JP6327890B2 - Linear motor armature and cooling pipe fixing method - Google Patents

Linear motor armature and cooling pipe fixing method Download PDF

Info

Publication number
JP6327890B2
JP6327890B2 JP2014050481A JP2014050481A JP6327890B2 JP 6327890 B2 JP6327890 B2 JP 6327890B2 JP 2014050481 A JP2014050481 A JP 2014050481A JP 2014050481 A JP2014050481 A JP 2014050481A JP 6327890 B2 JP6327890 B2 JP 6327890B2
Authority
JP
Japan
Prior art keywords
cooling pipe
groove
pushing member
armature
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014050481A
Other languages
Japanese (ja)
Other versions
JP2015177590A (en
Inventor
修 中崎
修 中崎
創 木下
創 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2014050481A priority Critical patent/JP6327890B2/en
Publication of JP2015177590A publication Critical patent/JP2015177590A/en
Application granted granted Critical
Publication of JP6327890B2 publication Critical patent/JP6327890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Description

本発明は、リニアモータの固定子又は可動子として用いられる電機子と、電機子のコアに冷却管を固定するための方法に関する。   The present invention relates to an armature used as a stator or mover of a linear motor, and a method for fixing a cooling pipe to a core of the armature.

リニアモータに用いられる電機子は、コアと、コアに駆動方向に複数設けられるティース部と、ティース部に巻き回されるコイルを備える。コイルが通電により発熱すると、電機子コアの温度上昇により電機子の性能に悪影響を及ぼしかねない。この対策として、通常、ティース部間に形成されるスロット部には冷却管が配置される(特許文献1参照)。冷却管内に供給される冷媒によりコアが冷却され、その温度上昇が抑えられる。   An armature used for a linear motor includes a core, a plurality of teeth provided on the core in the driving direction, and a coil wound around the teeth. If the coil generates heat when energized, the temperature of the armature core may increase and the performance of the armature may be adversely affected. As a countermeasure, a cooling pipe is usually disposed in a slot portion formed between the tooth portions (see Patent Document 1). The core is cooled by the refrigerant supplied into the cooling pipe, and the temperature rise is suppressed.

特開2008−35698号JP 2008-35698 A

冷却管は、一般に、その外周面の平面度(円筒度)を確保し難く、スロット部内での接触面積が管軸方向の位置により変化する。よって、スロット部と冷却管の間で発生する接触熱抵抗が増大し易く、冷却管によるコアの冷却性能の低下を招く。   Generally, it is difficult to ensure the flatness (cylindricity) of the outer peripheral surface of the cooling pipe, and the contact area in the slot portion varies depending on the position in the pipe axis direction. Therefore, the contact thermal resistance generated between the slot portion and the cooling pipe is likely to increase, and the cooling performance of the core by the cooling pipe is reduced.

本発明は、こうした状況に鑑みてなされたものであり、その目的は、冷却管によるコアの冷却性能を改善できる技術を提供することにある。   This invention is made | formed in view of such a condition, The objective is to provide the technique which can improve the cooling performance of the core by a cooling pipe.

本発明のある態様は、リニアモータ用電機子に関する。リニアモータ用電機子は、コアと、コアに形成される溝部と、溝部内に配置される冷却管と、溝部内の開口側に配置され、冷却管を溝部の底側に押し込んだ状態で固定される押し込み部材と、を備えることを特徴とする。   One embodiment of the present invention relates to an armature for a linear motor. The armature for the linear motor is arranged in the state where the core, the groove formed in the core, the cooling pipe arranged in the groove, and the opening side in the groove are pushed into the bottom of the groove. And a pushing member to be provided.

本発明の別の態様は、冷却管の固定方法に関する。冷却管の固定方法は、コアと、コアに形成される溝部とを備えるリニアモータ用電機子の溝部内に冷却管を固定するための方法であって、溝部内に冷却管を配置し、溝部の開口側から底側に向けて押し込み部材により冷却管を押し込み、その状態で押し込み部材を固定することを特徴とする。   Another aspect of the present invention relates to a cooling pipe fixing method. A cooling pipe fixing method is a method for fixing a cooling pipe in a groove part of a linear motor armature including a core and a groove part formed in the core, the cooling pipe being disposed in the groove part, and the groove part The cooling pipe is pushed by a pushing member from the opening side to the bottom side of the opening, and the pushing member is fixed in that state.

これら態様によれば、冷却管が押し込み部材により溝部の底側に押し込まれるため、冷却管と溝部の内壁面の接触面積が大きくなる。よって、冷却管と溝部間での接触熱抵抗が低減し、これらの接触部分を通して熱伝達され易くなり、冷却管によるコアの冷却性能が良好となる。   According to these aspects, since the cooling pipe is pushed into the bottom of the groove by the pushing member, the contact area between the cooling pipe and the inner wall surface of the groove becomes large. Therefore, the contact thermal resistance between the cooling pipe and the groove portion is reduced, heat is easily transferred through these contact portions, and the core cooling performance by the cooling pipe is improved.

本発明のある態様によれば、冷却管によるコアの冷却性能を改善できる。   According to an aspect of the present invention, the cooling performance of the core by the cooling pipe can be improved.

第1実施形態に係る電機子が用いられるリニアモータを示す側面断面図である。It is side surface sectional drawing which shows the linear motor with which the armature which concerns on 1st Embodiment is used. 第1実施形態に係る電機子を示す分解斜視図である。It is a disassembled perspective view which shows the armature which concerns on 1st Embodiment. 第1実施形態に係る電機子コアの溝部内に配置される冷却管を示す正面断面図である。It is front sectional drawing which shows the cooling pipe arrange | positioned in the groove part of the armature core which concerns on 1st Embodiment. 第1実施形態に係る電機子コアの溝部内に配置される冷却管を示す拡大側面断面図である。It is an expanded side sectional view showing a cooling pipe arranged in a groove part of an armature core concerning a 1st embodiment. 第1実施形態に係る電機子コアの溝部内に冷却管や押し込み部材を配置するときの途中状態を示す拡大側面断面図である。It is an expanded side sectional view showing the halfway state when arranging a cooling pipe and a pushing member in a slot of an armature core concerning a 1st embodiment. 第1実施形態に係る電機子コアと押し込み部材を摩擦攪拌接合するときの途中状態を示す拡大側面断面図である。It is an expanded side sectional view showing an intermediate state when carrying out friction stir welding of the armature core and pushing member concerning a 1st embodiment.

(第1の実施の形態)
図1は第1実施形態に係る電機子40が用いられるリニアモータ10を示す。リニアモータ10は、界磁子30と、電機子40を備える。界磁子30が固定子であり、電機子40が可動子である。以下、リニアモータ10の駆動方向を方向Xとし、方向Xの方向軸と垂直な面内において直交する2方向を方向Y、方向Zとして説明する。
(First embodiment)
FIG. 1 shows a linear motor 10 in which an armature 40 according to the first embodiment is used. The linear motor 10 includes a field element 30 and an armature 40. The field element 30 is a stator, and the armature 40 is a mover. Hereinafter, the driving direction of the linear motor 10 will be referred to as direction X, and two directions orthogonal to the direction axis of the direction X will be described as direction Y and direction Z.

界磁子30は、界磁子コア31と、複数の磁石33を備える。界磁子コア31は駆動方向Xに延びる直方体状の部材である。各磁石33は永久磁石であるが、電磁石でもよい。各磁石33は、駆動方向Xに異なる磁極(N極、S極)が交互に位置するように設けられる。   The field element 30 includes a field element core 31 and a plurality of magnets 33. The field element core 31 is a rectangular parallelepiped member extending in the driving direction X. Each magnet 33 is a permanent magnet, but may be an electromagnet. Each magnet 33 is provided such that different magnetic poles (N pole, S pole) are alternately positioned in the driving direction X.

電機子40は、界磁子30と間隔を空けて配置される。図2は電機子40の分解斜視図を示す。電機子40は、電機子コア41を備える。電機子コア41は、複数の積層体47を積層して構成される。積層体47は電磁鋼板であるが、他の金属板でもよい。また、電機子コア41は焼結フェライト等の焼結体により構成されてもよい。   The armature 40 is disposed at a distance from the field element 30. FIG. 2 shows an exploded perspective view of the armature 40. The armature 40 includes an armature core 41. The armature core 41 is configured by laminating a plurality of laminated bodies 47. The laminated body 47 is an electromagnetic steel plate, but may be another metal plate. The armature core 41 may be composed of a sintered body such as sintered ferrite.

電機子コア41は、駆動方向Xに延びる直方体状のヨーク部42と、ヨーク部42から突出する複数(図示は9個)のティース部43と、ティース部43に対して駆動方向Xの両側に形成される複数(図示は10個)のスロット部45を備える。ティース部43やスロット部45は、界磁子30と対向する電機子コア41の内側部41aに設けられる。また、電機子コア41は、その外側部41bにおいて、駆動方向Xに複数(図示は10個)の溝部51が設けられる。なお、方向Yはティース部43の突出方向に対応し、方向Zは電機子コア41の奥行方向(積層体47の積層方向)に対応する。   The armature core 41 includes a rectangular parallelepiped yoke portion 42 extending in the driving direction X, a plurality of (in the figure, nine) tooth portions 43 protruding from the yoke portion 42, and on both sides of the driving portion X in the driving direction X. A plurality of (in the figure, 10) slot portions 45 are formed. The teeth part 43 and the slot part 45 are provided in the inner part 41 a of the armature core 41 facing the field element 30. In addition, the armature core 41 is provided with a plurality of (in the figure, 10) groove portions 51 in the driving direction X on the outer side portion 41b. The direction Y corresponds to the protruding direction of the tooth portion 43, and the direction Z corresponds to the depth direction of the armature core 41 (the stacking direction of the stacked body 47).

電機子コア41は、ティース部43とスロット部45が駆動方向Xに交互に設けられる凹凸形状、つまり、櫛歯形状を有する。各ティース部43にはそれぞれコイル49が巻き回され、スロット部45内にはコイル49が配置される。   The armature core 41 has a concavo-convex shape in which the tooth portions 43 and the slot portions 45 are alternately provided in the driving direction X, that is, a comb tooth shape. A coil 49 is wound around each tooth portion 43, and the coil 49 is disposed in the slot portion 45.

以上のリニアモータ10は、コイル49の通電により生じる磁界と磁石33の磁界との相互作用により電機子40に推力が発生し、駆動方向Xに電機子40が移動する。   In the above linear motor 10, thrust is generated in the armature 40 due to the interaction between the magnetic field generated by energization of the coil 49 and the magnetic field of the magnet 33, and the armature 40 moves in the driving direction X.

電機子40は、電機子コア41等の他に、冷却管60と、押し込み部材70を更に備える。   The armature 40 further includes a cooling pipe 60 and a pushing member 70 in addition to the armature core 41 and the like.

冷却管60は銅等の金属材料を素材とする。冷却管60は、駆動方向Xに間隔を空けて設けられる複数(図示は10個)のコア冷却部61と、隣り合うコア冷却部61の端部をつなぐ連設部63とを含む。コア冷却部61は溝部51の数に対応した数が設けられる。コア冷却部61の断面は円筒状に形成される。冷却管60は、各コア冷却部61と連設部63とが波状に蛇行するように設けられ、その内側に連続した流路が形成される。この冷却管60は管体を曲げ加工することにより製作される。   The cooling pipe 60 is made of a metal material such as copper. The cooling pipe 60 includes a plurality (ten in the drawing) of core cooling units 61 provided at intervals in the driving direction X, and a continuous unit 63 that connects the ends of the adjacent core cooling units 61. The number of the core cooling parts 61 corresponding to the number of the groove parts 51 is provided. The cross section of the core cooling part 61 is formed in a cylindrical shape. The cooling pipe 60 is provided so that each core cooling part 61 and the connecting part 63 meander in a wave shape, and a continuous flow path is formed inside thereof. The cooling pipe 60 is manufactured by bending a pipe body.

図3は溝部51内に配置される冷却管60を示す正面断面図である。冷却管60は、図1、図3に示すように、各コア冷却部61が別々の溝部51内に配置され、連設部63が電機子コア41より奥行方向Zの外側に配置される。冷却管60に水等の冷媒を送り込むと、その流路の流入側(図2のP1部)から流出側(図2のP2部)に向かう方向Qに冷媒が流れ、コア冷却部61内の冷媒により電機子コア41が冷却される。   FIG. 3 is a front sectional view showing the cooling pipe 60 arranged in the groove 51. As shown in FIGS. 1 and 3, in the cooling pipe 60, each core cooling part 61 is arranged in a separate groove part 51, and the connecting part 63 is arranged outside the armature core 41 in the depth direction Z. When a coolant such as water is fed into the cooling pipe 60, the coolant flows in the direction Q from the inflow side (P1 portion in FIG. 2) to the outflow side (P2 portion in FIG. 2) of the flow path. The armature core 41 is cooled by the refrigerant.

図4は溝部51内に配置される冷却管60を示す拡大側面断面図である。溝部51は、図3、図4に示すように、電機子コア41の奥行方向Zに貫通する。溝部51はティース部43の突出方向Yに開口部53が形成される。溝部51の内壁面55には、底側の溝底面57と、溝底面57から溝部51の開口部53側に延びる一対の溝側面59とが含まれる。   FIG. 4 is an enlarged side sectional view showing the cooling pipe 60 disposed in the groove 51. The groove 51 penetrates the armature core 41 in the depth direction Z as shown in FIGS. 3 and 4. The groove 51 is formed with an opening 53 in the protruding direction Y of the teeth 43. The inner wall surface 55 of the groove portion 51 includes a bottom groove bottom surface 57 and a pair of groove side surfaces 59 extending from the groove bottom surface 57 toward the opening 53 side of the groove portion 51.

溝底面57は、溝部51内に配置される冷却管60の外周面の底側部分60aに沿うように、溝部51の底側に凹状に湾曲する形状を有し、その底側部分60aに接触する。冷却管60の底側部分60aは溝部51内の底側の一部を塞ぐように嵌め込まれることになる。各溝側面59は平面状に形成される。   The groove bottom surface 57 has a shape curved in a concave shape on the bottom side of the groove portion 51 so as to follow the bottom side portion 60a of the outer peripheral surface of the cooling pipe 60 disposed in the groove portion 51, and contacts the bottom side portion 60a. To do. The bottom side portion 60 a of the cooling pipe 60 is fitted so as to close a part of the bottom side in the groove 51. Each groove side surface 59 is formed in a planar shape.

押し込み部材70は、溝部51内において冷却管60より開口側に配置される。押し込み部材70は、電機子コア41と同種の金属材料である鋼材により形成される。   The pushing member 70 is disposed in the groove portion 51 on the opening side from the cooling pipe 60. The pushing member 70 is formed of a steel material that is the same kind of metal material as the armature core 41.

押し込み部材70は、溝部51の奥行方向Zに長いブロック体として形成され、その溝部51の長さL1と合わせた長さL2、つまり、長さL1と略一致する長さL2を有する。押し込み部材70は、冷却管60の外周面の開口側部分60bと、一対の溝側面59とにより囲まれる箇所を塞ぐように嵌め込まれる中実断面形状を有する。   The pushing member 70 is formed as a block body that is long in the depth direction Z of the groove 51, and has a length L2 combined with the length L1 of the groove 51, that is, a length L2 that substantially matches the length L1. The pushing member 70 has a solid cross-sectional shape that is fitted so as to close a portion surrounded by the opening-side portion 60 b of the outer peripheral surface of the cooling pipe 60 and the pair of groove side surfaces 59.

駆動方向X両側にある押し込み部材70の側壁面71は、これと対向する溝部51の溝側面59に沿って接触する。溝部51の底側にある押し込み部材70の底壁面73は、冷却管60の開口側部分60bに沿うように、開口側に凹状に湾曲する形状を有し、その開口側部分60aに沿って接触する。溝部51の開口側にある押し込み部材70の頂面75は、電機子コア41の外側面41cと面一となるように設けられる。   The side wall surfaces 71 of the push-in member 70 on both sides of the driving direction X are in contact with the groove side surface 59 of the groove portion 51 facing this. The bottom wall surface 73 of the pushing member 70 on the bottom side of the groove 51 has a shape that is concavely curved toward the opening side along the opening side portion 60b of the cooling pipe 60, and contacts along the opening side portion 60a. To do. The top surface 75 of the pushing member 70 on the opening side of the groove 51 is provided so as to be flush with the outer surface 41 c of the armature core 41.

押し込み部材70は、冷却管60を溝部51の底側に押し込んでおり、その状態で溶接(溶け込み溶接)により固定される。溶接は、電機子コア41の開口部53の周縁部53bと、これに突き合わせられる押し込み部材70の側端部77に行われる。この溶接により、電機子コア41と押し込み部材70の境界部分に沿って溶接接合部79が形成される。この溶接方法の詳細は後述する。   The pushing member 70 pushes the cooling pipe 60 into the bottom side of the groove 51, and is fixed by welding (penetration welding) in this state. Welding is performed on the peripheral edge 53b of the opening 53 of the armature core 41 and the side end 77 of the push-in member 70 to be abutted against the peripheral edge 53b. By this welding, a weld joint 79 is formed along the boundary portion between the armature core 41 and the pushing member 70. Details of this welding method will be described later.

次に、電機子コア41の溝部51内に冷却管60を固定するための方法を説明する。図5は溝部51内に冷却管60や押し込み部材70を配置するときの途中状態を示す。   Next, a method for fixing the cooling pipe 60 in the groove 51 of the armature core 41 will be described. FIG. 5 shows an intermediate state when the cooling pipe 60 and the pushing member 70 are disposed in the groove 51.

まず、図5(a)に示すように、溝部51内に冷却管60を配置する。冷却管60は、その底側部分60aが溝部51の溝底面57に接触するまで移動させる。   First, as shown in FIG. 5A, the cooling pipe 60 is disposed in the groove 51. The cooling pipe 60 is moved until the bottom side portion 60 a contacts the groove bottom surface 57 of the groove portion 51.

図5(b)に示すように、押し込み部材70の底壁面73を溝部51の底側に向けて、溝部51内に押し込み部材70を挿入する。このとき、押し込み部材70の各側壁面71を対向する溝部51の溝側面59に接触させた状態で挿入する。これにより、押し込み部材70が溝側面59により案内され、その押し込み作業が容易となる。   As shown in FIG. 5B, the pushing member 70 is inserted into the groove 51 with the bottom wall surface 73 of the pushing member 70 facing the bottom of the groove 51. At this time, each side wall surface 71 of the push-in member 70 is inserted in a state where it is in contact with the groove side surface 59 of the opposed groove portion 51. Thereby, the pushing member 70 is guided by the groove side surface 59, and the pushing operation becomes easy.

押し込み部材70は、その底壁面73が冷却管60の開口側部分60bに接触するまで挿入する。ここで、冷却管60は、一般に、その外周面の平面度を確保し難いため、管軸方向(奥行方向Z)の位置により、ティース部43の突出方向Yに曲がるようなうねりが生じ易い。このうねりがあるときでも、冷却管60に接触する押し込み部材70の底側への押し込みにより、冷却管60が変形してうねりが矯正される。図5(c)に示すように、電機子コア41の外側面41cに対して押し込み部材70の頂面75が面一となる位置まで押し込んだら、押し込みを止める。   The pushing member 70 is inserted until the bottom wall surface 73 comes into contact with the opening side portion 60 b of the cooling pipe 60. Here, since the cooling pipe 60 is generally difficult to ensure the flatness of the outer peripheral surface thereof, the cooling pipe 60 is liable to bend in the protruding direction Y of the teeth portion 43 depending on the position in the pipe axis direction (depth direction Z). Even when there is this undulation, the cooling pipe 60 is deformed and the undulation is corrected by pushing the pushing member 70 in contact with the cooling pipe 60 toward the bottom side. As shown in FIG. 5C, when the top surface 75 of the push-in member 70 is pushed to a position where it is flush with the outer side surface 41c of the armature core 41, the push-in is stopped.

次に、電機子コア41と押し込み部材70を溶接により接合する。溶接は摩擦攪拌接合により行う。図6はこれらを摩擦攪拌接合するときの途中状態を示す。   Next, the armature core 41 and the pushing member 70 are joined by welding. Welding is performed by friction stir welding. FIG. 6 shows an intermediate state when these are friction stir welded.

摩擦攪拌接合では、摩擦攪拌工具として回転ツール100を用いる。回転ツール100は、円柱状の本体部101と、本体部101の先端部に設けられるプローブ103を備える。   In the friction stir welding, the rotary tool 100 is used as a friction stir tool. The rotary tool 100 includes a columnar main body 101 and a probe 103 provided at the tip of the main body 101.

プローブ103を電機子コア41と押し込み部材70の突き合わせ部80に接触させ、プローブ103を回転させながら突き合わせ部80に沿って移動させる。電機子コア41や押し込み部材70とプローブ103の間の摩擦熱により、電機子コア41等のプローブ周辺部分が軟化する。また、プローブ103の回転により軟化部分が攪拌され、電機子コア41等の突き合わせ部80で塑性流動が生じる。プローブ103を奥行方向Zに移動させて軟化部分を通過させると、塑性流動した部分は冷却により固化され、電機子コア41と押し込み部材70の間にこれらを接合する溶接接合部79が形成される。   The probe 103 is brought into contact with the armature core 41 and the butting portion 80 of the pushing member 70, and the probe 103 is moved along the butting portion 80 while rotating. The peripheral portion of the probe such as the armature core 41 is softened by the frictional heat between the armature core 41 and the pushing member 70 and the probe 103. Further, the softened portion is agitated by the rotation of the probe 103, and plastic flow occurs at the butting portion 80 such as the armature core 41. When the probe 103 is moved in the depth direction Z to pass through the softened portion, the plastically flowed portion is solidified by cooling, and a welded joint 79 is formed between the armature core 41 and the pushing member 70 to join them. .

本実施形態によれば、冷却管60が押し込み部材70により溝部51の底側に押し込まれるため、冷却管60と溝部51の内壁面55が密着するように両者の接触面積が大きくなる。よって、冷却管60と溝部51の間で発生する接触熱抵抗が低減し、これらの接触部分を通して熱伝達され易くなり、冷却管60による電機子コア41の冷却性能が良好となる。   According to this embodiment, since the cooling pipe 60 is pushed into the bottom side of the groove 51 by the pushing member 70, the contact area between the cooling pipe 60 and the inner wall surface 55 of the groove 51 is increased. Therefore, the contact thermal resistance generated between the cooling pipe 60 and the groove 51 is reduced, and heat is easily transmitted through these contact portions, and the cooling performance of the armature core 41 by the cooling pipe 60 is improved.

また、冷却管60は管体を曲げ加工して製作されるため、曲げ加工時に加わる曲げ力により径方向のうねりが生じ易い。冷却管60のコア冷却部61に突出方向Yの大きいうねりがあると、溝部51の開口部52から冷却管60がはみ出してしまい、電機子40の組み立てが困難になり得る。この場合でも、押し込み部材70の押し込みによりうねりが抑えられ、電機子40の組み立て時の組み立て性が良好になる。   Further, since the cooling pipe 60 is manufactured by bending a pipe body, radial undulation is likely to occur due to a bending force applied during the bending process. If the core cooling part 61 of the cooling pipe 60 has a large undulation in the protruding direction Y, the cooling pipe 60 protrudes from the opening 52 of the groove part 51, and the assembly of the armature 40 may be difficult. Even in this case, the swell is suppressed by the pressing of the pressing member 70, and the assembling property when the armature 40 is assembled is improved.

また、冷却管60にうねりがあると、奥行方向Zでの位置により冷却管60と溝部51間での接触熱抵抗が変化するうえ、駆動方向Xの個々のコア冷却部61と溝部51間での接触熱抵抗も変化し得る。この結果、電機子コア41の駆動方向X、奥行方向Zの位置により、冷却管60による冷却性能にばらつきが生じる恐れがある。この点、本実施形態によれば、冷却管60のうねりが抑えられるため、電機子コア41の駆動方向X、奥行方向Zの位置による冷却性能のばらつきを抑えられる。   In addition, when the cooling pipe 60 has waviness, the contact thermal resistance between the cooling pipe 60 and the groove part 51 changes depending on the position in the depth direction Z, and between the individual core cooling part 61 and the groove part 51 in the driving direction X. The contact thermal resistance can also vary. As a result, the cooling performance of the cooling pipe 60 may vary depending on the position of the armature core 41 in the driving direction X and the depth direction Z. In this respect, according to the present embodiment, the undulation of the cooling pipe 60 is suppressed, so that variation in cooling performance due to the position of the armature core 41 in the driving direction X and the depth direction Z can be suppressed.

また、押し込み部材70は電機子コア41に溶接により接合されるため、押し込み部材70と電機子コア41の接触部分よりも、溶接接合部79を通して熱伝達され易くなる。よって、冷却管60による電機子コア41の冷却性能が良好となる。   In addition, since the pushing member 70 is joined to the armature core 41 by welding, heat is more easily transmitted through the weld joint 79 than the contact portion between the pushing member 70 and the armature core 41. Therefore, the cooling performance of the armature core 41 by the cooling pipe 60 is good.

特に、押し込み部材70は電機子コア41に摩擦攪拌接合により接合されるため、以下のメリットがある。摩擦攪拌接合は、接合対象となる母材をその融点未満の温度に加熱して接合する固相接合となる。接合対象となる母材を融点以上に加熱する溶融接合では、母材の金属組織が溶融凝固組織となり、その結晶粒が粗大化するうえ溶質元素の偏析を招く。一方、摩擦攪拌接合では、母材の結晶粒を微細化した状態を保てるうえ、溶質元素の偏析が生じ難く、溶接接合部79での塑性加工性を確保できるメリットがある。また、摩擦攪拌接合では、溶融接合と比較して、溶接接合部79での熱変形量を抑えられ、その接合精度が良好になるメリットがある。また、摩擦攪拌接合では、溶融接合と比較して、消費電力を抑えて小エネルギー化を図れるうえ、その作業に当たり熟練を要しないメリットがある。   In particular, since the pushing member 70 is joined to the armature core 41 by friction stir welding, the following advantages are obtained. Friction stir welding is solid phase bonding in which a base material to be bonded is heated to a temperature below its melting point and bonded. In fusion bonding in which the base material to be joined is heated to a melting point or higher, the metal structure of the base material becomes a melt-solidified structure, and the crystal grains become coarse and solute elements are segregated. On the other hand, the friction stir welding has the merit of ensuring the plastic workability at the welded joint 79 because the crystal grains of the base material can be kept fine and the segregation of solute elements hardly occurs. In addition, the friction stir welding has an advantage that the amount of thermal deformation at the welded joint 79 can be suppressed and the joining accuracy can be improved as compared with the fusion joining. In addition, the friction stir welding has an advantage that less power is required and less energy is required, and skill is not required for the work, as compared with the fusion welding.

また、押し込み部材70は、冷却管60と溝部51とにより囲まれる箇所を塞ぐように嵌め込まれるため、冷却管60や電機子コア41との接触面積が大きくなる。よって、冷却管60から押し込み部材70を通して電機子コア41に熱伝達され易くなり、冷却管60による冷却性能が良好となる。特に、押し込み部材70は中実断面形状であるため、中空断面形状を有するよりも熱伝導率に優れ、より冷却性能が良好となる。   Moreover, since the pushing member 70 is fitted so that the location enclosed by the cooling pipe 60 and the groove part 51 may be block | closed, the contact area with the cooling pipe 60 and the armature core 41 becomes large. Therefore, heat is easily transferred from the cooling pipe 60 to the armature core 41 through the pushing member 70, and the cooling performance by the cooling pipe 60 is improved. In particular, since the pushing member 70 has a solid cross-sectional shape, it has better thermal conductivity and better cooling performance than the hollow cross-sectional shape.

以上、実施の形態に基づき本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎない。また、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が可能である。   As mentioned above, although this invention was demonstrated based on embodiment, embodiment shows only the principle and application of this invention. In the embodiment, many modifications and arrangements can be made without departing from the spirit of the present invention defined in the claims.

上述の実施形態では、本発明に係る電機子40を可動子に適用した例を説明したが、固定子に適用されてもよい。固定子に適用される場合も、電機子40は、界磁子30である可動子と対向する電機子コア41の側部にティース部43が設けられ、そのティース部43にコイル49が巻き回される。   In the above-described embodiment, the example in which the armature 40 according to the present invention is applied to the mover has been described. However, the armature 40 may be applied to a stator. Also when applied to the stator, the armature 40 is provided with a tooth portion 43 on the side portion of the armature core 41 facing the mover that is the field element 30, and the coil 49 is wound around the tooth portion 43. Is done.

電機子コア41の溝部51の形状は上述のものに限定されない。また、冷却管60が配置される溝部51は、スロット部45が形成される電機子コア41の内側部41aとは逆側の外側部41bに形成されたが、その溝部51としてスロット部45が用いられてもよい。この場合、溝部51としてのスロット部45の底側に冷却管60が配置され、スロット部45内において冷却管60より開口側に押し込み部材70が配置され、押し込み部材70より開口側にコイル49が配置されてもよい。   The shape of the groove 51 of the armature core 41 is not limited to the above. In addition, the groove 51 in which the cooling pipe 60 is disposed is formed in the outer portion 41b opposite to the inner portion 41a of the armature core 41 in which the slot portion 45 is formed. May be used. In this case, the cooling pipe 60 is arranged on the bottom side of the slot part 45 as the groove part 51, the pushing member 70 is arranged on the opening side from the cooling pipe 60 in the slot part 45, and the coil 49 is arranged on the opening side from the pushing member 70. It may be arranged.

冷却管60に複数のコア冷却部61を設け、各コア冷却部61を複数の溝部51内に配置し、単一の冷却管60により一つの電機子コア41を冷却する例を説明した。他の変形例では、複数の溝部51内に別々の冷却管60を配置し、複数の冷却管60により一つの電機子コア41を冷却してもよい。また、コア冷却部61の断面は円筒状に形成されたが、角筒状等に形成されてもよい。   The example which provided the some core cooling part 61 in the cooling pipe 60, arrange | positions each core cooling part 61 in the some groove part 51, and cools the one armature core 41 by the single cooling pipe 60 was demonstrated. In another modification, separate cooling pipes 60 may be arranged in the plurality of groove portions 51, and one armature core 41 may be cooled by the plurality of cooling pipes 60. Moreover, although the cross section of the core cooling part 61 was formed in the cylindrical shape, you may form in a square tube shape etc.

押し込み部材70は、中実断面形状ではなく中空断面形状でもよいし、その形状は上述のものに限定されない。   The pushing member 70 may have a hollow cross-sectional shape instead of a solid cross-sectional shape, and the shape is not limited to the above.

押し込み部材70は、摩擦攪拌接合の他に、ろう接、アーク溶接等の融接、スポット溶接等の圧接のように、他の溶接方法により電機子コア41に接合されてもよい。また、押し込み部材70は、溶接の他に、圧入、焼きばめ等の他の接合方法により接合されてもよい。   In addition to friction stir welding, the pushing member 70 may be joined to the armature core 41 by other welding methods such as fusion welding such as brazing, arc welding, or pressure welding such as spot welding. Further, the pushing member 70 may be joined by other joining methods such as press fitting and shrink fitting other than welding.

10・・・リニアモータ、40・・・電機子、51・・・溝部、55・・・内壁面、60・・・冷却管、70・・・押し込み部材。 DESCRIPTION OF SYMBOLS 10 ... Linear motor, 40 ... Armature, 51 ... Groove part, 55 ... Inner wall surface, 60 ... Cooling pipe, 70 ... Pushing member.

Claims (5)

リニアモータ用の電機子であって、
コアと、
前記コアに形成される溝部と、
前記溝部内に配置される冷却管と、
前記溝部内の開口側に配置され、前記冷却管を溝部の底側に押し込んだ状態で固定される押し込み部材と、を備え
前記冷却管の外周面は、前記溝部の開口側にある開口側部分を有し、
前記押し込み部材は、前記冷却管の開口側部分に沿って接触する底壁面を有し、
前記冷却管は、前記押し込み部材により押し込まれることにより、前記溝部の内壁面と密着することを特徴とするリニアモータ用電機子。
An armature for a linear motor,
The core,
A groove formed in the core;
A cooling pipe disposed in the groove;
A pushing member disposed on the opening side in the groove and fixed in a state where the cooling pipe is pushed into the bottom of the groove ,
The outer peripheral surface of the cooling pipe has an opening side portion on the opening side of the groove,
The pushing member has a bottom wall surface that is in contact with the opening side portion of the cooling pipe,
Said cooling tube, said by being pushed by the pushing member, linear motor armature, characterized that you close contact with the inner wall surface of the groove.
前記押し込み部材は、前記コアに溶接又は摩擦攪拌接合により接合されることを特徴とする請求項1に記載のリニアモータ用電機子。 The armature for a linear motor according to claim 1, wherein the pushing member is joined to the core by welding or friction stir welding. 前記押し込み部材は、前記溝部の溝側面に沿って接触する側壁面を有することを特徴とする請求項1または2に記載のリニアモータ用電機子。 The pushing member includes a linear motor armature according to claim 1 or 2, characterized in that it has a sidewall surface in contact along the groove flank of the groove. 前記押し込み部材は、前記冷却管の外周面と前記溝部の内壁面とにより囲まれる箇所を塞ぐように嵌め込まれることを特徴とする請求項1から3のいずれかに記載のリニアモータ用電機子。   4. The armature for a linear motor according to claim 1, wherein the pushing member is fitted so as to close a portion surrounded by an outer peripheral surface of the cooling pipe and an inner wall surface of the groove portion. コアと、前記コアに形成される溝部とを備えるリニアモータ用電機子の溝部内に冷却管を固定するための方法であって、
前記溝部内に冷却管を配置し、前記溝部の開口側から底側に向けて押し込み部材により冷却管を押し込み、その状態で押し込み部材を固定し、
前記冷却管の外周面は、前記溝部の開口側にある開口側部分を有し、
前記押し込み部材は、前記冷却管の開口側部分に沿って接触する底壁面を有し、
前記冷却管は、前記押し込み部材により押し込まれることにより、前記溝部の内壁面と密着することを特徴とする冷却管の固定方法。
A method for fixing a cooling pipe in a groove portion of a linear motor armature comprising a core and a groove portion formed in the core,
A cooling pipe is disposed in the groove, and the cooling pipe is pushed by a pushing member from the opening side to the bottom side of the groove, and the pushing member is fixed in that state .
The outer peripheral surface of the cooling pipe has an opening side portion on the opening side of the groove,
The pushing member has a bottom wall surface that is in contact with the opening side portion of the cooling pipe,
The cooling pipe fixing method according to claim 1, wherein the cooling pipe is brought into close contact with an inner wall surface of the groove portion by being pushed in by the pushing member .
JP2014050481A 2014-03-13 2014-03-13 Linear motor armature and cooling pipe fixing method Active JP6327890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014050481A JP6327890B2 (en) 2014-03-13 2014-03-13 Linear motor armature and cooling pipe fixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014050481A JP6327890B2 (en) 2014-03-13 2014-03-13 Linear motor armature and cooling pipe fixing method

Publications (2)

Publication Number Publication Date
JP2015177590A JP2015177590A (en) 2015-10-05
JP6327890B2 true JP6327890B2 (en) 2018-05-23

Family

ID=54256281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050481A Active JP6327890B2 (en) 2014-03-13 2014-03-13 Linear motor armature and cooling pipe fixing method

Country Status (1)

Country Link
JP (1) JP6327890B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016122612A1 (en) * 2016-11-23 2018-05-24 Kessler energy GmbH Motor component, primary part and linear motor
JP7543599B1 (en) 2023-02-02 2024-09-02 Dmg森精機株式会社 Linear motors and machine tools
WO2024161583A1 (en) * 2023-02-02 2024-08-08 Dmg森精機株式会社 Linear motor and machine tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093204U (en) * 1973-12-27 1975-08-06
JPS5271609A (en) * 1975-12-12 1977-06-15 Hitachi Ltd Cooling device for the stator core of rotary electric machine
JPS625621A (en) * 1985-07-02 1987-01-12 Fuji Electric Co Ltd Cooler of liquid-cooled coil
KR20080044574A (en) * 2006-11-16 2008-05-21 두산인프라코어 주식회사 A cooling device for linear motor
JP2010178598A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotary electric machine
CN102971948B (en) * 2010-07-06 2015-07-22 三菱电机株式会社 Linear motor armature and linear motor
CN103178687A (en) * 2011-12-26 2013-06-26 上海磁浮交通发展有限公司 Bilateral mixed excitation type high-thrust linear synchronous motor

Also Published As

Publication number Publication date
JP2015177590A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP5436671B2 (en) Linear motor armature and linear motor
JP4756916B2 (en) Vibration wave motor
JP5655071B2 (en) Linear motor
JP6002935B2 (en) Motor stator and motor
JP6327890B2 (en) Linear motor armature and cooling pipe fixing method
JP5808445B2 (en) Rotor for electric motor including magnet attached to outer peripheral surface of rotor core, electric motor, and method for manufacturing electric motor rotor
CN107707042B (en) Electric motor
JP5072064B2 (en) Cylindrical linear motor
JP4962040B2 (en) Vibration type motor
JP4568639B2 (en) Stator
JP6327889B2 (en) Armature for linear motor
JP5724233B2 (en) Movable iron core type linear actuator
JP6253505B2 (en) Armature for linear motor
JP4563046B2 (en) Linear synchronous motor
JP4837993B2 (en) LINEAR MOTOR, MANUFACTURING METHOD THEREOF, AND STAGE DEVICE USING THE LINEAR MOTOR
JP4721211B2 (en) Coreless linear motor
JP6338405B2 (en) Armature for linear motor
JP2003235234A (en) Linear actuator
JP6664146B2 (en) Armature for linear motor
JP5988951B2 (en) Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine
JP2010148308A (en) Field element and manufacturing method of the same
JP5691930B2 (en) Rotating electric machine
JP5652669B2 (en) Field yoke assembly and linear motor
JP2010148309A (en) Field element and manufacturing method of the same
KR100902563B1 (en) Stator fixing structure for reciprocating compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6327890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150