JP6263851B2 - Electrolytic capacitor heat dissipation structure, illumination lamp, illumination device, and method of manufacturing illumination lamp - Google Patents

Electrolytic capacitor heat dissipation structure, illumination lamp, illumination device, and method of manufacturing illumination lamp Download PDF

Info

Publication number
JP6263851B2
JP6263851B2 JP2013069957A JP2013069957A JP6263851B2 JP 6263851 B2 JP6263851 B2 JP 6263851B2 JP 2013069957 A JP2013069957 A JP 2013069957A JP 2013069957 A JP2013069957 A JP 2013069957A JP 6263851 B2 JP6263851 B2 JP 6263851B2
Authority
JP
Japan
Prior art keywords
outer shell
heat
cylindrical outer
electrolytic capacitor
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013069957A
Other languages
Japanese (ja)
Other versions
JP2014194963A5 (en
JP2014194963A (en
Inventor
俊一 浅見
俊一 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013069957A priority Critical patent/JP6263851B2/en
Publication of JP2014194963A publication Critical patent/JP2014194963A/en
Publication of JP2014194963A5 publication Critical patent/JP2014194963A5/ja
Application granted granted Critical
Publication of JP6263851B2 publication Critical patent/JP6263851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、電解コンデンサの放熱構造、照明ランプ、照明装置、および照明ランプの製造方法に関する。   The present invention relates to a heat dissipation structure for an electrolytic capacitor, an illumination lamp, an illumination device, and a method for manufacturing the illumination lamp.

従来、電解コンデンサの放熱を行うための各種の放熱構造が知られている。一般に、電解コンデンサにリップル電流を長時間印加したり大電流を印加したりすると、発熱して電解コンデンサの温度が上昇する。また、電解コンデンサの近傍に発熱量の大きい電子部品を配設すると、電子部品が発する熱の影響を受けて電解コンデンサの温度が上昇する。電解コンデンサの温度が過度に上昇すると、誘電正接の増大や静電容量の減少など電気諸特性が劣化して、電解コンデンサの動作寿命が短くなるという問題が発生する。これは、電解コンデンサを備える電子回路や電子機器の、性能や品質を維持することが困難となることを意味する。   2. Description of the Related Art Conventionally, various heat radiating structures for radiating heat from an electrolytic capacitor are known. Generally, when a ripple current is applied to an electrolytic capacitor for a long time or a large current is applied, heat is generated and the temperature of the electrolytic capacitor rises. Further, when an electronic component having a large calorific value is disposed in the vicinity of the electrolytic capacitor, the temperature of the electrolytic capacitor rises due to the influence of heat generated by the electronic component. When the temperature of the electrolytic capacitor rises excessively, various electrical characteristics such as an increase in dielectric loss tangent and a decrease in capacitance are deteriorated, resulting in a problem that the operating life of the electrolytic capacitor is shortened. This means that it becomes difficult to maintain the performance and quality of an electronic circuit or an electronic device including an electrolytic capacitor.

そこで、例えば下記の特許文献1、2に記載されているように、電解コンデンサの温度上昇を抑制することを目的とした冷却(放熱)技術が提案されている。特許文献1には、電解コンデンサの金属ケースに放熱性を有する有底筒状の金属放熱体を被冠し、金属放熱体には胴部に連なる取付固定部を設け、かつ金属放熱体の胴部内面に凸部を設け、凸部を、金属ケースの開口部を封止する封口体の固定用環状凹溝に嵌合させ、電解コンデンサ本体を支持する構成が開示されている。ただし、金属放熱体と電解コンデンサは接触しており、両者の間には特別な構成は設けられていない。   Therefore, for example, as described in Patent Documents 1 and 2 below, a cooling (heat radiation) technique aimed at suppressing the temperature rise of the electrolytic capacitor has been proposed. In Patent Document 1, a metal case of an electrolytic capacitor is covered with a bottomed cylindrical metal heat dissipating member, and the metal heat dissipating member is provided with an attachment fixing portion connected to the body portion. A configuration is disclosed in which a convex portion is provided on the inner surface of the portion, the convex portion is fitted into a fixing annular concave groove of a sealing body that seals the opening of the metal case, and the electrolytic capacitor body is supported. However, the metal radiator and the electrolytic capacitor are in contact with each other, and no special configuration is provided between them.

特許文献2には、コンデンサ素子が外装ケース内に収納され、外装ケースとコンデンサ素子との間にこれらと接触状態に、熱伝導材料が介装させる構成が開示されている。ただし、この構成ではコンデンサ素子の周囲に熱伝導材料が設けられた状態で外装ケースが被せられているのであり、コンデンサ素子は陽極箔と陰極箔との間にセパレータが介在されて捲回されたものである。つまり、特許文献2の構成は、あくまで、1つの電解コンデンサの内部構造について工夫を施したものである。   Patent Document 2 discloses a configuration in which a capacitor element is housed in an outer case, and a heat conductive material is interposed between the outer case and the capacitor element in contact with them. However, in this configuration, the outer case is covered with a heat conductive material provided around the capacitor element, and the capacitor element was wound with a separator interposed between the anode foil and the cathode foil. Is. In other words, the configuration of Patent Document 2 is a device in which the internal structure of one electrolytic capacitor is devised.

特許第3750952号公報Japanese Patent No. 3750952 特開2005−210070号公報Japanese Patent Laid-Open No. 2005-210070

しかしながら、上記従来の電解コンデンサの放熱構造は、汎用性が低く、その結果量産性に難点があった。具体的には、特許文献1にかかる技術を用いた場合、金属放熱体の形状が固有の寸法を有するため、それぞれの金属放熱体の寸法に適応した外形寸法を有する電解コンデンサしか収容できない。また、電解コンデンサを搭載する製品には、電解コンデンサを収容した金属放熱体を収容可能なスペースを備える必要がある。すなわち、電解コンデンサの寸法や部品配置領域の寸法に応じた異なる仕様の金属放熱体が必要となり、製造コストや管理コストを増大させる要因となっていた。   However, the conventional electrolytic capacitor heat dissipation structure has low versatility, and as a result, has difficulty in mass production. Specifically, when the technique according to Patent Document 1 is used, since the shape of the metal radiator has a specific dimension, only an electrolytic capacitor having an external dimension adapted to the dimension of each metal radiator can be accommodated. In addition, a product on which an electrolytic capacitor is mounted needs to have a space that can accommodate a metal radiator that houses the electrolytic capacitor. That is, a metal radiator having different specifications according to the dimensions of the electrolytic capacitor and the dimensions of the component placement area is required, which increases manufacturing costs and management costs.

本発明は、上述のような課題を解決するためになされたもので、生産性に優れた電解コンデンサの放熱構造、照明ランプ、照明装置、および照明ランプの製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an electrolytic capacitor heat dissipation structure, an illumination lamp, an illumination device, and an illumination lamp manufacturing method excellent in productivity. .

本発明にかかる電解コンデンサの放熱構造は、
筒状外郭を有する電解コンデンサに被せられ、内面を有し前記内面と前記筒状外郭との間に距離を有する放熱部材と、
可撓性材料又は弾性材料で形成され、厚さを有し、前記厚さの方向への圧力が無いときの前記厚さが前記距離以上であり、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導部材と、
を備え
前記熱伝導部材が、
熱伝導性樹脂から構成され、前記筒状外郭の周方向に沿って前記筒状外郭を囲いつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた樹脂体と、
前記樹脂体の内面側と外面側の少なくとも一方の側に設けられて前記樹脂体と重なり、前記筒状外郭の周方向に沿って前記筒状外郭を囲いつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導性編組体と、
を含み、
前記熱伝導性編組体は、編組体で構成され、少なくとも1回折り返された袋状であり、
前記袋状の内側に前記樹脂体が挿入されたことを特徴とする。
The heat dissipation structure of the electrolytic capacitor according to the present invention is:
A heat-dissipating member that is covered with an electrolytic capacitor having a cylindrical outer shell and has an inner surface and a distance between the inner surface and the cylindrical outer shell;
It is formed of a flexible material or an elastic material, has a thickness, and when there is no pressure in the direction of the thickness, the thickness is equal to or greater than the distance, and the circumferential direction of the cylindrical outline is A heat conducting member sandwiched between the cylindrical outer shell and the inner surface of the heat radiating member while in contact with the cylindrical outer shell;
Equipped with a,
The heat conducting member is
A resin body that is made of a heat conductive resin and that is sandwiched between the cylindrical outer shell and the inner surface of the heat dissipation member while surrounding the cylindrical outer shell along the circumferential direction of the cylindrical outer shell,
Provided on at least one of the inner surface side and the outer surface side of the resin body, overlaps the resin body, and surrounds the cylindrical outer shell along the circumferential direction of the cylindrical outer shell. A thermally conductive braided body sandwiched between the inner surface;
Including
The thermally conductive braided body is formed of a braided body and has a bag shape that is folded at least once,
The resin body is inserted inside the bag shape .

本発明にかかる照明ランプは、
光源と、
前記光源を覆うように設けられた透光性のグローブと、
商用電力を入力するための口金部と、
筒状外郭を有する電解コンデンサを備え、前記口金部を介して前記商用電力を前記光源の駆動電力に変換して前記光源に供給する点灯回路と、
前記グローブおよび前記口金部と嵌合して内部空間を形成し、前記点灯回路を包んで保持するとともに、前記内部空間に前記電解コンデンサを包む筐体部と、
前記筐体部内に設けられて前記電解コンデンサを放熱する放熱構造であって、前記電解コンデンサに被せられ内面を有し前記内面と前記筒状外郭との間に距離を有する放熱部材と、可撓性材料又は弾性材料で形成され、厚さを有し、前記厚さの方向への圧力が無いときの前記厚さが前記距離以上であり、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導部材と、を備える放熱構造と、
を備え、
前記筐体部が、前記放熱構造が備える前記放熱部材であり、
前記熱伝導部材が、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記筐体部の内面との間に挟まれており、
前記熱伝導部材は、前記筒状外郭に被せられた筒状体または前記筒状外郭の側周面に巻きつけられた平面体であることを特徴とする。
The illumination lamp according to the present invention is
A light source;
A translucent glove provided to cover the light source;
A base for inputting commercial power;
A lighting circuit comprising an electrolytic capacitor having a cylindrical outer shell, and converting the commercial power into driving power for the light source through the base and supplying the light source to the light source;
A housing part that fits with the globe and the base part to form an internal space, wraps and holds the lighting circuit, and wraps the electrolytic capacitor in the internal space;
A heat dissipating structure for dissipating heat from the electrolytic capacitor provided in the casing, the heat dissipating member being covered with the electrolytic capacitor and having a distance between the inner surface and the cylindrical outer shell; Formed of an elastic material or an elastic material, has a thickness, and the thickness when there is no pressure in the direction of the thickness is equal to or greater than the distance, and the cylindrical shape along the circumferential direction of the cylindrical outer shell A heat- dissipating structure comprising: a heat-conducting member sandwiched between the cylindrical outer shell and the inner surface of the heat-dissipating member while in contact with the outer shell ;
With
The casing is the heat dissipation member provided in the heat dissipation structure,
The heat conducting member is sandwiched between the cylindrical outer shell and the inner surface of the housing portion while being in contact with the cylindrical outer shell along the circumferential direction of the cylindrical outer shell ,
The heat conducting member may be a cylindrical body that covers the cylindrical outer shell or a flat body that is wound around a side peripheral surface of the cylindrical outer shell .

本発明にかかる照明装置は、
上記本発明にかかる照明ランプを備えたことを特徴とする。
The lighting device according to the present invention is
The illumination lamp according to the present invention is provided.

本発明にかかる照明ランプの製造方法は、
筒状外郭を有する電解コンデンサと、自身の一部または全部が可撓性材料又は弾性材料で形成され且つ厚さを有する筒状又は平面状の熱伝導部材と、を含む照明ランプ構成部品を準備する準備工程と、
前記電解コンデンサに前記熱伝導部材を取り付ける取付工程と、
前記照明ランプ構成部品を組み立てる組立工程と、
を備え、
前記照明ランプ構成部品は、
光源と、
前記光源を覆うように設けられた透光性のグローブと、
商用電力を入力するための口金部と、
前記電解コンデンサと電気的に接続し、前記口金部を介して前記商用電力を前記光源の駆動電力に変換して前記光源に供給する点灯回路と、
前記グローブおよび前記口金部と嵌合して内部空間を形成し、前記点灯回路を包んで保持するとともに、前記内部空間に前記電解コンデンサを包む筐体部と、
を含み、
前記取付工程は、前記電解コンデンサに対して前記筒状外郭の周方向に沿って前記筒状外郭に接するように、前記筒状外郭の側周面に前記筒状の前記熱伝導部材を被せる工程又は前記平面状の前記熱伝導部材を巻きつける工程を含み、
前記組立工程は、前記筐体部内に前記電解コンデンサを配置して前記熱伝導部材を前記筒状外郭と前記筐体部の内面との間に挟みこみ、前記光源、前記グローブ、前記口金部、前記点灯回路、および前記筐体部を組み立てることを特徴とする。
A method for manufacturing an illumination lamp according to the present invention includes:
Preparing an illumination lamp component including an electrolytic capacitor having a cylindrical outer shell, and a cylindrical or planar heat conducting member having a thickness, part or all of which is made of a flexible material or an elastic material. A preparation process to
A mounting step of mounting the heat conductive member to the electrolytic capacitor,
An assembly process for assembling the lighting lamp components;
With
The illumination lamp component is:
A light source;
A translucent glove provided to cover the light source;
A base for inputting commercial power;
A lighting circuit that is electrically connected to the electrolytic capacitor, converts the commercial power into driving power of the light source through the base, and supplies the driving power to the light source;
A housing part that fits with the globe and the base part to form an internal space, wraps and holds the lighting circuit, and wraps the electrolytic capacitor in the internal space;
Including
The mounting step is a step of covering the cylindrical heat conductive member on a side peripheral surface of the cylindrical outer shell so as to contact the electrolytic capacitor along a circumferential direction of the cylindrical outer shell with respect to the electrolytic capacitor. Or a step of winding the planar heat conductive member,
The assembly step includes disposing the electrolytic capacitor in the housing part and sandwiching the heat conducting member between the cylindrical outer shell and the inner surface of the housing part, the light source, the globe, the base part, The lighting circuit and the casing are assembled.

本発明によれば、熱伝導部材が、電解コンデンサの筒状外郭と放熱部材との間の隙間に介在し、両者の熱伝導経路を確保することができる。この熱伝導部材が電解コンデンサや放熱部材の寸法の相違を吸収することができるので、優れた生産性を発揮することができる。   According to the present invention, the heat conducting member is interposed in the gap between the cylindrical outer shell of the electrolytic capacitor and the heat radiating member, and the heat conducting path of both can be secured. Since this heat conducting member can absorb the difference in dimensions of the electrolytic capacitor and the heat radiating member, excellent productivity can be exhibited.

本発明の実施の形態1にかかる照明ランプの主要構成を示す図であり、内部構成の一部を透過させて示した図である。It is a figure which shows the main structures of the illumination lamp concerning Embodiment 1 of this invention, and is the figure which permeate | transmitted and showed a part of internal structure. 本発明の実施の形態1にかかる電解コンデンサを示す斜視図である。It is a perspective view which shows the electrolytic capacitor concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる熱伝導部材の主要構成を示す斜視図である。It is a perspective view which shows the main structures of the heat conductive member concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる熱伝導部材の主要構成を示す平面図および断面図である。It is the top view and sectional drawing which show the main structures of the heat conductive member concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる照明ランプの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the illumination lamp concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる熱伝導部材の主要構成を示す平面図および断面図である。It is the top view and sectional drawing which show the main structures of the heat conductive member concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる熱伝導部材の主要構成を示す平面図および断面図である。It is the top view and sectional drawing which show the main structures of the heat conductive member concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかる熱伝導部材の主要構成およびその製造方法を示す斜視図である。It is a perspective view which shows the main structure of the heat conductive member concerning Embodiment 4 of this invention, and its manufacturing method. 本発明の実施の形態5にかかる熱伝導部材の構成を示す斜視図である。It is a perspective view which shows the structure of the heat conductive member concerning Embodiment 5 of this invention. 本発明の実施の形態5にかかる熱伝導部材を取り付けた電解コンデンサの構成を示す斜視図である。It is a perspective view which shows the structure of the electrolytic capacitor which attached the heat conductive member concerning Embodiment 5 of this invention. 本発明の実施の形態6にかかる熱伝導部材の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the heat conductive member concerning Embodiment 6 of this invention. 本発明の実施の形態6にかかる熱伝導部材を取り付けた電解コンデンサの構成を示す斜視図である。It is a perspective view which shows the structure of the electrolytic capacitor which attached the heat conductive member concerning Embodiment 6 of this invention. 本発明の実施の形態7にかかる熱伝導部材の構成を示す斜視図である。It is a perspective view which shows the structure of the heat conductive member concerning Embodiment 7 of this invention. 本発明の実施の形態7にかかる熱伝導部材の構成を示す斜視図である。It is a perspective view which shows the structure of the heat conductive member concerning Embodiment 7 of this invention. 本発明の実施の形態7にかかる熱伝導部材を取り付けた電解コンデンサの構成を示す斜視図である。It is a perspective view which shows the structure of the electrolytic capacitor which attached the heat conductive member concerning Embodiment 7 of this invention. 本発明の実施の形態にかかる熱伝導部材の変形例を説明するための正面図である。It is a front view for demonstrating the modification of the heat conductive member concerning embodiment of this invention.

実施の形態1.
[実施の形態1の装置の構成]
図1は、本発明の実施の形態1にかかる照明ランプの主要構成を示す図であり、内部構成の一部を透過させて示した図である。図2は、本発明の実施の形態1にかかる電解コンデンサを示す斜視図である。図3は、本発明の実施の形態1にかかる熱伝導部材の主要構成を示す斜視図である。図4は、本発明の実施の形態1にかかる熱伝導部材の主要構成を示す平面図および断面図である。
Embodiment 1 FIG.
[Configuration of Device of Embodiment 1]
FIG. 1 is a diagram showing a main configuration of the illumination lamp according to the first embodiment of the present invention, and is a diagram showing a part of the internal configuration through transmission. FIG. 2 is a perspective view showing the electrolytic capacitor according to the first embodiment of the present invention. FIG. 3 is a perspective view showing the main configuration of the heat conducting member according to the first embodiment of the present invention. FIG. 4 is a plan view and a cross-sectional view showing the main configuration of the heat conducting member according to the first embodiment of the present invention.

(照明ランプ100の構成)
図1に示すように、本発明の実施の形態1にかかる照明ランプは電球形LEDランプである。照明ランプ100は、点灯回路6、光源7と、内側筐体部8、口金部9、外側筐体部10、およびグローブ11を備えている。
(Configuration of the illumination lamp 100)
As shown in FIG. 1, the illumination lamp according to the first embodiment of the present invention is a bulb-type LED lamp. The illumination lamp 100 includes a lighting circuit 6, a light source 7, an inner housing portion 8, a base portion 9, an outer housing portion 10, and a globe 11.

この照明ランプ100を備えた照明装置が、本発明の実施の形態1にかかる照明装置である。実施の形態1にかかる照明装置は、照明ランプ100の他に、反射板、筐体、電源接続部、ランプ保持部(口金等)を含んで構成される。   The illumination device including the illumination lamp 100 is the illumination device according to the first embodiment of the present invention. The illuminating device according to the first exemplary embodiment includes a reflector, a casing, a power supply connection unit, and a lamp holding unit (such as a base) in addition to the illumination lamp 100.

電解コンデンサ4は、点灯回路6と接続している。グローブ11は、光源7から出射される光を透過するとともに、光の出射側で光源7を覆うように配設される透光性の部材である。点灯回路6は、口金部9を経由して供給される商用電力を、光源7を駆動する駆動電力に変換して光源7に供給する。内側筐体部8および外側筐体部10は、点灯回路6を内包可能に保持するとともに、グローブ11および口金部9と嵌合して内部空間を形成する。   The electrolytic capacitor 4 is connected to the lighting circuit 6. The globe 11 is a translucent member that transmits light emitted from the light source 7 and is disposed so as to cover the light source 7 on the light emission side. The lighting circuit 6 converts commercial power supplied via the base unit 9 into drive power for driving the light source 7 and supplies the converted power to the light source 7. The inner housing portion 8 and the outer housing portion 10 hold the lighting circuit 6 so as to be included, and are fitted with the globe 11 and the base portion 9 to form an internal space.

実施の形態1において、光源7は、発光手段である発光ダイオード(以下、LED)71とLED71を載置するLED基板70とを備えて構成される。光源7の構成要素には、配線部材(図示しない)、取付部材(図示しない)、および照明ランプの設計仕様に応じて必要となる電子部品などが含まれる。配線部材(図示しない)は、点灯回路6と電気的に接続し点灯回路6から駆動電力を光源7に伝達するためのワイヤーハーネスやコネクタなどである。取付部材は(図示しない)、LED基板70を内側筐体部8(あるいは外側筐体部10)に取付けるための螺子などである。   In the first embodiment, the light source 7 includes a light emitting diode (hereinafter referred to as an LED) 71 that is a light emitting means and an LED substrate 70 on which the LED 71 is placed. The components of the light source 7 include a wiring member (not shown), a mounting member (not shown), and electronic components required according to the design specifications of the illumination lamp. The wiring member (not shown) is a wire harness or a connector that is electrically connected to the lighting circuit 6 and transmits driving power from the lighting circuit 6 to the light source 7. The attachment member (not shown) is a screw or the like for attaching the LED substrate 70 to the inner housing portion 8 (or the outer housing portion 10).

グローブ11は、ガラスや樹脂などの素材で構成される。樹脂を用いる場合には、ポリカーボネートやアクリルなどを製品仕様に応じて選択する。グローブ11は透光性を有し光源7から出射される光を透過するとともに、必要に応じて、光を拡散、集光、反射させる機能を併せ持つ。これらの機能は、グローブ11の基材であるガラスや樹脂の成形時に拡散層(あるいは拡散面)、レンズ、反射層(あるいは反射面)などとして、これらの基材に直接施しても良いし、基材の表面に別部材を組み合わせて構成しても良い。グローブ11は、外側筐体部10および口金部9とともに照明ランプ100の外郭部の一部を構成する。   The globe 11 is made of a material such as glass or resin. When using a resin, polycarbonate or acrylic is selected according to the product specifications. The globe 11 has translucency, transmits light emitted from the light source 7, and has a function of diffusing, condensing, and reflecting light as necessary. These functions may be applied directly to these substrates as a diffusion layer (or diffusion surface), a lens, a reflection layer (or reflection surface), etc. when molding the glass or resin that is the substrate of the globe 11, You may comprise combining another member on the surface of a base material. The globe 11 constitutes a part of the outer portion of the illumination lamp 100 together with the outer casing portion 10 and the base portion 9.

内側筐体部8は、プラスチックなどの樹脂素材を用いて成形される樹脂筐体である。内側筐体部8は、開口部を有し、その開口部から挿入される点灯回路6を保持する保持構造(図示しない)を備えている。内側筐体部8の内面と点灯回路6が有する回路部品との間には、この保持構造によって保持される部位(例えば回路基板)を除いて、所定の間隙が設けられる。つまり、回路部品に機械的応力が加わらない状態で,点灯回路6は内側筐体部8の内部空間に内包保持されている。   The inner housing portion 8 is a resin housing that is molded using a resin material such as plastic. The inner housing portion 8 has an opening, and includes a holding structure (not shown) that holds the lighting circuit 6 inserted from the opening. A predetermined gap is provided between the inner surface of the inner casing portion 8 and the circuit components included in the lighting circuit 6 except for a portion (for example, a circuit board) held by the holding structure. That is, the lighting circuit 6 is contained and held in the internal space of the inner casing 8 in a state where mechanical stress is not applied to the circuit components.

外側筐体部10は、内側筐体部8外側に配設されている。外側筐体部10は、グローブ11および口金部9とともに照明ランプ100の外郭部の一部を構成する。外側筐体部10は、アルミなどの金属素材を用いて成形される。外側筐体部10は、照明ランプ100の構造を堅牢とし、光源7や点灯回路6などが発する熱を外界へ伝達する機能を有する。外側筐体部10の外面にフィン(図示しない)を設けてもよい。フィンを設けることで、それらの機能の効果をさらに促進することができる。   The outer housing part 10 is disposed outside the inner housing part 8. The outer housing part 10 constitutes a part of the outer part of the illumination lamp 100 together with the globe 11 and the base part 9. The outer casing 10 is formed using a metal material such as aluminum. The outer casing unit 10 has a function of making the structure of the illumination lamp 100 robust and transmitting heat generated by the light source 7 and the lighting circuit 6 to the outside. Fins (not shown) may be provided on the outer surface of the outer casing 10. By providing the fins, the effects of those functions can be further promoted.

口金部9は、ソケット等の照明器具(図示しない)に嵌合する構造を有している。口金部9は、照明器具経由で商用電力を照明ランプ100に入力する入力端である。   The base portion 9 has a structure that fits into a lighting fixture (not shown) such as a socket. The base portion 9 is an input end that inputs commercial power to the illumination lamp 100 via a lighting fixture.

点灯回路6は、AC−DCコンバータ回路を有している。このAC−DCコンバータが、商用電力である交流電源電力をLED71を駆動するための直流電力へと変換することができる。これにより、点灯回路6は、口金部9から入力された商用電力を、光源7を駆動する駆動電力に変換して、駆動電力を光源7に供給する。   The lighting circuit 6 has an AC-DC converter circuit. This AC-DC converter can convert AC power supply power, which is commercial power, into DC power for driving the LED 71. Accordingly, the lighting circuit 6 converts the commercial power input from the base unit 9 into driving power for driving the light source 7 and supplies the driving power to the light source 7.

好ましくは、点灯回路6は、LED71を安定駆動するために、負荷変動の検出機能や負荷変動に応じてAC−DCコンバータ回路から出力される駆動電流を制御する制御機能を有する。また、好ましくは、点灯回路6は、商用電力の供給経路を解して流入および/または流出するノイズを除去または低減するフィルタ機能などを有する。電解コンデンサ4の外形寸法は、電解コンデンサ4の容量値や電圧仕様などに依存する。電解コンデンサ4の容量値や電圧仕様は、照明ランプの設計仕様に応じて決定される。   Preferably, the lighting circuit 6 has a load fluctuation detection function and a control function for controlling the drive current output from the AC-DC converter circuit in accordance with the load fluctuation in order to drive the LED 71 stably. Preferably, the lighting circuit 6 has a filter function for removing or reducing noise that flows in and / or out through a supply path of commercial power. The outer dimensions of the electrolytic capacitor 4 depend on the capacitance value of the electrolytic capacitor 4 and voltage specifications. The capacitance value and voltage specification of the electrolytic capacitor 4 are determined according to the design specification of the illumination lamp.

図2は、本発明の実施の形態1にかかる電解コンデンサを示す斜視図である。電解コンデンサ4は、直径Rおよび高さTを有する筒状外郭4aと、リード4bとを備えている。筒状外郭4aの内部には、リード4bと接続したコンデンサ素子が収納されている。筒状外郭4aの側周面には、熱伝導部材1が貼り付けられている。   FIG. 2 is a perspective view showing the electrolytic capacitor according to the first embodiment of the present invention. The electrolytic capacitor 4 includes a cylindrical outer shell 4a having a diameter R and a height T, and leads 4b. A capacitor element connected to the lead 4b is housed inside the cylindrical outer shell 4a. The heat conductive member 1 is affixed on the side peripheral surface of the cylindrical outer shell 4a.

熱伝導部材1を電解コンデンサ4の筒状外郭4a(アルミケース)に貼り合せるに際して、少なくとも熱伝導部材1によって電解コンデンサ4の圧力弁5(安全弁、防爆弁と同義)を塞がないようにする。すなわち、本実施の形態では、電解コンデンサ4の筒状外郭4aの側周面にのみ限定的に熱伝導部材1が巻きつけられている。これは、電解コンデンサ4の動作に異常が生じたときに、電解コンデンサ4の圧力弁5が正常に機能することを妨げないためである。   When the heat conducting member 1 is bonded to the cylindrical shell 4a (aluminum case) of the electrolytic capacitor 4, at least the heat conducting member 1 does not block the pressure valve 5 (synonymous with a safety valve and an explosion-proof valve) of the electrolytic capacitor 4. . That is, in the present embodiment, the heat conducting member 1 is wound only on the side peripheral surface of the cylindrical outer shell 4a of the electrolytic capacitor 4 in a limited manner. This is because the pressure valve 5 of the electrolytic capacitor 4 is not prevented from functioning normally when an abnormality occurs in the operation of the electrolytic capacitor 4.

実施の形態1の照明ランプ100において、電解コンデンサ4は、入力される商用電力を平滑したり、光源7の発光手段であるLED71を駆動するために光源7に供給される駆動電力の脈流を低減したりする機能を有している。光源7に安定な直流電力を供給することにより、安定な発光を実現する効果を奏する。   In the illumination lamp 100 according to the first embodiment, the electrolytic capacitor 4 smoothes the input commercial power, or generates a pulsating flow of driving power supplied to the light source 7 in order to drive the LED 71 that is the light emitting means of the light source 7. It has a function to reduce. By supplying stable direct-current power to the light source 7, there is an effect of realizing stable light emission.

実施の形態1の照明ランプ100において、電解コンデンサ4は、内側筐体部8の内部空間の口金部9側に内包されている。照明ランプ100の小型化に伴う寸法上の制約と、主要な発熱源である光源7から離間することによる電解コンデンサ4の動作信頼性を向上させる目的と、を考慮した場合に好適な配置である。   In the illumination lamp 100 according to the first embodiment, the electrolytic capacitor 4 is included in the inner space of the inner housing portion 8 on the base 9 side. This arrangement is suitable in consideration of the dimensional restrictions associated with the miniaturization of the illumination lamp 100 and the purpose of improving the operational reliability of the electrolytic capacitor 4 by being separated from the light source 7 as the main heat source. .

なお、電解コンデンサ4の機能は上記のものに限定されるのではなく、光源7がLED以外の発光手段を有する構成の場合などは、電解コンデンサ4が別の用途や機能を有する場合もある。口金部9と電気的に接続し口金部9から商用電力を点灯回路6に伝達するための配線部材(図示しない)も、点灯回路6の構成要素である。   In addition, the function of the electrolytic capacitor 4 is not limited to the above-described one, and when the light source 7 has a light emitting unit other than the LED, the electrolytic capacitor 4 may have other uses and functions. A wiring member (not shown) that is electrically connected to the base portion 9 and transmits commercial power from the base portion 9 to the lighting circuit 6 is also a component of the lighting circuit 6.

電解コンデンサ4の筒状外郭4a(アルミケース)の全周に貼合された熱伝導部材1は、電解コンデンサ4と内側筐体部8の内面との間隙を埋めるように、電解コンデンサ4の筒状外郭4a(アルミケース)と内側筐体部8の内面とに密着して把持されている。すなわち、電解コンデンサ4の筒状外郭4a(アルミケース)、熱伝導部材1、内側筐体部8、外側筐体部10(および/または口金部9)が、照明ランプ100の外部への連続した熱伝達経路を形成し、電解コンデンサ4の冷却を促進する。   The heat conducting member 1 bonded to the entire circumference of the tubular outer shell 4a (aluminum case) of the electrolytic capacitor 4 fills the gap between the electrolytic capacitor 4 and the inner surface of the inner housing portion 8 so that the tube of the electrolytic capacitor 4 is filled. The outer shell 4a (aluminum case) and the inner surface of the inner casing 8 are held in close contact with each other. That is, the cylindrical outer shell 4a (aluminum case), the heat conducting member 1, the inner housing portion 8, and the outer housing portion 10 (and / or the base portion 9) of the electrolytic capacitor 4 are continuously connected to the outside of the illumination lamp 100. A heat transfer path is formed and cooling of the electrolytic capacitor 4 is promoted.

電解コンデンサ4は点灯回路6の構成部品であり、点灯回路6の回路基板に載置される。この状態で、電解コンデンサ4の筒状外郭4a(アルミケース)の全周に熱伝導部材1が貼り合わされている。点灯回路6は熱伝導部材1を貼合した電解コンデンサ4が口金部9側に内包されるように、内側筐体部8の内部空間に保持される。点灯回路6の回路基板は、点灯回路6の回路部品に機械的応力が加わらないように保持される。具体的には、点灯回路6は、内側筐体部8内面に一体成形された保持部によって保持される。   The electrolytic capacitor 4 is a component of the lighting circuit 6 and is placed on the circuit board of the lighting circuit 6. In this state, the heat conducting member 1 is bonded to the entire circumference of the cylindrical shell 4a (aluminum case) of the electrolytic capacitor 4. The lighting circuit 6 is held in the internal space of the inner housing portion 8 so that the electrolytic capacitor 4 bonded with the heat conducting member 1 is included in the base portion 9 side. The circuit board of the lighting circuit 6 is held so that mechanical stress is not applied to the circuit components of the lighting circuit 6. Specifically, the lighting circuit 6 is held by a holding portion that is integrally formed on the inner surface of the inner housing portion 8.

点灯回路6が内側筐体部8の内部空間に内包保持された状態で、電解コンデンサ4の圧力弁5と内側筐体部8の内面との間隙が設けられている。この間隙は、電解コンデンサ4の圧力弁5の機能を妨げないように、つまり圧力弁5が開放できる程度の間隙である。電解コンデンサ4の動作に異常が生じたときに、圧力弁5が作動するように設けられたものである。   A gap between the pressure valve 5 of the electrolytic capacitor 4 and the inner surface of the inner housing portion 8 is provided in a state where the lighting circuit 6 is held in the inner space of the inner housing portion 8. This gap is a gap that does not hinder the function of the pressure valve 5 of the electrolytic capacitor 4, that is, the pressure valve 5 can be opened. The pressure valve 5 is provided to operate when an abnormality occurs in the operation of the electrolytic capacitor 4.

(熱伝導部材1の構成)
図3および図4には、熱伝導部材1の構成が図示されている。図4に示すように、熱伝導部材1は、熱伝導性樹脂2と接着テープ3を有している。
(Configuration of heat conduction member 1)
3 and 4 show the configuration of the heat conducting member 1. As shown in FIG. 4, the heat conductive member 1 has a heat conductive resin 2 and an adhesive tape 3.

熱伝導性樹脂2は、曲げたわめることが可能な性質を有しており、可撓性を有するとともに、柔軟性および伸縮性を有する材料である。この材料は、具体的には、電気絶縁性を有する樹脂素材であって、例えば半固体のゲル状や(比較的粘度の高い)液状を呈する、シリコーン油脂やフッ素系不活性液体などである。熱伝導性樹脂2は、不燃性であることが好ましい。   The heat conductive resin 2 has a property capable of bending and bending, and is a material having flexibility and flexibility and stretchability. Specifically, this material is a resin material having electrical insulation, and is, for example, a silicone oil or a fluorine-based inert liquid that exhibits a semi-solid gel or a liquid (with relatively high viscosity). It is preferable that the heat conductive resin 2 is nonflammable.

さらに、熱伝導性樹脂2には、可撓性を有する範囲において、熱容量の増大を目的として(例えば粒子状または粉末状の)個体素材を混合させてもよい。   Further, the heat conductive resin 2 may be mixed with a solid material (for example, in the form of particles or powder) for the purpose of increasing the heat capacity within a flexible range.

なお、接着テープ3は、断面図にあるとおり2枚に図示されているが、これは表面のカバーと、そのカバーの下層に設けられた接着層(或いは粘着層)とを示している。カバーをはずすことで接着層の表面が現れるようになっている。   The adhesive tape 3 is shown in two as shown in the cross-sectional view, but this shows a surface cover and an adhesive layer (or adhesive layer) provided under the cover. The surface of the adhesive layer appears by removing the cover.

図4に示すように、熱伝導性樹脂2は、長辺の長さ寸法L、幅寸法W、厚さ寸法Dを有している。これらの寸法は、それぞれあらかじめ設定しておく。長さ寸法Lは、冷却対象となる電解コンデンサ4の筒状外郭4a(アルミケース)の外周寸法と略同じ寸法である。幅寸法Wは、冷却対象となる電解コンデンサ4の筒状外郭4a(アルミケース)の高さ寸法以下で略同じ寸法である。電解コンデンサ4の筒状外郭4a(アルミケース)が直径Rおよび高さTを有する略円筒形状であるので、L≦π×Rであるとともに、W≦Tである。   As shown in FIG. 4, the thermally conductive resin 2 has a long side length dimension L, a width dimension W, and a thickness dimension D. Each of these dimensions is set in advance. The length dimension L is substantially the same as the outer peripheral dimension of the cylindrical outer shell 4a (aluminum case) of the electrolytic capacitor 4 to be cooled. The width dimension W is substantially the same dimension below the height dimension of the cylindrical outer shell 4a (aluminum case) of the electrolytic capacitor 4 to be cooled. Since the cylindrical shell 4a (aluminum case) of the electrolytic capacitor 4 has a substantially cylindrical shape having a diameter R and a height T, L ≦ π × R and W ≦ T.

熱伝導部材1は、長さ寸法Lと幅寸法Wとで大きさが定義された表面を備えている。熱伝導部材1の一方の面(表面)が電解コンデンサ4の筒状外郭4a(アルミケース)に当たり、熱伝導部材1の他方の面(裏面)が放熱部材である樹脂製の内側筐体部8に当る。その結果、外側筐体部(金属筐体)10、口金部9とともに、電解コンデンサ4から外部雰囲気へといたる放熱経路が形成されている。 The heat conducting member 1 has a surface whose size is defined by a length dimension L and a width dimension W. One surface of the heat conductive member 1 (surface) comes into contact with the cylindrical outer 4a of the electrolytic capacitor 4 (aluminum case), the resin of the inner casing is a heat member release the other surface of the heat conducting member 1 (the back surface) of Eight. As a result, a heat dissipation path from the electrolytic capacitor 4 to the external atmosphere is formed together with the outer casing (metal casing) 10 and the base 9.

厚さ寸法Dは、熱伝導性樹脂2を電解コンデンサ4の筒状外郭4a(アルミケース)の全周にわたって表面を当接させたとき、電解コンデンサ4の筒状外郭4aと放熱部材(内側筐体部(樹脂筐体)8、外側筐体部(金属筐体)10、口金部9)との間隙の最大寸法以上の厚寸とする。実際には、熱伝導性樹脂2の可撓性を考慮して設定する。 Thickness D, when the thermally conductive resin 2 surface is brought into contact with the entire circumference of the cylindrical outer 4a of the electrolytic capacitor 4 (aluminum case), heating members release the cylindrical outer 4a of the electrolytic capacitor 4 (inner The thickness is equal to or greater than the maximum dimension of the gap between the casing (resin casing) 8, the outer casing (metal casing) 10, and the base 9). Actually, it is set in consideration of the flexibility of the heat conductive resin 2.

熱伝導性樹脂2の表面には、熱伝導部材1を電解コンデンサ4の筒状外郭4a(アルミケース)に貼合せるために、接着テープ3が配置されている。接着テープ3は、熱伝導性樹脂2の表面内に配置されるように、寸法L、Wよりも一回り小さい、長辺の長さ寸法lと幅寸法wとを有する。すなわち、l≦L、w≦Wの関係が成立する。なお、接着テープ3は一例であって、熱伝導性樹脂2を電解コンデンサ4に貼り付けるための接着層を設ければよい。   An adhesive tape 3 is disposed on the surface of the heat conductive resin 2 in order to bond the heat conductive member 1 to the cylindrical shell 4a (aluminum case) of the electrolytic capacitor 4. The adhesive tape 3 has a long side length dimension l and a width dimension w that are slightly smaller than the dimensions L and W so as to be disposed in the surface of the heat conductive resin 2. That is, the relationship of l ≦ L and w ≦ W is established. The adhesive tape 3 is an example, and an adhesive layer for attaching the heat conductive resin 2 to the electrolytic capacitor 4 may be provided.

[実施の形態1の製造方法]
図5は、本発明の実施の形態1にかかる照明ランプの製造方法を説明するためのフローチャートである。
[Production Method of Embodiment 1]
FIG. 5 is a flowchart for explaining the method of manufacturing the illumination lamp according to the first embodiment of the present invention.

図5のフローチャートは、先ず、照明ランプ100の構成部品を準備する準備工程が行われる。このうち、ステップS100は、熱伝導部材1以外の構成部品の準備を行うものである。つまり、最終的に組み立てるべき電解コンデンサ4、点灯回路6、光源7、内側筐体部8、口金部9、外側筐体部10、グローブ11の準備である。   In the flowchart of FIG. 5, first, a preparation process for preparing components of the illumination lamp 100 is performed. Among these, step S100 prepares components other than the heat conductive member 1. FIG. That is, preparation of the electrolytic capacitor 4, the lighting circuit 6, the light source 7, the inner housing part 8, the base part 9, the outer housing part 10, and the globe 11 to be finally assembled.

一方、ステップS102、S104、S106は、熱伝導部材1を準備する工程である。具体的には、ステップS102では、熱伝導部材1の設計を行う。熱伝導部材1は、熱伝導性樹脂2および接着テープ3により構成される。図4を用いて説明したように、熱伝導性樹脂2は、長辺の長さ寸法L、幅寸法W、厚さ寸法Dを有している。これらの各寸法は、上述したとおり、ステップS100で準備した構成部品との関係で決まる。接着テープ3の寸法についても、熱伝導性樹脂2の表面内に配置されるように、寸法L、Wよりも一回り小さい、長辺の長さ寸法lと幅寸法wに設計される。   On the other hand, steps S102, S104, and S106 are steps for preparing the heat conducting member 1. Specifically, in step S102, the heat conducting member 1 is designed. The heat conductive member 1 includes a heat conductive resin 2 and an adhesive tape 3. As described with reference to FIG. 4, the thermally conductive resin 2 has a long side length dimension L, a width dimension W, and a thickness dimension D. Each of these dimensions is determined by the relationship with the component prepared in step S100 as described above. The dimensions of the adhesive tape 3 are also designed to have a long side length dimension l and a width dimension w that are slightly smaller than the dimensions L and W so as to be disposed within the surface of the heat conductive resin 2.

次に、ステップS102において、ステップS102で決定した寸法L、Wに従って、厚さDを有する樹脂材料をカットすることで、熱伝導性樹脂2を形成する。製造方法としては、大面積の樹脂を型抜きしたり、長尺の樹脂を裁断したりするなどの方法で製造することができる。
さらに、ステップS106において、接着テープ3を寸法l、wに従ってカットし、熱伝導性樹脂2に貼り付ける。
以上により、熱伝導部材1を含む照明ランプ100の構成部品を準備することができる。
Next, in step S102, the heat conductive resin 2 is formed by cutting the resin material having the thickness D according to the dimensions L and W determined in step S102. As a manufacturing method, it can manufacture by methods, such as punching out resin of a large area or cutting long resin.
Further, in step S106, the adhesive tape 3 is cut according to the dimensions l and w and attached to the heat conductive resin 2.
As described above, the components of the illumination lamp 100 including the heat conducting member 1 can be prepared.

次に、電解コンデンサ4の筒状外郭4aに対して熱伝導性樹脂2を貼り付ける工程が実施される(ステップS108)。この取付工程は、筒状外郭4aの周方向に沿って筒状外郭4aに接するように熱伝導部材1を取り付ける工程である。圧力弁5を塞がないようにするためである。   Next, the process of sticking the heat conductive resin 2 to the cylindrical outer shell 4a of the electrolytic capacitor 4 is performed (step S108). This attachment process is a process of attaching the heat conducting member 1 so as to be in contact with the cylindrical outer shell 4a along the circumferential direction of the cylindrical outer shell 4a. This is to prevent the pressure valve 5 from being blocked.

その後、熱伝導部材1を取り付けた電解コンデンサ4を用いて、上述した照明ランプ100の構成部品を組み立てる(ステップS110)。これにより、照明ランプ100が完成する。この組立工程では、内側筐体部8内に電解コンデンサ4を配置して、熱伝導部材1を筒状外郭4aと内側筐体部8の内面との間に挟みこむ。   Then, the component part of the illumination lamp 100 mentioned above is assembled using the electrolytic capacitor 4 which attached the heat conductive member 1 (step S110). Thereby, the illumination lamp 100 is completed. In this assembling process, the electrolytic capacitor 4 is arranged in the inner casing 8 and the heat conducting member 1 is sandwiched between the cylindrical outer shell 4 a and the inner surface of the inner casing 8.

以上説明した実施の形態によれば、熱伝導部材1が、電解コンデンサ4の筒状外郭4aと内側筐体部8との間の隙間に介在し、両者の熱伝導経路を確保することができる。この熱伝導部材1が電解コンデンサ4や内側筐体部8の寸法の相違を吸収することができるので、生産性に優れる。   According to the embodiment described above, the heat conducting member 1 is interposed in the gap between the cylindrical outer shell 4a of the electrolytic capacitor 4 and the inner housing portion 8, and a heat conduction path between them can be secured. . Since this heat conducting member 1 can absorb the difference in dimensions of the electrolytic capacitor 4 and the inner housing part 8, it is excellent in productivity.

実施の形態1では、電解コンデンサ4の筒状外郭4a(アルミケース)の全周に貼合された熱伝導部材1の熱伝導媒体が、曲げたわめることが可能な可撓性を有している。樹脂素材である熱伝導性樹脂2としたので、電解コンデンサ4と内側筐体部8の内面との間隙を埋めるように、電解コンデンサ4の筒状外郭4a(アルミケース)と内側筐体部8の内面とに密着して把持される構成とすることができ、これによって、電解コンデンサ4(の筒状外郭4a(アルミケース))、熱伝導部材1、内側筐体部8、外側筐体部10(および/または口金部9)が照明ランプ100の外部への連続した熱伝達経路を形成し、電解コンデンサ4の冷却を促進することができる。   In the first embodiment, the heat conduction medium of the heat conduction member 1 bonded to the entire circumference of the cylindrical shell 4a (aluminum case) of the electrolytic capacitor 4 has flexibility that can be bent and bent. doing. Since the heat conductive resin 2 which is a resin material is used, the cylindrical outer shell 4a (aluminum case) of the electrolytic capacitor 4 and the inner casing portion 8 are filled so as to fill a gap between the electrolytic capacitor 4 and the inner surface of the inner casing portion 8. In this way, the electrolytic capacitor 4 (the cylindrical outer shell 4a (aluminum case)), the heat conducting member 1, the inner housing portion 8, and the outer housing portion can be formed. 10 (and / or the base portion 9) can form a continuous heat transfer path to the outside of the illumination lamp 100, and promote cooling of the electrolytic capacitor 4.

本実施の形態によれば、電解コンデンサにリップル電流を長時間印加したり大電流を印加したりして、発熱によって電解コンデンサ4の温度が上昇する環境であっても、電解コンデンサ4から照明ランプの外部への放熱経路が確保されているので、電解コンデンサ4は過度な温度上昇を招くことがない。あるいは、電解コンデンサ4の近傍に発熱量の大きい電子部品を配設して、電子部品が発する熱の影響を受けて電解コンデンサ4の温度が上昇する環境であっても、電解コンデンサ4から照明ランプの外部への放熱経路が確保されているので、電解コンデンサ4は過度な温度上昇を招くことがない。   According to the present embodiment, even in an environment in which a ripple current is applied to the electrolytic capacitor for a long time or a large current is applied and the temperature of the electrolytic capacitor 4 rises due to heat generation, the electrolytic capacitor 4 is used as an illumination lamp. Therefore, the electrolytic capacitor 4 does not cause an excessive temperature rise. Alternatively, even in an environment where an electronic component having a large calorific value is disposed in the vicinity of the electrolytic capacitor 4 and the temperature of the electrolytic capacitor 4 rises due to the influence of heat generated by the electronic component, the electrolytic capacitor 4 can be used as an illumination lamp. Therefore, the electrolytic capacitor 4 does not cause an excessive temperature rise.

この結果、電解コンデンサ4の動作寿命を長くすることができ、電解コンデンサ4を備える電子回路や電子機器の性能や品質を長期にわたって安定して維持することが可能となる。
具体的には、例えば、点灯回路の発熱量が比較的小さく点灯回路の冷却のためにシリコンやエポキシなどの冷却用の充填材を充填する必要がない場合でも、電解コンデンサだけは冷却を促進させて、電解コンデンサおよび(電解コンデンサを有する)点灯回路や照明ランプの動作寿命の延長を達成することができる。
As a result, the operating life of the electrolytic capacitor 4 can be extended, and the performance and quality of the electronic circuit and electronic device including the electrolytic capacitor 4 can be stably maintained over a long period of time.
Specifically, for example, even when the amount of heat generated in the lighting circuit is relatively small and it is not necessary to fill with a cooling filler such as silicon or epoxy for cooling the lighting circuit, only the electrolytic capacitor promotes cooling. Thus, the operating life of the electrolytic capacitor and the lighting circuit (including the electrolytic capacitor) and the lighting lamp can be extended.

また、本実施の形態によれば、熱伝導部材1の熱伝導媒体を、曲げたわめることが可能な可撓性と電気絶縁性とを有する樹脂素材である熱伝導性樹脂2としたので、安価に製造可能であるとともに、異なる外形寸法を有する複数種類の電解コンデンサが収容可能で、形状や寸法が異なる製品でも収納することができる。その結果、同一または少ない種類の熱伝導部材で、多くの種類の電解コンデンサ4に対応でき、多くの種類の製品に対応することができる。   Moreover, according to this Embodiment, it was set as the heat conductive resin 2 which is the resin material which has the flexibility and electric insulation which can be bent and the heat conductive medium of the heat conductive member 1 is bent. Therefore, it can be manufactured at low cost, and a plurality of types of electrolytic capacitors having different external dimensions can be accommodated, and even products having different shapes and dimensions can be accommodated. As a result, the same or a few types of heat conducting members can be used for many types of electrolytic capacitors 4 and can be used for many types of products.

そして、本実施の形態は、簡単に製造、組み立てが可能であるので、製造工程の簡素化と製造品質の安定化という効果も奏する。すなわち、電解コンデンサを含む回路部品をシリコンやポリウレタンなどの樹脂材料でポッティング(充填)して、電解コンデンサや他の回路部品を放熱する構成が広く用いられている。しかしながら、こういった構成は、製品に樹脂材料をポッティング(充填)する専用の設備と工程、および作業能力を必要とする。従って、製造コストを増大させ、量産性の観点から課題がある。
この点、本実施の形態によれば、熱伝導性樹脂2を電解コンデンサ4に巻きつけて貼り付け、これを内側筐体部8の間に挿入すれば足りるので、ポッティングよりも簡便な製造工程となる。
Since this embodiment can be easily manufactured and assembled, the manufacturing process can be simplified and the manufacturing quality can be stabilized. That is, a configuration is widely used in which a circuit component including an electrolytic capacitor is potted (filled) with a resin material such as silicon or polyurethane to radiate heat from the electrolytic capacitor or other circuit components. However, such a configuration requires a dedicated equipment and process for potting (filling) a resin material into a product, and work capacity. Therefore, there is a problem from the viewpoint of increasing the manufacturing cost and mass productivity.
In this respect, according to the present embodiment, it is sufficient to wrap and paste the heat conductive resin 2 around the electrolytic capacitor 4 and insert it between the inner housing parts 8, so that the manufacturing process is simpler than potting. It becomes.

さらに、本実施の形態では、熱伝導部材1の熱伝導媒体を、電解コンデンサ4の圧力弁を除く筒状外郭4aに貼合したので、電解コンデンサ4の動作に異常が生じたときに、電解コンデンサ4の圧力弁を正常に機能させることができる。   Furthermore, in this embodiment, since the heat conducting medium of the heat conducting member 1 is bonded to the cylindrical outer shell 4a excluding the pressure valve of the electrolytic capacitor 4, the electrolytic capacitor 4 is electrolyzed when an abnormality occurs in the operation of the electrolytic capacitor 4. The pressure valve of the capacitor 4 can function normally.

本実施の形態は、電解コンデンサ4および電解コンデンサ4を有する回路部品や照明ランプの長寿命化と品質向上および低コスト化を達成できる。   In the present embodiment, the electrolytic capacitor 4 and the circuit components having the electrolytic capacitor 4 and the illumination lamp can be extended in life, quality can be improved, and cost can be reduced.

低コスト化については、材料コストの低減(およびその結果としての製造コストの低減)が含まれている。材料コストの低減とは、電解コンデンサの耐熱仕様の緩和(つまり安価な電解コンデンサの採用)の意味も含んでいる。本実施の形態によれば、電解コンデンサの冷却や熱分散を行って電解コンデンサの動作環境を下げることができるので、耐熱性の低い安価な電解コンデンサを用いることが可能となるからである。   Lowering costs includes reducing material costs (and resulting manufacturing costs). The reduction of the material cost includes the meaning of relaxing the heat resistance specification of the electrolytic capacitor (that is, adopting an inexpensive electrolytic capacitor). This is because, according to the present embodiment, the electrolytic capacitor can be cooled or heat-dispersed to lower the operating environment of the electrolytic capacitor, so that an inexpensive electrolytic capacitor with low heat resistance can be used.

[実施の形態1の変形例]
なお、実施の形態1では電解コンデンサの筒状外郭4aはアルミケースとしたが、本発明はこれに限られず、筒状外郭4aは外装スリーブであっても良い。
[Modification of Embodiment 1]
In the first embodiment, the cylindrical shell 4a of the electrolytic capacitor is an aluminum case, but the present invention is not limited to this, and the cylindrical shell 4a may be an exterior sleeve.

実施の形態1では、熱伝導性樹脂2を、可撓性を有する材料で形成した。可撓性とは、曲げたわめることが可能な性質である。これに対し、熱伝導性樹脂2に代えて、弾性材料から構成し弾性変形が可能な弾性平面体を熱伝導性樹脂2と同様に電解コンデンサ4の筒状外郭4aに取り付けてもよい。電解コンデンサ4の側周面に沿って筒状に変形することができる程度の柔軟性、伸縮性を備えており、さらに放熱性(高熱伝導性)および電気絶縁性を有する材料であればよい。   In Embodiment 1, the heat conductive resin 2 is formed of a flexible material. Flexibility is a property that allows bending and bending. On the other hand, instead of the heat conductive resin 2, an elastic flat body made of an elastic material and capable of elastic deformation may be attached to the cylindrical outer shell 4 a of the electrolytic capacitor 4 in the same manner as the heat conductive resin 2. Any material may be used as long as it is flexible and stretchable enough to be deformed into a cylindrical shape along the side peripheral surface of the electrolytic capacitor 4 and further has heat dissipation (high thermal conductivity) and electrical insulation.

なお、熱伝導性樹脂2の形状は、様々なバリエーションが考えられる。例えば熱伝導性樹脂2が、四角柱の形状であってもよい。また、熱伝導性樹脂2が、直方体の形状であってもよい。   In addition, the variation of the shape of the heat conductive resin 2 can be considered. For example, the heat conductive resin 2 may have a quadrangular prism shape. Further, the heat conductive resin 2 may have a rectangular parallelepiped shape.

図16は、本発明の実施の形態の変形例を説明するための正面図であり、熱伝導部材の構成のバリエーションを示す図である。図16(a)には、実施の形態1にかかる電解コンデンサ4の構成を、圧力弁5を正面に見るように図示したものである。図16(b)は、四角柱(直方体)の形状を有する熱伝導部材1gを有する電解コンデンサ41を示す図である。   FIG. 16 is a front view for explaining a modification of the embodiment of the present invention, and is a diagram showing a variation of the configuration of the heat conducting member. FIG. 16A illustrates the configuration of the electrolytic capacitor 4 according to the first embodiment so that the pressure valve 5 is viewed from the front. FIG. 16B is a diagram showing an electrolytic capacitor 41 having a heat conducting member 1g having a quadrangular prism (cuboid) shape.

熱伝導部材1gは、実施の形態1で熱伝導部材1で述べたのと同様に、樹脂などの熱伝導材料から形成することができる。形状を四角柱、直方体とすることにより、熱伝導部材の体積を増加させることができるので、円筒状の形状よりも放熱性を向上させることができる。すなわち、外形を四角柱とすることで、平面部の面積が1倍よりも大きくなる。熱伝導部材の体積は、長さ(直径)を同じとし、熱伝導部材の最薄部、および長尺部分(つまり図16の紙面奥行き方向寸法であり、幅寸法W)を同一とすれば、円筒状よりも四角柱状のほうが、必然的に大きくなる。   The heat conductive member 1g can be formed of a heat conductive material such as a resin as described in the heat conductive member 1 in the first embodiment. Since the volume of the heat conducting member can be increased by making the shape a quadrangular prism or a rectangular parallelepiped, the heat dissipation can be improved as compared with the cylindrical shape. That is, by making the outer shape a quadrangular prism, the area of the plane portion becomes larger than one time. If the volume of the heat conducting member is the same length (diameter), and the thinnest part of the heat conducting member and the long part (that is, the dimension in the depth direction of the paper in FIG. 16 and the width dimension W) are the same, The square column shape is inevitably larger than the cylindrical shape.

ここで、四角柱状とした熱伝導部材1gの体積増加分だけ、実施の形態1にかかる照明ランプ100の内側筐体部8の内径を増大させるものとする。そうすると、内側筐体部8の材料(プラスチック等)が占める割合と熱伝導部材1gの材料(接着テープを除き、実質的には熱伝導性樹脂)とが占める割合を考えた場合に、本変形例のほうが熱伝導部材を多く備えることができる。このため、より放熱性の高い熱伝導部材を多く取り入れた放熱構造とすることができる。その結果、電解コンデンサ4の放熱性能を向上することができる。   Here, it is assumed that the inner diameter of the inner housing portion 8 of the illumination lamp 100 according to the first embodiment is increased by the volume increase of the heat conducting member 1g having a quadrangular prism shape. Then, when considering the ratio occupied by the material of the inner casing 8 (plastic etc.) and the ratio of the material of the heat conductive member 1g (substantially heat conductive resin excluding the adhesive tape), this deformation The example can have more heat conducting members. For this reason, it can be set as the heat dissipation structure which took in more heat conductive members with higher heat dissipation. As a result, the heat dissipation performance of the electrolytic capacitor 4 can be improved.

図16(c)は、熱伝導部材の最薄部を同一としたときの、円筒状の熱伝導部材1と四角柱状の熱伝導部材1gとの断面積差を説明するための図である。図16(a)に示す熱伝導部材1の断面積をSaとし、図16(b)に示す熱伝導部材1gの断面積をSbとする。そして、電解コンデンサ4の筒状外郭4aの半径をrとする。また、熱伝導部材1、1gの最薄部をtとする。但し、熱伝導部材1は均一な厚さであるから、最薄部は均一なtである。図16(c)においてハッチングを付した領域が、面積Sb−面積Saすなわち面積増加分である。rおよびtを用いてSb−Saを計算すると、下記の式(1)が成立する。   FIG. 16C is a diagram for explaining a cross-sectional area difference between the cylindrical heat conductive member 1 and the square columnar heat conductive member 1g when the thinnest portion of the heat conductive member is the same. The sectional area of the heat conducting member 1 shown in FIG. 16 (a) is Sa, and the sectional area of the heat conducting member 1g shown in FIG. 16 (b) is Sb. The radius of the cylindrical outer shell 4a of the electrolytic capacitor 4 is r. Further, the thinnest part of the heat conducting members 1 and 1g is t. However, since the heat conducting member 1 has a uniform thickness, the thinnest portion has a uniform t. In FIG. 16C, the hatched region is area Sb−area Sa, that is, an area increase. When Sb-Sa is calculated using r and t, the following equation (1) is established.

Sb−Sa = (4−π)(r+t) > 0 ・・・(1) Sb−Sa = (4-π) (r + t) 2 > 0 (1)

式(1)の右辺に示すとおり、Sb−Saはかならず正の値となる。従って、断面積Sbは常に断面積Saよりも大きくなる。よって、四角柱状を用いることで、確実に熱伝導性材料を増加させることができる。   As shown on the right side of Expression (1), Sb-Sa is always a positive value. Therefore, the sectional area Sb is always larger than the sectional area Sa. Therefore, the use of the rectangular column shape can surely increase the heat conductive material.

実施の形態1では、光源7は、LEDであった。しかしながら本発明はこれに限られるものではない。光源7は、レーザーダイオード、有機EL、蛍光ランプのいずれかであってもよい。   In the first embodiment, the light source 7 is an LED. However, the present invention is not limited to this. The light source 7 may be a laser diode, an organic EL, or a fluorescent lamp.

実施の形態2.
図6は、本発明の実施の形態2にかかる熱伝導部材1aの主要構成を示す平面図および断面図である。これ以外の構成、製造方法については、実施の形態1と同様であるため、説明を省略する。
Embodiment 2. FIG.
FIG. 6 is a plan view and a cross-sectional view showing the main configuration of the heat conducting member 1a according to the second embodiment of the present invention. Other configurations and manufacturing methods are the same as those in the first embodiment, and thus description thereof is omitted.

図6に示すように、熱伝導性樹脂2の長辺の長さ寸法Lと幅寸法Wとで定義される表面には、接着テープ3aが配置されている。接着テープ3aは、熱伝導部材1aを電解コンデンサ4の筒状外郭4a(アルミケース)に貼合せるために設けられる。   As shown in FIG. 6, an adhesive tape 3 a is disposed on the surface defined by the length dimension L and the width dimension W of the long side of the heat conductive resin 2. The adhesive tape 3 a is provided for bonding the heat conducting member 1 a to the cylindrical outer shell 4 a (aluminum case) of the electrolytic capacitor 4.

接着テープ3aは、熱伝導性樹脂2の表面内に配置されるように、長編の長さ寸法Lと幅寸法wとを設定する。w≦Wである点は実施の形態1と同じだが、実施の形態2では、l=Lとしている。つまり、熱伝導性樹脂2aと接着テープ3aはともに同じ長手方向寸法を有しており、熱伝導部材1aの長手方向両端で熱伝導性樹脂2aおよび接着テープ3aの端部が一致している。   The adhesive tape 3a sets the length dimension L and the width dimension w of the long length so as to be arranged in the surface of the heat conductive resin 2. The point that w ≦ W is the same as in the first embodiment, but in the second embodiment, l = L. That is, both the heat conductive resin 2a and the adhesive tape 3a have the same longitudinal dimension, and the ends of the heat conductive resin 2a and the adhesive tape 3a coincide with each other at both longitudinal ends of the heat conductive member 1a.

実施の形態2にかかる製造方法は、実施の形態1にかかる製造方法を示す図5のフローチャートを参照すると、熱伝導部材を準備するための準備工程(ステップS102およびS106)が異なる。実施の形態2にかかる熱伝導部材1aは、実施の形態2の熱伝導部材1aは、長尺の熱伝導性樹脂2にあらかじめ接着テープ3aを配置した状態で、熱伝導性樹脂2と接着テープ3aとを一度に裁断することで得られる。これにより、熱伝導部材1aの製造の自動化や製造コストの低減の効果を奏する。実施の形態1にかかる製造方法を示す図5のフローチャートを参照すると、ステップS102およびS106の工程が、実施の形態1と実施の形態2とでは異なる。   In the manufacturing method according to the second embodiment, referring to the flowchart of FIG. 5 showing the manufacturing method according to the first embodiment, the preparation steps (steps S102 and S106) for preparing the heat conducting member are different. The heat conductive member 1a according to the second embodiment is the same as the heat conductive member 1a according to the second embodiment, in which the adhesive tape 3a is arranged in advance on the long heat conductive resin 2. It is obtained by cutting 3a at a time. Thereby, there exists an effect of automation of manufacture of heat conductive member 1a, and reduction of manufacturing cost. Referring to the flowchart of FIG. 5 showing the manufacturing method according to the first embodiment, the steps S102 and S106 are different between the first embodiment and the second embodiment.

なお、接着テープ3aの構成は一例であって、接着テープ以外の方法で、接着層、粘着層を設けても良い。   In addition, the structure of the adhesive tape 3a is an example, Comprising: You may provide an adhesive layer and an adhesion layer by methods other than an adhesive tape.

実施の形態3.
図7は、本発明の実施の形態3にかかる熱伝導部材1bの主要構成を示す平面図および断面図である。これ以外の構成、製造方法については、実施の形態1と同様であるため、説明を省略する。
Embodiment 3 FIG.
FIG. 7: is the top view and sectional drawing which show the main structures of the heat conductive member 1b concerning Embodiment 3 of this invention. Other configurations and manufacturing methods are the same as those in the first embodiment, and thus description thereof is omitted.

図7に示すように、熱伝導性樹脂2aの長辺の長さ寸法Lと幅寸法Wとで定義される表面には、熱伝導部材1bを電解コンデンサ4の筒状外郭4a(アルミケース)に貼合せるために、接着テープ3bが配置されている。   As shown in FIG. 7, on the surface defined by the length dimension L and the width dimension W of the long side of the heat conductive resin 2a, the heat conductive member 1b is attached to the cylindrical shell 4a (aluminum case) of the electrolytic capacitor 4. An adhesive tape 3b is disposed for bonding to the tape.

接着テープ3bは、熱伝導性樹脂2aの表面内に配置されるように、長編の長さ寸法Lと幅寸法wとを備える。ここで、実施の形態2と同様に、w≦Wでありl=Lである。ただし、実施の形態2にかかる熱伝導部材1aは平面形状が長方形だったのに対し、実施の形態3にかかる熱伝導部材1bは平面形状が平行四辺形である。   The adhesive tape 3b includes a long length L and a width w so that the adhesive tape 3b is disposed within the surface of the heat conductive resin 2a. Here, as in the second embodiment, w ≦ W and l = L. However, while the heat conducting member 1a according to the second embodiment has a rectangular planar shape, the heat conducting member 1b according to the third embodiment has a parallelogram shape.

実施の形態3にかかる製造方法は、実施の形態1にかかる製造方法を示す図5のフローチャートを参照すると、熱伝導部材を準備するための準備工程(ステップS102およびS106)が異なる。実施の形態3にかかる熱伝導部材1bも、実施の形態2にかかる熱伝導部材1aと同様に、長尺の熱伝導性樹脂2aにあらかじめ接着テープ3bを配置した状態で、熱伝導部材1bを長尺方向に移動させながら、熱伝導性樹脂2aと接着テープ3bとを一度に裁断することで得られる。裁断は、レーザーカッターなどを用いて行えばよい。これにより、熱伝導部材1bの製造の自動化や製造コストの低減の効果を奏する。   In the manufacturing method according to the third embodiment, referring to the flowchart of FIG. 5 showing the manufacturing method according to the first embodiment, the preparation steps (steps S102 and S106) for preparing the heat conducting member are different. Similarly to the heat conduction member 1a according to the second embodiment, the heat conduction member 1b according to the third embodiment also has the heat conduction member 1b with the adhesive tape 3b disposed in advance on the long heat conductive resin 2a. It is obtained by cutting the heat conductive resin 2a and the adhesive tape 3b at a time while moving in the longitudinal direction. The cutting may be performed using a laser cutter or the like. Thereby, there exists an effect of automation of manufacture of heat conductive member 1b, and reduction of manufacturing cost.

実施の形態4.
図8は、本発明の実施の形態4にかかる熱伝導部材1cの主要構成およびその製造方法を示す斜視図である。これ以外の構成、製造方法については、実施の形態1と同様であるため、説明を省略する。
Embodiment 4 FIG.
FIG. 8 is a perspective view showing the main configuration of the heat conducting member 1c according to the fourth embodiment of the present invention and the manufacturing method thereof. Other configurations and manufacturing methods are the same as those in the first embodiment, and thus description thereof is omitted.

実施の形態4にかかる製造方法は、実施の形態1にかかる製造方法を示す図5のフローチャートを参照すると、熱伝導部材を準備するための準備工程(ステップS102およびS106)が異なる。図8に示すように、熱伝導部材1cは、あらかじめ筒状長尺に製造された熱伝導性樹脂2bを所定の間隔Wごとに、図のカット位置Cにおいて裁断することで製造される。このとき、図8に示すように、熱伝導性樹脂2bの内径R1は、筒状外郭4aの直径Rとの関係ではR1≦Rとする。また、熱伝導性樹脂2bを裁断すべき幅Wは、筒状外郭4aの高さTとの関係で、W≦Tである。   The manufacturing method according to the fourth embodiment is different from the flowchart of FIG. 5 showing the manufacturing method according to the first embodiment in the preparation steps (steps S102 and S106) for preparing the heat conducting member. As shown in FIG. 8, the heat conductive member 1c is manufactured by cutting the heat conductive resin 2b manufactured in advance in a cylindrical shape at a predetermined position W at a cutting position C in the drawing. At this time, as shown in FIG. 8, the inner diameter R1 of the heat conductive resin 2b is set to R1 ≦ R in relation to the diameter R of the cylindrical outer shell 4a. The width W for cutting the heat conductive resin 2b is W ≦ T in relation to the height T of the cylindrical outer shell 4a.

ここで、熱伝導性樹脂2bは、弾性変形が可能な弾性材料を選択する。少なくとも、筒状の熱伝導部材1cを、電解コンデンサ4の筒状外郭4aに被せるために引き伸ばしても、復元して筒状外郭4aに対して密着性を確保できる程度の弾性変形が求められる。これにより、接着テープなどの接着手段を用いなくとも電解コンデンサ4の筒状外郭4a(アルミケース)に密着固定させることが可能である。これによって、熱伝導部材1cの製造の自動化や製造コストの低減に加え、材料コストの低減の効果を奏する。   Here, as the heat conductive resin 2b, an elastic material capable of elastic deformation is selected. At least, even if the tubular heat conducting member 1c is stretched to cover the tubular outer shell 4a of the electrolytic capacitor 4, it is required to be elastically deformed to such an extent that it can be restored to ensure adhesion to the tubular outer shell 4a. Thereby, it is possible to adhere and fix to the cylindrical outer shell 4a (aluminum case) of the electrolytic capacitor 4 without using an adhesive means such as an adhesive tape. Thereby, in addition to the automation of the manufacture of the heat conducting member 1c and the reduction of the manufacturing cost, there is an effect of reducing the material cost.

実施の形態5.
図9は、本発明の実施の形態5にかかる熱伝導部材1dの構成を示す斜視図である。図10は、本発明の実施の形態5にかかる熱伝導部材1dを取り付けた電解コンデンサ4の構成を示す斜視図である。これ以外の構成、製造方法については、実施の形態1と同様であるため、説明を省略する。
Embodiment 5. FIG.
FIG. 9 is a perspective view showing a configuration of a heat conducting member 1d according to the fifth embodiment of the present invention. FIG. 10 is a perspective view showing the configuration of the electrolytic capacitor 4 to which the heat conducting member 1d according to the fifth embodiment of the present invention is attached. Other configurations and manufacturing methods are the same as those in the first embodiment, and thus description thereof is omitted.

図9に示すように、熱伝導部材1dは、熱伝導性編組体20によって構成される筒状の部材である。熱伝導性編組体20の内径R2は、電解コンデンサ4の筒状外郭4aの直径Rとの関係で、R2≦Rとする。また、熱伝導性編組体20の幅Wと、筒状外郭4aの高さTとの関係は、W≦Tとする。   As shown in FIG. 9, the heat conductive member 1 d is a cylindrical member constituted by the heat conductive braided body 20. The inner diameter R2 of the thermally conductive braided body 20 is set to R2 ≦ R in relation to the diameter R of the cylindrical outer shell 4a of the electrolytic capacitor 4. Further, the relationship between the width W of the heat conductive braid 20 and the height T of the cylindrical outer shell 4a is W ≦ T.

熱伝導部材1dとして熱伝導性編組体(筒状金属メッシュ)20を用いることで、電解コンデンサ4の冷却が一層促進される。熱伝導性編組体(筒状金属メッシュ)20は弾性を有しており、接着テープなどの接着層を設けなくとも電解コンデンサ4の筒状外郭4a(アルミケース)に密着固定させることが可能である。これによって、熱伝導部材1cの製造の自動化や製造コストの低減に加え、材料コストの低減の効果を奏する。   By using the heat conductive braided body (cylindrical metal mesh) 20 as the heat conductive member 1d, cooling of the electrolytic capacitor 4 is further promoted. The thermally conductive braided body (cylindrical metal mesh) 20 has elasticity, and can be tightly fixed to the cylindrical outer shell 4a (aluminum case) of the electrolytic capacitor 4 without providing an adhesive layer such as an adhesive tape. is there. Thereby, in addition to the automation of the manufacture of the heat conducting member 1c and the reduction of the manufacturing cost, there is an effect of reducing the material cost.

電解コンデンサ4は熱伝導部材1を装着した状態で、(図1と同様に)照明ランプ100の内側筐体部8の内部空間の口金部9側に内包収容される。そして、熱伝導性編組体(筒状金属メッシュ)20は弾性を有しており、内側筐体部8の内面に密着して放熱経路を形成する。なお、このとき、熱伝導性編組体(筒状金属メッシュ)20は電解コンデンサ4の圧力弁5を塞がない。   The electrolytic capacitor 4 is enclosed and accommodated on the base 9 side of the internal space of the inner housing portion 8 of the illumination lamp 100 with the heat conducting member 1 mounted (similar to FIG. 1). The heat conductive braided body (cylindrical metal mesh) 20 has elasticity and is in close contact with the inner surface of the inner housing portion 8 to form a heat dissipation path. At this time, the heat conductive braided body (tubular metal mesh) 20 does not block the pressure valve 5 of the electrolytic capacitor 4.

実施の形態5にかかる製造方法は、実施の形態1にかかる製造方法を示す図5のフローチャートを参照すると、熱伝導部材を準備するための準備工程(ステップS102およびS106)並びに熱伝導部材1dを電解コンデンサ4に取り付ける取付工程(S108)の内容が異なる。熱伝導性編組体20は、あらかじめ筒状長尺に製造された熱伝導性編組体(筒状金属メッシュ)を所定の長さ(幅Wの長さ)で裁断して得ることができる。   As for the manufacturing method according to the fifth embodiment, referring to the flowchart of FIG. 5 showing the manufacturing method according to the first embodiment, the preparation steps (steps S102 and S106) for preparing the heat conducting member and the heat conducting member 1d are prepared. The content of the attachment process (S108) attached to the electrolytic capacitor 4 is different. The heat conductive braided body 20 can be obtained by cutting a heat conductive braided body (cylindrical metal mesh), which has been manufactured in a cylindrical shape in advance, with a predetermined length (length of width W).

なお、実施の形態5では、熱伝導部材1dを1層構造としたが、本発明はこれに限られず、複数の層としてもよい。つまり、径の異なる複数の熱伝導部材1dを重ねて電解コンデンサ4の筒状外郭4aに被せてもよい。   In the fifth embodiment, the heat conducting member 1d has a single-layer structure, but the present invention is not limited to this and may have a plurality of layers. That is, a plurality of heat conducting members 1 d having different diameters may be overlapped and covered on the cylindrical outer shell 4 a of the electrolytic capacitor 4.

また、実施の形態5では、熱伝導性編組体20を筒状金属メッシュとしたが、本発明はこれに限られない。熱伝導性を有するという特徴を有していれば良く、樹脂性の編組体表面に(鍍金、蒸着、塗装などの方法で)金属を敷設した構成を用いても良い。   Moreover, in Embodiment 5, although the heat conductive braided body 20 was used as the cylindrical metal mesh, this invention is not limited to this. Any structure having thermal conductivity may be used, and a structure in which a metal is laid on the surface of the resinous braided body (by plating, vapor deposition, painting, or the like) may be used.

また、実施の形態5では、熱伝導部材1dの内面には接着層を設けなかったが、本発明はこれに限られず、熱伝導部材1dの内面に接着テープ3や他の接着層を設けてもよい。   In Embodiment 5, the adhesive layer is not provided on the inner surface of the heat conducting member 1d. However, the present invention is not limited to this, and the adhesive tape 3 or other adhesive layer is provided on the inner surface of the heat conducting member 1d. Also good.

また、実施の形態5では、熱伝導部材1dを、筒状の金属メッシュを裁断することで製造することができる。しかしながら、本発明はこれに限られない。実施の形態1乃至3で熱伝導性樹脂の平面体を裁断して電解コンデンサ4の筒状外郭4aに巻きつけたのと同様に、熱伝導部材1dを金属メッシュの平面体から裁断したものを電解コンデンサ4の筒状外郭4aに接着層(接着テープ)を介在させて巻きつけてもよい。   Moreover, in Embodiment 5, the heat conductive member 1d can be manufactured by cutting a cylindrical metal mesh. However, the present invention is not limited to this. In the same manner as in the first to third embodiments, the heat conductive resin 1 d is cut from the metal mesh flat body in the same manner as the heat conductive resin flat body is cut and wound around the cylindrical shell 4 a of the electrolytic capacitor 4. The electrolytic capacitor 4 may be wound around the cylindrical outer shell 4a with an adhesive layer (adhesive tape) interposed therebetween.

実施の形態6.
図11は、本発明の実施の形態6にかかる熱伝導部材1eの構成を示す分解斜視図である。図12は、本発明の実施の形態6にかかる熱伝導部材1eを取り付けた電解コンデンサ4の構成を示す斜視図である。これ以外の構成、製造方法については、実施の形態1と同様であるため、説明を省略する。
Embodiment 6 FIG.
FIG. 11 is an exploded perspective view showing the configuration of the heat conducting member 1e according to the sixth embodiment of the present invention. FIG. 12 is a perspective view showing the configuration of the electrolytic capacitor 4 to which the heat conducting member 1e according to the sixth embodiment of the present invention is attached. Other configurations and manufacturing methods are the same as those in the first embodiment, and thus description thereof is omitted.

図11に示すように、熱伝導部材1eは、あらかじめ筒状長尺に製造された2つの熱伝導性編組体(筒状金属メッシュ)20a、20b、および熱伝導性樹脂2cが重ねられることによって構成されている。つまり、熱伝導部材1eは、筒状の3層構造である。   As shown in FIG. 11, the heat conductive member 1e is formed by stacking two heat conductive braided bodies (cylindrical metal meshes) 20a and 20b and a heat conductive resin 2c, which are manufactured in a long cylindrical shape in advance. It is configured. That is, the heat conducting member 1e has a cylindrical three-layer structure.

図12に示すように熱伝導部材1eが電解コンデンサ4に取り付けられることで、熱伝導性樹脂2cが筒状外郭4aの周方向に沿って筒状外郭4aに接しつつ筒状外郭4aと内側筐体部8内面との間に挟まれることになる。そして、熱伝導性樹脂2cの外側および内側にはそれぞれ熱伝導性編組体20a、20bが位置している。したがって、熱伝導性編組体20a、20bが、筒状外郭4aの周方向に沿って筒状外郭に接しつつ、筒状外郭4aと内側筐体部8の内面との間に挟まれることになる。その結果、筒状の3層構造からなる熱伝導部材1eが、電解コンデンサ4の筒状外郭4aと内側筐体部8の内面との間に挟みこまれ、両者の熱伝達経路を構成することができる。   As shown in FIG. 12, the heat conductive member 1e is attached to the electrolytic capacitor 4, so that the heat conductive resin 2c is in contact with the cylindrical outer shell 4a along the circumferential direction of the cylindrical outer shell 4a and the inner shell 4a. It will be sandwiched between the inner surface of the body part 8. And the heat conductive braided bodies 20a and 20b are located on the outer side and the inner side of the heat conductive resin 2c, respectively. Therefore, the heat conductive braided bodies 20a and 20b are sandwiched between the cylindrical outer shell 4a and the inner surface of the inner housing portion 8 while contacting the cylindrical outer shell along the circumferential direction of the cylindrical outer shell 4a. . As a result, the heat conducting member 1e having a cylindrical three-layer structure is sandwiched between the cylindrical outer shell 4a of the electrolytic capacitor 4 and the inner surface of the inner housing portion 8, thereby constituting a heat transfer path therebetween. Can do.

熱伝導部材1eとして熱伝導性編組体(筒状金属メッシュ)20a、20bおよび熱伝導性樹脂2cを積層して用いることで、電解コンデンサ4の冷却が一層促進される。   By using the heat conductive braids (cylindrical metal mesh) 20a, 20b and the heat conductive resin 2c as the heat conductive member 1e, the cooling of the electrolytic capacitor 4 is further promoted.

また、2層目には熱容量の大きい材質を採用することが好ましい。これにより、電解コンデンサ4の熱分散を促進する効果を奏するからであり、熱伝導性樹脂2cをそのような観点から高い熱容量を有する樹脂材料を選択するものとする。   Moreover, it is preferable to employ a material having a large heat capacity for the second layer. This is because the effect of promoting heat dispersion of the electrolytic capacitor 4 is exhibited, and a resin material having a high heat capacity is selected as the thermally conductive resin 2c from such a viewpoint.

実施の形態6にかかる製造方法は、実施の形態1にかかる製造方法を示す図5のフローチャートを参照すると、熱伝導部材を準備するための準備工程(ステップS102およびS106)並びに熱伝導部材1eを電解コンデンサ4に取り付ける取付工程(S108)の内容が異なる。   As for the manufacturing method according to the sixth embodiment, referring to the flowchart of FIG. 5 showing the manufacturing method according to the first embodiment, the preparation steps (steps S102 and S106) for preparing the heat conducting member and the heat conducting member 1e are prepared. The content of the attachment process (S108) attached to the electrolytic capacitor 4 is different.

熱伝導性編組体20a、20bおよび熱伝導性樹脂2cを製造するためには、先ず、それぞれ異なる内径R3,R4,R5の筒状に形成されたものを所定の長さ(幅W)で裁断する。ただし、内径にはR3≦R4≦R5の関係、つまり内径R5がもっとも大きく、図11に矢印で示すように熱伝導性編組体20a、20bおよび熱伝導性樹脂2cを重ねることができる関係性が必要である。その後、熱伝導性編組体(筒状金属メッシュ)20aを最も内側として、熱伝導性樹脂2c、熱伝導性編組体(筒状金属メッシュ)20bの順に重ねることで製造する。このとき、熱伝導性編組体20aの内径R3および幅Wは、電解コンデンサ4の筒状外郭4aの直径Rおよび高さTとの関係で、R3≦R、かつW≦Tとする。   In order to manufacture the heat conductive braids 20a and 20b and the heat conductive resin 2c, first, the cylindrical shapes having different inner diameters R3, R4, and R5 are cut to a predetermined length (width W). To do. However, the inner diameter has a relationship of R3 ≦ R4 ≦ R5, that is, the inner diameter R5 is the largest, and as shown by the arrow in FIG. is necessary. Thereafter, the heat conductive braided body (cylindrical metal mesh) 20a is set as the innermost side, and the heat conductive resin 2c and the heat conductive braided body (cylindrical metal mesh) 20b are stacked in this order. At this time, the inner diameter R3 and the width W of the heat conductive braid 20a are set such that R3 ≦ R and W ≦ T in relation to the diameter R and the height T of the cylindrical outer shell 4a of the electrolytic capacitor 4.

熱伝導性編組体(筒状金属メッシュ)20a、20bおよび熱伝導性樹脂2cは、いずれも弾性を有している。したがって、これらを重ねた3層構造の筒状部材を広げて(内径を引き伸ばして)、電解コンデンサ4の筒状外郭4aに被せることができる。接着テープなどの接着手段を用いなくとも電解コンデンサ4の筒状外郭4a(アルミケース)に密着固定させることが可能である。これによって、材料コストの低減の効果とともに、熱伝導部材1eの製造の自動化や製造コストの低減が容易である。   The thermally conductive braided bodies (tubular metal mesh) 20a, 20b and the thermally conductive resin 2c all have elasticity. Therefore, a cylindrical member having a three-layer structure in which these are stacked can be expanded (the inner diameter is expanded) and covered with the cylindrical outer shell 4 a of the electrolytic capacitor 4. Even without using an adhesive means such as an adhesive tape, it is possible to tightly fix to the cylindrical outer shell 4a (aluminum case) of the electrolytic capacitor 4. Thereby, it is easy to automate the manufacture of the heat conducting member 1e and reduce the manufacturing cost, together with the effect of reducing the material cost.

なお、実施の形態6では、熱伝導部材1eを構成する各筒状体をそれぞれ1層構造としたが、本発明はこれに限られず、各筒状体の少なくとも1つを複数の層としてもよい。   In the sixth embodiment, each cylindrical body constituting the heat conducting member 1e has a single-layer structure. However, the present invention is not limited to this, and at least one of the cylindrical bodies may be a plurality of layers. Good.

また、実施の形態6では、熱伝導部材1eの内面(つまり熱伝導性編組体20aの内面)には接着層を設けなかったが、本発明はこれに限られず、熱伝導部材1eの内面に接着テープ3や他の接着層を設けてもよい。   In the sixth embodiment, the adhesive layer is not provided on the inner surface of the heat conductive member 1e (that is, the inner surface of the heat conductive braid 20a). However, the present invention is not limited to this, and the inner surface of the heat conductive member 1e is provided. An adhesive tape 3 or other adhesive layer may be provided.

また、実施の形態6では、熱伝導部材1eを、筒状の金属メッシュおよび熱伝導性樹脂を裁断することで製造することができる。しかしながら、本発明はこれに限られない。実施の形態1乃至3で熱伝導性樹脂の平面体を裁断して電解コンデンサ4の筒状外郭4aに巻きつけたのと同様に、熱伝導部材1eを、金属メッシュの平面体や熱伝導性樹脂材料の平面体から裁断して作成した複数の長尺体を、それぞれ、電解コンデンサ4の筒状外郭4aに接着層(接着テープ)を介在させて巻きつけてもよい。   Moreover, in Embodiment 6, the heat conductive member 1e can be manufactured by cutting a cylindrical metal mesh and a heat conductive resin. However, the present invention is not limited to this. In the same manner as in Embodiments 1 to 3, the thermal conductive resin planar body is cut and wound around the cylindrical outer shell 4a of the electrolytic capacitor 4, and the thermal conductive member 1e is made of a metal mesh planar body or thermal conductive material. A plurality of long bodies formed by cutting from a planar body of resin material may be wound around the cylindrical outer shell 4a of the electrolytic capacitor 4 with an adhesive layer (adhesive tape) interposed therebetween.

実施の形態7.
図13および図14は、本発明の実施の形態7にかかる熱伝導部材1fの構成を示す斜視図である。図15は、本発明の実施の形態7にかかる熱伝導部材1fを取り付けた電解コンデンサ4の構成を示す斜視図である。これ以外の構成、製造方法については、実施の形態1と同様であるため、説明を省略する。
Embodiment 7 FIG.
13 and 14 are perspective views showing the configuration of the heat conducting member 1f according to the seventh embodiment of the present invention. FIG. 15 is a perspective view showing the configuration of the electrolytic capacitor 4 to which the heat conducting member 1f according to the seventh embodiment of the present invention is attached. Other configurations and manufacturing methods are the same as those in the first embodiment, and thus description thereof is omitted.

本実施の形態では、図13に示すように熱伝導性編組体(筒状金属メッシュ)20cを図中矢印に示すように折り返して袋状とする。そして、図14に示すように袋状の熱伝導性編組体20cに熱伝導性樹脂2dを挿入することで、熱伝導部材1fを構成するものとする。   In the present embodiment, as shown in FIG. 13, the heat conductive braided body (tubular metal mesh) 20c is folded back as shown by the arrow in the figure to form a bag. And as shown in FIG. 14, the heat conductive member 1f shall be comprised by inserting the heat conductive resin 2d in the bag-shaped heat conductive braided body 20c.

本実施の形態では、熱伝導性編組体20cを、内側に折り返す。折り返さない状態における熱伝導性編組体20cの内径はR6であり、折り返して2層となったときの熱伝導性編組体20cの最も内側部分の内径は、R8である。R8は、電解コンデンサ4の筒状外郭4aの直径Rとの関係では、R8≦Rとする。一方、折り返した後の熱伝導性編組体20cの幅W1と、電解コンデンサ4の筒状外郭4aの高さTとの関係で、W1≦Tとする。   In the present embodiment, the heat conductive braid 20c is folded back inward. The inner diameter of the thermally conductive braid 20c when not folded is R6, and the inner diameter of the innermost portion of the thermally conductive braid 20c when folded into two layers is R8. R8 is set to R8 ≦ R in relation to the diameter R of the cylindrical outer shell 4a of the electrolytic capacitor 4. On the other hand, the relationship between the width W1 of the folded heat conductive braid 20c and the height T of the cylindrical outer shell 4a of the electrolytic capacitor 4 satisfies W1 ≦ T.

実施の形態7にかかる製造方法は、実施の形態1にかかる製造方法を示す図5のフローチャートを参照すると、熱伝導部材を準備するための準備工程(ステップS102およびS106)並びに熱伝導部材1fを電解コンデンサ4に取り付ける取付工程(S108)の内容が異なる。   For the manufacturing method according to the seventh embodiment, referring to the flowchart of FIG. 5 showing the manufacturing method according to the first embodiment, the preparation steps (steps S102 and S106) for preparing the heat conductive member and the heat conductive member 1f are prepared. The content of the attachment process (S108) attached to the electrolytic capacitor 4 is different.

製造方法としては、先ず、あらかじめ筒状長尺に製造された金属メッシュを所定の長さ2×W1で裁断する。裁断した熱伝導性編組体(筒状金属メッシュ)20cをちょうど半分の長さW1で折り曲げて、筒袋部を形成する。筒袋部に熱伝導性樹脂2dを挿入して、折り曲げた熱伝導性編組体(筒状金属メッシュ)20cに熱伝導性樹脂2dを把持積層する。熱伝導性樹脂2dの内径は、熱伝導性樹脂2cと同じくR4である。この内径R4の熱伝導性樹脂2dを、熱伝導性編組体20cの折り返した2層の間に差し込む。これにより筒状の3層構造を備えた熱伝導部材1fが得られる。   As a manufacturing method, first, a metal mesh manufactured in advance in a cylindrical shape is cut into a predetermined length 2 × W1. The cut thermally conductive braided body (cylindrical metal mesh) 20c is bent at exactly half the length W1 to form a tubular bag portion. The heat conductive resin 2d is inserted into the cylindrical bag portion, and the heat conductive resin 2d is gripped and laminated on the bent heat conductive braided body (tubular metal mesh) 20c. The inner diameter of the heat conductive resin 2d is R4, similar to the heat conductive resin 2c. The heat conductive resin 2d having the inner diameter R4 is inserted between the two folded layers of the heat conductive braid 20c. Thereby, the heat conductive member 1f provided with the cylindrical three-layer structure is obtained.

なお、熱伝導性樹脂2dの幅はW2であり、このW2はW1よりも若干小さいことが好ましい。これにより、筒袋部に熱伝導性樹脂2dを挿入したときにちょうど熱伝導性編組体20cの縁と熱伝導性樹脂2dの縁の位置を一致させることができる。   The width of the heat conductive resin 2d is W2, and this W2 is preferably slightly smaller than W1. Thereby, when the heat conductive resin 2d is inserted into the cylindrical bag portion, the position of the edge of the heat conductive braid 20c and the edge of the heat conductive resin 2d can be made to coincide with each other.

熱伝導部材1fとして折り曲げた熱伝導性編組体(筒状金属メッシュ)20cに、熱伝導性樹脂2dを把持積層して用いることで、電解コンデンサ4の冷却が一層促進される。また、把持積層した2層目の熱伝導性樹脂2dに熱容量の大きい材質を採用することで、電解コンデンサ4の熱分散を促進する効果を奏する。   By cooling and using the heat conductive resin 2d on the heat conductive braided body (cylindrical metal mesh) 20c bent as the heat conductive member 1f, cooling of the electrolytic capacitor 4 is further promoted. Further, by adopting a material having a large heat capacity for the second layer of thermally conductive resin 2d that is gripped and laminated, the effect of promoting the heat dispersion of the electrolytic capacitor 4 is achieved.

本実施の形態によれば、熱伝導性編組体(筒状金属メッシュ)20cおよび熱伝導性樹脂2dは弾性を有しており、これらの3層構造の筒状態を広げて(内径を引き伸ばして)、電解コンデンサ4の筒状外郭4aに被せれば足りる。接着テープなどの接着手段を用いなくとも電解コンデンサ4の筒状外郭4a(アルミケース)に密着固定させることが可能である。これによって、熱伝導部材1fの製造の自動化や製造コストの低減に加え、材料コストの低減の効果を奏する。   According to the present embodiment, the heat conductive braided body (cylindrical metal mesh) 20c and the heat conductive resin 2d have elasticity, and the cylindrical state of these three-layer structures is expanded (the inner diameter is expanded). ), It is sufficient to cover the cylindrical shell 4 a of the electrolytic capacitor 4. Even without using an adhesive means such as an adhesive tape, it is possible to tightly fix to the cylindrical outer shell 4a (aluminum case) of the electrolytic capacitor 4. Thereby, in addition to the automation of the manufacture of the heat conducting member 1f and the reduction of the manufacturing cost, there is an effect of reducing the material cost.

なお、実施の形態7では、熱伝導性編組体20cを1回折り返して袋状としたが、本発明はこれに限られず、2回以上折り返してもよい。また、実施の形態7では熱伝導性編組体20cの一端側を、他端側の内側へと入れ込むようにして、袋状とした。しかし、逆に、一端側を、多端側の外側に被せるようにして、袋状としてもよい。   In the seventh embodiment, the thermally conductive braid 20c is folded once to form a bag shape, but the present invention is not limited to this and may be folded twice or more. In the seventh embodiment, one end side of the heat conductive braided body 20c is inserted into the inside of the other end side to form a bag. However, conversely, it is good also as a bag shape so that one end side may be covered on the outer side of a multi-end side.

また、実施の形態7では、熱伝導部材1fの内面(つまり熱伝導性編組体20cの最も内面)には接着層を設けなかったが、本発明はこれに限られず、熱伝導部材1fの最も内面(内径R8の面)に接着テープ3や他の接着層を設けてもよい。   In the seventh embodiment, the adhesive layer is not provided on the inner surface of the heat conductive member 1f (that is, the innermost surface of the heat conductive braided body 20c). However, the present invention is not limited to this, and the most heat conductive member 1f. You may provide the adhesive tape 3 and another contact bonding layer in an inner surface (surface of the internal diameter R8).

1、1a、1b、1c、1d、1e、1f、1g 熱伝導部材、2、2a、2b、2c、2d、 熱伝導性樹脂、3、3a、3b 接着テープ、4、41 電解コンデンサ、4a 筒状外郭、4b リード、5 圧力弁、6 点灯回路、7 光源、8 内側筐体部、9 口金部、10 外側筐体部、11 グローブ、20、20a、20b、20c 熱伝導性編組体、70 LED基板、71 発光ダイオード(LED)、100 照明ランプ 1, 1a, 1b, 1c, 1d, 1e, 1f, 1g Thermal conductive member 2, 2a, 2b, 2c, 2d, Thermal conductive resin, 3, 3a, 3b Adhesive tape, 4, 41 Electrolytic capacitor, 4a Tube Shape outer shell, 4b lead, 5 pressure valve, 6 lighting circuit, 7 light source, 8 inner housing portion, 9 base portion, 10 outer housing portion, 11 globe, 20, 20a, 20b, 20c heat conductive braided body, 70 LED board, 71 Light emitting diode (LED), 100 Illumination lamp

Claims (11)

筒状外郭を有する電解コンデンサに被せられ、内面を有し前記内面と前記筒状外郭との間に距離を有する放熱部材と、
可撓性材料又は弾性材料で形成され、厚さを有し、前記厚さの方向への圧力が無いときの前記厚さが前記距離以上であり、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導部材と、
を備え、
前記熱伝導部材が、
熱伝導性樹脂から構成され、前記筒状外郭の周方向に沿って前記筒状外郭を囲いつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた樹脂体と、
前記樹脂体の内面側と外面側の少なくとも一方の側に設けられて前記樹脂体と重なり、前記筒状外郭の周方向に沿って前記筒状外郭を囲いつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導性編組体と、
を含み、
前記熱伝導性編組体は、編組体で構成され、少なくとも1回折り返された袋状であり、
前記袋状の内側に前記樹脂体が挿入されたことを特徴とする電解コンデンサの放熱構造
A heat-dissipating member that is covered with an electrolytic capacitor having a cylindrical outer shell and has an inner surface and a distance between the inner surface and the cylindrical outer shell;
It is formed of a flexible material or an elastic material, has a thickness, and when there is no pressure in the direction of the thickness, the thickness is equal to or greater than the distance, and the circumferential direction of the cylindrical outline is A heat conducting member sandwiched between the cylindrical outer shell and the inner surface of the heat radiating member while in contact with the cylindrical outer shell;
With
The heat conducting member is
A resin body that is made of a heat conductive resin and that is sandwiched between the cylindrical outer shell and the inner surface of the heat dissipation member while surrounding the cylindrical outer shell along the circumferential direction of the cylindrical outer shell,
Provided on at least one of the inner surface side and the outer surface side of the resin body, overlaps the resin body, and surrounds the cylindrical outer shell along the circumferential direction of the cylindrical outer shell. A thermally conductive braided body sandwiched between the inner surface;
Including
The thermally conductive braided body is formed of a braided body and has a bag shape that is folded at least once,
A heat dissipation structure for an electrolytic capacitor, wherein the resin body is inserted inside the bag shape .
記電解コンデンサは、前記筒状外郭の底面に圧力弁を備え、
前記熱伝導部材は前記圧力弁を露出させるように前記筒状外郭の側周面に取り付けられたことを特徴とする請求項1に記載の電解コンデンサの放熱構造。
Before SL electrolytic capacitor comprises a pressure valve on the bottom of the cylindrical shell,
2. The heat dissipation structure for an electrolytic capacitor according to claim 1, wherein the heat conducting member is attached to a side peripheral surface of the cylindrical outer shell so as to expose the pressure valve.
光源と、
前記光源を覆うように設けられた透光性のグローブと、
交流電力を入力するための口金部と、
筒状外郭を有する電解コンデンサを備え、前記口金部を介して前記交流電力を前記光源の駆動電力に変換して前記光源に供給する点灯回路と、
前記グローブおよび前記口金部と嵌合して内部空間を形成し、前記点灯回路を包んで保持するとともに、前記内部空間に前記電解コンデンサを包む筐体部と、
前記筐体部内に設けられて前記電解コンデンサを放熱する放熱構造であって、前記電解コンデンサに被せられ内面を有し前記内面と前記筒状外郭との間に距離を有する放熱部材と、可撓性材料又は弾性材料で形成され、厚さを有し、前記厚さの方向への圧力が無いときの前記厚さが前記距離以上であり、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導部材と、を備える放熱構造と、
を備え、
前記筐体部が、前記放熱構造が備える前記放熱部材であり、
前記熱伝導部材が、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記筐体部の内面との間に挟まれており、
前記熱伝導部材は、前記筒状外郭に被せられた筒状体または前記筒状外郭の側周面に巻きつけられた平面体であることを特徴とする照明ランプ。
A light source;
A translucent glove provided to cover the light source;
A base for inputting AC power;
A lighting circuit comprising an electrolytic capacitor having a cylindrical outer shell, and supplying the light source by converting the alternating current power to drive power of the light source through the base part;
A housing part that fits with the globe and the base part to form an internal space, wraps and holds the lighting circuit, and wraps the electrolytic capacitor in the internal space;
A heat dissipating structure for dissipating heat from the electrolytic capacitor provided in the casing, the heat dissipating member being covered with the electrolytic capacitor and having a distance between the inner surface and the cylindrical outer shell; Formed of an elastic material or an elastic material, has a thickness, and the thickness when there is no pressure in the direction of the thickness is equal to or greater than the distance, and the cylindrical shape along the circumferential direction of the cylindrical outer shell A heat-dissipating structure comprising: a heat-conducting member sandwiched between the cylindrical outer shell and the inner surface of the heat-dissipating member while in contact with the outer shell;
With
The casing is the heat dissipation member provided in the heat dissipation structure,
The heat conducting member is sandwiched between the cylindrical outer shell and the inner surface of the housing portion while being in contact with the cylindrical outer shell along the circumferential direction of the cylindrical outer shell,
The illumination lamp according to claim 1, wherein the heat conducting member is a cylindrical body that covers the cylindrical outer shell or a flat body that is wound around a side peripheral surface of the cylindrical outer shell.
光源と、
前記光源を覆うように設けられた透光性のグローブと、
交流電力を入力するための口金部と、
筒状外郭を有する電解コンデンサを備え、前記口金部を介して前記交流電力を前記光源の駆動電力に変換して前記光源に供給する点灯回路と、
前記グローブおよび前記口金部と嵌合して内部空間を形成し、前記点灯回路を包んで保持するとともに、前記内部空間に前記電解コンデンサを包む筐体部と、
前記筐体部内に設けられて前記電解コンデンサを放熱する放熱構造であって、前記電解コンデンサに被せられ内面を有し前記内面と前記筒状外郭との間に距離を有する放熱部材と、可撓性材料又は弾性材料で形成され、厚さを有し、前記厚さの方向への圧力が無いときの前記厚さが前記距離以上であり、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導部材と、を備える放熱構造と、
を備え、
前記筐体部が、前記放熱構造が備える前記放熱部材であり、
前記熱伝導部材が、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記筐体部の内面との間に挟まれており、
前記熱伝導部材が、熱伝導性樹脂から構成され幅および長さを備えるとともに表面に接着層が設けられた樹脂平面体を含み、前記筒状外郭に前記接着層が接するように樹脂平面体が前記筒状外郭に巻きつけられたことを特徴とする照明ランプ。
A light source;
A translucent glove provided to cover the light source;
A base for inputting AC power;
A lighting circuit comprising an electrolytic capacitor having a cylindrical outer shell, and supplying the light source by converting the alternating current power to drive power of the light source through the base part;
A housing part that fits with the globe and the base part to form an internal space, wraps and holds the lighting circuit, and wraps the electrolytic capacitor in the internal space;
A heat dissipating structure for dissipating heat from the electrolytic capacitor provided in the casing, the heat dissipating member being covered with the electrolytic capacitor and having a distance between the inner surface and the cylindrical outer shell; Formed of an elastic material or an elastic material, has a thickness, and the thickness when there is no pressure in the direction of the thickness is equal to or greater than the distance, and the cylindrical shape along the circumferential direction of the cylindrical outer shell A heat-dissipating structure comprising: a heat-conducting member sandwiched between the cylindrical outer shell and the inner surface of the heat-dissipating member while in contact with the outer shell;
With
The casing is the heat dissipation member provided in the heat dissipation structure,
The heat conducting member is sandwiched between the cylindrical outer shell and the inner surface of the housing portion while being in contact with the cylindrical outer shell along the circumferential direction of the cylindrical outer shell,
The heat conductive member includes a resin flat body made of a heat conductive resin, having a width and a length and having an adhesive layer on the surface, and the resin flat body is in contact with the cylindrical outer shell. lighting lamps characterized in that wound on the cylindrical outer.
光源と、
前記光源を覆うように設けられた透光性のグローブと、
交流電力を入力するための口金部と、
筒状外郭を有する電解コンデンサを備え、前記口金部を介して前記交流電力を前記光源の駆動電力に変換して前記光源に供給する点灯回路と、
前記グローブおよび前記口金部と嵌合して内部空間を形成し、前記点灯回路を包んで保持するとともに、前記内部空間に前記電解コンデンサを包む筐体部と、
前記筐体部内に設けられて前記電解コンデンサを放熱する放熱構造であって、前記電解コンデンサに被せられ内面を有し前記内面と前記筒状外郭との間に距離を有する放熱部材と、可撓性材料又は弾性材料で形成され、厚さを有し、前記厚さの方向への圧力が無いときの前記厚さが前記距離以上であり、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導部材と、を備える放熱構造と、
を備え、
前記筐体部が、前記放熱構造が備える前記放熱部材であり、
前記熱伝導部材が、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記筐体部の内面との間に挟まれており、
前記熱伝導部材が、前記筒状外郭の周方向に沿って前記筒状外郭を囲いつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導性編組体を含むことを特徴とする照明ランプ。
A light source;
A translucent glove provided to cover the light source;
A base for inputting AC power;
A lighting circuit comprising an electrolytic capacitor having a cylindrical outer shell, and supplying the light source by converting the alternating current power to drive power of the light source through the base part;
A housing part that fits with the globe and the base part to form an internal space, wraps and holds the lighting circuit, and wraps the electrolytic capacitor in the internal space;
A heat dissipating structure for dissipating heat from the electrolytic capacitor provided in the casing, the heat dissipating member being covered with the electrolytic capacitor and having a distance between the inner surface and the cylindrical outer shell; Formed of an elastic material or an elastic material, has a thickness, and the thickness when there is no pressure in the direction of the thickness is equal to or greater than the distance, and the cylindrical shape along the circumferential direction of the cylindrical outer shell A heat-dissipating structure comprising: a heat-conducting member sandwiched between the cylindrical outer shell and the inner surface of the heat-dissipating member while in contact with the outer shell;
With
The casing is the heat dissipation member provided in the heat dissipation structure,
The heat conducting member is sandwiched between the cylindrical outer shell and the inner surface of the housing portion while being in contact with the cylindrical outer shell along the circumferential direction of the cylindrical outer shell,
The heat conducting member includes a heat conductive braided body sandwiched between the cylindrical shell and the inner surface of the heat radiating member while surrounding the cylindrical shell along a circumferential direction of the cylindrical shell. lighting lamp shall be the feature.
前記熱伝導性編組体は、
編組線で形成された編組平面体と、
前記編組平面体の表面に設けられた接着層と、
を含むことを特徴とする請求項に記載の照明ランプ。
The thermally conductive braided body is
A braided planar body formed of braided wires;
An adhesive layer provided on the surface of the braided planar body;
The illumination lamp according to claim 5 , comprising:
光源と、
前記光源を覆うように設けられた透光性のグローブと、
交流電力を入力するための口金部と、
筒状外郭を有する電解コンデンサを備え、前記口金部を介して前記交流電力を前記光源の駆動電力に変換して前記光源に供給する点灯回路と、
前記グローブおよび前記口金部と嵌合して内部空間を形成し、前記点灯回路を包んで保持するとともに、前記内部空間に前記電解コンデンサを包む筐体部と、
前記筐体部内に設けられて前記電解コンデンサを放熱する放熱構造であって、前記電解コンデンサに被せられ内面を有し前記内面と前記筒状外郭との間に距離を有する放熱部材と、可撓性材料又は弾性材料で形成され、厚さを有し、前記厚さの方向への圧力が無いときの前記厚さが前記距離以上であり、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導部材と、を備える放熱構造と、
を備え、
前記筐体部が、前記放熱構造が備える前記放熱部材であり、
前記熱伝導部材が、前記筒状外郭の周方向に沿って前記筒状外郭に接しつつ前記筒状外郭と前記筐体部の内面との間に挟まれており、
前記熱伝導部材が、
熱伝導性樹脂から構成され、前記筒状外郭の周方向に沿って前記筒状外郭を囲いつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた樹脂体と、
前記樹脂体の内面側と外面側の少なくとも一方の側に設けられて前記樹脂体と重なり、前記筒状外郭の周方向に沿って前記筒状外郭を囲いつつ前記筒状外郭と前記放熱部材の前記内面との間に挟まれた熱伝導性編組体と、
を含むことを特徴とする照明ランプ。
A light source;
A translucent glove provided to cover the light source;
A base for inputting AC power;
A lighting circuit comprising an electrolytic capacitor having a cylindrical outer shell, and supplying the light source by converting the alternating current power to drive power of the light source through the base part;
A housing part that fits with the globe and the base part to form an internal space, wraps and holds the lighting circuit, and wraps the electrolytic capacitor in the internal space;
A heat dissipating structure for dissipating heat from the electrolytic capacitor provided in the casing, the heat dissipating member being covered with the electrolytic capacitor and having a distance between the inner surface and the cylindrical outer shell; Formed of an elastic material or an elastic material, has a thickness, and the thickness when there is no pressure in the direction of the thickness is equal to or greater than the distance, and the cylindrical shape along the circumferential direction of the cylindrical outer shell A heat-dissipating structure comprising: a heat-conducting member sandwiched between the cylindrical outer shell and the inner surface of the heat-dissipating member while in contact with the outer shell;
With
The casing is the heat dissipation member provided in the heat dissipation structure,
The heat conducting member is sandwiched between the cylindrical outer shell and the inner surface of the housing portion while being in contact with the cylindrical outer shell along the circumferential direction of the cylindrical outer shell,
The heat conducting member is
A resin body that is made of a heat conductive resin and that is sandwiched between the cylindrical outer shell and the inner surface of the heat dissipation member while surrounding the cylindrical outer shell along the circumferential direction of the cylindrical outer shell,
Provided on at least one of the inner surface side and the outer surface side of the resin body, overlaps the resin body, and surrounds the cylindrical outer shell along the circumferential direction of the cylindrical outer shell. A thermally conductive braided body sandwiched between the inner surface;
An illumination lamp comprising:
前記熱伝導性編組体は、編組体で構成され、少なくとも1回折り返された袋状であり、
前記袋状の内側に前記樹脂体が挿入されたことを特徴とする請求項に記載の照明ランプ。
The thermally conductive braided body is formed of a braided body and has a bag shape that is folded at least once,
The illumination lamp according to claim 7 , wherein the resin body is inserted inside the bag shape.
前記電解コンデンサは、前記筒状外郭の底面に圧力弁を備え、
前記熱伝導部材は前記圧力弁を露出させるように前記筒状外郭の側周面に取り付けられたことを特徴とする請求項3〜8のいずれか1項に記載の照明ランプ。
The electrolytic capacitor includes a pressure valve on a bottom surface of the cylindrical outer shell,
The illumination lamp according to any one of claims 3 to 8 , wherein the heat conducting member is attached to a side peripheral surface of the cylindrical outer shell so as to expose the pressure valve.
請求項3〜9のいずれか1項に記載の照明ランプを備えた照明装置。 The illuminating device provided with the illumination lamp of any one of Claims 3-9 . 筒状外郭を有する電解コンデンサと、自身の一部または全部が可撓性材料又は弾性材料で形成され且つ厚さを有する筒状又は平面状の熱伝導部材と、を含む照明ランプ構成部品を準備する準備工程と、
前記電解コンデンサに前記熱伝導部材を取り付ける取付工程と、
前記照明ランプ構成部品を組み立てる組立工程と、
を備え、
前記照明ランプ構成部品は、
光源と、
前記光源を覆うように設けられた透光性のグローブと、
交流電力を入力するための口金部と、
前記電解コンデンサと電気的に接続し、前記口金部を介して前記交流電力を前記光源の駆動電力に変換して前記光源に供給する点灯回路と、
前記グローブおよび前記口金部と嵌合して内部空間を形成し、前記点灯回路を包んで保持するとともに、前記内部空間に前記電解コンデンサを包む筐体部と、
を含み、
前記取付工程は、前記電解コンデンサに対して前記筒状外郭の周方向に沿って前記筒状外郭に接するように、前記筒状外郭の側周面に前記筒状の前記熱伝導部材を被せる工程又は前記筒状外郭の側周面に前記平面状の前記熱伝導部材を巻きつける工程を含み、
前記組立工程は、前記筐体部内に前記電解コンデンサを配置して前記熱伝導部材を前記筒状外郭と前記筐体部の内面との間に挟みこみ、前記光源、前記グローブ、前記口金部、前記点灯回路、および前記筐体部を組み立てることを特徴とする照明ランプの製造方法。
Preparing an illumination lamp component including an electrolytic capacitor having a cylindrical outer shell, and a cylindrical or planar heat conducting member having a thickness, part or all of which is made of a flexible material or an elastic material. A preparation process to
An attaching step of attaching the heat conducting member to the electrolytic capacitor;
An assembly process for assembling the lighting lamp components;
With
The illumination lamp component is:
A light source;
A translucent glove provided to cover the light source;
A base for inputting AC power;
A lighting circuit that is electrically connected to the electrolytic capacitor, converts the alternating current power into driving power of the light source and supplies the light source to the light source through the base portion;
A housing part that fits with the globe and the base part to form an internal space, wraps and holds the lighting circuit, and wraps the electrolytic capacitor in the internal space;
Including
The mounting step is a step of covering the cylindrical heat conductive member on a side peripheral surface of the cylindrical outer shell so as to contact the electrolytic capacitor along a circumferential direction of the cylindrical outer shell with respect to the electrolytic capacitor. Or including a step of winding the planar heat conducting member around a side peripheral surface of the cylindrical outer shell,
The assembly step includes disposing the electrolytic capacitor in the housing part and sandwiching the heat conducting member between the cylindrical outer shell and the inner surface of the housing part, the light source, the globe, the base part, An illumination lamp manufacturing method comprising assembling the lighting circuit and the casing.
JP2013069957A 2013-03-28 2013-03-28 Electrolytic capacitor heat dissipation structure, illumination lamp, illumination device, and method of manufacturing illumination lamp Expired - Fee Related JP6263851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069957A JP6263851B2 (en) 2013-03-28 2013-03-28 Electrolytic capacitor heat dissipation structure, illumination lamp, illumination device, and method of manufacturing illumination lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069957A JP6263851B2 (en) 2013-03-28 2013-03-28 Electrolytic capacitor heat dissipation structure, illumination lamp, illumination device, and method of manufacturing illumination lamp

Publications (3)

Publication Number Publication Date
JP2014194963A JP2014194963A (en) 2014-10-09
JP2014194963A5 JP2014194963A5 (en) 2016-04-21
JP6263851B2 true JP6263851B2 (en) 2018-01-24

Family

ID=51840029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069957A Expired - Fee Related JP6263851B2 (en) 2013-03-28 2013-03-28 Electrolytic capacitor heat dissipation structure, illumination lamp, illumination device, and method of manufacturing illumination lamp

Country Status (1)

Country Link
JP (1) JP6263851B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079900A1 (en) * 2014-11-19 2016-05-26 アイリスオーヤマ株式会社 Lighting device
CN108091483B (en) * 2018-01-30 2024-01-26 安徽瀚宇电气有限公司 Internal capacitance structure of intelligent capacitor
CN112908724B (en) * 2021-01-19 2023-03-10 上海永铭电子股份有限公司 Super capacitor and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475939U (en) * 1977-11-10 1979-05-30
JPS593557Y2 (en) * 1978-09-05 1984-01-31 日本ケミコン株式会社 chip capacitor
JPS59146931U (en) * 1983-03-19 1984-10-01 ソニー株式会社 Chemical capacitor mounting device
JPS59176140U (en) * 1983-05-11 1984-11-24 エルナ−株式会社 Chip type electrolytic capacitor
JPS59176142U (en) * 1983-05-11 1984-11-24 エルナ−株式会社 Chip type electrolytic capacitor
JPS6073219U (en) * 1983-10-27 1985-05-23 三菱電機株式会社 Capacitor with heat dissipation fins
JPH0452985Y2 (en) * 1987-09-17 1992-12-14
JPH06104143A (en) * 1992-09-21 1994-04-15 Nippon Chemicon Corp Mounting device for electrolytic capacitor
JPH06275471A (en) * 1993-03-18 1994-09-30 Fuji Electric Co Ltd Vibration-resistant construction for mounting electric parts
JP2004349216A (en) * 2003-05-26 2004-12-09 Toshiba Lighting & Technology Corp Bulb shaped fluorescent lamp and luminaire
JP2008084817A (en) * 2006-08-31 2008-04-10 Toshiba Lighting & Technology Corp Compact self-ballasted fluorescent lamp and luminaire
JP5508113B2 (en) * 2010-04-21 2014-05-28 パナソニック株式会社 Lamp and lighting device
CN203927459U (en) * 2011-07-28 2014-11-05 松下电器产业株式会社 Lamp and ligthing paraphernalia
JP5129411B1 (en) * 2011-08-02 2013-01-30 パナソニック株式会社 lamp

Also Published As

Publication number Publication date
JP2014194963A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
US8678618B2 (en) Self-ballasted lamp having a light-transmissive member in contact with light emitting elements and lighting equipment incorporating the same
CN112197181A (en) LED straight lamp
JP2016115677A (en) Led lead frame array for general lighting device
JP2007129213A (en) Light-emitting device
US9599289B2 (en) Light source and lighting device including the same
US9022615B2 (en) Light-emitting module including housing with protrusion
US20130207542A1 (en) Lighting device
EP2543923A1 (en) Illumination appliance
JP6263851B2 (en) Electrolytic capacitor heat dissipation structure, illumination lamp, illumination device, and method of manufacturing illumination lamp
JP5190105B2 (en) LED lamp
JP2016528665A (en) Ultra-thin LED light engine
JP5681530B2 (en) Emergency lighting equipment
US20150043216A1 (en) Light emitting diode bulb
JP5718199B2 (en) Light bulb-type lighting device
JP5752336B1 (en) LED lamp
US8847472B1 (en) Laminate support structure for an LED in a liquid-filled bulb
JP2012155986A (en) Power source device
WO2015136151A1 (en) Led lamp with embedded circuitry
JP6405607B2 (en) Lighting lamp and lighting device
EP2959209B1 (en) Lighting device with improved thermal properties
JP6288930B2 (en) LIGHTING LAMP, LIGHTING DEVICE HAVING LIGHTING LAMP, AND METHOD FOR MANUFACTURING LIGHTING LAMP
WO2013132551A1 (en) Lamp
JP3159619U (en) Light bulb type light emitting diode illuminator and heat dissipation structure thereof
TW201219695A (en) A LED lamp
JP6125620B2 (en) Electric lamp base and method of assembling the electric lamp base

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6263851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees