above must be removed. These have a negative effect on electrolytic reactions. Therefore, in order to use this recovered aqueous alkali chloride solution in electrolytic reactions, it is necessary to make it as clean as the aqueous alkali chloride solution normally used for electrolysis. The present inventors carried out intensive studies to purify the aqueous alkali chloride solution recovered when vinylidene chloride is obtained through the above-mentioned dehydrochlorination reaction using a caustic alkaline solution, and found that there were additional problems as follows. did. That is, in order to remove the chlorinated hydrocarbons in an aqueous alkali chloride solution obtained by dehydrochlorinating 1,1,2-trichloroethane with a caustic alkaline solution, the aqueous alkali chloride solution is used in the same manner as the commonly used steam distillation. There is a method of simple distillation. That is, if the alkali chloride aqueous solution is distilled and 3 to 10 wt% of its weight is distilled out, the dissolved chlorinated hydrocarbons will be distilled out together with the water, and there will be almost no remaining alkali chloride aqueous solution. . However, when we measured the COD in the aqueous alkali chloride solution after such distillation, it was found to be 50 to 100 ppm.
It turns out that it exists. This COD value differs slightly depending on the distillation rate of steam distillation, but when the distillation amount is 10
% or more, for example, 20 to 50%, and it does not decrease to the extent that dissolved alkali chloride precipitates even if it is distilled.
It is currently unknown what substance causes this COD, but the COD in the salt water used in diaphragm salt electrolysis plants is usually 15 ppm.
Therefore, in order to recover and utilize the aqueous alkali chloride solution, it is necessary to reduce the COD to 15 ppm or less. In order to reduce COD in the amount of several ppm, high-level treatment is generally performed in wastewater treatment. For example, physical treatment such as activated carbon adsorption, biological treatment such as activated sludge, or chemical treatment such as ozonolysis. However, these are not suitable for purifying the recovered aqueous alkali chloride solution obtained by this reaction. A method for purifying an aqueous alkali chloride solution not only needs to reduce COD, but also needs to be economically practicable and be able to be used for purposes such as electrolytic reactions after treatment. In this case, biological treatment is unsuitable for this purpose. Adsorbents such as activated carbon and molecular sheep were ineffective and did not reduce COD. Chemical treatments such as ozone, hydrogen peroxide and sodium hypochlorite are only slightly reduced.
For example, it is not suitable for use in the above-mentioned diaphragm method salt electrolysis. The present inventors have devoted their efforts to solving these problems, and have completed the present invention by discovering a method that can practically and economically reduce the COD in the aqueous alkali chloride solution. That is, the present invention involves removing chlorinated hydrocarbons by distillation from an aqueous alkali chloride solution obtained by dehydrochlorinating 1,1,2-trichloroethane with a caustic alkaline solution, and then removing the aqueous alkali chloride solution obtained. , a method for producing a purified aqueous alkali chloride solution, which comprises bringing the method into contact with an alkaline hypochlorite solution in the presence of nickel oxide. Describing preferred embodiments of the present invention, 1.
A reaction solution obtained by dehydrochlorinating 1,2-trichloroethane with a caustic alkaline solution is separated into an organic layer and an aqueous layer in a separation tank. The aqueous layer is an aqueous alkali chloride solution, and the recovered aqueous alkali chloride solution (containing COD 60 to 100 ppm) is obtained by performing simple distillation on this as-is, preferably to remove trace amounts of dissolved chlorinated hydrocarbons. By contacting with alkali hypochlorite in the presence of nickel oxide, a highly purified aqueous alkali chloride solution can be produced. The nickel oxide may be in the form of itself or may be supported on an inert porous material such as diatomaceous earth.
The state of the oxide may be both Ni 2 O 3 and NiO 2 , but either may be used. It is thought that Ni 2 O 3 and NiO 2 are alternately changed due to the presence of COD causative substances and alkali hypochlorite. As the nickel oxide, commonly available products such as those available under the trade name Panion (manufactured by Ariko Metal Co., Ltd.) can be used. Examples of alkali hypochlorite to be used in the presence of nickel oxide include sodium hypochlorite, potassium hypochlorite, etc., and the amount used is the same as the amount of oxygen indicated by COD. The amount of alkali hypochlorite that can supply the above amount of oxygen to the system may be added. In addition, as a method for contacting an aqueous alkali chloride solution with an alkali hypochlorite solution in the presence of nickel oxide, a method is to add nickel oxide and an alkali hypochlorite solution to an aqueous alkali chloride solution, and stir and mix. Another method is to fill a packed tower with nickel oxide and pass an aqueous alkali chloride solution to which an alkaline hypochlorite solution has been added through the packed tower, but other methods may also be used. When contacting with an alkaline hypochlorite solution in the presence of nickel oxide, the temperature is preferably in the range from room temperature to 80°C, and the contact time is from several minutes to several hours (in the case of a packed column type, the average residence time is 0.5 to 5 time), and the amount of nickel oxide added is preferably 1 g or more per 100 ml of recovered aqueous alkali chloride solution (in the case of a packed column type, the amount that gives a space velocity of 0.5 to 5 Hr -1 ). According to the present invention, a purified aqueous alkali chloride solution with a COD concentration of 15 ppm or less can be easily and smoothly obtained, and the obtained purified aqueous alkali chloride solution can be used for electrolysis such as asbestos diaphragm method, ion exchange membrane method, mercury method, and various other uses. It can be used for. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1, Comparative Example 1, and Comparative Example 2 When vinylidene chloride was produced by contacting 1,1,2-trichloroethane with a caustic soda solution to carry out a dehydrochlorination reaction, the reaction solution containing the obtained common salt was first Organic substances were separated in a separation tank, and then heated simple distillation was performed to distill out the dissolved organic substances together with water. The reaction solution was cloudy at first, but after about 3% of the total amount was distilled off, the remaining solution became clear and colorless. When this liquid was analyzed, the concentration of common salt was 303 g/, caustic soda 6 g/, and COD 65 ppm. This liquid is hereinafter referred to as recovered saline solution. Take 200 ml of this recovered saline solution into a 500 ml beaker and add a nickel peroxide-containing substance (Panion: trade name of Ariko Metal Co., Ltd., 5 mm diameter x 5 mm columnar, component: Ni 2 O 3 .
4.0 g of 3H 2 O (70% by weight, the balance being cement) and 2.0 ml of sodium hypochlorite (12% solution) were added, stirred at room temperature for 3 hours, and after conventional filtration, COD was analyzed. For comparison, the case of only panion (Comparative Example 1) and the case of only sodium hypochlorite (Comparative Example 2)
The same procedure was carried out for . The results were as shown in the table below.

【表】 参考として隔膜法食塩電解工場へ供給される塩
水中のC.O.Dは10〜14ppm電解槽を出た電解液中
のC.O.Dは10〜12ppmであつた。 実施例 2 実施例1と同じ回収食塩水(比重1205)100ml
当り、次亜塩素酸ソーダ(12%液)を1ml入れ被
処理液とした。内径44mmのガラス製二重管に実施
例1と同じパニオン(過酸化ニツケル含有物5mm
径×5mm柱状)を150ml充填し外部に温水を通し
て60℃に保持した。上記被処理液を定量ポンプに
て118g/Hrの割合で供給した。(平均滞留時間
約1.5時間)パニオン充填層を通過した食塩水の
C.O.Dを測定したところ9pmに低下していた。 比較例 3 実施例2と同じ装置にパニオンの代りに市販の
粒状活性炭を充填し、実施例1と同じ回収食塩水
を供給した。以下実施例2と同様の操作を行なつ
た。しかしながらC.O.Dは60〜65ppmと殆んど低
下しなかつた。 比較例 4 実施例1と同じ回収食塩水200mlに過酸化水素
3%液を5.0ml加えて80〜90℃で1時間放置した
がC.O.Dは殆ど変りはなかつた。 比較例 5 実施例1と同じ回収食塩水400mlにオゾン
5100ppm含有する空気を1/分の流速で10分間
吹込んだ。該回収食塩水のC.O.Dを測定したとこ
ろ44ppmであつた。 実施例 3 1,1,2−トリクロルエタンと苛性カリ溶液
を反応させて得られた塩化カリを含む反応液を、
有機物と塩化カリ水溶液に分離し、塩化カリ水溶
液を単蒸留し、溶解有機物を除いた。この液を分
析したところ塩化カリの濃度は297g/、苛性
カリ7g/及びC.O.D68ppmであつた。 以後この液を次亜塩素酸ソーダの代りに次亜塩
素酸カリを使用した以外は実施例1と同じ処理操
作をした後、CODを分析した結果13ppmであつ
た。
[Table] For reference, the COD in the brine supplied to the diaphragm salt electrolysis plant was 10 to 14 ppm, and the COD in the electrolytic solution leaving the electrolytic cell was 10 to 12 ppm. Example 2 100 ml of the same recovered saline solution as in Example 1 (specific gravity 1205)
Each time, 1 ml of sodium hypochlorite (12% solution) was added to serve as the liquid to be treated. The same panion as in Example 1 (5 mm containing nickel peroxide) was placed in a glass double tube with an inner diameter of 44 mm.
The container was filled with 150 ml of 5 mm diameter column (column shape) and maintained at 60°C by passing hot water to the outside. The above-mentioned liquid to be treated was supplied using a metering pump at a rate of 118 g/Hr. (Average residence time approximately 1.5 hours) Salt water passed through the panion packed bed
When I measured the COD, it had dropped to 9pm. Comparative Example 3 The same apparatus as in Example 2 was filled with commercially available granular activated carbon instead of panions, and the same recovered saline solution as in Example 1 was supplied. Thereafter, the same operations as in Example 2 were performed. However, COD hardly decreased to 60-65 ppm. Comparative Example 4 5.0 ml of 3% hydrogen peroxide solution was added to 200 ml of the same recovered saline solution as in Example 1 and left at 80 to 90°C for 1 hour, but there was almost no change in COD. Comparative Example 5 Ozone was added to 400 ml of the same recovered saline solution as in Example 1.
Air containing 5100 ppm was blown for 10 minutes at a flow rate of 1/min. The COD of the recovered saline solution was measured and found to be 44 ppm. Example 3 A reaction solution containing potassium chloride obtained by reacting 1,1,2-trichloroethane with a caustic potassium solution,
The organic matter and the potassium chloride aqueous solution were separated, and the potassium chloride aqueous solution was subjected to simple distillation to remove the dissolved organic matter. When this liquid was analyzed, the concentration of potassium chloride was 297 g/, caustic potassium 7 g/, and COD 68 ppm. Thereafter, this solution was treated in the same manner as in Example 1 except that potassium hypochlorite was used instead of sodium hypochlorite, and the COD was analyzed and found to be 13 ppm.

Claims (1)

【特許請求の範囲】[Claims] 1 1,1,2−トリクロルエタンを苛性アルカ
リ溶液で脱塩酸反応を行なつて得られる塩化アル
カリ水溶液から、塩素化炭化水素を蒸留により除
去し、次いで得られた塩化アルカリ水溶液を、ニ
ツケル酸化物の存在下で次亜塩素酸アルカリ溶液
と接触させることを特徴とする精製塩化アルカリ
水溶液の製造方法。
1. Chlorinated hydrocarbons are removed by distillation from an aqueous alkali chloride solution obtained by dehydrochlorinating 1,1,2-trichloroethane with a caustic alkaline solution, and then the aqueous alkali chloride solution obtained is treated with nickel oxide. 1. A method for producing a purified aqueous alkali chloride solution, which comprises bringing it into contact with an alkaline hypochlorite solution in the presence of.
JP12464280A 1980-09-10 1980-09-10 Preparation of aqueous solution of purified alkali metal chloride Granted JPS5751101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12464280A JPS5751101A (en) 1980-09-10 1980-09-10 Preparation of aqueous solution of purified alkali metal chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12464280A JPS5751101A (en) 1980-09-10 1980-09-10 Preparation of aqueous solution of purified alkali metal chloride

Publications (2)

Publication Number Publication Date
JPS5751101A JPS5751101A (en) 1982-03-25
JPS6313933B2 true JPS6313933B2 (en) 1988-03-28

Family

ID=14890453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12464280A Granted JPS5751101A (en) 1980-09-10 1980-09-10 Preparation of aqueous solution of purified alkali metal chloride

Country Status (1)

Country Link
JP (1) JPS5751101A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521921B2 (en) * 2000-03-08 2010-08-11 旭化成ケミカルズ株式会社 Electrolysis method of alkali chloride
JP5407100B2 (en) * 2000-05-08 2014-02-05 東ソー株式会社 Purification method for inorganic salt containing organic substance and purified salt for salt electrolysis

Also Published As

Publication number Publication date
JPS5751101A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
US3052612A (en) Recovery of chlorine from electrol ysis of brine
WO2019158463A1 (en) Process for the work-up and reuse of salt-containing process water
CN101229941A (en) Process for eliminating nitrogenous organic compounds from salt-containing water
RU2009130723A (en) METHOD FOR PRODUCING CHLORINE DIOXIDE
KR20190039107A (en) Method for electrochemical purification of chloride-containing process solution
CN101052748A (en) Synthesis of hydrogen peroxide
JP6676037B2 (en) In situ regeneration method of activated carbon loaded with trihalomethane by alkaline hydrolysis
JPS5920483A (en) Removal of chlorate from electrolytic cell brine
KR20040077701A (en) Method of purifying brine
KR100622779B1 (en) Process for removal of quaternary ammonium salt
US3842002A (en) Method for removing sulfate and bicarbonate ions from sea water or brackish water through the use of weak anionic exchange resins containing amino groups of the primary and secondary type
JPS6313933B2 (en)
JPH06157008A (en) Method for recovering iodine from waste liquor containing iodine and/or inorganic iodine compound
JP5734429B2 (en) Method for producing dicyclohexyl disulfide
JP5838710B2 (en) Salt water purification method
JPH0696568B2 (en) Method for purifying L-ascorbic acid
JPS6054886B2 (en) Method for purifying aqueous alkali chloride solution
JPH073485A (en) Method for electrolyzing alkaline metal chloride
SU922070A1 (en) Method for purifying solution of alkali metal hydroxite from chlorate
US3595928A (en) Process for purifying vinylidene chloride
US6855306B2 (en) Process for the recovery of sodium nitrite
JP3796631B2 (en) Removal of acid impurities
JPH06144802A (en) Recovery of iodine from waste liquid containing organoiodine compound
JP2008280298A (en) Stabilization method of chlorinated aliphatic hydrocarbon
JPH06144803A (en) Recovery of iodine from waste liquid containing organoiodine compound