JP6253505B2 - Armature for linear motor - Google Patents

Armature for linear motor Download PDF

Info

Publication number
JP6253505B2
JP6253505B2 JP2014099062A JP2014099062A JP6253505B2 JP 6253505 B2 JP6253505 B2 JP 6253505B2 JP 2014099062 A JP2014099062 A JP 2014099062A JP 2014099062 A JP2014099062 A JP 2014099062A JP 6253505 B2 JP6253505 B2 JP 6253505B2
Authority
JP
Japan
Prior art keywords
groove
pipe
armature
refrigerant
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014099062A
Other languages
Japanese (ja)
Other versions
JP2015216793A (en
Inventor
修 中崎
修 中崎
山本 泰三
泰三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2014099062A priority Critical patent/JP6253505B2/en
Publication of JP2015216793A publication Critical patent/JP2015216793A/en
Application granted granted Critical
Publication of JP6253505B2 publication Critical patent/JP6253505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Description

本発明は、リニアモータの固定子又は可動子として用いられる電機子に関する。   The present invention relates to an armature used as a stator or a mover of a linear motor.

リニアモータに用いられる電機子は、コアと、コアにモータ駆動方向に複数設けられるティース部と、ティース部に巻き回されるコイルを備える。コイルが通電により発熱すると、コアの温度上昇により電機子の性能に悪影響を及ぼしかねない。この対策として、通常、ティース部間に形成されるスロット部には冷却管が配置される(特許文献1参照)。冷却管内に供給される冷媒によりコアが冷却され、その温度上昇が抑えられる。   An armature used for a linear motor includes a core, a plurality of teeth provided on the core in the motor driving direction, and a coil wound around the teeth. If the coil generates heat when energized, the core temperature may adversely affect the performance of the armature. As a countermeasure, a cooling pipe is usually disposed in a slot portion formed between the tooth portions (see Patent Document 1). The core is cooled by the refrigerant supplied into the cooling pipe, and the temperature rise is suppressed.

特開2008−35698号JP 2008-35698 A

コアの温度上昇を効果的に抑えるうえで、冷却管によるコアの冷却性能が良好であるほど好ましい。本発明者は、このような要求を実現するうえで、電機子の構造に関して改善の余地があると認識するに至った。   In order to effectively suppress the temperature rise of the core, it is preferable that the cooling performance of the core by the cooling pipe is better. The present inventor has come to recognize that there is room for improvement regarding the structure of the armature in realizing such a demand.

本発明は、こうした状況に鑑みてなされたものであり、その目的は、冷却管によるコアの冷却性能を改善できる技術を提供することにある。   This invention is made | formed in view of such a condition, The objective is to provide the technique which can improve the cooling performance of the core by a cooling pipe.

上記課題を解決するために、本発明のある態様のリニアモータ用電機子は、リニアモータ用の電機子であって、コアと、コアに並んで形成される複数の溝部と、コアを冷却するための冷媒が内部を流れる冷却管と、を備える。複数の溝部は、複数の溝部のうち該溝部が並ぶ方向の中間にある第1溝部と、第1溝部から並ぶ方向の一方に離れた位置にある第2溝部と、複数の溝部のうち該溝部が並ぶ方向の中間にある第3溝部と、第3溝部から並ぶ方向の他方に離れた位置にある第4溝部と、を含む。冷却管は、第1溝部から第2溝部に向けて、これらを含む複数の溝部内を蛇行して通るように形成され、第1溝部内を上流側とし、第2溝部内を下流側として冷媒が流れる第1管路部と、第3溝部から第4溝部に向けて、これらを含む複数の溝部内を蛇行して通るように形成され、第3溝部内を上流側とし、第4溝部内を下流側として冷媒が流れる第2管路部と、を有する。   In order to solve the above-described problems, an armature for a linear motor according to an aspect of the present invention is an armature for a linear motor, and cools the core, a plurality of grooves formed side by side with the core, and the core. And a cooling pipe through which the refrigerant flows. The plurality of groove portions include a first groove portion that is in the middle of the direction in which the groove portions are arranged, a second groove portion that is located at one position away from the first groove portion, and the groove portion of the plurality of groove portions. 3rd groove part in the middle of the direction where a line is arranged, and the 4th groove part in the position away from the other of the direction lined up from the 3rd groove part. The cooling pipe is formed so as to meander through a plurality of groove portions including these from the first groove portion toward the second groove portion, the first groove portion being an upstream side, and the second groove portion being a downstream side refrigerant. The first conduit portion through which the gas flows and the third groove portion to the fourth groove portion are formed so as to meander through the plurality of groove portions including these, and the inside of the third groove portion is the upstream side, And a second conduit portion through which the refrigerant flows.

本発明の別の態様もまた、リニアモータ用電機子である。このリニアモータ用電機子は、リニアモータ用の電機子であって、コアと、コアに並んで形成される複数の溝部と、コアを冷却するための冷媒が内部を流れる冷却管と、を備える。複数の溝部は、複数の溝部のうち該溝部が並ぶ方向の一方にある第1溝部と、第1溝部から並ぶ方向の他方に離れた位置にある第2溝部と、複数の溝部のうち該溝部が並ぶ方向の他方にある第3溝部と、第3溝部から並ぶ方向の一方に離れた位置にある第4溝部と、を含む。冷却管は、第1溝部から第2溝部に向けて、これらを含む複数の溝部内を蛇行して通るように形成され、第1溝部内を上流側とし、第2溝部内を下流側として冷媒が流れる第1管路部と、第3溝部から第4溝部に向けて、これらを含む複数の溝部内を蛇行して通るように形成され、第3溝部内を上流側とし、第4溝部内を下流側として冷媒が流れる第2管路部と、を有する。第1管路部の溝部を通る部分と第2管路部の溝部を通る部分とは、複数の溝部内に並ぶ方向に交互に配置される。   Another aspect of the present invention is also a linear motor armature. This armature for a linear motor is an armature for a linear motor, and includes a core, a plurality of grooves formed side by side with the core, and a cooling pipe through which a coolant for cooling the core flows. . The plurality of groove portions are: a first groove portion in one of the plurality of groove portions in the direction in which the groove portions are arranged; a second groove portion in a position away from the other in the direction in which the groove portions are arranged; and the groove portion in the plurality of groove portions. 3rd groove part which exists in the other of the direction where a row | line | column is located, and the 4th groove part which exists in the position away from one side of the line direction from a 3rd groove part. The cooling pipe is formed so as to meander through a plurality of groove portions including these from the first groove portion toward the second groove portion, the first groove portion being an upstream side, and the second groove portion being a downstream side refrigerant. The first conduit portion through which the gas flows and the third groove portion to the fourth groove portion are formed so as to meander through the plurality of groove portions including these, and the inside of the third groove portion is the upstream side, And a second conduit portion through which the refrigerant flows. The portion passing through the groove portion of the first conduit portion and the portion passing through the groove portion of the second conduit portion are alternately arranged in the direction aligned in the plurality of groove portions.

本発明のある態様によれば、冷却管によるコアの冷却性能を改善できる。   According to an aspect of the present invention, the cooling performance of the core by the cooling pipe can be improved.

第1実施形態に係る電機子が用いられるリニアモータを示す側面断面図である。It is side surface sectional drawing which shows the linear motor with which the armature which concerns on 1st Embodiment is used. 第1実施形態に係る電機子を示す分解斜視図である。It is a disassembled perspective view which shows the armature which concerns on 1st Embodiment. 第1実施形態に係る冷却管を含む配管系を示す構成図である。It is a block diagram which shows the piping system containing the cooling pipe which concerns on 1st Embodiment. 第1実施形態に係る電機子を示す平面図である。It is a top view which shows the armature which concerns on 1st Embodiment. 関連技術に係る電機子を示す平面図であるIt is a top view which shows the armature which concerns on related technology. 第2実施形態に係る冷却管を含む配管系を示す構成図である。It is a block diagram which shows the piping system containing the cooling pipe which concerns on 2nd Embodiment. 第2実施形態に係る電機子を示す平面図である。It is a top view which shows the armature which concerns on 2nd Embodiment. 第3実施形態に係る電機子を示す平面図である。It is a top view which shows the armature which concerns on 3rd Embodiment. 図9は図8のA−A線断面図である。9 is a cross-sectional view taken along line AA in FIG. 第4実施形態に係る電機子を示す平面図である。It is a top view which shows the armature which concerns on 4th Embodiment. 図10のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 第1溝部内に配置される第1管路部、第2管路部の他の形態を示す断面図である。It is sectional drawing which shows the other form of the 1st pipe line part arrange | positioned in a 1st groove part, and a 2nd pipe line part. 第5実施形態に係る電機子が用いられるリニアモータを示す側面断面図である。It is side surface sectional drawing which shows the linear motor with which the armature which concerns on 5th Embodiment is used. 第5実施形態に係る電機子を示す平面図である。It is a top view which shows the armature which concerns on 5th Embodiment. 第6実施形態に係る電機子を示す平面図である。It is a top view which shows the armature which concerns on 6th Embodiment.

(第1の実施の形態)
図1は第1実施形態に係る電機子40が用いられるリニアモータ10を示す。リニアモータ10は、界磁子30と、電機子40を備える。界磁子30が固定子であり、電機子40が可動子である。以下、リニアモータ10のモータ駆動方向を方向Xとし、後述する電機子コア41の高さ方向を方向Yとし、電機子コア41の奥行方向を方向Zとして説明する。なお、方向Y、Zは、方向Xの方向軸と垂直な面内にて直交しており、方向Yはティース部43(後述する)の突出方向と一致し、方向Zは金属板47(後述する)の積層方向と一致する。
(First embodiment)
FIG. 1 shows a linear motor 10 in which an armature 40 according to the first embodiment is used. The linear motor 10 includes a field element 30 and an armature 40. The field element 30 is a stator, and the armature 40 is a mover. Hereinafter, the motor driving direction of the linear motor 10 will be referred to as direction X, the height direction of an armature core 41 to be described later will be referred to as direction Y, and the depth direction of the armature core 41 will be described as direction Z. The directions Y and Z are orthogonal to each other in a plane perpendicular to the direction axis of the direction X, the direction Y coincides with the protruding direction of the teeth portion 43 (described later), and the direction Z is a metal plate 47 (described later). To match the stacking direction.

界磁子30は、界磁子コア31と、複数の磁石33を備える。界磁子コア31はモータ駆動方向Xに延びる直方体状の部材である。各磁石33は永久磁石であるが、電磁石でもよい。各磁石33は、モータ駆動方向Xに異なる磁極(N極、S極)が交互に位置するように設けられる。   The field element 30 includes a field element core 31 and a plurality of magnets 33. The field element core 31 is a rectangular parallelepiped member extending in the motor driving direction X. Each magnet 33 is a permanent magnet, but may be an electromagnet. Each magnet 33 is provided such that different magnetic poles (N pole, S pole) are alternately positioned in the motor driving direction X.

電機子40は、界磁子30と間隔を空けて配置される。電機子40は、電機子コア41と、冷却管60と、樹脂材53を備える。   The armature 40 is disposed at a distance from the field element 30. The armature 40 includes an armature core 41, a cooling pipe 60, and a resin material 53.

図2は電機子40の分解斜視図を示す。本図では電機子コア41から冷却管60及び樹脂材53を省略した状態を示す。電機子コア41はモータ駆動方向Xに直方体状に延びて形成される。以下、電機子コア41のモータ駆動方向Xの一端部側(図2の右下側)を前端部41c側、他端部側(図2の左上側)を後端部41d側という。   FIG. 2 shows an exploded perspective view of the armature 40. This figure shows a state where the cooling pipe 60 and the resin material 53 are omitted from the armature core 41. The armature core 41 is formed extending in a rectangular parallelepiped shape in the motor driving direction X. Hereinafter, one end part side (lower right side in FIG. 2) of the armature core 41 in the motor driving direction X is referred to as a front end part 41c side, and the other end part side (upper left side in FIG. 2) is referred to as a rear end part 41d side.

電機子コア41は、複数の金属板47を積層して構成される。各金属板47は、かしめ、溶着、接着剤等により一体化される。金属板47は電磁鋼板であるが、他の金属板でもよい。また、電機子コア41は焼結フェライト等の焼結体により構成されてもよい。   The armature core 41 is configured by laminating a plurality of metal plates 47. Each metal plate 47 is integrated by caulking, welding, adhesive, or the like. The metal plate 47 is an electromagnetic steel plate, but may be another metal plate. The armature core 41 may be composed of a sintered body such as sintered ferrite.

図1に戻り、電機子コア41は、バックヨーク部42と、複数のティース部43と、複数のコイル用溝部45と、一対のサイドヨーク部46を備える。バックヨーク部42は界磁子30と対向する電機子コア41の内側部41aとは反対側の外側部41bに設けられ、モータ駆動方向Xに延びるように形成される。各ティース部43は、バックヨーク部42から界磁子30に向けて突出し、モータ駆動方向Xに間隔を空けて設けられる。各コイル用溝部45は、ティース部43に対してモータ駆動方向Xの両側に形成される。サイドヨーク部46は、バックヨーク部42のモータ駆動方向Xの両端部から界磁子30に向けて突出する。ティース部43、コイル用溝部45、サイドヨーク部46は、界磁子30と対向する電機子コア41の内側部41aに設けられる。   Returning to FIG. 1, the armature core 41 includes a back yoke portion 42, a plurality of teeth portions 43, a plurality of coil groove portions 45, and a pair of side yoke portions 46. The back yoke portion 42 is provided on the outer side portion 41 b opposite to the inner side portion 41 a of the armature core 41 facing the field element 30, and is formed to extend in the motor driving direction X. Each teeth portion 43 protrudes from the back yoke portion 42 toward the field element 30 and is provided at an interval in the motor driving direction X. Each coil groove portion 45 is formed on both sides of the motor drive direction X with respect to the tooth portion 43. The side yoke portions 46 protrude toward the field element 30 from both end portions of the back yoke portion 42 in the motor driving direction X. The teeth portion 43, the coil groove portion 45, and the side yoke portion 46 are provided in the inner portion 41 a of the armature core 41 that faces the field element 30.

電機子コア41は、ティース部43とコイル用溝部45がモータ駆動方向Xに交互に設けられる凹凸形状、つまり、櫛歯形状を有する。各ティース部43にはそれぞれコイル49が巻き回され、コイル用溝部45内にはコイル49が配置される。   The armature core 41 has a concavo-convex shape in which the teeth 43 and the coil grooves 45 are alternately provided in the motor driving direction X, that is, a comb-teeth shape. A coil 49 is wound around each tooth portion 43, and the coil 49 is disposed in the coil groove 45.

電機子コア41には、その外側部41bにおいて、モータ駆動方向Xに等間隔を空けて複数の管路用溝部51(以下、単に溝部51という)が並んで形成される。各溝部51はコイル用溝部45に対応した位置、より詳細には、コイル用溝部45に対してコア高さ方向Yにずれた位置に形成される。各溝部51はコア奥行方向Zに貫通するとともに、コア高さ方向Yの一方に開口して形成される。各溝部51内には冷却管60のコア冷却部73(後述する)が配置される。コア冷却部73は溝部51の内面である溝底面に接触するように配置される。   In the armature core 41, a plurality of duct groove portions 51 (hereinafter simply referred to as groove portions 51) are formed side by side at equal intervals in the motor driving direction X on the outer side portion 41b. Each groove 51 is formed at a position corresponding to the coil groove 45, more specifically, at a position shifted in the core height direction Y with respect to the coil groove 45. Each groove 51 penetrates in the core depth direction Z and is formed to open in one side in the core height direction Y. A core cooling part 73 (described later) of the cooling pipe 60 is disposed in each groove part 51. The core cooling unit 73 is disposed so as to contact the groove bottom surface, which is the inner surface of the groove 51.

樹脂材53は、冷却管60のコア冷却部73と溝部51の間に充填される。樹脂材53はモールド樹脂等であり、空気より熱伝達率が大きい素材が用いられる。樹脂材53の充填により、冷却管60が電機子コア41に一体化される。また、樹脂材53の充填により、冷却管60と電機子コア41の間で熱伝達され易くなり、冷却管60による電機子コア41の冷却性能が良好となる。   The resin material 53 is filled between the core cooling part 73 and the groove part 51 of the cooling pipe 60. The resin material 53 is a mold resin or the like, and a material having a larger heat transfer coefficient than air is used. By filling the resin material 53, the cooling pipe 60 is integrated with the armature core 41. Further, the filling of the resin material 53 facilitates heat transfer between the cooling pipe 60 and the armature core 41, and the cooling performance of the armature core 41 by the cooling pipe 60 is improved.

以上のリニアモータ10は、コイル49の通電により生じる磁界と磁石33の磁界との相互作用により電機子40に推力が発生し、モータ駆動方向Xに電機子40が移動する。   In the above linear motor 10, thrust is generated in the armature 40 due to the interaction between the magnetic field generated by energization of the coil 49 and the magnetic field of the magnet 33, and the armature 40 moves in the motor driving direction X.

次に、冷却管60の詳細を説明する。図3は冷却管60を含む配管系100を示す構成図である。本図では水等の冷媒が流れる方向を矢印で示す。以降の図でも同様である。   Next, details of the cooling pipe 60 will be described. FIG. 3 is a configuration diagram showing the piping system 100 including the cooling pipe 60. In this figure, the direction in which a coolant such as water flows is indicated by an arrow. The same applies to the subsequent drawings.

配管系100は、電機子コア41を冷却するための冷媒を冷却管60に流すためのポンプ101を含む。冷却管60は、その上流側と下流側にポンプ101が接続される。この配管系100では、ポンプ101の駆動により冷媒が移送され、冷却管60を通して冷媒が循環するように流れる。   The piping system 100 includes a pump 101 for flowing a refrigerant for cooling the armature core 41 to the cooling pipe 60. The cooling pipe 60 is connected to the pump 101 on the upstream side and the downstream side. In this piping system 100, the refrigerant is transferred by driving the pump 101, and flows so as to circulate through the cooling pipe 60.

図4は冷却管60が電機子コア41に取り付けられた状態を示す平面図である。本図では樹脂材53を省略して示す。冷却管60は、銅等の金属材料を素材とし、冷媒が内部を流れる。冷却管60は、第1管路部61と、第2管路部63と、流入部65と、分岐部67と、流出部69と、合流部71を有する。   FIG. 4 is a plan view showing a state where the cooling pipe 60 is attached to the armature core 41. In this figure, the resin material 53 is omitted. The cooling pipe 60 is made of a metal material such as copper, and the refrigerant flows inside. The cooling pipe 60 includes a first pipe part 61, a second pipe part 63, an inflow part 65, a branch part 67, an outflow part 69, and a joining part 71.

第1管路部61及び第2管路部63は、複数のコア冷却部73と、複数の連設部75を含む。各コア冷却部73は溝部51が並ぶ方向であるモータ駆動方向Xに等間隔を空けて並んで設けられる。各コア冷却部73は電機子コア41の別々の溝部51内に配置される。コア冷却部73は溝部51の延びる方向(コア奥行方向Z)に沿って直線状に延びるように形成される。各コア冷却部73も、溝部51と同様に、図1に示すように、コイル用溝部45に対応した位置、より詳細には、コイル用溝部45に対してコア高さ方向Yにずれた位置に配置される。   The first conduit portion 61 and the second conduit portion 63 include a plurality of core cooling portions 73 and a plurality of continuous portions 75. The core cooling units 73 are provided side by side at equal intervals in the motor driving direction X, which is the direction in which the groove portions 51 are arranged. Each core cooling unit 73 is disposed in a separate groove 51 of the armature core 41. The core cooling part 73 is formed so as to extend linearly along the direction in which the groove part 51 extends (core depth direction Z). As with the groove portion 51, each core cooling portion 73 also has a position corresponding to the coil groove portion 45, more specifically, a position shifted in the core height direction Y with respect to the coil groove portion 45 as shown in FIG. 1. Placed in.

連設部75は、図4に示すように、モータ駆動方向Xに隣接する2つのコア冷却部73の端部同士を接続する。連設部75は、溝部51が並ぶ方向の離れた位置にある2つのコア冷却部73の端部同士を接続することになる。各コア冷却部73は連設部75を通して内部の流路が連続する。連設部75は、一つのコア冷却部73の端部から、他のコア冷却部73の端部に向けて折り返す曲げ部分を含んで構成される。連設部75は電機子コア41よりコア奥行方向Zの外側に配置される。なお、コア冷却部73や連設部75の断面は円筒状に形成されるが、筒状であれば角筒状等に形成されてもよい。   As shown in FIG. 4, the connecting portion 75 connects the ends of the two core cooling portions 73 adjacent to each other in the motor driving direction X. The connecting portion 75 connects the end portions of the two core cooling portions 73 that are separated from each other in the direction in which the groove portions 51 are arranged. Each core cooling unit 73 has a continuous internal flow path through the continuous portion 75. The connecting portion 75 is configured to include a bent portion that is folded from an end portion of one core cooling portion 73 toward an end portion of another core cooling portion 73. The continuous portion 75 is disposed outside the armature core 41 in the core depth direction Z. In addition, although the cross section of the core cooling part 73 and the connection part 75 is formed in a cylindrical shape, if it is cylindrical, you may form in a rectangular tube shape.

ここで、溝部51は偶数個形成される。複数の溝部51には、その複数の溝部51のうち、溝部51が並ぶ方向であるモータ駆動方向Xの中間にある第1溝部51Aと、第1溝部51Aからモータ駆動方向Xの一方である前端部41c側に離れた位置にある第2溝部51Bとが含まれる。第1溝部51Aは、モータ駆動方向Xでの電機子コア41の中央位置41eから、その前端部41c側に最も近い位置にある溝部51である。第2溝部51Bは、モータ駆動方向Xでの電機子コア41の前端部41cに最も近い位置にある溝部51である。   Here, an even number of grooves 51 are formed. Among the plurality of groove portions 51, the plurality of groove portions 51 include a first groove portion 51A that is in the middle of the motor driving direction X that is the direction in which the groove portions 51 are arranged, and a front end that is one of the first groove portion 51A and the motor driving direction X. 2nd groove part 51B in the position away from the part 41c side is included. 51 A of 1st groove parts are the groove parts 51 in the position nearest from the center position 41e of the armature core 41 in the motor drive direction X to the front-end part 41c side. The second groove 51 </ b> B is the groove 51 located closest to the front end 41 c of the armature core 41 in the motor driving direction X.

また、複数の溝部51には、その複数の溝部51のうち、モータ駆動方向Xの中間にある第3溝部51Cと、第3溝部51Cからモータ駆動方向Xの他方である後端部41d側に離れた位置にある第4溝部51Dとが含まれる。第3溝部51Cは、第1溝部51Aとは別体に設けられ、電機子コア41の中央位置41eから、その後端部41d側に最も近い位置にある溝部51である。第3溝部51Cは、第1溝部51Aに対して、電機子コア41の後端部41d側に隣り合う位置にある溝部51でもある。第4溝部51Dは、モータ駆動方向Xでの電機子コア41の後端部41dに最も近い位置にある溝部51である。   Further, among the plurality of groove portions 51, the plurality of groove portions 51 include a third groove portion 51 </ b> C that is in the middle of the motor driving direction X and a rear end portion 41 d that is the other side of the motor driving direction X from the third groove portion 51 </ b> C. 4th groove part 51D in a distant position is included. The third groove 51C is a groove 51 that is provided separately from the first groove 51A and is located closest to the rear end 41d side from the central position 41e of the armature core 41. The third groove 51C is also a groove 51 located at a position adjacent to the rear end 41d side of the armature core 41 with respect to the first groove 51A. The fourth groove portion 51 </ b> D is the groove portion 51 located closest to the rear end portion 41 d of the armature core 41 in the motor driving direction X.

第1管路部61は、第1溝部51Aから第2溝部51Bに向けて、これらを含む複数の溝部51内を蛇行して通るように形成される。より詳細には、第1管路部61は、第1溝部51Aと、第2溝部51Bと、これらの間にある5個の溝部51との全ての内側を蛇行して通るように形成される。第1管路部61では、第1溝部51A内を上流側とし、第2溝部51B内を下流側として冷媒が流れる。   The first duct portion 61 is formed so as to meander through the plurality of groove portions 51 including these from the first groove portion 51A toward the second groove portion 51B. More specifically, the first duct portion 61 is formed so as to meander through all the insides of the first groove portion 51A, the second groove portion 51B, and the five groove portions 51 between them. . In the first duct portion 61, the refrigerant flows with the inside of the first groove portion 51A as the upstream side and the inside of the second groove portion 51B as the downstream side.

第2管路部63は、第3溝部51Cから第4溝部51Dに向けて、これらを含む複数の溝部51内を蛇行して通るように形成される。より詳細には、第2管路部63は、第3溝部51Cと、第4溝部51Dと、これらの間にある5個の溝部51との全ての内側を蛇行して通るように形成される。第2管路部63では、第3溝部51C内を上流側とし、第4溝部51D内を下流側として冷媒が流れる。   The second duct part 63 is formed so as to meander through the plurality of groove parts 51 including these from the third groove part 51C toward the fourth groove part 51D. More specifically, the second duct portion 63 is formed so as to meander through all the insides of the third groove portion 51C, the fourth groove portion 51D, and the five groove portions 51 between them. . In the second pipe portion 63, the refrigerant flows with the third groove 51C as the upstream side and the fourth groove 51D as the downstream side.

第1管路部61は、第1溝部51A内を通る部分より上流側にある上流側部分61aから、第2溝部51B内を通る部分より下流側にある下流側部分61bにかけて、その流路断面積が一定となるように形成される。第2管路部63は、第3溝部51C内を通る部分より上流側にある上流側部分63aから、第4溝部51D内を通る部分より下流側にある下流側部分63bにかけて、その流路断面積が一定となるように形成される。第1管路部61及び第2管路部63は、それぞれ同じ流路断面積となるように形成される。   The first pipe section 61 has its flow path cut from the upstream portion 61a upstream from the portion passing through the first groove 51A to the downstream portion 61b downstream from the portion passing through the second groove 51B. It is formed so that the area is constant. The second pipe portion 63 has its flow path cut from the upstream portion 63a upstream from the portion passing through the third groove 51C to the downstream portion 63b downstream from the portion passing through the fourth groove 51D. It is formed so that the area is constant. The 1st pipe line part 61 and the 2nd pipe line part 63 are each formed so that it may become the same flow-path cross-sectional area.

流入部65には、上流側のポンプ101から移送される冷媒が内部に流入する。分岐部67は、第1管路部61の上流側部分61aと、第2管路部63の上流側部分63aと、流入部65を接続する。分岐部67は、流入部65の軸線方向と交差する方向に向けて各管路部61、63の上流側部分61a、63aが延びるようにT字状に形成される。分岐部67は、上流側の流入部65から流入する冷媒を、第1管路部61及び第2管路部63内に分岐させて導入する。   The refrigerant transferred from the upstream pump 101 flows into the inflow portion 65. The branch portion 67 connects the upstream portion 61 a of the first conduit portion 61, the upstream portion 63 a of the second conduit portion 63, and the inflow portion 65. The branching portion 67 is formed in a T shape so that the upstream side portions 61 a and 63 a of the pipe portions 61 and 63 extend in a direction intersecting the axial direction of the inflow portion 65. The branching portion 67 introduces the refrigerant flowing in from the upstream inflow portion 65 into the first conduit portion 61 and the second conduit portion 63.

流出部69からは、第1管路部61及び第2管路部63を通る冷媒が下流側のポンプ101に流出する。合流部71は、第1管路部61の下流側部分61bと、第2管路部63の下流側部分63bと、流出部69を接続する。合流部71は、各管路部61、63の下流側部分61b、63bの軸線方向と交差する方向に向けて流出部69が延びるようにT字状に形成される。合流部71は、第1管路部61及び第2管路部63のそれぞれから導出される冷媒を合流させて、下流側の流出部69に流出させる。   From the outflow part 69, the refrigerant passing through the first pipe part 61 and the second pipe part 63 flows out to the pump 101 on the downstream side. The merge portion 71 connects the downstream portion 61 b of the first pipeline portion 61, the downstream portion 63 b of the second pipeline portion 63, and the outflow portion 69. The merge portion 71 is formed in a T shape so that the outflow portion 69 extends in a direction intersecting with the axial direction of the downstream side portions 61b and 63b of the respective pipeline portions 61 and 63. The merge portion 71 merges the refrigerants derived from the first pipeline portion 61 and the second pipeline portion 63 and causes the refrigerant to flow out to the outflow portion 69 on the downstream side.

第1管路部61の分岐部67から合流部71までの流路長さをLp1[mm]、第2管路部63の分岐部67から合流部71までの流路長さをLp2[mm]とする。このとき、第1管路部61及び第2管路部63は、それぞれの流路長さLp1、Lp2が同じになるように構成される。   The flow path length from the branch part 67 of the first pipeline part 61 to the merge part 71 is Lp1 [mm], and the flow path length from the branch part 67 of the second pipeline part 63 to the merge part 71 is Lp2 [mm]. ]. At this time, the 1st pipe line part 61 and the 2nd pipe line part 63 are comprised so that each flow path length Lp1 and Lp2 may become the same.

以上の冷却管60の各管路部61、63のそれぞれは、単一の管体を曲げ加工等することにより製作される。また、分岐部67は、各管路部61、63と流入部65を溶接等して形成される。また、合流部71は、各管路部61、63と流出部69を溶接等して形成される。このように各管路部61、63は一体に形成される。なお、分岐部67や合流部71は、この他にも分岐流路を有する管継手と各管路部61、63等を接続等して形成されてもよい。   Each of the pipe sections 61 and 63 of the cooling pipe 60 is manufactured by bending a single pipe body. Further, the branching portion 67 is formed by welding or the like of the pipe portions 61 and 63 and the inflow portion 65. The junction 71 is formed by welding the pipe sections 61 and 63 and the outflow portion 69. In this way, the pipe sections 61 and 63 are integrally formed. In addition, the branch part 67 and the junction part 71 may be formed by connecting, for example, a pipe joint having a branch flow path and the pipe line parts 61 and 63.

以上の冷却管60には、ポンプ101から流入部65に冷媒が流入し、その冷媒が分岐部67で分岐されて各管路部61、63に導入される。各管路部61、63を流れる冷媒は合流部71で合流し、流出部69からポンプ101に流出する。このとき、各管路部61、63のコア冷却部73を流れる冷媒により、そのコア冷却部73の周囲にある電機子コア41の一部が冷却される。   In the cooling pipe 60 described above, the refrigerant flows from the pump 101 into the inflow part 65, and the refrigerant is branched by the branching part 67 and introduced into the pipe parts 61 and 63. The refrigerant flowing through the pipe sections 61 and 63 joins at the joining section 71 and flows out from the outflow section 69 to the pump 101. At this time, a part of the armature core 41 around the core cooling part 73 is cooled by the refrigerant flowing through the core cooling part 73 of each of the pipe line parts 61 and 63.

以上の実施形態に係る電機子40の作用効果を説明する。冷却管60により電機子コア41を冷却する場合、モータ駆動方向Xの両端部41c、41dは、その側端面41f(図4参照)が空気等の熱媒と接触するため、電機子コア41から熱媒に抜熱され易い。一方、モータ駆動方向Xの中間部では、その両端部41c、41dと比較して熱媒と接触する面が少ないため、電機子コア41から熱媒に抜熱され難い。よって、電機子コア41はモータ駆動方向Xの両端部41c、41dから中央位置41eに近づくほど抜熱され難い。   The effects of the armature 40 according to the above embodiment will be described. When the armature core 41 is cooled by the cooling pipe 60, both end portions 41c and 41d in the motor driving direction X have side end surfaces 41f (see FIG. 4) in contact with a heat medium such as air. Heat is easily removed by the heat medium. On the other hand, in the intermediate portion in the motor driving direction X, since there are few surfaces in contact with the heat medium as compared with the both end portions 41c and 41d, it is difficult for heat to be extracted from the armature core 41 to the heat medium. Therefore, the armature core 41 is less likely to be removed as it approaches the center position 41e from both end portions 41c and 41d in the motor driving direction X.

図5は関連技術としての電機子140の構造を示す。電機子コア41の構造は図1に示す構造と同様であるので、同様の符号を付して説明を省略する。冷却管160は電機子コア41の後端部41dにある後端側溝部51Eと、前端部41cにある前端側溝部51Fを含む複数の溝部51内を蛇行して通るように設けられる。冷却管160は後端側溝部51Eを上流側とし、前端側溝部51Fを下流側として冷媒が流れる。   FIG. 5 shows the structure of the armature 140 as a related technique. Since the structure of the armature core 41 is the same as that shown in FIG. 1, the same reference numerals are given and description thereof is omitted. The cooling pipe 160 is provided so as to meander through the plurality of groove portions 51 including the rear end side groove portion 51E at the rear end portion 41d of the armature core 41 and the front end side groove portion 51F at the front end portion 41c. In the cooling pipe 160, the refrigerant flows with the rear end side groove 51E as the upstream side and the front end side groove 51F as the downstream side.

この冷却管160では、その上流側部分では冷媒の温度が低く、下流側部分に向かうにつれて、電機子コア41からの吸熱より冷媒の温度が高くなる。よって、電機子コア41の後端部41d側が低温、前端部41c側が高温となるような冷媒の温度勾配が生じる。   In the cooling pipe 160, the temperature of the refrigerant is low in the upstream portion, and the temperature of the refrigerant becomes higher than the heat absorption from the armature core 41 toward the downstream portion. Therefore, the temperature gradient of the refrigerant is generated such that the rear end portion 41d side of the armature core 41 has a low temperature and the front end portion 41c side has a high temperature.

以上のような、モータ駆動方向Xでの電機子コア41の抜熱量の違いや、冷却管60内での冷媒の温度勾配により、関連技術の構造では、電機子コア41のモータ駆動方向Xの中央位置41eの近傍から、冷却管60の下流側にずれた位置までの範囲S1で電機子コア41が高温となり易い。また、関連技術の構造では、その高温の箇所からモータ駆動方向Xに離れるにつれて電機子コア41が低温となり易い。よって、モータ駆動方向Xで電機子コア41に温度分布が生じてしまい、熱膨張により電機子コア41がコア奥行方向Zの軸周りに反るように変形しかねない。   Due to the difference in the amount of heat removed from the armature core 41 in the motor driving direction X as described above and the temperature gradient of the refrigerant in the cooling pipe 60, in the related art structure, the armature core 41 in the motor driving direction X The armature core 41 tends to be hot in a range S1 from the vicinity of the central position 41e to a position shifted to the downstream side of the cooling pipe 60. Further, in the related art structure, the armature core 41 tends to become lower in temperature as it moves away from the high temperature portion in the motor driving direction X. Therefore, a temperature distribution is generated in the armature core 41 in the motor driving direction X, and the armature core 41 may be deformed so as to warp around the axis in the core depth direction Z due to thermal expansion.

この点、本実施形態に係る冷却管60によれば、溝部51が並ぶ方向であるモータ駆動方向Xの中間にある第1溝部51A、第3溝部51Cから冷媒が流入し、そのモータ駆動方向Xの両側に向けて各溝部51内を通るように冷媒が流れる。よって、関連技術のように後端側溝部51Eから冷媒を流すよりも、モータ駆動方向Xの中央位置41eに近い位置から低温の冷媒を流すことができ、抜熱され難い電機子コア41の中央位置41eを冷却し易くなる。   In this regard, according to the cooling pipe 60 according to the present embodiment, the refrigerant flows from the first groove portion 51A and the third groove portion 51C in the middle of the motor drive direction X, which is the direction in which the groove portions 51 are arranged, and the motor drive direction X The refrigerant flows so as to pass through the respective groove portions 51 toward both sides. Therefore, it is possible to flow a low-temperature refrigerant from a position close to the central position 41e in the motor driving direction X, rather than flowing the refrigerant from the rear end side groove 51E as in the related art, and the center of the armature core 41 that is difficult to remove heat. It becomes easy to cool the position 41e.

また、本実施形態に係る冷却管60では、各管路部61、63の上流側部分である第1溝部51A、第3溝部51C内では冷媒が低温となり、そこからモータ駆動方向Xに離れるにつれて溝部51内を通る冷媒が高温となるような温度勾配が生じる。よって、関連技術のように後端側溝部51Eから前端側溝部51Fに冷媒を流すよりも、モータ駆動方向Xの両端側で冷媒が高温となり、抜熱され易い電機子コア41の両端部41c、41dを冷却し難くできる。   Further, in the cooling pipe 60 according to the present embodiment, the refrigerant becomes a low temperature in the first groove part 51A and the third groove part 51C that are the upstream side parts of the respective pipe line parts 61 and 63, and as it moves away from there in the motor driving direction X. A temperature gradient is generated such that the refrigerant passing through the groove 51 has a high temperature. Therefore, both ends 41c of the armature core 41 that are easy to remove heat because the refrigerant becomes hot at both ends in the motor driving direction X, rather than flowing the refrigerant from the rear end groove 51E to the front end groove 51F as in the related art. It is difficult to cool 41d.

この結果、モータ駆動方向Xでの電機子コア41の温度分布の偏りを緩和するように、冷却管60による電機子コア41の冷却性能を改善でき、その温度分布の偏りによる電機子コア41の変形を抑制できる。   As a result, the cooling performance of the armature core 41 by the cooling pipe 60 can be improved so as to alleviate the temperature distribution bias of the armature core 41 in the motor driving direction X, and the armature core 41 of the armature core 41 due to the temperature distribution bias can be improved. Deformation can be suppressed.

また、本実施形態に係る冷却管60には分岐部67が設けられるため、各管路部61、63に冷媒を流入させるための流入部65の数が抑えられる。よって、冷却管60に冷媒を流すための配管系100を簡略化でき、その取り扱いが容易となる。   In addition, since the cooling pipe 60 according to the present embodiment is provided with the branch part 67, the number of the inflow parts 65 for allowing the refrigerant to flow into the respective pipe line parts 61 and 63 is suppressed. Therefore, the piping system 100 for flowing the refrigerant through the cooling pipe 60 can be simplified, and the handling becomes easy.

また、本実施形態に係る冷却管60には合流部71が設けられるため、各管路部61、63から冷媒を流出させるための流出部69の数が抑えられる。よって、冷却管60に冷媒を流すための配管系100を簡略化でき、その取り扱いが容易となる。   Moreover, since the junction part 71 is provided in the cooling pipe 60 which concerns on this embodiment, the number of the outflow parts 69 for making a refrigerant | coolant flow out from each pipe line part 61 and 63 is restrained. Therefore, the piping system 100 for flowing the refrigerant through the cooling pipe 60 can be simplified, and the handling becomes easy.

また、本実施形態に係る電機子40では各管路部61、63の流路長さLp1、Lp2が同じになるように構成される。よって、各管路部61、63と分岐部67の接続箇所の近傍や、各管路部61、63と合流部71の接続箇所の近傍で、各管路部61、63を流れる冷媒に圧力差が生じ難くなり、これら管路部61、63内で冷媒の逆流等が発生し難くなる。   In addition, the armature 40 according to the present embodiment is configured such that the channel lengths Lp1 and Lp2 of the pipe sections 61 and 63 are the same. Therefore, pressure is applied to the refrigerant flowing through the pipe portions 61 and 63 in the vicinity of the connection portion between the pipe portions 61 and 63 and the branch portion 67 and in the vicinity of the connection portion between the pipe portions 61 and 63 and the merging portion 71. Differences are less likely to occur, and refrigerant backflow or the like is less likely to occur in these pipe sections 61 and 63.

[第2実施形態]
図6は第2実施形態に係る冷却管60を含む配管系100を示す構成図である。本実施形態に係る冷却管60は、第1管路部61と第2管路部63が一体ではなく別体に形成される。以下の実施の形態では、第1の実施の形態で説明した要素と同一の要素に同一の符号を付し、重複する説明を省略する。
[Second Embodiment]
FIG. 6 is a configuration diagram showing the piping system 100 including the cooling pipe 60 according to the second embodiment. In the cooling pipe 60 according to the present embodiment, the first pipe part 61 and the second pipe part 63 are not integrated but formed separately. In the following embodiments, the same elements as those described in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

配管系100は第1配管系100Aと第2配管系100Bを含む。第1配管系100Aは冷却管60の第1管路部61に冷媒を流すための第1ポンプ101Aを含む。第1配管系100Aでは、第1ポンプ101Aの駆動により冷媒が移送され、冷却管60の第1管路部61を通して冷媒が循環するように流れる。第2配管系100Bは冷却管60の第2管路部63に冷媒を流すための第2ポンプ101Bを含む。第2配管系100Bでは、第2ポンプ101Bの駆動により冷媒が移送され、冷却管60の第2管路部63を通して冷媒が循環するように流れる。   The piping system 100 includes a first piping system 100A and a second piping system 100B. The first piping system 100 </ b> A includes a first pump 101 </ b> A for flowing a refrigerant through the first pipe part 61 of the cooling pipe 60. In the first piping system 100 </ b> A, the refrigerant is transferred by driving the first pump 101 </ b> A, and flows so as to circulate through the first pipeline 61 of the cooling pipe 60. The second piping system 100 </ b> B includes a second pump 101 </ b> B for flowing the refrigerant through the second pipe portion 63 of the cooling pipe 60. In the second piping system 100B, the refrigerant is transferred by driving the second pump 101B, and flows so as to circulate through the second pipe section 63 of the cooling pipe 60.

図7は冷却管60が電機子コア41に取り付けられた状態を示す平面図である。本図では樹脂材53を省略して示す。冷却管60は、第1管路部61と、第2管路部63の他に、第1流入部65Aと、第1流出部69Aと、第2流入部65Bと、第2流出部69Bを含む。   FIG. 7 is a plan view showing a state where the cooling pipe 60 is attached to the armature core 41. In this figure, the resin material 53 is omitted. The cooling pipe 60 includes a first inflow part 65A, a first outflow part 69A, a second inflow part 65B, and a second outflow part 69B in addition to the first conduit part 61 and the second conduit part 63. Including.

第1流入部65Aは第1管路部61の上流側部分61aに接続される。第1流出部69Aは第1管路部61の下流側部分61bに接続される。第1流入部65Aには、上流側の第1ポンプ101Aから移送される冷媒が内部に流入し、その冷媒が第1管路部61の上流側部分61aに導入される。第1流出部69Aからは第1管路部61を通る冷媒が下流側の第1ポンプ101Aに流出する。   The first inflow portion 65 </ b> A is connected to the upstream portion 61 a of the first conduit portion 61. The first outflow portion 69 </ b> A is connected to the downstream portion 61 b of the first conduit portion 61. The refrigerant transferred from the upstream first pump 101 </ b> A flows into the first inflow portion 65 </ b> A, and the refrigerant is introduced into the upstream portion 61 a of the first conduit 61. From the first outflow portion 69A, the refrigerant passing through the first conduit portion 61 flows out to the first pump 101A on the downstream side.

第2流入部65Bは第2管路部63の上流側部分63aに接続される。第2流出部69Bは第2管路部63の下流側部分63bに接続される。第2流入部65Bには、上流側の第2ポンプ101Bから移送される冷媒が内部に流入し、その冷媒が第2管路部63の上流側部分63aに導入される。第2流出部69Bからは第2管路部63を通る冷媒が下流側の第2ポンプ101Bに流出する。このように第1管路部61と第2管路部63は一体ではなく別体に構成される。   The second inflow portion 65 </ b> B is connected to the upstream portion 63 a of the second pipe portion 63. The second outflow portion 69B is connected to the downstream portion 63b of the second pipe portion 63. The refrigerant transferred from the second pump 101B on the upstream side flows into the second inflow portion 65B, and the refrigerant is introduced into the upstream portion 63a of the second pipe portion 63. From the second outflow part 69B, the refrigerant passing through the second pipe part 63 flows out to the second pump 101B on the downstream side. Thus, the 1st pipe line part 61 and the 2nd pipe line part 63 are comprised not separately but separately.

以上の実施形態に係る電機子40によっても、第1実施形態と同様、電機子コア41のモータ駆動方向Xでの温度分布の偏りを緩和でき、その温度分布の偏りによる電機子コア41の変形を抑制できる。   Similarly to the first embodiment, the armature 40 according to the above embodiment can alleviate the uneven temperature distribution in the motor driving direction X of the armature core 41, and the armature core 41 can be deformed by the uneven temperature distribution. Can be suppressed.

[第3の実施の形態]
図8は第3実施形態に係る冷却管60が電機子コア41に取り付けられた状態を示す平面図である。本図では樹脂材53を省略して示す。冷却管60を含む配管系100は、第1実施形態と同様の構成である。
[Third Embodiment]
FIG. 8 is a plan view showing a state where the cooling pipe 60 according to the third embodiment is attached to the armature core 41. In this figure, the resin material 53 is omitted. The piping system 100 including the cooling pipe 60 has the same configuration as that of the first embodiment.

溝部51は奇数個形成される。複数の溝部51には、第1溝部51A〜第4溝部51Dの他に、第5溝部51Kが含まれる。第5溝部51Kは、第1溝部51Aと第3溝部51Cの間に設けられる。第5溝部51Kは、モータ駆動方向Xでの電機子コア41の中央位置41eに設けられる。第1溝部51Aは、第5溝部51Kから電機子コア41の前端部41c側に最も近い位置にあり、第3溝部51Cは、第5溝部51Kから電機子コア41の後端部41d側に最も近い位置にある。   An odd number of grooves 51 are formed. The plurality of groove portions 51 include a fifth groove portion 51K in addition to the first groove portion 51A to the fourth groove portion 51D. The fifth groove 51K is provided between the first groove 51A and the third groove 51C. The fifth groove 51K is provided at the central position 41e of the armature core 41 in the motor driving direction X. The first groove 51A is located closest to the front end 41c side of the armature core 41 from the fifth groove 51K, and the third groove 51C is located closest to the rear end 41d of the armature core 41 from the fifth groove 51K. Close position.

冷却管60の流入部65は、分岐部67より上流側に設けられ、第5溝部51K内を通るように配置される。図9は、図8のA−A線断面図である。第1管路部61、第2管路部63は、それらの流路断面積Sa[mm2]が同じとなるように形成される。一方、流入部65は、各管路部61、63での流路断面積Saより大きい流路断面積Sb[mm2]となるように形成される。本図では、各管路部61、63で流路断面積Saとなる箇所を一点鎖線Taで囲んで示し、流入部65で流路断面積Sbとなる箇所を一点鎖線Tbで囲んで示す。より詳細には、流入部65は、第1管路部61の流路断面積Saと第2管路部63の流路断面積Saとの合計である2×Saと同じ流路断面積Sbとなるように形成される。   The inflow portion 65 of the cooling pipe 60 is provided on the upstream side of the branch portion 67 and is disposed so as to pass through the fifth groove portion 51K. 9 is a cross-sectional view taken along line AA in FIG. The 1st pipe line part 61 and the 2nd pipe line part 63 are formed so that those flow path cross-sectional areas Sa [mm2] may become the same. On the other hand, the inflow portion 65 is formed to have a flow passage cross-sectional area Sb [mm2] larger than the flow passage cross-sectional area Sa in each of the pipe line portions 61 and 63. In this figure, the locations where the channel cross-sectional area Sa is surrounded by the pipeline sections 61 and 63 are indicated by the alternate long and short dash line Ta, and the locations where the flow path cross-sectional area Sb is indicated by the inflow portion 65 are indicated by the dashed-dotted line Tb. More specifically, the inflow portion 65 has the same channel cross-sectional area Sb as 2 × Sa, which is the sum of the channel cross-sectional area Sa of the first pipe part 61 and the channel cross-sectional area Sa of the second pipe part 63. It is formed to become.

第1管路部61では、図8に示すように、第1溝部51A内を通る部分より上流側にある上流側部分61aから、第2溝部51B内を通る部分より下流側にある下流側部分61bにかけて、その流路断面積がSaとなるように形成される。第2管路部63では、第3溝部51C内を通る部分より上流側にある上流側部分63aから、第4溝部51D内を通る部分より下流側にある下流側部分63bにかけて、その流路断面積がSbとなるように形成される。   In the first pipeline section 61, as shown in FIG. 8, from the upstream section 61a located upstream from the section passing through the first groove 51A, the downstream section located downstream from the section passing through the second groove 51B. It is formed so that the channel cross-sectional area becomes Sa over 61b. In the second duct portion 63, the flow path is cut from the upstream portion 63a upstream of the portion passing through the third groove 51C to the downstream portion 63b downstream of the portion passing through the fourth groove 51D. It is formed so that the area becomes Sb.

以上の実施形態に係る電機子40によっても、第1実施形態と同様の作用効果を得られる。また、流入部65での流路断面積S2が各管路部61、63での流路断面積Saと同じである場合、上流側の流入部65での圧力損失が大きくなり、下流側の各管路部61、63に冷媒を流し難くなる。この点、本実施形態では、流入部65での流路断面積S2が各管路部61、63での流路断面積Saより大きいため、上流側の流入部65での圧力損失を抑え易くなり、下流側の各管路部61、63に冷媒を流し易くなることにより冷却効率が向上する。なお、流入部65での圧力損失を抑え易くするうえで、その流路断面積Sbの上限値は特に限られないが、これが大きくなるほど第5溝部51Kが大きくなり電機子コア41の強度に影響する。この観点から、流入部65の流路断面積Sbは、たとえば、各管路部61、63の流路断面積Saの合計の2倍以下としてもよい。   Also by the armature 40 according to the above embodiment, the same effect as that of the first embodiment can be obtained. In addition, when the flow passage cross-sectional area S2 at the inflow portion 65 is the same as the flow passage cross-sectional area Sa at each of the pipe portions 61 and 63, the pressure loss at the upstream inflow portion 65 increases, and the downstream side It becomes difficult for the refrigerant to flow through the pipe sections 61 and 63. In this respect, in this embodiment, the flow passage cross-sectional area S2 at the inflow portion 65 is larger than the flow passage cross-sectional area Sa at each of the pipe portions 61 and 63, so that it is easy to suppress the pressure loss at the upstream inflow portion 65. Thus, the cooling efficiency is improved by facilitating the flow of the refrigerant through the downstream pipe sections 61 and 63. In order to easily suppress the pressure loss at the inflow portion 65, the upper limit value of the flow path cross-sectional area Sb is not particularly limited, but the fifth groove portion 51 </ b> K increases as this increases, affecting the strength of the armature core 41. To do. From this point of view, the channel cross-sectional area Sb of the inflow portion 65 may be, for example, not more than twice the total of the channel cross-sectional areas Sa of the pipe line portions 61 and 63.

[第4の実施の形態]
図10は第4実施形態に係る冷却管60が電機子コア41に取り付けられた状態を示す平面図である。本図では樹脂材53を省略して示す。なお、冷却管60を含む配管系100は、第2実施形態と同様の構成である。
[Fourth Embodiment]
FIG. 10 is a plan view showing a state in which the cooling pipe 60 according to the fourth embodiment is attached to the armature core 41. In this figure, the resin material 53 is omitted. The piping system 100 including the cooling pipe 60 has the same configuration as that of the second embodiment.

溝部51は奇数個形成される。第3溝部51Cは第1溝部51Aにより構成される。第1管路部61と第2管路部63の上流側の一部は、第1溝部51A内にて並べて配置される。図11は図10のB−B線断面図である。本図は第1溝部51A内での各管路部61、63の断面図でもある。各管路部61、63の一部は、第1溝部51A内にて、その深さ方向Y(コア高さ方向Y)に並べて配置される。   An odd number of grooves 51 are formed. The third groove 51C is configured by the first groove 51A. Portions on the upstream side of the first pipeline portion 61 and the second pipeline portion 63 are arranged side by side in the first groove 51A. 11 is a cross-sectional view taken along line BB in FIG. This figure is also a cross-sectional view of the pipe sections 61 and 63 in the first groove 51A. A part of each pipe line part 61 and 63 is arranged side by side in the depth direction Y (core height direction Y) in the 1st groove part 51A.

以上の実施形態に係る電機子40によっても、第1実施形態と同様の作用効果を得られる。   Also by the armature 40 according to the above embodiment, the same effect as that of the first embodiment can be obtained.

なお、各管路部61、63の一部は、図12に示すように、第1溝部51内にて、その深さ方向Yではなく、モータ駆動方向Xに並べて配置されてもよい。   In addition, as shown in FIG. 12, some pipe line parts 61 and 63 may be arranged in the 1st groove part 51 not in the depth direction Y but in the motor drive direction X. As shown in FIG.

[第5の実施の形態]
図13は第5実施形態に係る電機子40が用いられるリニアモータ10を示し、図14は第5実施形態に係る冷却管60が電機子コア41に取り付けられた状態を示す平面図である。なお、冷却管60を含む配管系100は、第1実施形態と同様の構成である。
[Fifth Embodiment]
FIG. 13 shows the linear motor 10 in which the armature 40 according to the fifth embodiment is used, and FIG. 14 is a plan view showing a state where the cooling pipe 60 according to the fifth embodiment is attached to the armature core 41. The piping system 100 including the cooling pipe 60 has the same configuration as that of the first embodiment.

冷却管60は、流入部65と流出部69の他に、第1管路部81と、第2管路部83と、折返し部85を有する。図14では第1管路部81で冷媒が流れる方向を実線の矢印で示し、第2管路部83で冷媒が流れる方向を破線の矢印で示し、他の部位で冷媒が流れる方向を白抜き矢印で示す。   In addition to the inflow portion 65 and the outflow portion 69, the cooling pipe 60 has a first conduit portion 81, a second conduit portion 83, and a folded portion 85. In FIG. 14, the direction in which the refrigerant flows in the first pipe portion 81 is indicated by a solid arrow, the direction in which the refrigerant flows in the second pipe portion 83 is indicated by a dashed arrow, and the direction in which the refrigerant flows in other parts is outlined. Shown with an arrow.

第1管路部81と第2管路部83は、複数のコア冷却部73と、複数の連設部75を含む。これらの詳細は第1実施形態と同様である。   The first conduit portion 81 and the second conduit portion 83 include a plurality of core cooling portions 73 and a plurality of continuous portions 75. These details are the same as in the first embodiment.

電機子コア41の複数の溝部51には、その複数の溝部51のうち、溝部51が並ぶ方向の一方であるモータ駆動方向Xの後端部41d側にある第1溝部51Gが含まれる。また、複数の溝部51には、第1溝部51Gから溝部51が並ぶ方向の他方であるモータ駆動方向Xの前端部41c側に離れた位置にある第2溝部51Hが含まれる。第1溝部51Gは、モータ駆動方向Xの後端部41dに最も近い位置にある溝部51である。第2溝部51Hは、モータ駆動方向Xの前端部41cから後端部41dに向けて2番目の位置にある溝部51である。   The plurality of groove portions 51 of the armature core 41 include a first groove portion 51G on the rear end portion 41d side of the motor driving direction X, which is one of the plurality of groove portions 51 in the direction in which the groove portions 51 are arranged. Further, the plurality of groove portions 51 include a second groove portion 51H located at a position away from the first groove portion 51G toward the front end portion 41c in the motor driving direction X, which is the other of the directions in which the groove portions 51 are arranged. The first groove 51G is the groove 51 located closest to the rear end 41d of the motor driving direction X. The second groove 51H is the groove 51 located at the second position from the front end 41c to the rear end 41d in the motor driving direction X.

また、複数の溝部51には、その複数の溝部51のうち、モータ駆動方向Xの前端部41c側にある第3溝部51Iと、第3溝部51Iからモータ駆動方向Xの後端部41d側に離れた位置にある第4溝部51Jが含まれる。第3溝部51Iは、モータ駆動方向Xの前端部41cに最も近い位置にある溝部51である。第3溝部51Iは、第2溝部51Hに対して、電機子コア41の後端部41d側に隣り合う位置にある溝部51でもある。第4溝部51Jは、モータ駆動方向Xの後端部41dから前端部41cに向けて2番目の位置にある溝部51である。第4溝部51Jは、第1溝部51Gに対して、電機子コア41の前端部41c側に隣り合う位置にある溝部51でもある。   The plurality of groove portions 51 include a third groove portion 51I on the front end portion 41c side in the motor driving direction X, and a rear end portion 41d side of the motor driving direction X from the third groove portion 51I. A fourth groove 51J at a distant position is included. The third groove 51I is the groove 51 located closest to the front end 41c in the motor driving direction X. The third groove portion 51I is also a groove portion 51 located at a position adjacent to the rear end portion 41d side of the armature core 41 with respect to the second groove portion 51H. The fourth groove 51J is the groove 51 located at the second position from the rear end 41d to the front end 41c in the motor driving direction X. The fourth groove 51J is also a groove 51 located at a position adjacent to the front end 41c side of the armature core 41 with respect to the first groove 51G.

第1管路部81は、第1溝部51Gから第2溝部51Hに向けて、これらを含む複数の溝部51内を蛇行して通るように形成される。より詳細には、第1管路部81は、第1溝部51Gから第2溝部51Hに向けて、一つおきの位置にある複数の溝部51を蛇行して通るように形成される。つまり、第2溝部51Hは、複数の溝部51のうち、第1溝部51Gに対して一つおきの位置にある溝部51でもある。第1管路部81では、第1溝部51G内を上流側とし、第2溝部51H内を下流側として冷媒が流れる。   The first conduit portion 81 is formed so as to meander through the plurality of groove portions 51 including these from the first groove portion 51G toward the second groove portion 51H. More specifically, the first pipe line portion 81 is formed so as to meander through the plurality of groove portions 51 at every other position from the first groove portion 51G toward the second groove portion 51H. That is, the second groove 51H is also a groove 51 that is located at every other position with respect to the first groove 51G among the plurality of grooves 51. In the first pipe section 81, the refrigerant flows with the first groove 51G as the upstream side and the second groove 51H as the downstream side.

第2管路部83は、第3溝部51Iから第4溝部51Jに向けて、これらを含む複数の溝部51内を蛇行して通るように形成される。より詳細には、第2管路部83では、第3溝部51Iから第4溝部51Jに向けて、一つおきの位置にある複数の溝部51を蛇行して通るように形成される。つまり、第4溝部51Jは、複数の溝部51のうち、第3溝部51Iに対して一つおきの位置にある溝部51でもある。第2管路部83は、第3溝部51I内を上流側とし、第4溝部51J内を下流側として冷媒が流れる。   The second duct portion 83 is formed so as to meander through the plurality of groove portions 51 including these from the third groove portion 51I toward the fourth groove portion 51J. More specifically, the second pipe line part 83 is formed so as to meander through the plurality of groove parts 51 at every other position from the third groove part 51I toward the fourth groove part 51J. That is, the fourth groove portion 51J is also a groove portion 51 that is located every other position with respect to the third groove portion 51I among the plurality of groove portions 51. In the second pipe portion 83, the refrigerant flows with the inside of the third groove portion 51I as the upstream side and the inside of the fourth groove portion 51J as the downstream side.

第1管路部81の溝部51を通る部分であるコア冷却部73の符号を「73A」とし、第2管路部83の溝部51を通る部分であるコア冷却部73の符号を「73B」とする。各管路部81、83は、それぞれのコア冷却部73A、73Bが、複数の溝部51内にモータ駆動方向Xに交互に配置されるように構成される。つまり、複数の溝部51内には、モータ駆動方向Xの後端部41d側から前端部41c側に向けて、第1管路部81のコア冷却部73Aと第2管路部83のコア冷却部73Bが「73A、73B、73A、73B・・・」の順で配置される。   The symbol of the core cooling portion 73 that is a portion passing through the groove portion 51 of the first conduit portion 81 is “73A”, and the symbol of the core cooling portion 73 that is a portion passing through the groove portion 51 of the second conduit portion 83 is “73B”. And The pipe sections 81 and 83 are configured such that the core cooling sections 73A and 73B are alternately arranged in the motor driving direction X in the plurality of grooves 51. That is, in the plurality of groove portions 51, the core cooling portion 73A of the first conduit portion 81 and the core cooling portion of the second conduit portion 83 are directed from the rear end portion 41d side to the front end portion 41c side in the motor driving direction X. The parts 73B are arranged in the order of “73A, 73B, 73A, 73B.

折返し部85は、第1管路部81の下流側端部81aと、第2管路部83の上流側端部83aの間に設けられ、これらを接続する。第1管路部81と第2管路部83は折返し部85を通して内部の流路が連続する。このように第1管路部81と第2管路部83は一体に形成される。折返し部85は、第1管路部81の下流側端部81aから、第2管路部83の上流側端部83aに向けて折り返すような曲げ部分を含んで構成される。折返し部85は、電機子コア41のコア奥行方向Zの外側に配置される。   The folded portion 85 is provided between the downstream end portion 81a of the first conduit portion 81 and the upstream end portion 83a of the second conduit portion 83, and connects them. The first channel portion 81 and the second channel portion 83 have internal flow paths that pass through the folded portion 85. Thus, the 1st pipe line part 81 and the 2nd pipe line part 83 are formed integrally. The folded portion 85 includes a bent portion that is folded from the downstream end portion 81 a of the first conduit portion 81 toward the upstream end portion 83 a of the second conduit portion 83. The folded portion 85 is disposed outside the core depth direction Z of the armature core 41.

第1管路部81と第2管路部83は、図13に示すように、複数の溝部51の深さ方向にずれた位置に配置されるように構成される。この深さ方向は電機子コア41のコア高さ方向Yと一致する。本例では第1管路部81に対して第2管路部83が深さ方向の底側に位置する。   As shown in FIG. 13, the first pipe part 81 and the second pipe part 83 are configured to be arranged at positions shifted in the depth direction of the plurality of groove parts 51. This depth direction coincides with the core height direction Y of the armature core 41. In the present example, the second pipe part 83 is located on the bottom side in the depth direction with respect to the first pipe part 81.

ここで、第1管路部81のコア冷却部73Aについて、溝部51の底側にある底側端面87を通る第1仮想接線をLiaといい、第2管路部63のコア冷却部73Bについて、溝部51の入側にある入側端面89を通る第2仮想接線をLibという。各仮想接線Lia、Libは、溝部51の延びる方向から見たときに、互いに平行に延びている。この溝部51の延びる方向は、コア奥行方向Zと一致する。このとき、第1管路部81と第2管路部63は、第1仮想接線Liaよりも第2仮想接線Libが深さ方向の底側に位置するように構成される。これにより、第1管路部81と第2管路部83の深さ方向での接触による干渉が抑えられる。   Here, with respect to the core cooling part 73A of the first pipe part 81, the first virtual tangent passing through the bottom side end face 87 on the bottom side of the groove part 51 is referred to as Lia, and the core cooling part 73B of the second pipe part 63 The second virtual tangent line passing through the entry side end face 89 on the entry side of the groove 51 is referred to as Lib. The virtual tangents Lia and Lib extend parallel to each other when viewed from the direction in which the groove 51 extends. The direction in which the groove 51 extends coincides with the core depth direction Z. At this time, the 1st pipe line part 81 and the 2nd pipe line part 63 are comprised so that the 2nd virtual tangent Lib may be located in the bottom side of a depth direction rather than the 1st virtual tangent Lia. Thereby, the interference by the contact in the depth direction of the 1st pipe line part 81 and the 2nd pipe line part 83 is suppressed.

第1管路部81のコア冷却部73Aが配置される溝部51を第1管路用溝部51といい、第2管路部83のコア冷却部73Bが配置される溝部51を第2管路用溝部51という。各管路用溝部51は、その深さ寸法が異なるように形成される。詳細には、第1管路用溝部51は深さ寸法Lda[mm]となるように形成され、第2管路用溝部51は深さ寸法Ldbとなるように形成される。深さ寸法Ldaは、第1管路部81のコア冷却部73Aの底側端面87が第1管路用溝部51の溝底面に接触するように定められる。深さ寸法Ldbは、第2管路部83のコア冷却部73Bの底側端面87が第2管路用溝部51の溝底面に接触するように定められる。   The groove 51 in which the core cooling part 73A of the first pipe part 81 is arranged is referred to as a first pipe groove 51, and the groove 51 in which the core cooling part 73B of the second pipe part 83 is arranged is the second pipe. This is referred to as a groove 51 for use. Each duct groove portion 51 is formed so as to have different depth dimensions. Specifically, the first duct groove portion 51 is formed to have a depth dimension Lda [mm], and the second duct groove portion 51 is formed to have a depth dimension Ldb. The depth dimension Lda is determined so that the bottom-side end surface 87 of the core cooling portion 73 </ b> A of the first conduit portion 81 contacts the groove bottom surface of the first conduit groove portion 51. The depth dimension Ldb is determined so that the bottom side end face 87 of the core cooling part 73B of the second pipe line part 83 is in contact with the groove bottom surface of the second pipe line groove part 51.

以上の実施形態に係る電機子40の作用効果を説明する。上述のように、図5の関連技術の構造では、電機子コア41の後端部41d側が低温、前端部41c側が高温となるような冷媒の温度勾配が生じ、冷却管160による冷却能力にモータ駆動方向Xで偏りが生じる。   The effects of the armature 40 according to the above embodiment will be described. As described above, in the related art structure of FIG. 5, a refrigerant temperature gradient is generated such that the rear end portion 41 d side of the armature core 41 is low temperature and the front end portion 41 c side is high temperature. Unevenness occurs in the driving direction X.

一方、本実施形態に係る第1管路部81では、図14に示すように、電機子コア41の後端部41dに近い上流側部分81bが低温となり、その前端部41cに近い下流側部分81cが高温となるような冷媒の温度勾配となる。また、第2管路部83では、電機子コア41の前端部41cに近い上流側部分83bが低温となり、その後端部41dに近い下流側部分83cが高温となるような冷媒の温度勾配となる。   On the other hand, in the first pipe line portion 81 according to the present embodiment, as shown in FIG. 14, the upstream portion 81b near the rear end portion 41d of the armature core 41 has a low temperature, and the downstream portion near the front end portion 41c. The temperature gradient of the refrigerant is such that 81c has a high temperature. Moreover, in the 2nd pipe line part 83, it becomes the temperature gradient of a refrigerant | coolant so that the upstream part 83b near the front-end part 41c of the armature core 41 becomes low temperature, and the downstream part 83c near the rear-end part 41d becomes high temperature. .

つまり、第1管路部81と第2管路部83ではモータ駆動方向Xでの冷媒の温度勾配が逆となり、冷却管60全体でのモータ駆動方向Xでの冷却能力の偏りが抑えられる。よって、モータ駆動方向Xでの電機子コア41の温度分布の偏りを緩和するように、冷却管60による電機子コア41の冷却性能を改善でき、その温度分布の偏りによる電機子コア41の変形を抑制できる。   In other words, the temperature gradient of the refrigerant in the motor driving direction X is reversed between the first pipe portion 81 and the second pipe portion 83, and the uneven cooling capacity in the motor driving direction X in the entire cooling pipe 60 is suppressed. Therefore, the cooling performance of the armature core 41 by the cooling pipe 60 can be improved so as to alleviate the temperature distribution bias of the armature core 41 in the motor driving direction X, and the armature core 41 is deformed by the temperature distribution bias. Can be suppressed.

特に、各管路部81、83のコア冷却部73はモータ駆動方向Xに交互に配置されるため、同じ管路部81、83を構成するコア冷却部73で挟まれる箇所が存在しない。このような箇所が存在すると、その箇所が局所的に過度に冷却されたり、冷却が不十分となり、他の箇所との温度差により反るように変形する恐れがある。この点、本実施形態では、そのような局所的な過度の冷却や不十分な冷却の発生を抑えられる。   In particular, since the core cooling parts 73 of the respective pipe line parts 81 and 83 are alternately arranged in the motor driving direction X, there is no place between the core cooling parts 73 constituting the same pipe line parts 81 and 83. If such a part exists, the part may be excessively cooled locally, or the cooling may be insufficient, and the part may be deformed to warp due to a temperature difference from other parts. In this respect, in the present embodiment, occurrence of such local excessive cooling and insufficient cooling can be suppressed.

また、各管路部81、83のコア冷却部73はモータ駆動方向Xに交互に配置されるため、関連技術の構造とするよりも、コア冷却部73同士を接続する連設部75の曲げ加工量を抑えられる。よって、冷却管60の第1管路部61や第2管路部83の塑性変形量が抑えられ、これらの強度、耐力を確保し易くなる。   In addition, since the core cooling portions 73 of the pipe portions 81 and 83 are alternately arranged in the motor driving direction X, the bending of the connecting portion 75 that connects the core cooling portions 73 to each other is made rather than the structure of the related art. The amount of processing can be reduced. Therefore, the amount of plastic deformation of the 1st pipe line part 61 and the 2nd pipe line part 83 of the cooling pipe 60 is suppressed, and it becomes easy to ensure these intensity | strengths and proof stresses.

また、本実施形態に係る冷却管60には折返し部85が設けられるため、各管路部61、63に冷媒を流入、流出させるための流入部65、流出部69の数が抑えられる。よって、冷却管60に冷媒を流すための配管系100を簡略化でき、その取り扱いが容易となる。   In addition, since the cooling pipe 60 according to the present embodiment is provided with the folded part 85, the number of the inflow parts 65 and the outflow parts 69 for allowing the refrigerant to flow into and out of the pipe lines 61 and 63 is reduced. Therefore, the piping system 100 for flowing the refrigerant through the cooling pipe 60 can be simplified, and the handling becomes easy.

[第6の実施の形態]
図15は第6実施形態に係る冷却管60が電機子コア41に取り付けられた状態を示す平面図である。なお、冷却管60を含む配管系100は第2実施形態と同様の構成である。
[Sixth Embodiment]
FIG. 15 is a plan view showing a state where the cooling pipe 60 according to the sixth embodiment is attached to the armature core 41. The piping system 100 including the cooling pipe 60 has the same configuration as that of the second embodiment.

冷却管60は、折返し部85を備えておらず、第1管路部81と、第2管路部83の他に、第1流入部65Aと、第1流出部69Aと、第2流入部65Bと、第2流出部69Bを含む。   The cooling pipe 60 does not include the folded-back portion 85, and in addition to the first conduit portion 81 and the second conduit portion 83, the first inflow portion 65A, the first outflow portion 69A, and the second inflow portion. 65B and the 2nd outflow part 69B are included.

第1流入部65Aは第1管路部81の上流側部分81dに接続される。第1流出部69Aは第1管路部81の下流側部分81aに接続される。第1流入部65Aには、上流側の第1ポンプ101A(図示せず)から移送される冷媒が内部に流入し、その冷媒が第1管路部81の上流側部分81dに導入される。第1流出部69Aからは第1管路部81を通る冷媒が下流側の第1ポンプ101A(図示せず)に流出する。   The first inflow portion 65 </ b> A is connected to the upstream portion 81 d of the first conduit portion 81. The first outflow portion 69 </ b> A is connected to the downstream portion 81 a of the first conduit portion 81. The refrigerant transferred from the upstream first pump 101 </ b> A (not shown) flows into the first inflow portion 65 </ b> A, and the refrigerant is introduced into the upstream portion 81 d of the first pipe portion 81. From the first outflow portion 69A, the refrigerant passing through the first pipe portion 81 flows out to the first pump 101A (not shown) on the downstream side.

第2流入部65Bは第2管路部83の上流側部分83aに接続される。第2流出部69Bは第2管路部83の下流側部分83dに接続される。第2流入部65Bには、上流側の第2ポンプ101B(図示せず)から移送される冷媒が内部に流入し、その冷媒が第2管路部83の上流側部分83aに導入される。第2流出部69Bからは第2管路部83を通る冷媒が下流側の第2ポンプ101B(図示せず)に流出する。このように第1管路部81と第2管路部83は一体ではなく別体に構成される。   The second inflow portion 65 </ b> B is connected to the upstream portion 83 a of the second conduit portion 83. The second outflow portion 69B is connected to the downstream portion 83d of the second pipe portion 83. The refrigerant transferred from the second pump 101B (not shown) on the upstream side flows into the second inflow portion 65B, and the refrigerant is introduced into the upstream portion 83a of the second pipe portion 83. From the second outflow portion 69B, the refrigerant passing through the second pipe portion 83 flows out to the second pump 101B (not shown) on the downstream side. Thus, the 1st pipe line part 81 and the 2nd pipe line part 83 are comprised not separately but separately.

以上の実施形態に係る電機子40によっても、第5実施形態と同様、電機子コア41のモータ駆動方向Xでの温度分布の偏りを緩和でき、その温度分布の偏りによる電機子コア41の変形を抑制できる。   Similarly to the fifth embodiment, the armature 40 according to the above embodiment can alleviate the temperature distribution bias in the motor driving direction X of the armature core 41, and the armature core 41 is deformed by the temperature distribution bias. Can be suppressed.

以上、実施の形態に基づき本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎない。また、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が可能である。   As mentioned above, although this invention was demonstrated based on embodiment, embodiment shows only the principle and application of this invention. In the embodiment, many modifications and arrangements can be made without departing from the spirit of the present invention defined in the claims.

上述の実施形態では、本発明に係る電機子40を可動子に適用した例を説明したが、固定子に適用されてもよい。   In the above-described embodiment, the example in which the armature 40 according to the present invention is applied to the mover has been described. However, the armature 40 may be applied to a stator.

冷却管60が配置される管路用溝部51は、電機子コア41の外側部41bに形成されたが、その管路用溝部51としてコイル用溝部45が用いられてもよい。この場合、管路用溝部51としてのコイル用溝部45の底側に冷却管60が配置され、コイル用溝部45内において冷却管60より開口側にコイル49が配置されてもよい。   The duct groove 51 in which the cooling pipe 60 is disposed is formed in the outer portion 41 b of the armature core 41, but the coil groove 45 may be used as the duct groove 51. In this case, the cooling pipe 60 may be arranged on the bottom side of the coil groove part 45 as the duct groove part 51, and the coil 49 may be arranged on the opening side of the cooling pipe 60 in the coil groove part 45.

第1〜第4実施形態に係る電機子コア41の第1溝部51A、第3溝部51Cは、電機子コア41の中央位置41eに近い位置にある溝部51であれば、この中央位置41eに最も近い位置にある溝部51でなくともよい。また、第2溝部51B、第4溝部51Dは、モータ駆動方向Xの両端部41c、41dに近い位置にある溝部51であれば、最も近い位置にある溝部51でなくともよい。   If the first groove portion 51A and the third groove portion 51C of the armature core 41 according to the first to fourth embodiments are the groove portions 51 located close to the central position 41e of the armature core 41, the first groove portion 51A is the most at the central position 41e. The groove 51 may not be in the close position. Further, the second groove portion 51B and the fourth groove portion 51D do not have to be the groove portions 51 located closest to each other as long as the groove portions 51 are located near the both end portions 41c and 41d in the motor driving direction X.

第5、第6実施形態に係る電機子40では、一つの電機子コア41につき一つの冷却管60が用いられる例を説明したが、一つの電機子コア41につき複数の冷却管60が用いられてもよい。   In the armature 40 according to the fifth and sixth embodiments, the example in which one cooling pipe 60 is used for one armature core 41 has been described. However, a plurality of cooling pipes 60 are used for one armature core 41. May be.

10・・・リニアモータ、40・・・電機子、41・・・電機子コア、51・・・溝部、51A・・・第1溝部、51B・・・第2溝部、51C・・・第3溝部、51D・・・第4溝部、51G・・・第1溝部、51H・・・第2溝部、51I・・・第3溝部、51J・・・第4溝部、51K・・・第5溝部、60・・・冷却管、61・・・第1管路部、63・・・第2管路部、67・・・分岐部、71・・・合流部、81・・・第1管路部、83・・・第2管路部、85・・・折返し部。 DESCRIPTION OF SYMBOLS 10 ... Linear motor, 40 ... Armature, 41 ... Armature core, 51 ... Groove part, 51A ... First groove part, 51B ... Second groove part, 51C ... Third Groove part, 51D ... fourth groove part, 51G ... first groove part, 51H ... second groove part, 51I ... third groove part, 51J ... fourth groove part, 51K ... fifth groove part, 60 ... cooling pipe, 61 ... first pipe section, 63 ... second pipe section, 67 ... branching section, 71 ... confluence section, 81 ... first pipe section , 83... Second pipe part, 85.

Claims (7)

リニアモータ用の電機子であって、
コアと、
前記コアに並んで形成される複数の溝部と、
前記コアを冷却するための冷媒が内部を流れる冷却管と、を備え、
前記複数の溝部は、
前記複数の溝部のうち該溝部が並ぶ方向の中間にある第1溝部と、
前記第1溝部から前記並ぶ方向の一方に離れた位置にある第2溝部と、
前記複数の溝部のうち該溝部が並ぶ方向の中間にある第3溝部と、
前記第3溝部から前記並ぶ方向の他方に離れた位置にある第4溝部と、を含み、
前記冷却管は、
前記第1溝部から前記第2溝部に向けて、これらを含む複数の溝部内を蛇行して通るように形成され、前記第1溝部内を上流側とし、前記第2溝部内を下流側として冷媒が流れる第1管路部と、
前記第3溝部から前記第4溝部に向けて、これらを含む複数の溝部内を蛇行して通るように形成され、前記第3溝部内を上流側とし、前記第4溝部内を下流側として冷媒が流れる第2管路部と
前記第1管路部及び前記第2管路部のそれぞれから導出される冷媒を合流させて下流側に流出させる合流部と、を有することを特徴とするリニアモータ用電機子。
An armature for a linear motor,
The core,
A plurality of grooves formed side by side with the core;
A cooling pipe through which a refrigerant for cooling the core flows, and
The plurality of grooves are
A first groove part in the middle of the direction in which the groove parts are arranged among the plurality of groove parts;
A second groove at a position away from the first groove in one of the alignment directions;
A third groove portion in the middle of the plurality of groove portions in the direction in which the groove portions are arranged;
A fourth groove located at a position away from the third groove in the other direction of the alignment,
The cooling pipe is
The first groove portion is formed so as to meander through a plurality of groove portions including these from the first groove portion to the second groove portion, the first groove portion being an upstream side, and the second groove portion being a downstream side refrigerant. A first conduit section through which
A refrigerant is formed so as to meander through a plurality of groove portions including these from the third groove portion to the fourth groove portion, with the inside of the third groove portion as an upstream side and the inside of the fourth groove portion as a downstream side. A second conduit section through which the
The first pipe portion and the second linear motor armature to the conduit portion of the by merging the refrigerant derived from each characterized Rukoto to have a, a merging unit for flowing downstream.
前記冷却管は、上流側から流入する冷媒を前記第1管路部及び前記第2管路部内に分岐させて導入する分岐部を更に有することを特徴とする請求項1に記載のリニアモータ用電機子。   2. The linear motor according to claim 1, wherein the cooling pipe further includes a branching part for branching and introducing the refrigerant flowing from the upstream side into the first pipe part and the second pipe part. Armature. 前記冷却管は、
上流側から流入する冷媒を前記第1管路部及び前記第2管路部に分岐させて導入する分岐部を更に有し、
前記第1管路部及び前記第2管路部は、前記分岐部から前記合流部までのそれぞれの流路長さが同じになるように構成されることを特徴とする請求項1または2に記載のリニアモータ用電機子。
The cooling pipe is
Further comprising a branch part for branching and introducing the refrigerant flowing from the upstream side into the first pipe part and the second pipe part,
The said 1st pipe line part and the said 2nd pipe line part are comprised so that each flow path length from the said branch part to the said junction part may become the same, The Claim 1 or 2 characterized by the above-mentioned. The armature for linear motors of description.
前記複数の溝部は、前記第1溝部と前記第3溝部の間にある第5溝部を更に含み、
前記冷却管は、
上流側から流入する冷媒を前記第1管路部及び前記第2管路部内に分岐させて導入する分岐部と、
前記分岐部より上流側に設けられ、前記第5溝部内を通るように配置され、前記第1管路部及び前記第2管路部での流路断面積より大きい流路断面積となるように形成される流入部と、を更に備えることを特徴とする請求項1からのいずれかに記載のリニアモータ用電機子。
The plurality of groove portions further include a fifth groove portion between the first groove portion and the third groove portion,
The cooling pipe is
A branch part for branching and introducing the refrigerant flowing from the upstream side into the first pipe part and the second pipe part;
Provided on the upstream side of the branch part, and disposed so as to pass through the fifth groove part, the flow path cross-sectional area is larger than the flow path cross-sectional areas of the first and second pipe parts. The linear motor armature according to any one of claims 1 to 3 , further comprising an inflow portion formed on the linear motor.
前記第3溝部は、前記第1溝部により構成され、
前記第1管路部と前記第2管路部の上流側の一部は、前記第1溝部内にて並べて配置されることを特徴とする請求項1からのいずれかに記載のリニアモータ用電機子。
The third groove part is constituted by the first groove part,
Wherein the first conduit portion and the second portion of the conduit section upstream of the linear motor according to any one of claims 1 to 3, characterized in that it is arranged in the first groove Armature.
リニアモータ用の電機子であって、
コアと、
前記コアに並んで形成される複数の溝部と、
前記コアを冷却するための冷媒が内部を流れる冷却管と、を備え、
前記複数の溝部は、
前記複数の溝部のうち該溝部が並ぶ方向の一方にある第1溝部と、
前記第1溝部から前記並ぶ方向の他方に離れた位置にある第2溝部と、
前記複数の溝部のうち該溝部が並ぶ方向の他方にある第3溝部と、
前記第3溝部から前記並ぶ方向の一方に離れた位置にある第4溝部と、を含み、
前記冷却管は、
前記第1溝部から前記第2溝部に向けて、これらを含む複数の溝部内を蛇行して通るように形成され、前記第1溝部内を上流側とし、前記第2溝部内を下流側として冷媒が流れる第1管路部と、
前記第3溝部から前記第4溝部に向けて、これらを含む複数の溝部内を蛇行して通るように形成され、前記第3溝部内を上流側とし、前記第4溝部内を下流側として冷媒が流れる第2管路部と、を有し、
前記第1管路部の溝部を通る部分と前記第2管路部の溝部を通る部分とは、前記複数の溝部内に前記並ぶ方向に交互に配置され、
前記冷却管は、前記第1管路部の下流側部分と前記第2管路部の上流側部分とを接続する折返し部を更に有することを特徴とするリニアモータ用電機子。
An armature for a linear motor,
The core,
A plurality of grooves formed side by side with the core;
A cooling pipe through which a refrigerant for cooling the core flows, and
The plurality of grooves are
A first groove in one of the plurality of grooves in the direction in which the grooves are arranged;
A second groove part located at a position away from the first groove part in the other direction of the alignment;
A third groove in the other of the plurality of grooves in the direction in which the grooves are arranged;
A fourth groove located at a position away from the third groove in one of the alignment directions,
The cooling pipe is
The first groove portion is formed so as to meander through a plurality of groove portions including these from the first groove portion to the second groove portion, the first groove portion being an upstream side, and the second groove portion being a downstream side refrigerant. A first conduit section through which
A refrigerant is formed so as to meander through a plurality of groove portions including these from the third groove portion to the fourth groove portion, with the inside of the third groove portion as an upstream side and the inside of the fourth groove portion as a downstream side. A second conduit section through which
The portion passing through the groove portion of the first conduit portion and the portion passing through the groove portion of the second conduit portion are alternately arranged in the line-up direction in the plurality of groove portions ,
The linear motor armature according to claim 1, wherein the cooling pipe further includes a folded portion that connects a downstream portion of the first conduit portion and an upstream portion of the second conduit portion .
前記第1管路部と前記第2管路部は、前記複数の溝部の深さ方向にずれた位置に配置されることを特徴とする請求項に記載のリニアモータ用電機子。 The linear motor armature according to claim 6 , wherein the first pipeline portion and the second pipeline portion are arranged at positions shifted in a depth direction of the plurality of groove portions.
JP2014099062A 2014-05-12 2014-05-12 Armature for linear motor Expired - Fee Related JP6253505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099062A JP6253505B2 (en) 2014-05-12 2014-05-12 Armature for linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099062A JP6253505B2 (en) 2014-05-12 2014-05-12 Armature for linear motor

Publications (2)

Publication Number Publication Date
JP2015216793A JP2015216793A (en) 2015-12-03
JP6253505B2 true JP6253505B2 (en) 2017-12-27

Family

ID=54753178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099062A Expired - Fee Related JP6253505B2 (en) 2014-05-12 2014-05-12 Armature for linear motor

Country Status (1)

Country Link
JP (1) JP6253505B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660104A (en) * 2018-10-31 2019-04-19 广州市昊志机电股份有限公司 A kind of linear electric motor primary component
JP7452764B2 (en) * 2021-10-27 2024-03-19 住友ベークライト株式会社 Stator and structure
JP7356624B1 (en) * 2023-02-02 2023-10-04 Dmg森精機株式会社 Linear motors and machine tools

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0132327Y2 (en) * 1986-03-14 1989-10-03
JPS6318956A (en) * 1986-05-05 1988-01-26 アンワ− チタヤト Cooler for linear motor
JP3809381B2 (en) * 2002-01-28 2006-08-16 キヤノン株式会社 Linear motor, stage apparatus, exposure apparatus, and device manufacturing method
EP2393188A4 (en) * 2009-03-05 2017-05-03 Sanyo Denki Co., Ltd. Armature for linear motor
CN102971948B (en) * 2010-07-06 2015-07-22 三菱电机株式会社 Linear motor armature and linear motor
US20120062866A1 (en) * 2010-09-03 2012-03-15 Nikon Corporation Microchannel-cooled coils of electromagnetic actuators exhibiting reduced eddy-current drag

Also Published As

Publication number Publication date
JP2015216793A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
CN102158043B (en) Liquid-cooled flat linear permanent magnet synchronous motor
JP5399470B2 (en) Armature for linear motor
US8138873B2 (en) Permanent magnet device
JP6253505B2 (en) Armature for linear motor
KR101509285B1 (en) Linear motor armature and linear motor
WO2010150877A1 (en) Heat exchanger using multiple-conduit pipes
JP6350336B2 (en) Cooler
JPWO2016190445A1 (en) Heat exchanger tank structure and manufacturing method thereof
JPH09154272A (en) Cooling structure of linear motor
JP2016086628A (en) Linear motor
JP5392012B2 (en) Electric motor
JP2011158140A (en) Plate-type heat exchanger
JP6327889B2 (en) Armature for linear motor
JP2021164193A (en) Cooling unit of linear motor, linear motor, and manufacturing method of the linear motor
JP6327890B2 (en) Linear motor armature and cooling pipe fixing method
KR20130100982A (en) Heat exchanger
JP6338405B2 (en) Armature for linear motor
JP6845401B2 (en) Cooling device and a cooling system equipped with the cooling device
JP2009281703A (en) Heat exchanger
JP6338407B2 (en) Armature for linear motor
JP6664146B2 (en) Armature for linear motor
JP2010213425A (en) Coreless linear motor
JP5818396B2 (en) Plate heat exchanger
JP2023121896A (en) Movable coil type linear motor
JP6911816B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6253505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees