JP6253172B2 - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
JP6253172B2
JP6253172B2 JP2017507037A JP2017507037A JP6253172B2 JP 6253172 B2 JP6253172 B2 JP 6253172B2 JP 2017507037 A JP2017507037 A JP 2017507037A JP 2017507037 A JP2017507037 A JP 2017507037A JP 6253172 B2 JP6253172 B2 JP 6253172B2
Authority
JP
Japan
Prior art keywords
polyimide film
mol
site
derived
dds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017507037A
Other languages
Japanese (ja)
Other versions
JPWO2017073782A1 (en
Inventor
友貴 白井
友貴 白井
幸司 森内
幸司 森内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I.S.T. CORPORATION
Original Assignee
I.S.T. CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58631627&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6253172(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by I.S.T. CORPORATION filed Critical I.S.T. CORPORATION
Publication of JPWO2017073782A1 publication Critical patent/JPWO2017073782A1/en
Application granted granted Critical
Publication of JP6253172B2 publication Critical patent/JP6253172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Description

本発明は、本質的に無色透明なポリイミド膜、特に、光ファイバー、液晶表示面の基板、エレクトロルミネッセンスの基板、保護シートなどに有用な本質的に無色透明なポリイミド膜に関する。   The present invention relates to an essentially colorless and transparent polyimide film, and more particularly to an essentially colorless and transparent polyimide film useful for optical fibers, liquid crystal display surface substrates, electroluminescent substrates, protective sheets and the like.

ポリイミド膜は、一般的に優れた熱安定性、電気的特定および機械的特性を有しており、比較的厳しい環境下で使用される様々な製品に適用されている。ところで、ポリイミド膜は、膜形成に至るまでの過酷な熱履歴のために白濁化したり、黄色または褐色に着色したりしているものが多い。このように白濁化したポリイミド膜や、着色したポリイミド膜は、液晶ディスプレイ装置のフィルム基板として適用された場合、その視野を暗くするだけでなく、液晶ディスプレイ装置本来の機能を損ねてしまう。そこで、そのような問題を解決するために無色透明のポリイミド膜が開発されてきた。そして、今や、無色透明のポリイミド膜は、液晶ディスプレイ装置、光ファイバーケーブル被膜、導波管および太陽電池用保護被膜などにフィルムとして広範囲に用いられている(例えば、特開昭62−7733号公報、特開2000−313804号公報、特開2012−040836号公報等参照)。   Polyimide films generally have excellent thermal stability, electrical characteristics and mechanical properties, and are applied to various products used in relatively harsh environments. By the way, many polyimide films are clouded or colored yellow or brown due to severe heat history until film formation. When such a turbid polyimide film or a colored polyimide film is applied as a film substrate of a liquid crystal display device, it not only darkens the field of view but also impairs the original function of the liquid crystal display device. Therefore, a colorless and transparent polyimide film has been developed to solve such a problem. Now, colorless and transparent polyimide films are widely used as films for liquid crystal display devices, optical fiber cable coatings, waveguides, protective coatings for solar cells, etc. (for example, JP-A-62-27333, JP 2000-313804 A, JP 2012-040836 A, etc.).

特開昭62−7733号公報JP-A-62-27333 特開2000−313804号公報JP 2000-313804 A 特開2012−040836号公報JP2012-040836A

しかし、過去に提案された無色透明のポリイミド膜は、高原料コストのために高価格にならざるを得なく、なかなか市場に受け入れられないという問題があった。また、従前の無色透明のポリイミド膜は、フレキシブルプリント回路基板等の作製時に使用されるメチルエチルケトンに対する耐性が低く、張力がかかった場合に破断してしまうという不具合があった。   However, the colorless and transparent polyimide films proposed in the past have had a problem that they have to be expensive due to high raw material costs and are not easily accepted by the market. Further, the conventional colorless and transparent polyimide film has a low resistance to methyl ethyl ketone used in the production of a flexible printed circuit board or the like, and has a problem that it breaks when tension is applied.

本発明の課題は、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前よりも低コストで生産することが可能であり、また、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高い無色透明のポリイミド膜を提供することにある。   The problem of the present invention is that it can be produced at a lower cost than the conventional while exhibiting excellent heat resistance, transparency and strength equivalent to those of the prior art, and methyl ethyl ketone than the conventional colorless and transparent polyimide film. It is an object to provide a colorless and transparent polyimide film having high resistance to water.

本発明の一局面に係るポリイミド膜は、特定のポリイミド樹脂からる。なお、ここで、ポリイミド膜には、フィルムや、シート、管状体が含まれる。特定のポリイミド樹脂は、ビフェニルテトラカルボン酸系化合物(BPDA)由来部位と、2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン系化合物(BPADA)由来部位、および、4,4’−オキシジフタル酸系化合物(ODPA)由来部位より成る群から選択される少なくとも1つの部位と、2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)由来部位と、3,3’−ジアミノジフェニルスルホン(3,3’−DDS)由来部位、および、4,4’−ジアミノジフェニルスルホン(4,4’−DDS)由来部位より成る群から選択される少なくとも1つの部位とから成る。なお、ここで、テトラカルボン酸系化合物由来部位は、「テトラカルボン酸」または「テトラカルボン酸二無水物や、テトラカルボン酸ジエステル等のテトラカルボン酸誘導体」に由来する部位を意味し、ジアミン由来部位は「ジアミン」に由来する部位を意味する。また、本発明に係るポリイミド膜の膜厚は、5μm以上50μm以下の範囲内であるが、7.5μm以上40μm以下の範囲内であることが好ましく、10μm以上30μm以下の範囲内であることがより好ましい。そして、このポリイミド膜のヘイズ値は、ポリイミド膜の膜厚が25μmであるとき、0.1以上2.0以下の範囲内である。ヘイズ値が2.0以下である無色透明のポリイミド膜は、液晶ディスプレイなどの用途に適用された場合、安定して光を透過させることができる。 Polyimide film of one aspect of the present invention, Ru consists specific polyimide resin. Here, the polyimide film includes a film, a sheet, and a tubular body. Certain polyimide resin, biphenyl tetracarboxylic acid compound (BPDA) and site-derived, 2,2-bis [3,4- (di-carboxy) phenyl] propane compound (BPADA) derived sites, and, 4, At least one site selected from the group consisting of 4′-oxydiphthalic acid compound (ODPA) -derived sites, 2,2′-bis (trifluoromethyl) benzidine (TFMB) -derived sites, and 3,3′-diamino It consists of at least one site selected from the group consisting of a site derived from diphenylsulfone (3,3′-DDS) and a site derived from 4,4′-diaminodiphenylsulfone (4,4′-DDS) . Here, tetracarboxylic acid compound derived portion position means a site derived from "tetracarboxylic acid" or "tetracarboxylic dianhydride or tetracarboxylic acid derivatives such as tetracarboxylic acid diesters" diamine derived from the part position means a site derived from "diamine". It addition, the thickness of the polyimide film according to the present invention are in the range of 5μm or 50μm or less, it is within the scope of the following 40μm or 7.5μm is preferably in the range of 10μm or 30μm or less Is more preferable. And the haze value of this polyimide film exists in the range of 0.1 or more and 2.0 or less, when the film thickness of a polyimide film is 25 micrometers. A colorless and transparent polyimide film having a haze value of 2.0 or less can stably transmit light when applied to uses such as a liquid crystal display.

なお、本発明に係る無色透明のポリイミド膜は、ビフェニルテトラカルボン酸系化合物と、2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン系化合物、および、4,4’−オキシジフタル酸系化合物より成る群から選択される少なくとも1つと、2,2’−ビス(トリフルオロメチル)ベンジジンと、3,3’−ジアミノジフェニルスルホン、および、4,4’−ジアミノジフェニルスルホンより成る群から選択される少なくとも1つとを用いて調製されたポリイミド前駆体溶液から形成される。そのポリイミド前駆体溶液は、上述のテトラカルボン酸系化合物と上述のジアミンとが極性有機溶媒中で反応させられることによって得られる。なお、ポリイミド前駆体溶液を調製する際、本発明の本質を損なわない範囲で、既知の全ての芳香族テトラカルボン酸系化合物または芳香族ジアミンを添加することができる。また、無色透明のポリイミド膜の目的や用途に応じて、複数種類のテトラカルボン酸系化合物中の各テトラカルボン酸系化合物のモル比を適宜調整することができる。 The colorless and transparent polyimide film according to the present invention includes a biphenyltetracarboxylic acid compound, a 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane compound, and 4,4′-oxydiphthalate. A group consisting of at least one selected from the group consisting of acid compounds, 2,2'-bis (trifluoromethyl) benzidine, 3,3'-diaminodiphenylsulfone, and 4,4'-diaminodiphenylsulfone Formed from a polyimide precursor solution prepared using at least one selected from: The polyimide precursor solution is obtained by reacting the above-described tetracarboxylic acid compound and the above-described diamine in a polar organic solvent. In preparing the polyimide precursor solution, all known aromatic tetracarboxylic acid compounds or aromatic diamines can be added as long as the essence of the present invention is not impaired. Moreover, according to the objective and use of a colorless and transparent polyimide film, the molar ratio of each tetracarboxylic acid compound in a plurality of types of tetracarboxylic acid compounds can be appropriately adjusted.

上述のポリイミド前駆体溶液の調製のために使用される有機溶媒としては、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、N,N−ジエチルアセトアミド、N,N−ジエチルホルムアミド、N−メチル−2−ピロリドン(NMP)、フェノ−ル、クレゾ−ル、キシレノ−ル、レゾルシン、3−クロロフェノ−ル、4−クロロフェノ−ル、3−ブロモフェノ−ル、4−ブロモフェノ−ル、2−クロロ−5−ヒドロキシトルエン、ジグライム、トリグライム、スルホラン、γ−ブチロラクトン、テトラヒドロフランおよびジオキソラン等が挙げられる。これらの中でもN,N−ジメチルアセトアミド(DMAc)は好適に用いられる。また、これらの溶媒は2種以上併用されてもよい。   Examples of the organic solvent used for the preparation of the polyimide precursor solution include N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), N, N-diethylacetamide, N, N- Diethylformamide, N-methyl-2-pyrrolidone (NMP), phenol, cresol, xylenol, resorcin, 3-chlorophenol, 4-chlorophenol, 3-bromophenol, 4-bromophenol And 2-chloro-5-hydroxytoluene, diglyme, triglyme, sulfolane, γ-butyrolactone, tetrahydrofuran and dioxolane. Among these, N, N-dimethylacetamide (DMAc) is preferably used. Two or more of these solvents may be used in combination.

また、上述のポリイミド前駆体溶液には、本発明の本質を損なわない範囲内で、分散剤、固体潤滑剤、沈降防止剤、レベリング剤、表面調節剤、水分吸収剤、ゲル化防止剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、皮張り防止剤、界面活性剤、帯電防止剤、消泡剤、抗菌剤、防カビ剤、防腐剤、増粘剤などの公知の添加剤が添加されてもよい。   In addition, the polyimide precursor solution described above includes a dispersant, a solid lubricant, an anti-settling agent, a leveling agent, a surface conditioner, a moisture absorbent, an anti-gelling agent, an oxidation, within a range that does not impair the essence of the present invention. Known additives such as inhibitors, ultraviolet absorbers, light stabilizers, plasticizers, anti-skinning agents, surfactants, antistatic agents, antifoaming agents, antibacterial agents, fungicides, antiseptics, thickeners, etc. May be added.

そして、本発明に係る無色透明のポリイミド膜は、上述のポリイミド前駆体溶液から塗膜を形成し、その塗膜をイミド転化させることによって得られる。   And the colorless and transparent polyimide film which concerns on this invention is obtained by forming a coating film from the above-mentioned polyimide precursor solution, and carrying out the imide conversion of the coating film.

なお、上述のポリイミド膜の特定のポリイミド樹脂において、全てのテトラカルボン酸系化合物由来部位に対するビフェニルテトラカルボン酸系化合物(BPDA)由来部位のモル分率が70mol%以上99mol%以下の範囲内であることが好ましく、80mol%以上97.5mol%以下の範囲内であることがより好ましく、90mol%以上95mol%以下の範囲内であることがより好ましい。テトラカルボン酸系化合物由来部位に対するビフェニルテトラカルボン酸系化合物(BPDA)のモル比が50mol%以上であるポリイミド膜は、高いガラス転移温度を有し、液晶ディスプレイやフレキシブルプリント基板などの製造時において半田付けなどを行う際に、十分な耐熱性を保持できるためである。   In the specific polyimide resin of the polyimide film described above, the molar fraction of the biphenyltetracarboxylic acid compound (BPDA) -derived portion relative to all the tetracarboxylic acid-based compound-derived portions is in the range of 70 mol% or more and 99 mol% or less. It is more preferable that it is in the range of 80 mol% or more and 97.5 mol% or less, and it is more preferable that it is in the range of 90 mol% or more and 95 mol% or less. A polyimide film in which the molar ratio of biphenyltetracarboxylic acid compound (BPDA) to the tetracarboxylic acid compound-derived moiety is 50 mol% or more has a high glass transition temperature, and is used in the manufacture of liquid crystal displays and flexible printed boards. This is because sufficient heat resistance can be maintained when attaching.

ビフェニルテトラカルボン酸系化合物(BPDA)由来部位はビフェニルテトラカルボン酸系化合物(BPDA)から形成されるが、ビフェニルテトラカルボン酸系化合物(BPDA)としては、「ビフェニルテトラカルボン酸」または「ビフェニルテトラカルボン酸二無水物や、ビフェニルテトラカルボン酸ジエステル等のビフェニルテトラカルボン酸誘導体」が挙げられる。なお、ビフェニルテトラカルボン酸はビフェニルテトラカルボン酸二無水物を公知の方法によって加水分解することによって得ることができ、ビフェニルテトラカルボン酸ジエステルはビフェニルテトラカルボン酸二無水物を公知の方法によってジエステル化することによって得ることができる。   The site derived from the biphenyltetracarboxylic acid compound (BPDA) is formed from the biphenyltetracarboxylic acid compound (BPDA). As the biphenyltetracarboxylic acid compound (BPDA), "biphenyltetracarboxylic acid" or "biphenyltetracarboxylic And acid dianhydrides and biphenyltetracarboxylic acid derivatives such as biphenyltetracarboxylic acid diesters ”. Biphenyltetracarboxylic acid can be obtained by hydrolyzing biphenyltetracarboxylic dianhydride by a known method, and biphenyltetracarboxylic acid diester diesterifies biphenyltetracarboxylic dianhydride by a known method. Can be obtained.

また、上述のポリイミド膜を形成する特定のポリイミド樹脂において、全てのテトラカルボン酸系化合物由来部位に対する2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン系化合物(BPADA)由来部位、および、4,4’−オキシジフタル酸系化合物(ODPA)由来部位より成る群から選択される少なくとも1つの部位のモル分率が1mol%以上30mol%以下の範囲内であることが好ましく、2.5mol%以上20mol%以下の範囲内であることがより好ましく、5mol%以上10mol%以下の範囲内であることがさらに好ましい。このような特定のポリイミド樹脂から成るポリイミド膜は、白濁化の度合いが極めて低く、高い透明性を維持することができるためである。 Moreover, in the specific polyimide resin which forms the above-mentioned polyimide film, 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane-based compound (BPADA) -derived site relative to all tetracarboxylic acid-based compound- derived sites Preferably, the molar fraction of at least one site selected from the group consisting of sites derived from 4,4′-oxydiphthalic acid compounds (ODPA) is in the range of 1 mol% to 30 mol%. It is more preferably in the range of 5 mol% or more and 20 mol% or less, and further preferably in the range of 5 mol% or more and 10 mol% or less. This is because a polyimide film made of such a specific polyimide resin has a very low degree of white turbidity and can maintain high transparency.

2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン系化合物(BPADA)由来部位は2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン系化合物から形成され、4,4’−オキシジフタル酸系化合物(ODPA)由来部位は4,4’−オキシジフタル酸系化合物から形成されるが、2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン系化合物としては、「2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン」または「2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン二無水物や、2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパンジエステル等の2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン誘導体」が挙げられ、4,4’−オキシジフタル酸系化合物としては、「4,4’−オキシジフタル酸」または「4,4’−オキシジフタル酸二無水物や、4,4’−オキシジフタル酸ジエステル等の4,4’−オキシジフタル酸誘導体」が挙げられる。なお、上記芳香族テトラカルボン酸二無水物を公知の方法によって加水分解することによって芳香族テトラカルボン酸を得ることができ、上記芳香族テトラカルボン酸二無水物を公知の方法によってジエステル化することによって芳香族テトラカルボン酸ジエステルを得ることができる。 A site derived from 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane-based compound (BPADA) is formed from 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane-based compound ; 4,4'-oxydiphthalic acid compounds (ODPA) derived sites Ru is formed from 4,4'-oxydiphthalic acid compounds, but 2,2-bis [3,4- (di-carboxy) phenyl] propane compound As " 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane " or " 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane dianhydride , 2-bis [3,4- (di-carboxy) phenyl] propane and the like diester of 2,2-bis [3,4- (dicarboxyphenoxy) Fe Le] propane derivative ", and examples of the 4,4'-oxydiphthalic acid compounds,"4,4'-oxydiphthalic acid "or"4,4'-oxydiphthalic dianhydride and 4,4'-oxydiphthalic 4,4'-oxydiphthalic acid derivatives such as acid diester "is Ru mentioned. Note that known on KiKaoru the aromatic tetracarboxylic acid dianhydride by the hydrolysis by known methods can be obtained Fang aromatic tetracarboxylic acids, upper KiKaoru aromatic tetracarboxylic acid dianhydride it can be by to diester by way obtaining Fang aromatic tetracarboxylic acid diester.

また、上述のポリイミド膜の特定のポリイミド樹脂において、全てのジアミン由来部位に対する2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)由来部位のモル分率が40mol%以上98mol%以下の範囲内であることが好ましく、50mol%以上95mol%以下の範囲内であることがより好ましく、60mol%以上90mol%以下の範囲内であることがさらに好ましい。このような特定のポリイミド樹脂から成るポリイミド膜は、優れた透明性を示すことができるからである。 Moreover, in the specific polyimide resin of the above-mentioned polyimide film, the molar fraction of the 2,2′-bis (trifluoromethyl) benzidine (TFMB) -derived portion relative to all the diamine-derived portions is in the range of 40 mol% or more and 98 mol% or less. Preferably, it is in the range of 50 mol% or more and 95 mol% or less, and more preferably in the range of 60 mol% or more and 90 mol% or less. This is because a polyimide film made of such a specific polyimide resin can exhibit excellent transparency.

また、上述のポリイミド膜を形成する特定のポリイミド樹脂において、全てのジアミン由来部位に対する3,3’−ジアミノジフェニルスルホン(3,3’−DDS)由来部位、および、4,4’−ジアミノジフェニルスルホン(4,4’−DDS)由来部位より成る群から選択される少なくとも1つの部位のモル分率が2mol%以上60mol%以下の範囲内であることが好ましく、5mol%以上50mol%以下の範囲内であることがより好ましく、10mol%以上40mol%以下の範囲内であることがさらに好ましい。このような特定のポリイミド樹脂から成るポリイミド膜は、原料コストが低くなるからである。 Further, in the specific polyimide resin forming the above-described polyimide film, 3,3′-diaminodiphenylsulfone (3,3′-DDS) -derived sites with respect to all diamine-derived sites and 4,4′-diaminodiphenylsulfone The molar fraction of at least one site selected from the group consisting of (4,4′-DDS) -derived sites is preferably in the range of 2 mol% to 60 mol%, preferably in the range of 5 mol% to 50 mol%. It is more preferable that it is in the range of 10 mol% or more and 40 mol% or less. This is because such a polyimide film made of a specific polyimide resin has a low raw material cost.

また、上述のポリイミド膜は、その引張強度が100MPa以上500MPa以下の範囲内であることが好ましい。   Moreover, it is preferable that the above-mentioned polyimide film has the tensile strength within the range of 100 MPa or more and 500 MPa or less.

また、上述のポリイミド膜の特定のポリイミド樹脂は、そのガラス転移温度が260℃以上350℃以下の範囲内であることが好ましい。このポリイミド膜のガラス転移温度が260℃以上であれば、このポリイミド膜がフレキシブルプリント回路基板等に組み込まれている場合においてそのフレキシブルプリント回路基板等に実装部品が半田付けされる際に、ポリイミド膜が十分な耐熱性を有するため、フレキシブルプリント回路基板等の物性低下などを防ぐことができるからである。   Moreover, it is preferable that the specific polyimide resin of the above-mentioned polyimide film has the glass transition temperature within the range of 260 degreeC or more and 350 degrees C or less. If the glass transition temperature of the polyimide film is 260 ° C. or higher, when the polyimide film is incorporated in a flexible printed circuit board or the like, the polyimide film is used when a mounting component is soldered to the flexible printed circuit board or the like. This is because it has sufficient heat resistance and can prevent deterioration of physical properties of a flexible printed circuit board or the like.

また、上述のポリイミド膜は、片面をメチルエチルケトン(MEK)で濡らしたときの引張伸びが3.5%以上35%以下の範囲内であることが好ましく、5.0%以上25%以下の範囲内であることがより好ましい。ポリイミド膜がこのような物性を有することにより、フレキシブルプリント回路基板等の作製時においてこのポリイミド膜に銅箔を張り付ける際にポリイミド膜が破断することがないからである。   In addition, the polyimide film described above preferably has a tensile elongation of 3.5% or more and 35% or less when wetted on one side with methyl ethyl ketone (MEK), and is within a range of 5.0% or more and 25% or less. It is more preferable that This is because when the polyimide film has such physical properties, the polyimide film is not broken when a copper foil is attached to the polyimide film during the production of a flexible printed circuit board or the like.

また、上述のポリイミド膜の全光線透過率は、ポリイミド膜の膜厚が25μmであるとき、80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。   The total light transmittance of the polyimide film is preferably 80% or more, more preferably 85% or more, and 90% or more when the film thickness of the polyimide film is 25 μm. Further preferred.

また、上述のポリイミド膜の黄色度は、ポリイミド膜の膜厚が25μmであるとき、8.0以下であることが好ましく、6.0以下であることがより好ましく、4.0以下であることがさらに好ましい。   The yellowness of the polyimide film is preferably 8.0 or less, more preferably 6.0 or less, and 4.0 or less when the thickness of the polyimide film is 25 μm. Is more preferable.

以下、実施例を用いて本発明に係るポリイミド膜について詳述する。   Hereinafter, the polyimide film according to the present invention will be described in detail using examples.

1.ポリイミド前駆体溶液の調製
18.86gのビフェニルテトラカルボン酸二無水物(BPDA)と、0.34gの2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BPADA)と、20.32gの2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)と、0.32gの4,4’−ジアミノジフェニルスルホン(4,4’−DDS)とを、110.17gのN,N−ジメチルアセトアミド(DMAc)中で反応させ、固形分20wt%のポリイミド前駆体溶液を調製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は99mol%および1mol%であり、全てのジアミンに対するTFMBおよび4,4’−DDSのそれぞれのモル分率は98mol%および2mol%であった。
1. Preparation of polyimide precursor solution 18.86 g of biphenyltetracarboxylic dianhydride (BPDA) and 0.34 g of 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane dianhydride (BPADA) 110.17 g of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and 0.32 g of 4,4′-diaminodiphenyl sulfone (4,4′-DDS). Reaction was carried out in N, N-dimethylacetamide (DMAc) to prepare a polyimide precursor solution having a solid content of 20 wt%. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides were 99 mol% and 1 mol%, respectively, and the molar fractions of TFMB and 4,4′-DDS with respect to all diamines. Were 98 mol% and 2 mol%.

2.ポリイミド膜の作製
上述のポリイミド前駆体溶液をガラス基板上に塗布して塗膜を形成した後、その塗膜を70℃のオーブンに入れ、20分経過後にそのオーブンを120℃まで昇温させた。なお、このとき、オーブンの温度が70℃から120℃に達するのに20分の時間を要した。オーブンの温度が120℃に達してからその温度を20分間維持し、その後、オーブンを300℃まで昇温させた。なお、このとき、オーブンの温度が120℃から300℃に達するのに39分の時間を要した。オーブンの温度が300℃に達してからその温度を5分間維持した。その結果、ガラス基板上に膜厚25μmのポリイミド膜が形成された。そして、ガラス基板上のポリイミド膜をガラス基板から剥離して目的のポリイミド膜を得た。
2. Preparation of polyimide film After applying the above polyimide precursor solution on a glass substrate to form a coating film, the coating film was placed in an oven at 70 ° C., and the oven was heated to 120 ° C. after 20 minutes. . At this time, it took 20 minutes for the oven temperature to reach 70 ° C. to 120 ° C. After the oven temperature reached 120 ° C, the temperature was maintained for 20 minutes, and then the oven was heated to 300 ° C. At this time, it took 39 minutes for the oven temperature to reach 120 ° C. to 300 ° C. The temperature was maintained for 5 minutes after the oven temperature reached 300 ° C. As a result, a polyimide film having a film thickness of 25 μm was formed on the glass substrate. And the polyimide film on a glass substrate was peeled from the glass substrate, and the target polyimide film was obtained.

3.ポリイミド膜の物性測定
以下の通り、得られたポリイミド膜のヘイズ値、全光線透過率、引張強度(乾燥時)、メチルエチルケトンで濡れた状態の引張伸びおよびガラス転移温度を求めた。
3. Measurement of physical properties of polyimide film The haze value, total light transmittance, tensile strength (at the time of drying), tensile elongation in a state wetted with methyl ethyl ketone, and glass transition temperature were determined as follows.

(1)ポリイミド膜のヘイズ値及び全光線透過率
スガ試験機製ヘイズメータ(HGM−2DP)を用いて、旧JISK7105に基づいて、ポリイミド膜のヘイズ値及び全光線透過率を測定したところ、そのヘイズ値は0.4%、全光線透過率は90.5%であった。なお、このとき、b値や黄色度(Yellowness index)も同時に測定された。そのb値は2.4であり、黄色度は4.0であった。
(1) Haze value and total light transmittance of polyimide film Using haze meter (HGM-2DP) manufactured by Suga Test Instruments Co., Ltd., the haze value and total light transmittance of the polyimide film were measured based on the old JISK7105. Was 0.4%, and the total light transmittance was 90.5%. At this time, b * value and yellowness index were also measured. Its b * value was 2.4, and the yellowness was 4.0.

(2)ポリイミド膜の引張強度
島津製作所製オートグラフAGS−10kNGを用いて、引張速度50mm/分でポリイミド膜の引張強度を測定した測定したところ、その引張強度は200MPaであった。なお、このとき、引張弾性率や引張伸びも同時に測定された。その引張弾性率は4.4GPaであり、引張伸びは21.3%であった。
(2) Tensile strength of polyimide film Using an autograph AGS-10kNG manufactured by Shimadzu Corporation, the tensile strength of the polyimide film was measured at a tensile speed of 50 mm / min, and the tensile strength was 200 MPa. At this time, the tensile modulus and tensile elongation were also measured. The tensile elastic modulus was 4.4 GPa and the tensile elongation was 21.3%.

(3)メチルエチルケトンで濡れた状態のポリイミド膜の引張伸び
島津製作所製オートグラフAGS−10kNGのチャックにポリイミド膜をセットした後に、そのポリイミド膜の片面全面をメチルエチルケトンで濡らしてから引張速度50mm/分でそのポリイミド膜を引っ張り、そのときの引張伸び(破断伸び)を測定したところ、その引張伸びは17.8%であった。
(3) Tensile elongation of polyimide film wetted with methyl ethyl ketone After setting the polyimide film on a Shimadzu autograph AGS-10kNG chuck, the entire surface of the polyimide film was wetted with methyl ethyl ketone and then pulled at 50 mm / min. When the polyimide film was pulled and the tensile elongation (breaking elongation) at that time was measured, the tensile elongation was 17.8%.

(4)ポリイミド膜のガラス転移温度
セイコーインスツルメント社製動的粘弾性装置(DM6100)を用いて、以下に示す条件でポリイミド膜のガラス転移温度を測定したところ、そのガラス転移温度は347℃であった。
−測定条件−
測定環境:大気雰囲気下
フィルムサイズ:縦30mm×横8mm
正弦荷重:振幅98mN,周波数1.0Hz
昇温速度:2℃/min
(4) Glass transition temperature of polyimide film Using a dynamic viscoelastic device (DM6100) manufactured by Seiko Instruments Inc., the glass transition temperature of the polyimide film was measured under the following conditions. The glass transition temperature was 347 ° C. Met.
-Measurement conditions-
Measurement environment: under atmospheric atmosphere Film size: 30mm length x 8mm width
Sine load: amplitude 98mN, frequency 1.0Hz
Temperature increase rate: 2 ° C / min

以上の結果から、本実施例で得られたポリイミド膜は、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is superior in heat resistance, transparency, and strength as before, but has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を18.53gに代え、BPADAの添加量を0.84gに代え、TFMBの添加量を19.65gに代え、4,4’−DDSの添加量を0.80gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は97.5mol%および2.5mol%であり、全てのジアミンに対するTFMBおよび4,4’−DDSのそれぞれのモル分率は95mol%および5mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   The addition amount of BPDA was changed to 18.53 g, the addition amount of BPADA was changed to 0.84 g, the addition amount of TFMB was changed to 19.65 g, and the addition amount of 4,4′-DDS was changed to 0.80 g. Prepared a polyimide precursor solution (solid content: 20 wt%) in the same manner as in Example 1, and produced a polyimide film in the same manner as in Example 1. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides were 97.5 mol% and 2.5 mol%, respectively, and TFMB and 4,4′-DDS with respect to all diamines, respectively. The mole fraction of was 95 mol% and 5 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.5%であり、全光線透過率は90.5%であり、引張強度は175MPaであり、メチルエチルケトンで濡れた状態の引張伸びは15.2%であり、ガラス転移温度は342℃であった。また、引張強度と同時に測定された引張弾性率は4.1GPaであり、引張伸びは20.0%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は2.4であり、黄色度は3.9であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.5% and the total light transmittance was 90.5. %, Tensile strength was 175 MPa, tensile elongation wet with methyl ethyl ketone was 15.2%, and glass transition temperature was 342 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.1 GPa, and the tensile elongation was 20.0%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 2.4, and the yellowness was 3.9.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を14.39gに代え、BPADAの添加量を1.34gに代え、TFMBの添加量を14.84gに代え、4,4’−DDSの添加量を1.28gに代え、DMAcの添加量を118.15gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は95mol%および5mol%であり、全てのジアミンに対するTFMBおよび4,4’−DDSのそれぞれのモル分率は90mol%および10mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   The addition amount of BPDA was changed to 14.39 g, the addition amount of BPADA was changed to 1.34 g, the addition amount of TFMB was changed to 14.84 g, the addition amount of 4,4′-DDS was changed to 1.28 g, and DMAc A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount added was 118.15 g, and a polyimide film was produced in the same manner as in Example 1. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides are 95 mol% and 5 mol%, respectively, and the molar fractions of TFMB and 4,4′-DDS with respect to all diamines. Were 90 mol% and 10 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.6%であり、全光線透過率は90.4%であり、引張強度は156MPaであり、メチルエチルケトンで濡れた状態の引張伸びは8.9%であり、ガラス転移温度は335℃であった。また、引張強度と同時に測定された引張弾性率は4.3GPaであり、引張伸びは14.1%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は2.3であり、黄色度は3.9であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.6% and the total light transmittance was 90.4. %, Tensile strength was 156 MPa, tensile elongation when wetted with methyl ethyl ketone was 8.9%, and glass transition temperature was 335 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.3 GPa, and the tensile elongation was 14.1%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 2.3, and the yellowness was 3.9.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を13.54gに代え、BPADAの添加量を2.66gに代え、TFMBの添加量を13.10gに代え、4,4’−DDSの添加量を2.54gに代え、DMAcの添加量を118.16gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は90mol%および10mol%であり、全てのジアミンに対するTFMBおよび4,4’−DDSのそれぞれのモル分率は80mol%および20mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   The addition amount of BPDA was changed to 13.54 g, the addition amount of BPADA was changed to 2.66 g, the addition amount of TFMB was changed to 13.10 g, the addition amount of 4,4′-DDS was changed to 2.54 g, and DMAc A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount added was 118.16 g, and a polyimide film was prepared in the same manner as in Example 1. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides are 90 mol% and 10 mol%, respectively, and the molar fractions of TFMB and 4,4′-DDS with respect to all diamines. Was 80 mol% and 20 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.5%であり、全光線透過率は90.3%であり、引張強度は143MPaであり、メチルエチルケトンで濡れた状態の引張伸びは5.1%であり、ガラス転移温度は328℃であった。また、引張強度と同時に測定された引張弾性率は4.0GPaであり、引張伸びは9.2%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は2.4であり、黄色度は4.0であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.5% and the total light transmittance was 90.3. %, Tensile strength was 143 MPa, tensile elongation wet with methyl ethyl ketone was 5.1%, and glass transition temperature was 328 ° C. Moreover, the tensile elasticity modulus measured simultaneously with the tensile strength was 4.0 GPa, and the tensile elongation was 9.2%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 2.4, and the yellowness was 4.0.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

4,4’−DDSを3,3’−DDSに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は99mol%および1mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は98mol%および2mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that 4,4′-DDS was replaced with 3,3′-DDS, and a polyimide film was prepared in the same manner as in Example 1. Was made. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides were 99 mol% and 1 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Were 98 mol% and 2 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.7%であり、全光線透過率は90.5%であり、引張強度は207MPaであり、メチルエチルケトンで濡れた状態の引張伸びは20.7%であり、ガラス転移温度は339℃であった。また、引張強度と同時に測定された引張弾性率は4.4GPaであり、引張伸びは22.0%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は1.9であり、黄色度は3.6であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.7% and the total light transmittance was 90.5. %, Tensile strength was 207 MPa, tensile elongation in a state wetted with methyl ethyl ketone was 20.7%, and glass transition temperature was 339 ° C. Moreover, the tensile elasticity modulus measured simultaneously with the tensile strength was 4.4 GPa, and the tensile elongation was 22.0%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 1.9, and the yellowness was 3.6.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を18.53gに代え、BPADAの添加量を0.84gに代え、TFMBの添加量を19.65gに代え、0.32gの4,4’−DDSを0.80gの3,3’−DDSに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は97.5mol%および2.5mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は95mol%および5mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   The addition amount of BPDA is changed to 18.53 g, the addition amount of BPADA is changed to 0.84 g, the addition amount of TFMB is changed to 19.65 g, 0.32 g of 4,4′-DDS is changed to 0.80 g of 3, A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that 3′-DDS was used, and a polyimide film was prepared in the same manner as in Example 1. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides were 97.5 mol% and 2.5 mol%, respectively, and TFMB and 3,3′-DDS with respect to all diamines, respectively. The mole fraction of was 95 mol% and 5 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.6%であり、全光線透過率は90.4%であり、引張強度は176MPaであり、メチルエチルケトンで濡れた状態の引張伸びは17.9%であり、ガラス転移温度は323℃であった。また、引張強度と同時に測定された引張弾性率は4.2GPaであり、引張伸びは20.0%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は2.0であり、黄色度は3.7であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.6% and the total light transmittance was 90.4. %, Tensile strength was 176 MPa, tensile elongation wet with methyl ethyl ketone was 17.9%, and glass transition temperature was 323 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.2 GPa and the tensile elongation was 20.0%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 2.0, and the yellowness was 3.7.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を14.39gに代え、BPADAの添加量を1.34gに代え、TFMBの添加量を14.84gに代え、0.32gの4,4’−DDSを1.28gの3,3’−DDSに代え、DMAcの添加量を118.15gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は95mol%および5mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は90mol%および10mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   The addition amount of BPDA is changed to 14.39 g, the addition amount of BPADA is changed to 1.34 g, the addition amount of TFMB is changed to 14.84 g, 0.32 g of 4,4′-DDS is changed to 1.28 g of 3, A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount of DMAc was changed to 118.15 g instead of 3′-DDS. A polyimide film was prepared. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides are 95 mol% and 5 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Were 90 mol% and 10 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.6%であり、全光線透過率は90.4%であり、引張強度は180MPaであり、メチルエチルケトンで濡れた状態の引張伸びは12.5%であり、ガラス転移温度は312℃であった。また、引張強度と同時に測定された引張弾性率は4.4GPaであり、引張伸びは16.6%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は1.9であり、黄色度は3.6であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.6% and the total light transmittance was 90.4. %, Tensile strength was 180 MPa, tensile elongation in a state wetted with methyl ethyl ketone was 12.5%, and glass transition temperature was 312 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.4 GPa, and the tensile elongation was 16.6%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 1.9, and the yellowness was 3.6.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を13.54gに代え、BPADAの添加量を2.66gに代え、TFMBの添加量を13.10gに代え、0.32gの4,4’−DDSを2.54gの3,3’−DDSに代え、DMAcの添加量を118.16gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は90mol%および10mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は80mol%および20mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   The addition amount of BPDA is changed to 13.54 g, the addition amount of BPADA is changed to 2.66 g, the addition amount of TFMB is changed to 13.10 g, 0.32 g of 4,4′-DDS is changed to 2.54 g of 3,4 A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount of DMAc added was changed to 118.16 g instead of 3′-DDS. A polyimide film was prepared. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides are 90 mol% and 10 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Was 80 mol% and 20 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.5%であり、全光線透過率は90.6%であり、引張強度は184MPaであり、メチルエチルケトンで濡れた状態の引張伸びは8.2%であり、ガラス転移温度は297℃であった。また、引張強度と同時に測定された引張弾性率は4.3GPaであり、引張伸びは27.4%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は2.2であり、黄色度は3.8であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.5% and the total light transmittance was 90.6. %, Tensile strength was 184 MPa, tensile elongation wetted with methyl ethyl ketone was 8.2%, and glass transition temperature was 297 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.3 GPa, and the tensile elongation was 27.4%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 2.2, and the yellowness was 3.8.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を12.70gに代え、BPADAの添加量を3.97gに代え、TFMBの添加量を11.38gに代え、0.32gの4,4’−DDSを3.78gの3,3’−DDSに代え、DMAcの添加量を118.17gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は85mol%および15mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は70mol%および30mol%であった。また、得られたポリイミド膜の膜厚は24μmであった。   The addition amount of BPDA was changed to 12.70 g, the addition amount of BPADA was changed to 3.97 g, the addition amount of TFMB was changed to 11.38 g, and 0.32 g of 4,4′-DDS was changed to 3.78 g of 3,78 g. A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount of DMAc was changed to 118.17 g instead of 3′-DDS. A polyimide film was prepared. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides are 85 mol% and 15 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Were 70 mol% and 30 mol%. Moreover, the film thickness of the obtained polyimide film was 24 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.6%であり、全光線透過率は90.5%であり、引張強度は164MPaであり、メチルエチルケトンで濡れた状態の引張伸びは7.9%であり、ガラス転移温度は290℃であった。また、引張強度と同時に測定された引張弾性率は4.1GPaであり、引張伸びは25.8%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は2.2であり、黄色度は4.0であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.6% and the total light transmittance was 90.5. %, Tensile strength was 164 MPa, tensile elongation wetted with methyl ethyl ketone was 7.9%, and glass transition temperature was 290 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.1 GPa, and the tensile elongation was 25.8%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 2.2, and the yellowness was 4.0.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を13.42gに代え、0.34gのBPADAを2.50gの5,5’−オキシビス(イソベンゾフラン−1,3−ジオン)(ODPA)に代え、TFMBの添加量を12.03gに代え、0.32gの4,4’−DDSを4.00gの3,3’−DDSに代え、DMAcの添加量を118.07gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびODPAのそれぞれのモル分率は85mol%および15mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は70mol%および30mol%であった。また、得られたポリイミド膜の膜厚は24μmであった。   The amount of BPDA added was changed to 13.42 g, 0.34 g of BPADA was changed to 2.50 g of 5,5′-oxybis (isobenzofuran-1,3-dione) (ODPA), and the amount of TFMB added was changed to 12. The polyimide precursor was changed in the same manner as in Example 1 except that 0.32 g of 4,4′-DDS was replaced with 4.00 g of 3,3′-DDS and the amount of DMAc added was changed to 118.07 g. A body solution (solid content: 20 wt%) was prepared, and a polyimide film was produced in the same manner as in Example 1. In this case, the molar fractions of BPDA and ODPA with respect to all tetracarboxylic dianhydrides were 85 mol% and 15 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Were 70 mol% and 30 mol%. Moreover, the film thickness of the obtained polyimide film was 24 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.8%であり、全光線透過率は90.3%であり、引張強度は209MPaであり、メチルエチルケトンで濡れた状態の引張伸びは14.8%であり、ガラス転移温度は297℃であった。また、引張強度と同時に測定された引張弾性率は4.2GPaであり、引張伸びは27.0%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は4.0であり、黄色度は7.4であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.8% and the total light transmittance was 90.3. %, Tensile strength was 209 MPa, tensile elongation when wetted with methyl ethyl ketone was 14.8%, and glass transition temperature was 297 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.2 GPa, and the tensile elongation was 27.0%. Furthermore, the b * value measured simultaneously with the haze value and the total light transmittance was 4.0, and the yellowness was 7.4.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を11.87gに代え、BPADAの添加量を5.25gに代え、TFMBの添加量を9.69gに代え、0.32gの4,4’−DDSを5.01gの3,3’−DDSに代え、DMAcの添加量を118.18gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は80mol%および20mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は60mol%および40mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   The addition amount of BPDA was changed to 11.87 g, the addition amount of BPADA was changed to 5.25 g, the addition amount of TFMB was changed to 9.69 g, 0.32 g of 4,4′-DDS was changed to 5.01 g of 3, A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount of DMAc added was changed to 118.18 g instead of 3′-DDS. A polyimide film was prepared. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides are 80 mol% and 20 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Were 60 mol% and 40 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.5%であり、全光線透過率は90.5%であり、引張強度は155MPaであり、メチルエチルケトンで濡れた状態の引張伸びは6.2%であり、ガラス転移温度は281℃であった。また、引張強度と同時に測定された引張弾性率は4.0GPaであり、引張伸びは25.2%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は2.3であり、黄色度は4.1であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.5% and the total light transmittance was 90.5. %, Tensile strength was 155 MPa, tensile elongation wetted with methyl ethyl ketone was 6.2%, and glass transition temperature was 281 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.0 GPa and the tensile elongation was 25.2%. Furthermore, the b * value measured simultaneously with the haze value and the total light transmittance was 2.3, and the yellowness was 4.1.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を12.77gに代え、0.34gのBPADAを3.37gのODPAに代え、TFMBの添加量を10.43gに代え、0.32gの4,4’−DDSを5.39gの3,3’−DDSに代え、DMAcの添加量を118.05gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびODPAのそれぞれのモル分率は80mol%および20mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は60mol%および40mol%であった。また、得られたポリイミド膜の膜厚は24μmであった。   The addition amount of BPDA is changed to 12.77 g, 0.34 g of BPADA is changed to 3.37 g of ODPA, the addition amount of TFMB is changed to 10.43 g, and 0.32 g of 4,4′-DDS is changed to 5.39 g. A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount of DMAc added was changed to 118.05 g instead of 3,3′-DDS in Example 1. A polyimide film was prepared by the method described above. In this case, the molar fractions of BPDA and ODPA with respect to all tetracarboxylic dianhydrides are 80 mol% and 20 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Were 60 mol% and 40 mol%. Moreover, the film thickness of the obtained polyimide film was 24 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.7%であり、全光線透過率は90.4%であり、引張強度は177MPaであり、メチルエチルケトンで濡れた状態の引張伸びは12.1%であり、ガラス転移温度は293℃であった。また、引張強度と同時に測定された引張弾性率は4.1GPaであり、引張伸びは24.3%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は4.2であり、黄色度は7.6であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.7% and the total light transmittance was 90.4. %, Tensile strength was 177 MPa, tensile elongation wet with methyl ethyl ketone was 12.1%, and glass transition temperature was 293 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.1 GPa, and the tensile elongation was 24.3%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 4.2, and the yellowness was 7.6.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を11.05gに代え、BPADAの添加量を6.52gに代え、TFMBの添加量を8.02gに代え、0.32gの4,4’−DDSを6.22gの3,3’−DDSに代え、DMAcの添加量を118.20gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は75mol%および25mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は50mol%および50mol%であった。また、得られたポリイミド膜の膜厚は24μmであった。   The addition amount of BPDA was changed to 11.05 g, the addition amount of BPADA was changed to 6.52 g, the addition amount of TFMB was changed to 8.02 g, and 0.32 g of 4,4′-DDS was changed to 6.22 g of 3,3. A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount of DMAc added was changed to 118.20 g instead of 3′-DDS. A polyimide film was prepared. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides were 75 mol% and 25 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Were 50 mol% and 50 mol%. Moreover, the film thickness of the obtained polyimide film was 24 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.5%であり、全光線透過率は90.4%であり、引張強度は140MPaであり、メチルエチルケトンで濡れた状態の引張伸びは4.1%であり、ガラス転移温度は275℃であった。また、引張強度と同時に測定された引張弾性率は3.6GPaであり、引張伸びは10.2%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は1.7であり、黄色度は2.8であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.5% and the total light transmittance was 90.4. %, The tensile strength was 140 MPa, the tensile elongation when wetted with methyl ethyl ketone was 4.1%, and the glass transition temperature was 275 ° C. The tensile modulus measured simultaneously with the tensile strength was 3.6 GPa, and the tensile elongation was 10.2%. Furthermore, the b * value measured simultaneously with the haze value and the total light transmittance was 1.7, and the yellowness was 2.8.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を10.01gに代え、BPADAの添加量を7.59gに代え、TFMBの添加量を9.33gに代え、0.32gの4,4’−DDSを4.83gの3,3’−DDSに代え、DMAcの添加量を118.25gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は70mol%および30mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は60mol%および40mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   The addition amount of BPDA was changed to 10.01 g, the addition amount of BPADA was changed to 7.59 g, the addition amount of TFMB was changed to 9.33 g, 0.32 g of 4,4′-DDS was changed to 4.83 g of 3, A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount of DMAc was changed to 118.25 g instead of 3′-DDS. A polyimide film was prepared. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides were 70 mol% and 30 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Were 60 mol% and 40 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.4%であり、全光線透過率は90.4%であり、引張強度は137MPaであり、メチルエチルケトンで濡れた状態の引張伸びは3.8%であり、ガラス転移温度は269℃であった。また、引張強度と同時に測定された引張弾性率は3.3GPaであり、引張伸びは9.0%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は1.6であり、黄色度は2.6であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.4% and the total light transmittance was 90.4. %, Tensile strength was 137 MPa, tensile elongation in a state wetted with methyl ethyl ketone was 3.8%, and glass transition temperature was 269 ° C. The tensile modulus measured simultaneously with the tensile strength was 3.3 GPa, and the tensile elongation was 9.0%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 1.6, and the yellowness was 2.6.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

BPDAの添加量を10.24gに代え、BPADAの添加量を7.77gに代え、TFMBの添加量を6.37gに代え、0.32gの4,4’−DDSを7.41gの3,3’−DDSに代え、DMAcの添加量を118.21gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。なお、この際の全てのテトラカルボン酸二無水物に対するBPDAおよびBPADAのそれぞれのモル分率は70mol%および30mol%であり、全てのジアミンに対するTFMBおよび3,3’−DDSのそれぞれのモル分率は40mol%および60mol%であった。また、得られたポリイミド膜の膜厚は25μmであった。   The addition amount of BPDA is changed to 10.24 g, the addition amount of BPADA is changed to 7.77 g, the addition amount of TFMB is changed to 6.37 g, and 0.32 g of 4,4′-DDS is changed to 7.41 g of 3,4. A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1 except that the amount of DMAc added was changed to 118.21 g instead of 3′-DDS. A polyimide film was prepared. In this case, the molar fractions of BPDA and BPADA with respect to all tetracarboxylic dianhydrides were 70 mol% and 30 mol%, respectively, and the molar fractions of TFMB and 3,3′-DDS with respect to all diamines. Were 40 mol% and 60 mol%. Moreover, the film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.6%であり、全光線透過率は90.3%であり、引張強度は129MPaであり、メチルエチルケトンで濡れた状態の引張伸びは3.5%であり、ガラス転移温度は272℃であった。また、引張強度と同時に測定された引張弾性率は3.3GPaであり、引張伸びは8.4%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は1.7であり、黄色度は2.7であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.6% and the total light transmittance was 90.3. %, Tensile strength was 129 MPa, tensile elongation when wetted with methyl ethyl ketone was 3.5%, and glass transition temperature was 272 ° C. The tensile modulus measured simultaneously with the tensile strength was 3.3 GPa and the tensile elongation was 8.4%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 1.7, and the yellowness was 2.7.

以上の結果から、本実施例で得られたポリイミド膜も、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いことが確認された。   From the above results, the polyimide film obtained in this example is also excellent in heat resistance, transparency, and strength equivalent to the conventional one, and has higher resistance to methyl ethyl ketone than the conventional colorless transparent polyimide film. confirmed.

(比較例1)
BPADAおよび4,4’−DDSを添加せず、BPDAの添加量を15.26gに代え、TFMBの添加量を16.61gに代え、DMAcの添加量を118.13gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。得られたポリイミド膜の膜厚は25μmであった。
(Comparative Example 1)
Implementation was performed except that BPADA and 4,4′-DDS were not added, the addition amount of BPDA was changed to 15.26 g, the addition amount of TFMB was changed to 16.61 g, and the addition amount of DMAc was changed to 118.13 g. A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1, and a polyimide film was produced in the same manner as in Example 1. The film thickness of the obtained polyimide film was 25 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は7.0%であり、全光線透過率は87.2%であり、引張強度は203MPaであり、メチルエチルケトンで濡れた状態の引張伸びは20.4%であり、ガラス転移温度は335℃であった。また、引張強度と同時に測定された引張弾性率は4.3GPaであり、引張伸びは20.2%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は3.0であり、黄色度は5.2であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 7.0% and the total light transmittance was 87.2. %, Tensile strength was 203 MPa, tensile elongation when wetted with methyl ethyl ketone was 20.4%, and glass transition temperature was 335 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.3 GPa, and the tensile elongation was 20.2%. Further, the b * value measured at the same time as the haze value and the total light transmittance was 3.0, and the yellowness was 5.2.

以上の結果から、本比較例で得られたポリイミド膜は、従前と同等の優れた耐熱性および強度を示すと共に、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いが、透明性に著しく乏しいことが明らかとなった。   From the above results, the polyimide film obtained in this comparative example shows the same excellent heat resistance and strength as the previous one, and has a higher resistance to methyl ethyl ketone than the previous colorless and transparent polyimide film, but the transparency is remarkably high. It became clear that it was scarce.

(比較例2)
BPDAおよび4,4’−DDSを添加せず、BPADAの添加量を19.41gに代え、TFMBの添加量を11.94gに代え、DMAcの添加量を118.66gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。得られたポリイミド膜の膜厚は24μmであった。
(Comparative Example 2)
Implementation was carried out except that BPDA and 4,4′-DDS were not added, the addition amount of BPADA was changed to 19.41 g, the addition amount of TFMB was changed to 11.94 g, and the addition amount of DMAc was changed to 118.66 g. A polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1, and a polyimide film was produced in the same manner as in Example 1. The film thickness of the obtained polyimide film was 24 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は0.9%であり、全光線透過率は90.4%であり、引張強度は158MPaであり、メチルエチルケトンで濡れた状態の引張伸びは2.6%であり、ガラス転移温度は242℃であった。また、引張強度と同時に測定された引張弾性率は3.8GPaであり、引張伸びは34.1%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は1.8であり、黄色度は3.5であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 0.9% and the total light transmittance was 90.4. %, Tensile strength was 158 MPa, tensile elongation wetted with methyl ethyl ketone was 2.6%, and glass transition temperature was 242 ° C. Further, the tensile modulus measured simultaneously with the tensile strength was 3.8 GPa, and the tensile elongation was 34.1%. Furthermore, the b * value measured simultaneously with the haze value and the total light transmittance was 1.8, and the yellowness was 3.5.

以上の結果から、本比較例で得られたポリイミド膜は、従前と同等の優れた透明性および強度を示すが、耐熱性に劣るだけでなく、従前の無色透明のポリイミド膜と同等のメチルエチルケトン耐性しか示さないことが明らかとなった。   From the above results, the polyimide film obtained in this comparative example shows excellent transparency and strength equivalent to the conventional one, but not only has poor heat resistance, but also has the same methyl ethyl ketone resistance as the conventional colorless transparent polyimide film. It became clear that it showed only.

(比較例3)
BPADAを添加せず、BPDAの添加量を15.85gに代え、TFMBの添加量を12.08gに代え、0.32gの4,4’−DDSを4.01gの3,3’−DDSに代え、DMAcの添加量を118.06gに代えた以外は、実施例1と同様にポリイミド前駆体溶液(固形分:20wt%)を調製し、実施例1と同様の方法でポリイミド膜を作製した。得られたポリイミド膜の膜厚は24μmであった。
(Comparative Example 3)
BPADA was not added, the amount of BPDA was changed to 15.85 g, the amount of TFMB was changed to 12.08 g, and 0.32 g of 4,4′-DDS was changed to 4.01 g of 3,3′-DDS. Instead, except that the amount of DMAc added was changed to 118.06 g, a polyimide precursor solution (solid content: 20 wt%) was prepared in the same manner as in Example 1, and a polyimide film was produced in the same manner as in Example 1. . The film thickness of the obtained polyimide film was 24 μm.

得られたポリイミド膜のヘイズ値、全光線透過率、引張強度、ガラス転移温度を実施例1と同様にして測定したところ、ヘイズ値は7.5%であり、全光線透過率は85.8%であり、引張強度は162MPaであり、メチルエチルケトンで濡れた状態の引張伸びは8.1%であり、ガラス転移温度は300℃であった。また、引張強度と同時に測定された引張弾性率は4.3GPaであり、引張伸びは21.2%であった。さらに、ヘイズ値及び全光線透過率と同時に測定されたb値は3.1であり、黄色度は5.6であった。 When the haze value, total light transmittance, tensile strength, and glass transition temperature of the obtained polyimide film were measured in the same manner as in Example 1, the haze value was 7.5% and the total light transmittance was 85.8. %, Tensile strength was 162 MPa, tensile elongation in a state wetted with methyl ethyl ketone was 8.1%, and glass transition temperature was 300 ° C. The tensile modulus measured simultaneously with the tensile strength was 4.3 GPa, and the tensile elongation was 21.2%. Further, the b * value measured simultaneously with the haze value and the total light transmittance was 3.1, and the yellowness was 5.6.

以上の結果から、本比較例で得られたポリイミド膜は、従前と同等の優れた耐熱性および強度を示すと共に、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いが、透明性に著しく乏しいことが明らかとなった。なお、参考のため、上記実施例および比較例における「ポリイミド前駆体溶液の合成条件およびそのポリイミド前駆体溶液から得られたポリイミド膜の膜厚」および「そのポリイミド膜の諸物性」を以下の表1および表2にそれぞれまとめた。   From the above results, the polyimide film obtained in this comparative example shows the same excellent heat resistance and strength as the previous one, and has a higher resistance to methyl ethyl ketone than the previous colorless and transparent polyimide film, but the transparency is remarkably high. It became clear that it was scarce. For reference, the “synthetic conditions of the polyimide precursor solution and the film thickness of the polyimide film obtained from the polyimide precursor solution” and “the physical properties of the polyimide film” in the above examples and comparative examples are shown in the following table. The results are summarized in Table 1 and Table 2, respectively.

Figure 0006253172
Figure 0006253172

Figure 0006253172
Figure 0006253172

本発明に係るポリイミド膜は、従前と同等の優れた耐熱性、透明性、強度を示しつつも、従前よりも低コストで生産することが可能であり、また、従前の無色透明のポリイミド膜よりもメチルエチルケトンに対する耐性が高いという特徴を有し、例えば、発光素子実装用の回路基板や、カバーレイ、バーコード印刷用基板に好適に用いることができる。   The polyimide film according to the present invention can be produced at a lower cost than before while exhibiting excellent heat resistance, transparency, and strength equivalent to those of the past, and moreover than conventional colorless transparent polyimide films. Has a feature of high resistance to methyl ethyl ketone, and can be suitably used for, for example, a circuit board for mounting a light emitting element, a coverlay, and a barcode printing board.

Claims (9)

フェニルテトラカルボン酸系化合物(BPDA)由来部位と、
2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン系化合物(BPADA)由来部位、および、4,4’−オキシジフタル酸系化合物(ODPA)由来部位より成る群から選択される少なくとも1つの部位と
2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)由来部位と、
3,3’−ジアミノジフェニルスルホン(3,3’−DDS)由来部位、および、4,4’−ジアミノジフェニルスルホン(4,4’−DDS)由来部位より成る群から選択される少なくとも1つの部位とから成るポリイミド樹脂から成り
ヘイズ値が0.1以上2.0以下の範囲内である
ポリイミド膜。
Biphenyl tetracarboxylic acid compound (BPDA) and site-derived,
At least selected from the group consisting of a portion derived from 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane-based compound (BPADA) and a portion derived from 4,4′-oxydiphthalic acid-based compound (ODPA) One part ,
A site derived from 2,2′-bis (trifluoromethyl) benzidine (TFMB) ;
At least one site selected from the group consisting of a site derived from 3,3′-diaminodiphenylsulfone (3,3′-DDS) and a site derived from 4,4′-diaminodiphenylsulfone (4,4′-DDS) Made of polyimide resin consisting of
A polyimide film having a haze value in the range of 0.1 to 2.0.
全てのテトラカルボン酸系化合物由来部位に対する前記ビフェニルテトラカルボン酸系化合物(BPDA)由来部位のモル分率が70mol%以上99mol%以下の範囲内である
請求項1に記載のポリイミド膜。
All Te tetracarboxylic acid compound from the biphenyltetracarboxylic acid compound for site (BPDA) mole fraction from site is within the range of 70 mol% or more 99 mol% polyimide film of claim 1.
全てのテトラカルボン酸系化合物由来部位に対する前記2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン系化合物(BPADA)由来部位、および、前記4,4’−オキシジフタル酸系化合物(ODPA)由来部位より成る群から選択される少なくとも1つの部位のモル分率が1mol%以上30mol%以下の範囲内である
請求項1または2に記載のポリイミド膜。
Wherein for all te tetracarboxylic acid compound derived portion of 2,2-bis [3,4- (di-carboxy) phenyl] propane compound (BPADA) derived site, and the 4,4'-oxydiphthalic acid compounds The polyimide film according to claim 1 or 2, wherein the molar fraction of at least one site selected from the group consisting of (ODPA) -derived sites is in the range of 1 mol% to 30 mol%.
全てのジアミン由来部位に対する前記2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)由来部位のモル分率が40mol%以上98mol%以下の範囲内である
請求項1から3のいずれか1項に記載のポリイミド膜。
All di amine from the relative site 2,2'-bis (trifluoromethyl) benzidine (TFMB) mole fraction from site to any one of claims 1 within the following 40 mol% or more 98 mol% 3 1 The polyimide film as described in the item.
全てのジアミン由来部位に対する前記3,3’−ジアミノジフェニルスルホン(3,3’−DDS)由来部位、および、4,4’−ジアミノジフェニルスルホン(4,4’−DDS)由来部位より成る群から選択される少なくとも1つの部位のモル分率が2mol%以上60mol%以下の範囲内である
請求項1から4のいずれか1項に記載のポリイミド膜。
Wherein for all di amine from part 3,3'-diaminodiphenyl sulfone (3,3'-DDS) from the site, and, 4,4'-diaminodiphenylsulfone (4,4'-DDS) group consisting of from site 5. The polyimide film according to claim 1, wherein the molar fraction of at least one portion selected from is within a range of 2 mol% to 60 mol%.
引張強度が100MPa以上500MPa以下の範囲内である
請求項1からのいずれか1項に記載のポリイミド膜。
The polyimide film according to any one of claims 1 to 5 , wherein the tensile strength is in a range of 100 MPa to 500 MPa.
前記ポリイミド樹脂のガラス転移温度が260℃以上350℃以下の範囲内である
請求項1からのいずれか1項に記載のポリイミド膜。
Polyimide film according to any one of the claims 1 to 6 glass transition temperature of the polyimide resin is in the range of 260 ° C. or higher 350 ° C. or less.
片面をメチルエチルケトン(MEK)で濡らしたときの引張伸びが3.5%以上35%以下の範囲内である
請求項1からのいずれか1項に記載のポリイミド膜。
The polyimide film according to any one of claims 1 to 7 , wherein the tensile elongation when one surface is wetted with methyl ethyl ketone (MEK) is in the range of 3.5% to 35%.
ビフェニルテトラカルボン酸系化合物(BPDA)由来部位と、A site derived from a biphenyltetracarboxylic acid compound (BPDA);
2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン系化合物(BPADA)由来部位、および、4,4’−オキシジフタル酸系化合物(ODPA)由来部位より成る群から選択される少なくとも1つの部位と、At least selected from the group consisting of a portion derived from 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane-based compound (BPADA) and a portion derived from 4,4′-oxydiphthalic acid-based compound (ODPA) One part,
2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)由来部位と、A site derived from 2,2'-bis (trifluoromethyl) benzidine (TFMB);
3,3’−ジアミノジフェニルスルホン(3,3’−DDS)由来部位、および、4,4’−ジアミノジフェニルスルホン(4,4’−DDS)由来部位より成る群から選択される少なくとも1つの部位とから成るポリイミド樹脂から成り、At least one site selected from the group consisting of a site derived from 3,3′-diaminodiphenylsulfone (3,3′-DDS) and a site derived from 4,4′-diaminodiphenylsulfone (4,4′-DDS) Made of polyimide resin consisting of
ヘイズ値が0.1以上2.0以下の範囲内であると共に、片面をメチルエチルケトン(MEK)で濡らしたときの引張伸びが3.5%以上35%以下の範囲内であるThe haze value is in the range of 0.1 to 2.0, and the tensile elongation when one surface is wetted with methyl ethyl ketone (MEK) is in the range of 3.5% to 35%.
発光素子実装用の回路基板、カバーレイ、または、バーコード印刷用基板。Circuit board, coverlay, or barcode printing board for mounting light-emitting elements.
JP2017507037A 2015-10-30 2016-10-31 Polyimide film Active JP6253172B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015213777 2015-10-30
JP2015213777 2015-10-30
PCT/JP2016/082271 WO2017073782A1 (en) 2015-10-30 2016-10-31 Polyimide film

Publications (2)

Publication Number Publication Date
JPWO2017073782A1 JPWO2017073782A1 (en) 2017-10-26
JP6253172B2 true JP6253172B2 (en) 2017-12-27

Family

ID=58631627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017507037A Active JP6253172B2 (en) 2015-10-30 2016-10-31 Polyimide film

Country Status (2)

Country Link
JP (1) JP6253172B2 (en)
WO (1) WO2017073782A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190132356A (en) * 2017-04-07 2019-11-27 가부시키가이샤 아이.에스.티 Polyimide film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956524B2 (en) * 2017-06-06 2021-11-02 旭化成株式会社 Polyimide film, products using polyimide film, and laminates
KR20210096064A (en) * 2018-11-28 2021-08-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resins, polyimide varnishes and polyimide films
JP7384170B2 (en) * 2018-11-28 2023-11-21 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish and polyimide film
WO2022124195A1 (en) * 2020-12-08 2022-06-16 株式会社カネカ Polyimide resin, polyimide film and manufacturing method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064388A (en) * 1999-08-30 2001-03-13 Nissan Chem Ind Ltd Polyimide, polyimide solution and method for forming polyimide film
JP2002148457A (en) * 2000-11-13 2002-05-22 Mitsui Chemicals Inc Polymer light guide
KR100589067B1 (en) * 2001-10-30 2006-06-14 가부시키가이샤 가네카 Photosensitive resin composition and photosensitive films and laminates made by using the same
JP2012041473A (en) * 2010-08-20 2012-03-01 Kaneka Corp Polyimide film and method of manufacturing the film
JP5667392B2 (en) * 2010-08-23 2015-02-12 株式会社カネカ Laminated body and use thereof
KR101808396B1 (en) * 2013-04-03 2017-12-12 미쓰이 가가쿠 가부시키가이샤 Polyamic acid, varnish comprising same and polyimide film
KR102119426B1 (en) * 2013-06-26 2020-06-08 도레이 카부시키가이샤 Polyimide precursor, polyimide, flexible substrate prepared therewith, color filter and production method thereof, and flexible display device
KR101602686B1 (en) * 2013-10-22 2016-03-11 코오롱인더스트리 주식회사 Polyamic Acid, Polyimide and Display Device
WO2016158825A1 (en) * 2015-03-31 2016-10-06 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190132356A (en) * 2017-04-07 2019-11-27 가부시키가이샤 아이.에스.티 Polyimide film
JPWO2018186215A1 (en) * 2017-04-07 2020-03-05 株式会社アイ.エス.テイ Polyimide film
JP7189619B2 (en) 2017-04-07 2022-12-14 株式会社アイ.エス.テイ Polyimide membrane

Also Published As

Publication number Publication date
WO2017073782A1 (en) 2017-05-04
JPWO2017073782A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6253172B2 (en) Polyimide film
KR101899902B1 (en) Transparent polyimide precursor resin composition improving stability of resin and heat-resistance, method for manufacturing polyimide film using the same, and polyimide film thereof
KR102147082B1 (en) Polyimide precursor, resin composition, resin film and method of producing resin film
CN113292853B (en) Resin composition, polyimide resin film, and method for producing same
JP6669074B2 (en) Polyimide film, polyimide precursor, and polyimide
KR102641711B1 (en) Polyamic acid solution composition and polyimide film
JP6607193B2 (en) Polyimide precursor, polyimide, and polyimide film
KR102059703B1 (en) Polyamic acid solution composition and polyimide
WO2015080158A1 (en) Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
KR20190092599A (en) Polyimide precursor and polyimide
JP6539965B2 (en) Method of manufacturing flexible device
JP7189619B2 (en) Polyimide membrane
JP6461470B2 (en) Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
KR20190141011A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide membrane, laminate and flexible device, and method for producing polyimide membrane
KR101797806B1 (en) Polyimide-based solution and polyimide-based film prepared by using same
CN111205642B (en) Transparent polyimide film
KR20180059773A (en) Polyimide resin, and polyimide film
JP6638744B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
TWI727031B (en) Polyimide film
JP2009091441A (en) Polyimide precursor and polyimide
CN109384922B (en) Polyimide precursor composition and method for producing polyimide film using same
WO2015080156A1 (en) Polyimide precursor composition, polyimide manufacturing process, polyimide, polyimide film, and base material
KR20090051886A (en) Polyimide film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171124

R150 Certificate of patent or registration of utility model

Ref document number: 6253172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157