WO2015080156A1 - Polyimide precursor composition, polyimide manufacturing process, polyimide, polyimide film, and base material - Google Patents

Polyimide precursor composition, polyimide manufacturing process, polyimide, polyimide film, and base material Download PDF

Info

Publication number
WO2015080156A1
WO2015080156A1 PCT/JP2014/081258 JP2014081258W WO2015080156A1 WO 2015080156 A1 WO2015080156 A1 WO 2015080156A1 JP 2014081258 W JP2014081258 W JP 2014081258W WO 2015080156 A1 WO2015080156 A1 WO 2015080156A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide precursor
chemical formula
film
mol
Prior art date
Application number
PCT/JP2014/081258
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 岡
幸徳 小濱
久野 信治
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2015080156A1 publication Critical patent/WO2015080156A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a solution composition (polyimide precursor composition) containing a polyimide precursor that provides a polyimide that is more transparent, has a smaller linear thermal expansion coefficient, and excellent mechanical properties, and a method for producing the polyimide. .
  • the present invention also relates to a polyimide, a polyimide film, and a substrate that are excellent in transparency, have a small linear thermal expansion coefficient, and are excellent in mechanical properties.
  • Aromatic polyimide is essentially yellowish brown due to intramolecular conjugation and the formation of charge transfer complexes. For this reason, as a means to suppress coloration, for example, introduction of fluorine atoms into the molecule, imparting flexibility to the main chain, introduction of bulky groups as side chains, etc. inhibits intramolecular conjugation and charge transfer complex formation. Thus, a method for expressing transparency has been proposed.
  • Patent Documents 1 to 4 disclose various highly translucent semi-alicyclic polyimides using an alicyclic tetracarboxylic dianhydride as a tetracarboxylic acid component and an aromatic diamine as a diamine component. Yes.
  • Patent Documents 5 and 6 disclose polyimides using decahydro-1,4: 5,8-dimethananaphthalene-2,3,6,7-tetracarboxylic acids as tetracarboxylic acid components.
  • Non-Patent Document 1 discloses a polyimide using (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2t, 3t, 6c, 7c-tetracarboxylic acid as a tetracarboxylic acid component.
  • Non-Patent Document 2 uses (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2c, 3c, 6c, 7c-tetracarboxylic acids as the tetracarboxylic acid component.
  • 4arH, 8acH 4arH, 8acH
  • 5c, 8c-dimethananaphthalene-2c, 3c, 6c, 7c-tetracarboxylic acids as the tetracarboxylic acid component.
  • Disclosed polyimide 4arH, 8acH
  • polyimides with higher transparency are required particularly in the field of display devices and the like.
  • semi-alicyclic polyimides using alicyclic tetracarboxylic dianhydride as the tetracarboxylic acid component and aromatic diamine as the diamine component have high transparency, bending resistance, and high heat resistance.
  • the linear thermal expansion coefficient tends to be large. If the linear thermal expansion coefficient of polyimide is large and the difference in linear thermal expansion coefficient with a conductor such as metal is large, problems such as increased warping may occur when forming a circuit board, especially for display applications. A fine circuit formation process may not be easy.
  • Patent Document 7 discloses a polyimide formed by heating a coating liquid obtained by blending a polyimide precursor (polyamic acid) with an imidazoline compound and / or an imidazole compound. More specifically, in Example 1, 2,4-dimethyl was added to a polyamic acid solution obtained from 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-diaminobiphenyl ether. A solution to which imidazoline has been added is applied onto a substrate and heated at 200 ° C. for 1 hour to obtain an aromatic polyimide film having a thickness of 1000 mm (0.1 ⁇ m).
  • Example 2 a solution obtained by adding 2-ethylimidazoline and 1,2-dimethylimidazole to a solution of polyamic acid obtained from pyromellitic dianhydride and 4,4′-diaminobiphenyl ether was applied onto a substrate.
  • An aromatic polyimide film having a thickness of 800 mm (0.08 ⁇ m) is obtained by heating at 150 ° C. for 1 hour.
  • Patent Document 7 by adding an imidazoline-based compound and / or an imidazole-based compound, the remarkable brown coloration is avoided, and a liquid crystal display element having high light transmittance and excellent transparency can be obtained. It is described.
  • the light transmittance at a wavelength of 400 nm of the liquid crystal display element using the polyimide film (liquid crystal alignment film) of Example 1 is 82% (polyimide film thickness: 0.1 ⁇ m), and the polyimide film of Example 2 (liquid crystal alignment film).
  • the light transmittance at a wavelength of 400 nm of the liquid crystal display element using the above is 83% (polyimide film thickness: 0.08 ⁇ m), and this polyimide does not have sufficient transparency.
  • Patent Document 8 discloses that a polyimide precursor resin and a curing accelerator for a polyimide precursor resin such as imidazole and N-methylimidazole are dissolved in an organic polar solvent.
  • a method for forming a polyimide resin layer is disclosed, in which a polyimide precursor resin-containing solution is applied onto a substrate, followed by drying and imidization to complete the formation of a polyimide resin layer within a range of 280 to 380 ° C., It is described that the thermal expansion coefficient can be controlled to be low by using these curing accelerators.
  • Patent Document 8 also describes that a curing accelerator having a boiling point exceeding 120 ° C.
  • a boiling point not exceeding the upper limit temperature of heat treatment is preferably selected.
  • a curing accelerator having a boiling point of, for example, 400 ° C. or higher has a higher ratio of remaining in the polyimide resin layer after imidization and tends to affect the function of the polyimide resin layer.
  • JP 2003-168800 A International Publication No. 2008/146737 JP 2002-69179 A JP 2002-146021 A JP 2007-2023 A JP-A-6-51316 JP-A 61-267030 JP 2008-115378 A
  • the present invention has been made in view of the situation as described above, and even a polyimide having the same composition is more transparent and has a low linear thermal expansion coefficient, or is more transparent and has a low linear heat. It aims at providing the manufacturing method of a polyimide precursor composition (solution composition containing a polyimide precursor) from which a polyimide which is an expansion coefficient and was excellent also in mechanical properties is obtained.
  • the present invention relates to the following items.
  • A is a divalent group having an aromatic ring
  • X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms. .
  • Item 2 The polyimide precursor composition according to Item 1, wherein the polyimide precursor contains a repeating unit represented by the following chemical formula (1-2).
  • A is a divalent group having an aromatic ring
  • X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms. .
  • Item 3 The polyimide precursor composition according to Item 1 or 2, wherein A in the chemical formula (1-1) or the chemical formula (1-2) is a group represented by the following chemical formula (1-A): object.
  • Y 1 , Y 2 , and Y 3 are each independently a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • Q and R are each independently a direct bond, or selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO— 1 type is shown.) 4). Item 4.
  • Item 5. The polyimide precursor composition according to any one of Items 1 to 4, wherein the content of the imidazole compound is 0.05 mol or more and 2 mol or less with respect to 1 mol of the repeating unit of the polyimide precursor. object. 6).
  • any one of Items 1 to 5, wherein the imidazole compound is any one of 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, imidazole, and benzimidazole.
  • a polyimide having the same composition can be a polyimide having a higher transparency and a low linear thermal expansion coefficient, or a polyimide having a higher transparency, a low linear thermal expansion coefficient and excellent mechanical characteristics.
  • the obtained polyimide precursor composition (solution composition containing a polyimide precursor) and a method for producing polyimide can be provided.
  • the polyimide obtained from the polyimide precursor composition of the present invention is highly transparent and has a low linear thermal expansion coefficient, and it is easy to form a fine circuit. It can be suitably used for forming. Moreover, the polyimide of this invention can be used suitably also in order to form the board
  • the polyimide precursor composition of the present invention comprises a polyimide precursor containing at least one repeating unit represented by the chemical formula (1-1) and an imidazole compound, and the content of the imidazole compound is determined by the polyimide precursor. Less than 4 moles per mole of repeating units of the body.
  • a polyimide obtained from a polyimide precursor containing at least one repeating unit represented by the chemical formula (1-1), that is, a semi-alicyclic polyimide has high transparency.
  • the use of additives that can cause coloring is not preferred.
  • the imidazole compound to the polyimide precursor composition at a ratio of less than 4 mol, preferably 0.05 mol or more and 2 mol or less, with respect to 1 mol of the repeating unit of the polyimide precursor, Transparency is further improved, and the linear thermal expansion coefficient of the resulting polyimide is reduced. That is, according to the present invention, a polyimide having a higher transparency and a lower linear thermal expansion coefficient can be obtained from a polyimide precursor having the same composition.
  • the polyimide precursor is imidized by heat treatment at a temperature exceeding 350 ° C., particularly preferably exceeding 400 ° C.
  • a highly transparent polyimide can be produced.
  • the maximum heating temperature of the heat treatment for imidization can be set to a high temperature exceeding 350 ° C., particularly preferably a high temperature exceeding 400 ° C., so that the mechanical properties of the resulting polyimide are improved. That is, according to the present invention, a polyimide having high transparency, a low coefficient of linear thermal expansion, and excellent mechanical properties can be obtained.
  • the polyimide precursor composition of the present invention includes a polyimide precursor containing at least one repeating unit represented by the chemical formula (1-1).
  • a polyimide precursor containing a repeating unit represented by the chemical formula (1-2) is preferable.
  • one of the acid groups at the 2-position or 3-position of the decahydro-1,4: 5,8-dimethananaphthalene ring reacts with an amino group.
  • An amide bond (—CONH—) one of which is a group represented by —COOX 1 not forming an amide bond, and one of the acid groups at the 6-position or 7-position reacts with an amino group.
  • the amide bond (—CONH—) is formed, and one of them is a group represented by —COOX 2 which does not form an amide bond.
  • A is preferably a divalent group having an aromatic ring having 6 to 40 carbon atoms.
  • the polyimide precursor includes at least one repeating unit represented by the chemical formula (1-1), more preferably the chemical formula (1-2), in which A is a group represented by the chemical formula (1-A). It is preferable.
  • the polyimide precursor is decahydro-1,4: 5,8-dimethanonaphthalene-2,3,6,7-tetracarboxylic acid and the like, more preferably (4arH, 8acH) -decahydro-1t, 4t : 5c, 8c-dimethanonaphthalene-2t, 3t, 6c, 7c-tetracarboxylic acids and the like (tetracarboxylic acids and the like are tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic silyl ester, tetracarboxylic acid A tetracarboxylic acid component including a tetracarboxylic acid derivative such as an ester or tetracarboxylic acid chloride) and a diamine component having an aromatic ring, more preferably, A is a group represented by the chemical formula (1-A). Obtained from a diamine component containing a diamine component
  • Examples of the tetracarboxylic acid component that gives the repeating unit of the chemical formula (1-1) include one type such as decahydro-1,4: 5,8-dimethananaphthalene-2,3,6,7-tetracarboxylic acid. You may use individually and can also be used in combination of multiple types.
  • Examples of the tetracarboxylic acid component that gives the repeating unit of the chemical formula (1-2) include (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2t, 3t, 6c, 7c-tetracarboxylic acids Etc., and may be used alone or in combination of two or more.
  • the diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) preferably contains a diamine that gives that A is a group represented by the chemical formula (1-A).
  • the diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) in which A is a group represented by the chemical formula (1-A) has an aromatic ring and has a plurality of aromatic rings Are aromatic rings linked independently by a direct bond, an amide bond, or an ester bond.
  • the connection position of the aromatic rings is not particularly limited, but it may form a linear structure by bonding at the 4-position to the amino group or the connection group of the aromatic rings, and the resulting polyimide may have low linear thermal expansion. .
  • a methyl group or a trifluoromethyl group may be substituted on the aromatic ring.
  • the substitution position is not particularly limited.
  • the diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) in which A is a group represented by the chemical formula (1-A) is not particularly limited.
  • the resulting polyimide has both high heat resistance and high transmittance.
  • diamines may be used alone or in combination of two or more.
  • the diamine component that gives A in the chemical formula (1-1) or the chemical formula (1-2) (that is, the diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2))
  • Other diamines other than the diamine component that gives the structure represented by the chemical formula (1-A) can be used in combination.
  • Other aromatic or aliphatic diamines can be used as other diamine components.
  • A is a group represented by the chemical formula (1-A) in 100 mol% of the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2).
  • the total proportion of the repeating units represented by the chemical formula (1-1) or the chemical formula (1-2) is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly Preferably it is 100 mol%.
  • the proportion of the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) in which A is a group represented by the chemical formula (1-A) is less than 50 mol%, The linear thermal expansion coefficient may increase.
  • 100 mol% of the diamine component giving the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) has the chemical formula (1-A). It may be preferable that the ratio of the diamine component giving the structure is preferably 70 mol% or less, more preferably 80 mol% or less, and still more preferably 90 mol% or less in total.
  • diamines such as a diamine having an ether bond (—O—) such as 4,4′-oxydianiline, 4,4′-bis (4-aminophenoxy) biphenyl, and the like are represented by the chemical formula (1- 1) or 100 mol% of the diamine component giving the repeating unit of the chemical formula (1-2), for example, 40 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less, further preferably 10 mol% or less. It may be preferable to use in
  • the chemical formula (1-1) or the chemical formula (1-2) A in the formula is preferably the chemical formula (1-A).
  • the diamine component giving the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) is a group represented by the chemical formula (1-A).
  • a diamine component that gives a repeating unit of the chemical formula (1-2) is preferable.
  • a diamine component that gives A in the chemical formula (1-1) or the chemical formula (1-2) that is, a diamine component that gives a repeating unit of the chemical formula (1-1) or the chemical formula (1-2)
  • A is a diamine component that gives a repeating unit of the chemical formula (1-1) or chemical formula (1-2), which is a group represented by the chemical formula (1-A)
  • the heat resistance of the resulting polyimide is improved. .
  • A is represented by the chemical formula (1-A). It may be preferable to include at least two repeating units of the chemical formula (1-1) or chemical formula (1-2) as a group.
  • the diamine component giving the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) is a group represented by the chemical formula (1-A).
  • a diamine component that gives A in the chemical formula (1-1) or the chemical formula (1-2) that is, a diamine component that gives a repeating unit of the chemical formula (1-1) or the chemical formula (1-2)
  • A can achieve a balance between high transparency and low linear thermal expansion of the resulting polyimide (that is, high transparency). And a polyimide having a low linear thermal expansion coefficient).
  • the polyimide precursor containing the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) of the present invention is represented by the chemical formula (1-1) or the chemical formula ( In 1-2)
  • the diamine component that gives A is the structure of the chemical formula (1-A). It is preferred that at least two of the diamine components that give are those, one of which is 4,4′-diaminobenzanilide.
  • the diamine component that gives A in the chemical formula (1-1) or the chemical formula (1-2) includes at least two kinds of diamine components that give the structure of the chemical formula (1-A), and one of them is 4,
  • 4′-diaminobenzanilide a polyimide having high heat resistance in addition to high transparency and low linear thermal expansion can be obtained.
  • the polyimide precursor containing the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) according to the present invention is represented by the chemical formula (1-1) or the chemical formula (1- 2)
  • the diamine component that gives A is 2,2′-bis (trifluoromethyl) benzidine and p It preferably contains at least one selected from -phenylenediamine and 4,4'-diaminobenzanilide.
  • the diamine component giving A in the chemical formula (1-1) or the chemical formula (1-2) (that is, the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) is substituted.
  • the diamine component to be provided) preferably contains 4,4′-diaminobenzanilide in an amount of 20 mol% to 80 mol%, and includes p-phenylenediamine and 2,2′-bis (trifluoromethyl) benzidine.
  • either one or both contain 20 mol% or more and 80 mol% or less, more preferably 4,4′-diaminobenzanilide is contained 30 mol% or more and 70 mol% or less, and p- Containing 30 mol% or more and 70 mol% or less of either or both of phenylenediamine and 2,2'-bis (trifluoromethyl) benzidine And particularly preferably contains 4,4′-diaminobenzanilide in an amount of 40 mol% to 60 mol%, and either p-phenylenediamine or 2,2′-bis (trifluoromethyl) benzidine. It is more preferable to include 40 mol% or more and 60 mol% or less.
  • the polyimide precursor of the present invention may contain other repeating units other than the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2).
  • aromatic or aliphatic tetracarboxylic acids can be used as the tetracarboxylic acid component that gives other repeating units.
  • the diamine component giving another repeating unit is the diamine exemplified as the diamine component giving the repeating unit of chemical formula (1-1) or chemical formula (1-2), wherein A is a group represented by the chemical formula (1-A). It may be.
  • aromatic or aliphatic diamines can be used as the diamine component that gives other repeating units.
  • the polyimide precursor comprises a total of repeating units represented by the chemical formula (1-1) or the chemical formula (1-2), preferably 50 mol% or more in all repeating units. More preferably, it is 70 mol% or more, More preferably, it is 90 mol% or more, Especially preferably, it is preferable to contain 100 mol%.
  • the ratio of the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) is 50 mol% or more, the film forming property is improved and the linear thermal expansion coefficient of the resulting polyimide is extremely small. .
  • the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) in the total repeating unit of 100 mol% is preferably from 50 mol% to 99 mol. It can also be used as a mol% or less, more preferably from 60 mol% to 95 mol%, particularly preferably from 70 mol% to 95 mol%.
  • the isomers may be isolated and used for polymerization or the like, or the isomers may be used as a mixture in polymerization or the like.
  • X 1 and X 2 in the chemical formula (1-1) and the chemical formula (1-2) are each independently hydrogen, alkyl having 1 to 6 carbon atoms, preferably alkyl having 1 to 3 carbon atoms. Or an alkylsilyl group having 3 to 9 carbon atoms.
  • X 1 and X 2 can change the kind of functional group and the introduction rate of the functional group by the production method described later.
  • X 1 and X 2 are alkyl groups having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, the storage stability of the polyimide precursor tends to be excellent.
  • X 1 and X 2 are more preferably a methyl group or an ethyl group.
  • X 1 and X 2 are an alkyl silyl group having 3 to 9 carbon atoms, there is a tendency that the solubility of the polyimide precursor excellent.
  • X 1 and X 2 are more preferably a trimethylsilyl group or a t-butyldimethylsilyl group.
  • the introduction rate of the functional group is not particularly limited, but when an alkyl group or an alkylsilyl group is introduced, X 1 and X 2 are each 25% or more, preferably 50% or more, more preferably 75% or more of the alkyl group. Alternatively, it can be an alkylsilyl group.
  • the polyimide precursor of the present invention has a chemical structure taken by X 1 and X 2 , 1) polyamic acid (X 1 and X 2 are hydrogen), 2) polyamic acid ester (at least part of X 1 and X 2 is alkyl) Group), 3) and 4) polyamic acid silyl ester (at least a part of X 1 and X 2 is an alkylsilyl group).
  • the polyimide precursor of this invention can be easily manufactured with the following manufacturing methods for every classification.
  • the manufacturing method of the polyimide precursor of this invention is not limited to the following manufacturing methods.
  • the polyimide precursor of the present invention comprises a tetracarboxylic dianhydride as a tetracarboxylic acid component and a diamine component in a solvent in an equimolar amount, preferably a molar ratio of the diamine component to the tetracarboxylic acid component
  • the number of moles of the component / the number of moles of the tetracarboxylic acid component] is preferably 0.90 to 1.10, more preferably 0.95 to 1.05, for example, imidization at a relatively low temperature of 120 ° C. or less. It can obtain suitably as a polyimide precursor solution composition by reacting, suppressing.
  • diamine is dissolved in an organic solvent, and tetracarboxylic dianhydride is gradually added to this solution while stirring, and 0 to 120 ° C., preferably 5 to 80 ° C.
  • a polyimide precursor is obtained by stirring for 1 to 72 hours in the range of ° C.
  • the order of addition of diamine and tetracarboxylic dianhydride in the above production method is preferable because the molecular weight of the polyimide precursor is likely to increase.
  • the molar ratio of the tetracarboxylic acid component and the diamine component is an excess of the diamine component, an amount of a carboxylic acid derivative substantially corresponding to the excess number of moles of the diamine component is added as necessary, The molar ratio of the components can be approximated to the equivalent.
  • a carboxylic acid derivative herein, a tetracarboxylic acid that does not substantially increase the viscosity of the polyimide precursor solution, that is, substantially does not participate in molecular chain extension, or a tricarboxylic acid that functions as a terminal terminator and its anhydride, Dicarboxylic acid and its anhydride are preferred.
  • a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent.
  • the polyimide precursor obtained by this method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
  • silylating agent that does not contain chlorine as the silylating agent used here, because it is not necessary to purify the silylated diamine.
  • the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • an amine catalyst such as pyridine, piperidine or triethylamine can be used to accelerate the reaction.
  • This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
  • a polyimide precursor is obtained by mixing the polyamic acid solution obtained by the method 1) and a silylating agent and stirring at 0 to 120 ° C., preferably 5 to 80 ° C. for 1 to 72 hours.
  • the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably.
  • silylating agent used here it is preferable to use a silylating agent not containing chlorine because it is not necessary to purify the silylated polyamic acid or the obtained polyimide.
  • examples of the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • Any of the above production methods can be suitably carried out in an organic solvent, and as a result, a solution or solution composition containing a polyimide precursor can be easily obtained.
  • Solvents used in preparing the polyimide precursor are, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide
  • An aprotic solvent such as N, N-dimethylacetamide is preferred, but any type of solvent can be used without any problem as long as the raw material monomer component and the polyimide precursor to be produced are dissolved.
  • the structure is not limited.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ - Cyclic ester solvents such as methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, phenols such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol A system solvent, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably employed.
  • the logarithmic viscosity of the polyimide precursor is not particularly limited, but the logarithmic viscosity in an N, N-dimethylacetamide solution having a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g or more, more preferably 0. .3 dL / g or more, particularly preferably 0.4 dL / g or more.
  • the logarithmic viscosity is 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, and the mechanical strength and heat resistance of the resulting polyimide are excellent.
  • the polyimide precursor composition of the present invention includes a polyimide precursor and an imidazole compound, and may be prepared by adding an imidazole compound to a polyimide precursor solution or solution composition obtained by the above production method. it can. Moreover, a solvent may be removed or added as needed, and desired components other than an imidazole compound may be added. In addition, a tetracarboxylic acid component (tetracarboxylic dianhydride or the like), a diamine component, and an imidazole compound are added to a solvent, and the tetracarboxylic acid component and the diamine component are reacted in the presence of the imidazole compound.
  • the polyimide precursor composition solution composition containing a polyimide precursor and an imidazole compound
  • the polyimide precursor composition can also be obtained.
  • the imidazole compound used in the present invention is not particularly limited as long as it has an imidazole skeleton. By adding an imidazole compound, a polyimide having higher transparency and a lower linear thermal expansion coefficient can be obtained.
  • the imidazole compound used in the present invention is not particularly limited, and examples thereof include 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, imidazole, and benzimidazole.
  • An imidazole compound may be used individually by 1 type, and can also be used in combination of multiple types.
  • the content of the imidazole compound in the polyimide precursor composition is less than 4 mol with respect to 1 mol of the repeating unit of the polyimide precursor.
  • the content of the imidazole compound is preferably 0.05 mol or more with respect to 1 mol of the repeating unit of the polyimide precursor, and is 2 mol or less with respect to 1 mol of the repeating unit of the polyimide precursor. preferable.
  • 1 mol of the repeating unit of the polyimide precursor corresponds to 1 mol of the tetracarboxylic acid component.
  • the polyimide precursor composition of the present invention usually contains a solvent.
  • the solvent used for the polyimide precursor composition of the present invention is not a problem as long as the polyimide precursor is dissolved, and the structure is not particularly limited.
  • solvents amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone , Cyclic ester solvents such as ⁇ -methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol Phenol solvents such as acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl
  • the total amount of the tetracarboxylic acid component and the diamine component is 5% by mass or more, preferably 10% by mass or more, more preferably 15%, based on the total amount of the solvent, the tetracarboxylic acid component and the diamine component.
  • a ratio of not less than mass% is preferred.
  • the total amount of the tetracarboxylic acid component and the diamine component is 60% by mass or less, preferably 50% by mass or less, based on the total amount of the solvent, the tetracarboxylic acid component, and the diamine component. Is preferred.
  • This concentration is a concentration approximately approximate to the solid content concentration resulting from the polyimide precursor, but if this concentration is too low, it becomes difficult to control the film thickness of the polyimide film obtained, for example, when producing a polyimide film. Sometimes.
  • the viscosity (rotational viscosity) of the polyimide precursor composition is not particularly limited, but the rotational viscosity measured using an E-type rotational viscometer at a temperature of 25 ° C. and a shear rate of 20 sec ⁇ 1 is 0.01 to 1000 Pa ⁇ sec is preferable, and 0.1 to 100 Pa ⁇ sec is more preferable. Moreover, thixotropy can also be provided as needed.
  • the viscosity is in the above range, it is easy to handle when coating or forming a film, and the repelling is suppressed and the leveling property is excellent, so that a good film can be obtained.
  • the polyimide precursor composition of the present invention includes chemical imidizing agents (acid anhydrides such as acetic anhydride, amine compounds such as pyridine and isoquinoline), antioxidants, fillers (inorganic particles such as silica, etc.) as necessary. ), Dyes, pigments, coupling agents such as silane coupling agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents and the like.
  • chemical imidizing agents as acid anhydrides such as acetic anhydride, amine compounds such as pyridine and isoquinoline
  • antioxidants such as amine compounds such as pyridine and isoquinoline
  • fillers inorganic particles such as silica, etc.
  • the polyimide of the present invention can be obtained by imidizing the polyimide precursor composition of the present invention as described above (that is, dehydrating and ring-closing reaction of the polyimide precursor).
  • the imidization method is not particularly limited, and a known thermal imidation or chemical imidization method can be suitably applied.
  • the form of the polyimide obtained can mention suitably a film, the laminated body of a polyimide film and another base material, a coating film, powder, a bead, a molded object, a foam.
  • the polyimide precursor it is preferable to imidize the polyimide precursor by heat-treating the polyimide precursor composition at a maximum heating temperature exceeding 350 ° C.
  • the maximum heating temperature of the heat treatment for imidization is more preferably higher than 380 ° C, and particularly preferably higher than 400 ° C.
  • the mechanical properties of the resulting polyimide are improved.
  • the upper limit of the maximum heating temperature of heat processing is not specifically limited, Usually, 500 degrees C or less is preferable.
  • the polyimide precursor composition of the present invention is cast and applied on a substrate, and the polyimide precursor composition on the substrate is heated to a maximum heating temperature of 350 ° C., more preferably 380 ° C., particularly preferably 400.
  • a polyimide can be suitably manufactured by heat-processing at the temperature exceeding 0 degreeC and imidating a polyimide precursor.
  • the heating profile is not particularly limited and can be selected as appropriate. However, from the viewpoint of productivity, it is preferable that the heat treatment time is short.
  • the polyimide precursor composition of the present invention is cast and applied on a substrate, and preferably dried in a temperature range of 180 ° C. or less to form a polyimide precursor composition film on the substrate.
  • the maximum heating temperature exceeds 350 ° C., more preferably exceeds 380 ° C., and particularly preferably exceeds 400 ° C.
  • a polyimide can be suitably manufactured also by heat-processing at temperature and imidizing a polyimide precursor.
  • the polyimide obtained from the polyimide precursor composition of the present invention is not particularly limited, but the linear thermal expansion coefficient from 150 ° C. to 250 ° C. when formed into a film is preferably 40 ppm / K or less, More preferably, it is 35 ppm / K or less, More preferably, it is 30 ppm / K or less, Most preferably, it is 25 ppm / K or less.
  • the linear thermal expansion coefficient is large, the difference in the linear thermal expansion coefficient with a conductor such as metal is large, which may cause problems such as an increase in warpage when a circuit board is formed.
  • the polyimide obtained from the polyimide precursor composition of the present invention is not particularly limited, but preferably has a total light transmittance (average light transmittance of a wavelength of 380 nm to 780 nm) in a film having a thickness of 10 ⁇ m. May be 86% or more, more preferably 87% or more, and still more preferably 88% or more. When used for a display application or the like, if the total light transmittance is low, it is necessary to strengthen the light source, which may cause a problem that energy is applied.
  • the polyimide film when a polyimide film such as a display application is used for an application where light is transmitted, it is desirable that the polyimide film has high transparency.
  • the polyimide obtained from the polyimide precursor composition of the present invention (polyimide of the present invention) is not particularly limited, but the light transmittance at a wavelength of 400 nm in a 10 ⁇ m-thick film is preferably 75% or more, more preferably 80 % Or more, more preferably more than 80%, still more preferably 81% or more, and particularly preferably 82% or more.
  • the film made of the polyimide obtained from the polyimide precursor composition of the present invention depends on the use, but the thickness of the film is preferably 0.1 ⁇ m to 250 ⁇ m, more preferably 1 ⁇ m to The thickness is 150 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, particularly preferably 1 ⁇ m to 30 ⁇ m.
  • the polyimide film is used for light transmission, if the polyimide film is too thick, the light transmittance may be lowered.
  • the polyimide obtained from the polyimide precursor composition of the present invention is not particularly limited, but the 1% weight loss temperature, which is an index of heat resistance of the polyimide film, is preferably 470 ° C. or more, more preferably It can be 480 ° C or higher, more preferably 485 ° C or higher, particularly preferably 490 ° C or higher.
  • a gas barrier film or the like is formed on a polyimide by forming a transistor on the polyimide or the like, if the heat resistance is low, swelling may occur between the polyimide and the barrier film due to outgas accompanying decomposition of the polyimide.
  • the polyimide obtained from the polyimide precursor composition of the present invention that is, the polyimide of the present invention has excellent properties such as high transparency, bending resistance and high heat resistance, and also has a very low linear thermal expansion coefficient.
  • a transparent substrate for a display, a transparent substrate for a touch panel, or a substrate for a solar cell it can be suitably used.
  • the polyimide precursor composition (varnish) of the present invention is cast on a substrate such as ceramic (glass, silicon, alumina, etc.), metal (copper, aluminum, stainless steel, etc.), heat resistant plastic film (polyimide film, etc.), etc.
  • a substrate such as ceramic (glass, silicon, alumina, etc.), metal (copper, aluminum, stainless steel, etc.), heat resistant plastic film (polyimide film, etc.), etc.
  • a vacuum in an inert gas such as nitrogen, or in the air, drying is performed in a temperature range of 20 to 180 ° C., preferably 20 to 150 ° C. using hot air or infrared rays.
  • the obtained polyimide precursor film is peeled off from the substrate or the polyimide precursor film from the substrate, and the end of the film is fixed, in vacuum, in an inert gas such as nitrogen,
  • the polyimide film is heated and imidized using hot air or infrared rays in the air, for example, at 200 to 500 ° C., preferably at a maximum heating temperature of over 350 ° C., more preferably over 380 ° C., and particularly preferably over 400 ° C. /
  • a substrate laminate or a polyimide film can be produced.
  • the thickness of the polyimide film here is preferably 1 to 250 ⁇ m, more preferably 1 to 150 ⁇ m, because of the transportability in the subsequent steps.
  • the imidization reaction of the polyimide precursor instead of the heat imidation by the heat treatment as described above, contains a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution. In addition, these dehydrating cyclization reagents are previously charged and stirred in a polyimide precursor composition (varnish), and cast and dried on a base material to obtain a partially imidized polyimide precursor. A polyimide film / base material laminate or a polyimide film can be obtained by further heat treatment as described above.
  • a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution.
  • these dehydrating cyclization reagents are previously charged
  • a flexible conductive substrate can be obtained by forming a conductive layer on one side or both sides of the polyimide film / base laminate or the polyimide film obtained in this way.
  • a flexible conductive substrate can be obtained, for example, by the following method. That is, as a first method, the polyimide film / substrate laminate is not peeled off from the substrate, and the surface of the polyimide film is sputtered, vapor-deposited, printed, etc. by a conductive substance (metal or metal oxide). A conductive layer of conductive layer / polyimide film / base material is produced. Then, if necessary, a transparent and flexible conductive substrate comprising the conductive layer / polyimide film laminate can be obtained by peeling the conductive layer / polyimide film laminate from the substrate.
  • a transparent and flexible conductive substrate comprising the conductive layer / polyimide film laminate can be obtained by peeling the conductive layer / polyimide film laminate from the substrate.
  • the polyimide film is peeled off from the substrate of the polyimide film / substrate laminate to obtain a polyimide film, and a conductive substance (metal or metal oxide, conductive organic substance, A conductive layer of conductive carbon, etc.) is formed in the same manner as in the first method, and is a transparent and flexible conductive layer comprising a conductive layer / polyimide film laminate and a conductive layer / polyimide film laminate / conductive layer.
  • a substrate can be obtained.
  • a gas barrier layer such as water vapor or oxygen, light adjustment by sputtering, vapor deposition or gel-sol method, etc.
  • An inorganic layer such as a layer may be formed.
  • the conductive layer is preferably formed with a circuit by a method such as a photolithography method, various printing methods, or an ink jet method.
  • the substrate of the present invention thus obtained has a circuit of a conductive layer on the surface of a polyimide film composed of the polyimide of the present invention, with a gas barrier layer or an inorganic layer as necessary.
  • This substrate is flexible, has excellent transparency, bendability, and heat resistance, and further has a very low linear thermal expansion coefficient and excellent solvent resistance, so that a fine circuit can be easily formed. Therefore, this board
  • a transistor inorganic transistor, organic transistor
  • a transistor is further formed on this substrate by vapor deposition, various printing methods, an ink jet method or the like to manufacture a flexible thin film transistor, and a liquid crystal element, an EL element, a photoelectric transistor for a display device are manufactured. It is suitably used as an element.
  • Linear thermal expansion coefficient (CTE) A polyimide film having a thickness of about 10 ⁇ m is cut into a strip having a width of 4 mm to form a test piece, and TMA / SS6100 (manufactured by SII Nano Technology Co., Ltd.) is used. The length between chucks is 15 mm, the load is 2 g, and the heating rate is 20 ° C. / The temperature was raised to 500 ° C. in minutes. The linear thermal expansion coefficient from 150 ° C. to 250 ° C. was determined from the obtained TMA curve.
  • a polyimide film having a film thickness of about 10 ⁇ m was used as a test piece, and the temperature was raised from 25 ° C. to 600 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen stream using a calorimeter measuring device (Q5000IR) manufactured by TA Instruments. From the obtained weight curve, a 1% weight loss temperature was determined.
  • DABAN 4,4′-diaminobenzanilide [Purity: 99.90% (GC analysis)]
  • PPD p-phenylenediamine [Purity: 99.9% (GC analysis)]
  • BAPB 4,4′-bis (4-aminophenoxy) biphenyl [Purity: 99.93% (HPLC analysis)]
  • Tetracarboxylic acid component DNDAxx: (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethanonaphthalene-2t, 3t, 6c, 7c-tetracarboxylic dianhydride [purity as DNDAxx: 99.2% (GC analysis) ]
  • Table 1-1 shows tetracarboxylic acid components used in Examples and Comparative Examples
  • Table 1-2 shows Examples and Comparative Examples
  • Table 1-3 Examples and Imidazole Imidazolines Used in Comparative Examples The structural formula of the compound is described.
  • Example 1 0.10 g (1.0 mmol) of 1,2-dimethylimidazole and 0.10 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 23.50 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per mole of the repeating unit of the polyimide precursor is 0.1 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 2 1,8-dimethylimidazole (0.38 g, 4.0 mmol) and N-methyl-2-pyrrolidone (0.38 g) were added to the reaction vessel to obtain a uniform solution.
  • 23.50 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per 0.4 mole of the repeating unit of the polyimide precursor is 0.4 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 3 0.96 g (10.0 mmol) of 1,2-dimethylimidazole and 0.48 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 23.50 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per 1.0 mole of the repeating unit of the polyimide precursor is 1.0 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 4 1.92 g (20.0 mmol) of 1,2-dimethylimidazole and 0.48 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 23.50 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per 2.0 moles of repeating units of the polyimide precursor is 2.0 equivalents.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 5 0.10 g (1.0 mmol) of 1,2-dimethylimidazole and 0.10 g of N, N-dimethylacetamide were added to the reaction vessel to obtain a uniform solution.
  • 23.50 g of varnish B obtained in Synthesis Example 2 (10 mmol with respect to the molecular weight of the polyimide precursor repeating unit in varnish B) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per mole of the repeating unit of the polyimide precursor is 0.1 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 6 A uniform solution was obtained by adding 0.38 g (4.0 mmol) of 1,2-dimethylimidazole and 0.38 g of N, N-dimethylacetamide to the reaction vessel. 23.50 g of varnish B obtained in Synthesis Example 2 (10 mmol with respect to the molecular weight of the polyimide precursor repeating unit in varnish B) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per 0.4 mole of the repeating unit of the polyimide precursor is 0.4 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 7 0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. To the solution, 26.21 g of varnish C obtained in Synthesis Example 3 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish C) was added and stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 8 0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 28.60 g of varnish D obtained in Synthesis Example 4 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish D) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 9 0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 10 0.16 g (2.0 mmol) of 1-methylimidazole and 0.16 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1-methylimidazole per 0.2 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 11 0.16 g (2.0 mmol) of 2-methylimidazole and 0.16 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 2-methylimidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 12 0.14 g (2.0 mmol) of imidazole and 0.14 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of imidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 13 0.29 g (2.0 mmol) of 2-phenylimidazole and 0.29 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 2-phenylimidazole per 0.2 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 14 A uniform solution was obtained by adding 0.24 g (2.0 mmol) of benzimidazole and 0.24 g of N-methyl-2-pyrrolidone to the reaction vessel. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of benzimidazole per 0.2 mol of the repeating unit of the polyimide precursor is 0.2 equivalent.
  • a polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • the polyimide obtained from the polyimide precursor composition of the present invention has excellent light transmittance and mechanical properties, and also has a low linear thermal expansion coefficient. It can be suitably used as a transparent substrate capable of forming a colorless and transparent and fine circuit for display applications and the like.
  • a polyimide having the same composition is superior in transparency and has a low linear thermal expansion coefficient, or more transparent, has a low linear thermal expansion coefficient, and has excellent mechanical properties.
  • a polyimide precursor composition solution composition containing a polyimide precursor
  • a method for producing polyimide can be provided.
  • the polyimide obtained from this polyimide precursor composition is highly transparent and has a low linear thermal expansion coefficient, so that it is easy to form a fine circuit. It can be suitably used to form.

Abstract

The present invention pertains to a polyimide precursor composition which is characterized in that: the composition comprises both a polyimide precursor having a specific composition and an imidazole compound; and the content of the imidazole compound is less than 4mol per mole of the repeating unit of the polyimide precursor.

Description

ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
 本発明は、より透明性に優れ、線熱膨張係数が小さく、機械的特性にも優れたポリイミドが得られるポリイミド前駆体を含む溶液組成物(ポリイミド前駆体組成物)、及びポリイミドの製造方法に関する。また、本発明は、透明性に優れ、線熱膨張係数が小さく、機械的特性にも優れたポリイミド、ポリイミドフィルム、及び基板にも関する。 The present invention relates to a solution composition (polyimide precursor composition) containing a polyimide precursor that provides a polyimide that is more transparent, has a smaller linear thermal expansion coefficient, and excellent mechanical properties, and a method for producing the polyimide. . The present invention also relates to a polyimide, a polyimide film, and a substrate that are excellent in transparency, have a small linear thermal expansion coefficient, and are excellent in mechanical properties.
 近年、高度情報化社会の到来に伴い、光通信分野の光ファイバーや光導波路等、表示装置分野の液晶配向膜やカラーフィルター用保護膜等の光学材料の開発が進んでいる。特に表示装置分野で、ガラス基板の代替として軽量でフレキシブル性に優れたプラスチック基板の検討や、曲げたり丸めたりすることが可能なディスプレイの開発が盛んに行われている。このため、その様な用途に用いることができる、より高性能の光学材料が求められている。 In recent years, with the advent of an advanced information society, development of optical materials such as an optical fiber and optical waveguide in the optical communication field, a liquid crystal alignment film in the display device field, and a protective film for a color filter is progressing. In particular, in the field of display devices, a plastic substrate that is lightweight and excellent in flexibility as a substitute for a glass substrate has been studied, and a display that can be bent and rolled has been actively developed. For this reason, there is a demand for higher performance optical materials that can be used for such applications.
 芳香族ポリイミドは、分子内共役や電荷移動錯体の形成により、本質的に黄褐色に着色する。このため着色を抑制する手段として、例えば分子内へのフッ素原子の導入、主鎖への屈曲性の付与、側鎖として嵩高い基の導入などによって、分子内共役や電荷移動錯体の形成を阻害して、透明性を発現させる方法が提案されている。 Aromatic polyimide is essentially yellowish brown due to intramolecular conjugation and the formation of charge transfer complexes. For this reason, as a means to suppress coloration, for example, introduction of fluorine atoms into the molecule, imparting flexibility to the main chain, introduction of bulky groups as side chains, etc. inhibits intramolecular conjugation and charge transfer complex formation. Thus, a method for expressing transparency has been proposed.
 また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミドを用いることにより透明性を発現させる方法も提案されている。例えば、特許文献1~4には、テトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた種々の、透明性が高い半脂環式ポリイミドが開示されている。 In addition, a method of expressing transparency by using a semi-alicyclic or fully alicyclic polyimide that does not form a charge transfer complex in principle has also been proposed. For example, Patent Documents 1 to 4 disclose various highly translucent semi-alicyclic polyimides using an alicyclic tetracarboxylic dianhydride as a tetracarboxylic acid component and an aromatic diamine as a diamine component. Yes.
 特許文献5、特許文献6には、テトラカルボン酸成分として、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸類を用いたポリイミドが開示されている。非特許文献1には、テトラカルボン酸成分として、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸類を用いたポリイミドが開示されており、非特許文献2には、テトラカルボン酸成分として、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸類を用いたポリイミドが開示されている。 Patent Documents 5 and 6 disclose polyimides using decahydro-1,4: 5,8-dimethananaphthalene-2,3,6,7-tetracarboxylic acids as tetracarboxylic acid components. . Non-Patent Document 1 discloses a polyimide using (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2t, 3t, 6c, 7c-tetracarboxylic acid as a tetracarboxylic acid component. Non-Patent Document 2 uses (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2c, 3c, 6c, 7c-tetracarboxylic acids as the tetracarboxylic acid component. Disclosed polyimide.
 しかしながら、特に表示装置などの分野において、さらに透明性が高いポリイミドが求められている。また、テトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた半脂環式ポリイミドは、高い透明性、折り曲げ耐性、高耐熱性を兼ね備えているが、一般に、線熱膨張係数が大きい傾向がある。ポリイミドの線熱膨張係数が大きく、金属などの導体との線熱膨張係数の差が大きいと、回路基板を形成する際に反りが増大するなどの不具合が生じることがあり、特にディスプレイ用途などの微細な回路形成プロセスが容易ではないことがある。 However, polyimides with higher transparency are required particularly in the field of display devices and the like. In addition, semi-alicyclic polyimides using alicyclic tetracarboxylic dianhydride as the tetracarboxylic acid component and aromatic diamine as the diamine component have high transparency, bending resistance, and high heat resistance. The linear thermal expansion coefficient tends to be large. If the linear thermal expansion coefficient of polyimide is large and the difference in linear thermal expansion coefficient with a conductor such as metal is large, problems such as increased warping may occur when forming a circuit board, especially for display applications. A fine circuit formation process may not be easy.
 一方、特許文献7には、ポリイミド前駆体(ポリアミド酸)にイミダゾリン系化合物および/またはイミダゾール系化合物を配合してなる塗液を加熱することによって形成されてなるポリイミドが開示されている。より具体的には、実施例1では、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物と4,4’-ジアミノビフェニルエーテルから得られるポリアミド酸の溶液に2,4-ジメチルイミダゾリンを加えた溶液を基板上に塗布し、200℃、1時間加熱して、膜厚1000Å(0.1μm)の芳香族ポリイミド皮膜を得ている。実施例2では、ピロメリット酸二無水物と4,4’-ジアミノビフェニルエーテルから得られるポリアミド酸の溶液に2-エチルイミダゾリンおよび1,2-ジメチルイミダゾールを加えた溶液を基板上に塗布し、150℃、1時間加熱して、膜厚800Å(0.08μm)の芳香族ポリイミド皮膜を得ている。特許文献7には、イミダゾリン系化合物および/またはイミダゾール系化合物の添加により茶褐色の著しい着色は免れることになり、光線透過率の高い透明性に優れた液晶表示素子を得ることが可能となった、と記載されている。しかしながら、実施例1のポリイミド皮膜(液晶配向膜)を用いた液晶表示素子の波長400nmの光透過率は82%(ポリイミド膜厚:0.1μm)、実施例2のポリイミド皮膜(液晶配向膜)を用いた液晶表示素子の波長400nmの光透過率は83%(ポリイミド膜厚:0.08μm)であり、このポリイミドは十分な透明性を有するものではない。 On the other hand, Patent Document 7 discloses a polyimide formed by heating a coating liquid obtained by blending a polyimide precursor (polyamic acid) with an imidazoline compound and / or an imidazole compound. More specifically, in Example 1, 2,4-dimethyl was added to a polyamic acid solution obtained from 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-diaminobiphenyl ether. A solution to which imidazoline has been added is applied onto a substrate and heated at 200 ° C. for 1 hour to obtain an aromatic polyimide film having a thickness of 1000 mm (0.1 μm). In Example 2, a solution obtained by adding 2-ethylimidazoline and 1,2-dimethylimidazole to a solution of polyamic acid obtained from pyromellitic dianhydride and 4,4′-diaminobiphenyl ether was applied onto a substrate. An aromatic polyimide film having a thickness of 800 mm (0.08 μm) is obtained by heating at 150 ° C. for 1 hour. In Patent Document 7, by adding an imidazoline-based compound and / or an imidazole-based compound, the remarkable brown coloration is avoided, and a liquid crystal display element having high light transmittance and excellent transparency can be obtained. It is described. However, the light transmittance at a wavelength of 400 nm of the liquid crystal display element using the polyimide film (liquid crystal alignment film) of Example 1 is 82% (polyimide film thickness: 0.1 μm), and the polyimide film of Example 2 (liquid crystal alignment film). The light transmittance at a wavelength of 400 nm of the liquid crystal display element using the above is 83% (polyimide film thickness: 0.08 μm), and this polyimide does not have sufficient transparency.
 また、透明性が低い芳香族ポリイミドの製造方法として、特許文献8には、ポリイミド前駆体樹脂、及び、イミダゾール、N-メチルイミダゾール等のポリイミド前駆体樹脂の硬化促進剤を有機極性溶媒に溶解したポリイミド前駆体樹脂含有溶液を基材上に塗布し、続く熱処理で乾燥及びイミド化によるポリイミド樹脂層の形成を280~380℃の範囲内で完結するポリイミド樹脂層の形成方法が開示されており、これらの硬化促進剤を使用することで、熱線膨張係数を低く制御できることが記載されている。特許文献8には、また、硬化促進剤は、その沸点が120℃を越えるものを使用することが好ましく、沸点が、熱処理の上限温度を超えないものを選択することが好ましいことが記載されており、沸点が、例えば400℃以上の硬化促進剤は、イミド化後のポリイミド樹脂層中に残存する割合が高くなり、ポリイミド樹脂層の機能に影響を与える傾向にあることが記載されている。 In addition, as a method for producing an aromatic polyimide having low transparency, Patent Document 8 discloses that a polyimide precursor resin and a curing accelerator for a polyimide precursor resin such as imidazole and N-methylimidazole are dissolved in an organic polar solvent. A method for forming a polyimide resin layer is disclosed, in which a polyimide precursor resin-containing solution is applied onto a substrate, followed by drying and imidization to complete the formation of a polyimide resin layer within a range of 280 to 380 ° C., It is described that the thermal expansion coefficient can be controlled to be low by using these curing accelerators. Patent Document 8 also describes that a curing accelerator having a boiling point exceeding 120 ° C. is preferably used, and that a boiling point not exceeding the upper limit temperature of heat treatment is preferably selected. In addition, it is described that a curing accelerator having a boiling point of, for example, 400 ° C. or higher has a higher ratio of remaining in the polyimide resin layer after imidization and tends to affect the function of the polyimide resin layer.
特開2003-168800号公報JP 2003-168800 A 国際公開第2008/146637号International Publication No. 2008/146737 特開2002-69179号公報JP 2002-69179 A 特開2002-146021号公報JP 2002-146021 A 特開2007-2023号公報JP 2007-2023 A 特開平6-51316号公報JP-A-6-51316 特開昭61-267030号公報JP-A 61-267030 特開2008-115378号公報JP 2008-115378 A
 本発明は、以上のような状況に鑑みてなされたものであり、同一組成のポリイミドでも、より透明性に優れ、低線熱膨張係数であるポリイミド、または、より透明性に優れ、低線熱膨張係数であり、機械的特性にも優れたポリイミドが得られるポリイミド前駆体組成物(ポリイミド前駆体を含む溶液組成物)、及びポリイミドの製造方法を提供することを目的とする。 The present invention has been made in view of the situation as described above, and even a polyimide having the same composition is more transparent and has a low linear thermal expansion coefficient, or is more transparent and has a low linear heat. It aims at providing the manufacturing method of a polyimide precursor composition (solution composition containing a polyimide precursor) from which a polyimide which is an expansion coefficient and was excellent also in mechanical properties is obtained.
 本発明は、以下の各項に関する。
1. 下記化学式(1-1)で表される繰り返し単位を含むポリイミド前駆体と、
 イミダゾール系化合物を含み、
 イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満であることを特徴とするポリイミド前駆体組成物。
The present invention relates to the following items.
1. A polyimide precursor containing a repeating unit represented by the following chemical formula (1-1);
Including imidazole compounds,
Content of an imidazole type compound is less than 4 mol with respect to 1 mol of repeating units of a polyimide precursor, The polyimide precursor composition characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000004
(式中、Aは芳香族環を有する2価の基であり、X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
 
2. 前記ポリイミド前駆体が、下記化学式(1-2)で表される繰り返し単位を含むことを特徴とする前記項1に記載のポリイミド前駆体組成物。
Figure JPOXMLDOC01-appb-C000004
(In the formula, A is a divalent group having an aromatic ring, and X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms. .)

2. Item 2. The polyimide precursor composition according to Item 1, wherein the polyimide precursor contains a repeating unit represented by the following chemical formula (1-2).
Figure JPOXMLDOC01-appb-C000005
(式中、Aは芳香族環を有する2価の基であり、X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
 
3. 前記化学式(1-1)または前記化学式(1-2)中のAが下記化学式(1-A)で表される基であることを特徴とする前記項1又は2に記載のポリイミド前駆体組成物。
Figure JPOXMLDOC01-appb-C000005
(In the formula, A is a divalent group having an aromatic ring, and X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms. .)

3. Item 3. The polyimide precursor composition according to Item 1 or 2, wherein A in the chemical formula (1-1) or the chemical formula (1-2) is a group represented by the following chemical formula (1-A): object.
Figure JPOXMLDOC01-appb-C000006
(式中、mは0~3の整数を、nは0~3の整数をそれぞれ独立に示す。Y、Y、Yはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、Q、Rはそれぞれ独立に直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種を示す。)
 
4. このポリイミド前駆体組成物から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が75%以上であることを特徴とする前記項1~3のいずれかに記載のポリイミド前駆体組成物。
5. 前記イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して0.05モル以上2モル以下であることを特徴とする前記項1~4のいずれかに記載のポリイミド前駆体組成物。
6. 前記イミダゾール系化合物が、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、イミダゾール、またはベンゾイミダゾールのいずれかであることを特徴とする前記項1~5のいずれかに記載のポリイミド前駆体組成物。
7. 前記項1~6のいずれかに記載のポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化することを特徴とするポリイミドの製造方法。
8. 前記項1~6のいずれかに記載のポリイミド前駆体組成物を基材上に塗布する工程と、
 基材上のポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化する工程と
を有することを特徴とする前記項7に記載のポリイミドの製造方法。
9. 前記加熱処理の最高加熱温度が400℃を超えることを特徴とする前記項7又は8に記載のポリイミドの製造方法。
10. 前記項7~9のいずれかに記載の方法により製造されるポリイミド。
11. 厚さ10μmのフィルムでの波長400nmの光透過率が75%以上であることを特徴とする前記項10に記載のポリイミド。
12. 前記項7~9のいずれかに記載の方法により製造されるポリイミドフィルム。
13. 前記項10又は11に記載のポリイミド、又は前記項12に記載のポリイミドフィルムを含むことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
Figure JPOXMLDOC01-appb-C000006
(In the formula, m represents an integer of 0 to 3, and n represents an integer of 0 to 3 independently. Y 1 , Y 2 , and Y 3 are each independently a hydrogen atom, a methyl group, or a trifluoromethyl group. One selected from the group, Q and R are each independently a direct bond, or selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO— 1 type is shown.)

4). Item 4. The polyimide precursor according to any one of Items 1 to 3, wherein the polyimide obtained from the polyimide precursor composition has a light transmittance of 400% at a wavelength of 400 nm in a film having a thickness of 10 μm of 75% or more. Composition.
5. Item 5. The polyimide precursor composition according to any one of Items 1 to 4, wherein the content of the imidazole compound is 0.05 mol or more and 2 mol or less with respect to 1 mol of the repeating unit of the polyimide precursor. object.
6). Any one of Items 1 to 5, wherein the imidazole compound is any one of 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, imidazole, and benzimidazole. A polyimide precursor composition according to claim 1.
7). 7. A method for producing a polyimide, wherein the polyimide precursor composition according to any one of items 1 to 6 is heat-treated at a maximum heating temperature exceeding 350 ° C. to imidize the polyimide precursor.
8). Applying the polyimide precursor composition according to any one of Items 1 to 6 on a substrate;
The method for producing polyimide according to Item 7, further comprising a step of heat-treating the polyimide precursor composition on the base material at a maximum heating temperature of over 350 ° C. to imidize the polyimide precursor.
9. Item 9. The method for producing polyimide according to Item 7 or 8, wherein a maximum heating temperature of the heat treatment exceeds 400 ° C.
10. 10. A polyimide produced by the method according to any one of items 7 to 9.
11. Item 11. The polyimide according to Item 10, wherein the light transmittance at a wavelength of 400 nm in a film having a thickness of 10 μm is 75% or more.
12 10. A polyimide film produced by the method according to any one of items 7 to 9.
13. Item 13. A substrate for display, touch panel, or solar cell, comprising the polyimide according to item 10 or 11, or the polyimide film according to item 12.
 本発明によって、同一組成のポリイミドでも、より透明性に優れ、低線熱膨張係数であるポリイミド、または、より透明性に優れ、低線熱膨張係数であり、機械的特性にも優れたポリイミドが得られるポリイミド前駆体組成物(ポリイミド前駆体を含む溶液組成物)、及びポリイミドの製造方法を提供することができる。 According to the present invention, a polyimide having the same composition can be a polyimide having a higher transparency and a low linear thermal expansion coefficient, or a polyimide having a higher transparency, a low linear thermal expansion coefficient and excellent mechanical characteristics. The obtained polyimide precursor composition (solution composition containing a polyimide precursor) and a method for producing polyimide can be provided.
 本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、透明性が高く、且つ低線熱膨張係数であって微細な回路の形成が容易であり、ディスプレイ用途などの基板を形成するために好適に用いることができる。また、本発明のポリイミドは、タッチパネル用、太陽電池用の基板を形成するためにも好適に用いることができる。 The polyimide obtained from the polyimide precursor composition of the present invention (polyimide of the present invention) is highly transparent and has a low linear thermal expansion coefficient, and it is easy to form a fine circuit. It can be suitably used for forming. Moreover, the polyimide of this invention can be used suitably also in order to form the board | substrate for touch panels and a solar cell.
 本発明のポリイミド前駆体組成物は、前記化学式(1-1)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体と、イミダゾール系化合物を含み、イミダゾール系化合物の含有量は、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満である。 The polyimide precursor composition of the present invention comprises a polyimide precursor containing at least one repeating unit represented by the chemical formula (1-1) and an imidazole compound, and the content of the imidazole compound is determined by the polyimide precursor. Less than 4 moles per mole of repeating units of the body.
 前記化学式(1-1)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体から得られるポリイミド、すなわち半脂環式ポリイミドは、透明性が高い。このような透明性が高いポリイミドの場合、着色の要因となりえる添加物の使用は好まれない。しかしながら、イミダゾール系化合物を、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満、好ましくは0.05モル以上2モル以下の割合で、ポリイミド前駆体組成物に加えることにより、得られるポリイミドの透明性がさらに向上し、また、得られるポリイミドの線熱膨張係数が小さくなる。すなわち、本発明によれば、同一組成のポリイミド前駆体から、より透明性が高く、線熱膨張係数が低いポリイミドが得られる。 A polyimide obtained from a polyimide precursor containing at least one repeating unit represented by the chemical formula (1-1), that is, a semi-alicyclic polyimide, has high transparency. In the case of such a highly transparent polyimide, the use of additives that can cause coloring is not preferred. However, by adding the imidazole compound to the polyimide precursor composition at a ratio of less than 4 mol, preferably 0.05 mol or more and 2 mol or less, with respect to 1 mol of the repeating unit of the polyimide precursor, Transparency is further improved, and the linear thermal expansion coefficient of the resulting polyimide is reduced. That is, according to the present invention, a polyimide having a higher transparency and a lower linear thermal expansion coefficient can be obtained from a polyimide precursor having the same composition.
 さらに、透明性が高いポリイミドを得るためには、ポリイミド前駆体を比較的低温度で加熱処理してイミド化を完了する方が好ましいと一般に考えられているが、本発明によれば、最高加熱温度が350℃を超える、特に好ましくは400℃を超える加熱処理によってポリイミド前駆体をイミド化しても、透明性が高いポリイミドを製造することができる。その結果、イミド化のための加熱処理の最高加熱温度を、350℃を超える高温、特に好ましくは400℃を超える高温とすることが可能になるので、得られるポリイミドの機械的特性が向上する。すなわち、本発明によれば、透明性が高く、線熱膨張係数が低く、機械的特性にも優れたポリイミドが得られる。 Furthermore, in order to obtain a highly transparent polyimide, it is generally considered that it is preferable to complete the imidization by heat-treating the polyimide precursor at a relatively low temperature. Even if the polyimide precursor is imidized by heat treatment at a temperature exceeding 350 ° C., particularly preferably exceeding 400 ° C., a highly transparent polyimide can be produced. As a result, the maximum heating temperature of the heat treatment for imidization can be set to a high temperature exceeding 350 ° C., particularly preferably a high temperature exceeding 400 ° C., so that the mechanical properties of the resulting polyimide are improved. That is, according to the present invention, a polyimide having high transparency, a low coefficient of linear thermal expansion, and excellent mechanical properties can be obtained.
 前記のとおり、本発明のポリイミド前駆体組成物は、前記化学式(1-1)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体を含む。ポリイミド前駆体としては、前記化学式(1-2)で表される繰り返し単位を含むポリイミド前駆体が好ましい。 As described above, the polyimide precursor composition of the present invention includes a polyimide precursor containing at least one repeating unit represented by the chemical formula (1-1). As the polyimide precursor, a polyimide precursor containing a repeating unit represented by the chemical formula (1-2) is preferable.
 ただし、前記化学式(1-1)及び前記化学式(1-2)は、デカヒドロ-1,4:5,8-ジメタノナフタレン環の2位または3位の一方の酸基がアミノ基と反応してアミド結合(-CONH-)を形成しており、一方がアミド結合を形成していない-COOXで表される基であり、6位または7位の一方の酸基がアミノ基と反応してアミド結合(-CONH-)を形成しており、一方がアミド結合を形成していない-COOXで表される基であることを示す。すなわち、前記化学式(1-1)及び前記化学式(1-2)には、4つの構造異性体、すなわち(i)2位に-COOXで表される基を、3位に-CONH-で表される基を有し、6位に-COOXで表される基を、7位に-CONH-A-で表される基を有するもの、(ii)3位に-COOXで表される基を、2位に-CONH-で表される基を有し、6位に-COOXで表される基を、7位に-CONH-A-で表される基を有するもの、(iii)2位に-COOXで表される基を、3位に-CONH-で表される基を有し、7位に-COOXで表される基を、6位に-CONH-A-で表される基を有するもの、(iv)3位に-COOXで表される基を、2位に-CONH-で表される基を有し、7位に-COOXで表される基を、6位に-CONH-A-で表される基を有するもの全てが含まれる。 However, in the chemical formula (1-1) and the chemical formula (1-2), one of the acid groups at the 2-position or 3-position of the decahydro-1,4: 5,8-dimethananaphthalene ring reacts with an amino group. An amide bond (—CONH—), one of which is a group represented by —COOX 1 not forming an amide bond, and one of the acid groups at the 6-position or 7-position reacts with an amino group. The amide bond (—CONH—) is formed, and one of them is a group represented by —COOX 2 which does not form an amide bond. That is, in the chemical formula (1-1) and the chemical formula (1-2), there are four structural isomers, that is, (i) a group represented by —COOX 1 at the 2-position and —CONH— at the 3-position. A group represented by —COOX 2 at the 6-position and a group represented by —CONH—A— at the 7-position; (ii) represented by —COOX 1 at the 3-position Having a group represented by -CONH- at the 2-position, a group represented by -COOX 2 at the 6-position, and a group represented by -CONH-A- at the 7-position, iii) a group represented by -COOX 1 at the 2-position, a group represented by -CONH- at the 3-position, a group represented by -COOX 2 at the 7-position, and a -CONH-A at the 6-position (Iv) a group represented by —COOX 1 at the 3-position, a group represented by —CONH— at the 2-position, and —C at the 7-position. All groups represented by OOX 2 having a group represented by —CONH—A— at the 6-position are included.
 前記化学式(1-1)及び前記化学式(1-2)中のAとしては、炭素数が6~40の芳香族環を有する2価の基が好ましい。 In the chemical formula (1-1) and the chemical formula (1-2), A is preferably a divalent group having an aromatic ring having 6 to 40 carbon atoms.
 さらに、ポリイミド前駆体は、Aが前記化学式(1-A)で表される基である化学式(1-1)、より好ましくは化学式(1-2)で表される繰り返し単位を少なくとも1種含むことが好ましい。 Further, the polyimide precursor includes at least one repeating unit represented by the chemical formula (1-1), more preferably the chemical formula (1-2), in which A is a group represented by the chemical formula (1-A). It is preferable.
 換言すれば、ポリイミド前駆体は、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸類等、より好ましくは(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸類等(テトラカルボン酸類等とは、テトラカルボン酸と、テトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等のテトラカルボン酸誘導体を表す)を含むテトラカルボン酸成分と、芳香族環を有するジアミン成分、より好ましくはAが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)の繰り返し単位を与えるジアミン成分を含むジアミン成分から得られるポリイミド前駆体である。 In other words, the polyimide precursor is decahydro-1,4: 5,8-dimethanonaphthalene-2,3,6,7-tetracarboxylic acid and the like, more preferably (4arH, 8acH) -decahydro-1t, 4t : 5c, 8c-dimethanonaphthalene-2t, 3t, 6c, 7c-tetracarboxylic acids and the like (tetracarboxylic acids and the like are tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic silyl ester, tetracarboxylic acid A tetracarboxylic acid component including a tetracarboxylic acid derivative such as an ester or tetracarboxylic acid chloride) and a diamine component having an aromatic ring, more preferably, A is a group represented by the chemical formula (1-A). Obtained from a diamine component containing a diamine component that gives a repeating unit of formula (1-1) or formula (1-2) It is a polyimide precursor.
 前記化学式(1-1)の繰り返し単位を与えるテトラカルボン酸成分としては、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸類等の、1種を単独で使用してもよく、また複数種を組み合わせて使用することもできる。前記化学式(1-2)の繰り返し単位を与えるテトラカルボン酸成分としては、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸類等の、1種を単独で使用してもよく、複数種を組み合わせて使用することもできる。 Examples of the tetracarboxylic acid component that gives the repeating unit of the chemical formula (1-1) include one type such as decahydro-1,4: 5,8-dimethananaphthalene-2,3,6,7-tetracarboxylic acid. You may use individually and can also be used in combination of multiple types. Examples of the tetracarboxylic acid component that gives the repeating unit of the chemical formula (1-2) include (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2t, 3t, 6c, 7c-tetracarboxylic acids Etc., and may be used alone or in combination of two or more.
 前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分は、Aが前記化学式(1-A)で表される基であるものを与えるジアミンを含むことが好ましい。 The diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) preferably contains a diamine that gives that A is a group represented by the chemical formula (1-A).
 Aが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)の繰り返し単位を与えるジアミン成分は、芳香環を有し、芳香環を複数有する場合は芳香環同士をそれぞれ独立に、直接結合、アミド結合、またはエステル結合で連結したものである。芳香環同士の連結位置は特に限定されないが、アミノ基もしくは芳香環同士の連結基に対して4位で結合することで直線的な構造となり、得られるポリイミドが低線熱膨張になることがある。また、芳香環にメチル基やトリフルオロメチル基が置換されていてもよい。なお、置換位置は特に限定されない。 The diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) in which A is a group represented by the chemical formula (1-A) has an aromatic ring and has a plurality of aromatic rings Are aromatic rings linked independently by a direct bond, an amide bond, or an ester bond. The connection position of the aromatic rings is not particularly limited, but it may form a linear structure by bonding at the 4-position to the amino group or the connection group of the aromatic rings, and the resulting polyimide may have low linear thermal expansion. . In addition, a methyl group or a trifluoromethyl group may be substituted on the aromatic ring. The substitution position is not particularly limited.
 Aが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)の繰り返し単位を与えるジアミン成分としては、特に限定するものではないが、例えば、p-フェニレンジアミン、m-フェニレンジアミン、o-トリジン、ベンジジン、3,3’-ジアミノ-ビフェニル、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、m-トリジン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェノキシ-4-ジアミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1'-ビフェニル]-4,4'-ジカルボキシレート、[1,1'-ビフェニル]-4,4'-ジイル ビス(4-アミノベンゾエート)等が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。これらのうち、p-フェニレンジアミン、m-トリジン、4,4’-ジアミノベンズアニリド、4-アミノフェノキシ-4-ジアミノベンゾエート、2,2’-ビス(トリフルオロメチル)ベンジジン、ベンジジン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステルが好ましく、p-フェニレンジアミン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)ベンジジンがより好ましい。ジアミン成分として、p-フェニレンジアミン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)ベンジジンを使用することで、得られるポリイミドが高耐熱性と高透過率を両立する。これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。 The diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) in which A is a group represented by the chemical formula (1-A) is not particularly limited. -Phenylenediamine, m-phenylenediamine, o-tolidine, benzidine, 3,3'-diamino-biphenyl, 2,2'-bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) benzidine, m-tolidine, 4,4'-diaminobenzanilide, 3,4'-diaminobenzanilide, N, N'-bis (4-aminophenyl) terephthalamide, N, N'-p-phenylenebis (p-amino) Benzamide), 4-aminophenoxy-4-diaminobenzoate, bis (4-aminophenyl) terephthalate, biphenyl-4,4 ′ Dicarboxylic acid bis (4-aminophenyl) ester, p-phenylenebis (p-aminobenzoate), bis (4-aminophenyl)-[1,1′-biphenyl] -4,4′-dicarboxylate, [1 , 1′-biphenyl] -4,4′-diyl bis (4-aminobenzoate) and the like, and may be used alone or in combination of two or more. Among these, p-phenylenediamine, m-tolidine, 4,4′-diaminobenzanilide, 4-aminophenoxy-4-diaminobenzoate, 2,2′-bis (trifluoromethyl) benzidine, benzidine, N, N '-Bis (4-aminophenyl) terephthalamide, biphenyl-4,4'-dicarboxylic acid bis (4-aminophenyl) ester is preferred, p-phenylenediamine, 4,4'-diaminobenzanilide, 2,2' -Bis (trifluoromethyl) benzidine is more preferred. By using p-phenylenediamine, 4,4'-diaminobenzanilide, and 2,2'-bis (trifluoromethyl) benzidine as the diamine component, the resulting polyimide has both high heat resistance and high transmittance. . These diamines may be used alone or in combination of two or more.
 前記化学式(1-1)または前記化学式(1-2)中のAを与えるジアミン成分(すなわち、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分)としては、Aが前記化学式(1-A)の構造のものを与えるジアミン成分以外の、他のジアミンを併用することができる。他のジアミン成分としては、他の芳香族または脂肪族ジアミン類を使用することができる。例えば、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス((アミノフェノキシ)フェニル)プロパン、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2―sec―ブチルシクロヘキサン、1,4-ジアミノ-2―tert―ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,3-ジアミノシクロブタン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、ジアミノビシクロヘプタン、ジアミノメチルビシクロヘプタン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロへキシル)メタン、ビス(アミノシクロヘキシル)イソプロピリデン6,6'-ビス(3-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン、6,6'-ビス(4-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン等やこれらの誘導体が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。これらのうち、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニルが好ましく、特に4,4’-ビス(4-アミノフェノキシ)ビフェニルが好ましい。 The diamine component that gives A in the chemical formula (1-1) or the chemical formula (1-2) (that is, the diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2)) , Other diamines other than the diamine component that gives the structure represented by the chemical formula (1-A) can be used in combination. Other aromatic or aliphatic diamines can be used as other diamine components. For example, 4,4′-oxydianiline, 3,4′-oxydianiline, 3,3′-oxydianiline, p-methylenebis (phenylenediamine), 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-amino Phenoxy) biphenyl, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 3, 3'-bis (trifluoromethyl) benzidine, 3,3'-bis ((aminophenoxy) phenyl) propane, 2,2'-bis (3-a No-4-hydroxyphenyl) hexafluoropropane, bis (4- (4-aminophenoxy) diphenyl) sulfone, bis (4- (3-aminophenoxy) diphenyl) sulfone, octafluorobenzidine, 3,3′-dimethoxy- 4,4′-diaminobiphenyl, 3,3′-dichloro-4,4′-diaminobiphenyl, 3,3′-difluoro-4,4′-diaminobiphenyl, 1,4-diaminocyclohexane, 1,4 -Diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propylcyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2 -N-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1, -Diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 1,2-diaminocyclohexane, 1,3-diaminocyclobutane, 1,4-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, diaminobicycloheptane, diaminomethylbicycloheptane, diaminooxybicycloheptane, diaminomethyloxybicycloheptane, isophorone diamine, diaminotricyclodecane, diaminomethyltricyclodecane, bis (aminocycloheptane) Xyl) methane, bis (aminocyclohexyl) isopropylidene 6,6′-bis (3-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, 6,6′-bis (4-Aminophenoxy) -3,3,3 ′, 3′-tetrame Examples include til-1,1′-spirobiindane and derivatives thereof, and these may be used alone or in combination of two or more. Of these, 4,4′-oxydianiline, 3,4′-oxydianiline, 3,3′-oxydianiline, p-methylenebis (phenylenediamine), 1,3-bis (4-aminophenoxy) Benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3 -Aminophenoxy) biphenyl is preferred, and 4,4′-bis (4-aminophenoxy) biphenyl is particularly preferred.
 本発明のポリイミド前駆体は、前記化学式(1-1)または前記化学式(1-2)で表される繰り返し単位100モル%中、Aが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)で表される繰り返し単位の割合が、合計で、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。Aが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)で表される繰り返し単位の割合が、50モル%より小さい場合、得られるポリイミドの線熱膨張係数が大きくなることがある。 In the polyimide precursor of the present invention, A is a group represented by the chemical formula (1-A) in 100 mol% of the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2). The total proportion of the repeating units represented by the chemical formula (1-1) or the chemical formula (1-2) is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly Preferably it is 100 mol%. When the proportion of the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) in which A is a group represented by the chemical formula (1-A) is less than 50 mol%, The linear thermal expansion coefficient may increase.
 ある実施態様においては、得られるポリイミドの特性の点から、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分100モル%中、前記化学式(1-A)の構造を与えるジアミン成分の割合が、合計で、好ましくは70モル%以下、より好ましくは80モル%以下、さらに好ましくは90モル%以下であることが好ましいことがある。例えば、4,4’-オキシジアニリン、4,4’-ビス(4-アミノフェノキシ)ビフェニル等のエーテル結合(-O-)を有するジアミン等の、他のジアミン類を、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分100モル%中、例えば40モル%以下、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下で使用することが好ましいことがある。 In one embodiment, from the viewpoint of the characteristics of the resulting polyimide, 100 mol% of the diamine component giving the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) has the chemical formula (1-A). It may be preferable that the ratio of the diamine component giving the structure is preferably 70 mol% or less, more preferably 80 mol% or less, and still more preferably 90 mol% or less in total. For example, other diamines such as a diamine having an ether bond (—O—) such as 4,4′-oxydianiline, 4,4′-bis (4-aminophenoxy) biphenyl, and the like are represented by the chemical formula (1- 1) or 100 mol% of the diamine component giving the repeating unit of the chemical formula (1-2), for example, 40 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less, further preferably 10 mol% or less. It may be preferable to use in
 前記のとおり、本発明の前記化学式(1-1)または前記化学式(1-2)で表される繰り返し単位を含むポリイミド前駆体において、前記化学式(1-1)または前記化学式(1-2)中のAは、前記化学式(1-A)であることが好ましい。換言すれば、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分が、Aが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)の繰り返し単位を与えるジアミン成分であることが好ましい。前記化学式(1-1)または前記化学式(1-2)中のAを与えるジアミン成分(すなわち、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分)が、Aが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)の繰り返し単位を与えるジアミン成分であることで、得られるポリイミドの耐熱性が向上する。 As described above, in the polyimide precursor including the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) of the present invention, the chemical formula (1-1) or the chemical formula (1-2) A in the formula is preferably the chemical formula (1-A). In other words, in the chemical formula (1-1), the diamine component giving the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) is a group represented by the chemical formula (1-A). Alternatively, a diamine component that gives a repeating unit of the chemical formula (1-2) is preferable. A diamine component that gives A in the chemical formula (1-1) or the chemical formula (1-2) (that is, a diamine component that gives a repeating unit of the chemical formula (1-1) or the chemical formula (1-2)), When A is a diamine component that gives a repeating unit of the chemical formula (1-1) or chemical formula (1-2), which is a group represented by the chemical formula (1-A), the heat resistance of the resulting polyimide is improved. .
 ある実施態様においては、本発明の前記化学式(1-1)または前記化学式(1-2)で表される繰り返し単位を含むポリイミド前駆体は、Aが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)の繰り返し単位を少なくとも2種含むことが好ましいことがある。換言すれば、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分が、Aが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)の繰り返し単位を与えるジアミン成分の少なくとも2種類を含むことが好ましいことがある。前記化学式(1-1)または前記化学式(1-2)中のAを与えるジアミン成分(すなわち、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分)が、Aが前記化学式(1-A)の構造のものを与えるジアミン成分の少なくとも2種類を含むことで、得られるポリイミドの高透明性と低線熱膨張性のバランスが取れる(すなわち、透明性が高く、且つ、低線熱膨張係数であるポリイミドが得られる)。 In one embodiment, in the polyimide precursor including the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) of the present invention, A is represented by the chemical formula (1-A). It may be preferable to include at least two repeating units of the chemical formula (1-1) or chemical formula (1-2) as a group. In other words, in the chemical formula (1-1), the diamine component giving the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) is a group represented by the chemical formula (1-A). Alternatively, it may be preferable to include at least two kinds of diamine components that give the repeating unit of the chemical formula (1-2). A diamine component that gives A in the chemical formula (1-1) or the chemical formula (1-2) (that is, a diamine component that gives a repeating unit of the chemical formula (1-1) or the chemical formula (1-2)), By including at least two kinds of diamine components that give the structure represented by the chemical formula (1-A), A can achieve a balance between high transparency and low linear thermal expansion of the resulting polyimide (that is, high transparency). And a polyimide having a low linear thermal expansion coefficient).
 この実施態様においては、例えば、本発明の前記化学式(1-1)または前記化学式(1-2)で表される繰り返し単位を含むポリイミド前駆体は、前記化学式(1-1)または前記化学式(1-2)中のAを与えるジアミン成分(すなわち、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分)が、Aが前記化学式(1-A)の構造のものを与えるジアミン成分の少なくとも2種類を含み、そのうちの1種が4,4’-ジアミノベンズアニリドであることが好ましい。前記化学式(1-1)または前記化学式(1-2)中のAを与えるジアミン成分が前記化学式(1-A)の構造を与えるジアミン成分の少なくとも2種類を含み、そのうちの1種が4,4’-ジアミノベンズアニリドであることで、高透明性と低線熱膨張性に加え、高い耐熱性も兼ね備えたポリイミドが得られる。 In this embodiment, for example, the polyimide precursor containing the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) of the present invention is represented by the chemical formula (1-1) or the chemical formula ( In 1-2), the diamine component that gives A (that is, the diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2)) is the structure of the chemical formula (1-A). It is preferred that at least two of the diamine components that give are those, one of which is 4,4′-diaminobenzanilide. The diamine component that gives A in the chemical formula (1-1) or the chemical formula (1-2) includes at least two kinds of diamine components that give the structure of the chemical formula (1-A), and one of them is 4, By using 4′-diaminobenzanilide, a polyimide having high heat resistance in addition to high transparency and low linear thermal expansion can be obtained.
 ある実施態様においては、本発明の前記化学式(1-1)または前記化学式(1-2)で表される繰り返し単位を含むポリイミド前駆体は、前記化学式(1-1)または前記化学式(1-2)中のAを与えるジアミン成分(すなわち、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分)が2,2’-ビス(トリフルオロメチル)ベンジジン及びp-フェニレンジアミンから選択される少なくとも1種類と、4,4’-ジアミノベンズアニリドを含むことが好ましい。これらのジアミン成分を組み合わせることで、高い透明性と低線熱膨張性、耐熱性を兼ね備えたポリイミドが得られる。 In one embodiment, the polyimide precursor containing the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) according to the present invention is represented by the chemical formula (1-1) or the chemical formula (1- 2) The diamine component that gives A (that is, the diamine component that gives the repeating unit of the chemical formula (1-1) or the chemical formula (1-2)) is 2,2′-bis (trifluoromethyl) benzidine and p It preferably contains at least one selected from -phenylenediamine and 4,4'-diaminobenzanilide. By combining these diamine components, a polyimide having both high transparency, low linear thermal expansion and heat resistance can be obtained.
 この実施態様においては、前記化学式(1-1)または前記化学式(1-2)中のAを与えるジアミン成分(すなわち、前記化学式(1-1)または前記化学式(1-2)の繰り返し単位を与えるジアミン成分)としては、好ましくは4,4’-ジアミノベンズアニリドを20モル%以上、80モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で20モル%以上、80モル%以下で含むことが好ましく、さらに好ましくは4,4’-ジアミノベンズアニリドを30モル%以上、70モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で30モル%以上、70モル%以下で含むことが好ましく、特に好ましくは4,4’-ジアミノベンズアニリドを40モル%以上、60モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で40モル%以上、60モル%以下で含むことがより好ましい。 In this embodiment, the diamine component giving A in the chemical formula (1-1) or the chemical formula (1-2) (that is, the repeating unit of the chemical formula (1-1) or the chemical formula (1-2) is substituted. The diamine component to be provided) preferably contains 4,4′-diaminobenzanilide in an amount of 20 mol% to 80 mol%, and includes p-phenylenediamine and 2,2′-bis (trifluoromethyl) benzidine. It is preferable that either one or both contain 20 mol% or more and 80 mol% or less, more preferably 4,4′-diaminobenzanilide is contained 30 mol% or more and 70 mol% or less, and p- Containing 30 mol% or more and 70 mol% or less of either or both of phenylenediamine and 2,2'-bis (trifluoromethyl) benzidine And particularly preferably contains 4,4′-diaminobenzanilide in an amount of 40 mol% to 60 mol%, and either p-phenylenediamine or 2,2′-bis (trifluoromethyl) benzidine. It is more preferable to include 40 mol% or more and 60 mol% or less.
 本発明のポリイミド前駆体は、前記化学式(1-1)または前記化学式(1-2)で表される繰り返し単位以外の、他の繰り返し単位を含むことができる。 The polyimide precursor of the present invention may contain other repeating units other than the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2).
 他の繰り返し単位を与えるテトラカルボン酸成分としては、他の芳香族または脂肪族テトラカルボン酸類を使用することができる。例えば、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、4,4’-オキシジフタル酸、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、ビスカルボキシフェニルジメチルシラン、ビスジカルボキシフェノキシジフェニルスルフィド、スルホニルジフタル酸、1,2,3,4-シクロブタンテトラカルボン酸、イソプロピリデンジフェノキシビスフタル酸、シクロヘキサン-1,2,4,5-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、オクタヒドロペンタレン-1,3,4,6-テトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン5,5’’,6,6’’-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸等の誘導体や、これらの酸二無水物が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。これらのうちでは、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン5,5’’,6,6’’-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸等の誘導体や、これらの酸二無水物が、ポリイミドの製造が容易であり、得られるポリイミドの耐熱性に優れることからより好ましい。これらの酸二無水物は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。 Other aromatic or aliphatic tetracarboxylic acids can be used as the tetracarboxylic acid component that gives other repeating units. For example, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2 -Dicarboxylic acid, pyromellitic acid, 3,3 ', 4,4'-benzophenonetetracarboxylic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3 ', 4'-biphenyltetra Carboxylic acid, 4,4′-oxydiphthalic acid, bis (3,4-dicarboxyphenyl) sulfone dianhydride, m-terphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, p- Terphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, biscarboxyphenyldimethylsilane, bisdicarboxyphenoxydiphenyl sulfide, sulfonyldiph Phosphoric acid, 1,2,3,4-cyclobutanetetracarboxylic acid, isopropylidenediphenoxybisphthalic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, [1,1'-bi (cyclohexane)]- 3,3 ′, 4,4′-tetracarboxylic acid, [1,1′-bi (cyclohexane)]-2,3,3 ′, 4′-tetracarboxylic acid, [1,1′-bi (cyclohexane) ] -2,2 ′, 3,3′-tetracarboxylic acid, 4,4′-methylenebis (cyclohexane-1,2-dicarboxylic acid), 4,4 ′-(propane-2,2-diyl) bis (cyclohexane) -1,2-dicarboxylic acid), 4,4'-oxybis (cyclohexane-1,2-dicarboxylic acid), 4,4'-thiobis (cyclohexane-1,2-dicarboxylic acid), 4,4'-sulfonylbis (Sh (Rohexane-1,2-dicarboxylic acid), 4,4 ′-(dimethylsilanediyl) bis (cyclohexane-1,2-dicarboxylic acid), 4,4 ′-(tetrafluoropropane-2,2-diyl) bis ( Cyclohexane-1,2-dicarboxylic acid), octahydropentalene-1,3,4,6-tetracarboxylic acid, bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic acid, 6 -(Carboxymethyl) bicyclo [2.2.1] heptane-2,3,5-tricarboxylic acid, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2. 2.2] oct-5-ene-2,3,7,8-tetracarboxylic acid, tricyclo [4.2.2.02,5] decane-3,4,7,8-tetracarboxylic acid, tricyclo [ 4.2.2.02 , 5] dec-7-ene-3,4,9,10-tetracarboxylic acid, 9-oxatricyclo [4.2.1.02,5] nonane-3,4,7,8-tetracarboxylic acid Norbornane-2-spiro-α-cyclopentanone-α′-spiro-2 ″ -norbornane 5,5 ″, 6,6 ″ -tetracarboxylic acid, (4arH, 8acH) -decahydro-1t, 4t : 5c, 8c-dimethanonaphthalene-2c, 3c, 6c, 7c-Derivatives such as tetracarboxylic acid and their acid dianhydrides may be used, and may be used alone or in combination of two or more. You can also Among these, bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic acid, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid, norbornane -2-Spiro-α-cyclopentanone-α′-spiro-2 ″ -norbornane 5,5 ″, 6,6 ″ -tetracarboxylic acid, (4arH, 8acH) -decahydro-1t, 4t: 5c , 8c-Dimethananaphthalene-2c, 3c, 6c, 7c-Derivatives such as tetracarboxylic acid and these acid dianhydrides are easy to produce polyimide and are excellent in heat resistance of the resulting polyimide. preferable. These acid dianhydrides may be used alone or in combination of two or more.
 他の繰り返し単位を与えるジアミン成分は、Aが前記化学式(1-A)で表される基である化学式(1-1)または化学式(1-2)の繰り返し単位を与えるジアミン成分として例示したジアミンであってもよい。 The diamine component giving another repeating unit is the diamine exemplified as the diamine component giving the repeating unit of chemical formula (1-1) or chemical formula (1-2), wherein A is a group represented by the chemical formula (1-A). It may be.
 他の繰り返し単位を与えるジアミン成分としては、他の芳香族または脂肪族ジアミン類を使用することができる。例えば、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス((アミノフェノキシ)フェニル)プロパン、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2―sec―ブチルシクロヘキサン、1,4-ジアミノ-2―tert―ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,3-ジアミノシクロブタン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、ジアミノビシクロヘプタン、ジアミノメチルビシクロヘプタン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロへキシル)メタン、ビス(アミノシクロヘキシル)イソプロピリデン6,6'-ビス(3-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン、6,6'-ビス(4-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン等やこれらの誘導体が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。 Other aromatic or aliphatic diamines can be used as the diamine component that gives other repeating units. For example, 4,4′-oxydianiline, 3,4′-oxydianiline, 3,3′-oxydianiline, p-methylenebis (phenylenediamine), 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-amino Phenoxy) biphenyl, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 3, 3'-bis (trifluoromethyl) benzidine, 3,3'-bis ((aminophenoxy) phenyl) propane, 2,2'-bis (3-a No-4-hydroxyphenyl) hexafluoropropane, bis (4- (4-aminophenoxy) diphenyl) sulfone, bis (4- (3-aminophenoxy) diphenyl) sulfone, octafluorobenzidine, 3,3′-dimethoxy- 4,4′-diaminobiphenyl, 3,3′-dichloro-4,4′-diaminobiphenyl, 3,3′-difluoro-4,4′-diaminobiphenyl, 1,4-diaminocyclohexane, 1,4 -Diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propylcyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2 -N-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1, -Diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 1,2-diaminocyclohexane, 1,3-diaminocyclobutane, 1,4-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, diaminobicycloheptane, diaminomethylbicycloheptane, diaminooxybicycloheptane, diaminomethyloxybicycloheptane, isophorone diamine, diaminotricyclodecane, diaminomethyltricyclodecane, bis (aminocycloheptane) Xyl) methane, bis (aminocyclohexyl) isopropylidene 6,6′-bis (3-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, 6,6′-bis (4-Aminophenoxy) -3,3,3 ′, 3′-tetrame Examples include til-1,1′-spirobiindane and derivatives thereof, and these may be used alone or in combination of two or more.
 ある実施態様においては、ポリイミド前駆体は、前記化学式(1-1)または前記化学式(1-2)で表される繰り返し単位を、合計で、全繰り返し単位中に、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%含むことが好ましい。前記化学式(1-1)または前記化学式(1-2)で表される繰り返し単位の割合が50モル%以上の場合、製膜性が向上し、得られるポリイミドの線熱膨張係数が極めて小さくなる。また、全光透過率の点からは、全繰り返し単位100モル%中、前記化学式(1-1)または前記化学式(1-2)で表される繰り返し単位を、好ましくは50モル%以上から99モル%以下、さらに好ましくは60モル%以上から95モル%以下、特に好ましくは70モル%以上から95モル%以下として使用することもできる。 In one embodiment, the polyimide precursor comprises a total of repeating units represented by the chemical formula (1-1) or the chemical formula (1-2), preferably 50 mol% or more in all repeating units. More preferably, it is 70 mol% or more, More preferably, it is 90 mol% or more, Especially preferably, it is preferable to contain 100 mol%. When the ratio of the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) is 50 mol% or more, the film forming property is improved and the linear thermal expansion coefficient of the resulting polyimide is extremely small. . From the viewpoint of the total light transmittance, the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) in the total repeating unit of 100 mol% is preferably from 50 mol% to 99 mol. It can also be used as a mol% or less, more preferably from 60 mol% to 95 mol%, particularly preferably from 70 mol% to 95 mol%.
 テトラカルボン酸成分及びジアミン成分が異性体を含む場合、その異性体を単離して重合等に使用してもよく、また、異性体を混合物のまま重合等に使用してもよい。 When the tetracarboxylic acid component and the diamine component contain isomers, the isomers may be isolated and used for polymerization or the like, or the isomers may be used as a mixture in polymerization or the like.
 本発明のポリイミド前駆体において、前記化学式(1-1)及び前記化学式(1-2)のX、Xはそれぞれ独立に水素、炭素数1~6、好ましくは炭素数1~3のアルキル基、または炭素数3~9のアルキルシリル基のいずれかである。X及びXは、後述する製造方法によって、その官能基の種類、及び、官能基の導入率を変化させることができる。 In the polyimide precursor of the present invention, X 1 and X 2 in the chemical formula (1-1) and the chemical formula (1-2) are each independently hydrogen, alkyl having 1 to 6 carbon atoms, preferably alkyl having 1 to 3 carbon atoms. Or an alkylsilyl group having 3 to 9 carbon atoms. X 1 and X 2 can change the kind of functional group and the introduction rate of the functional group by the production method described later.
 X及びXが水素である場合、ポリイミドの製造が容易である傾向がある。 When X 1 and X 2 are hydrogen, they tend preparation of polyimides is easy.
 また、X及びXが炭素数1~6、好ましくは炭素数1~3のアルキル基である場合、ポリイミド前駆体の保存安定性に優れる傾向がある。この場合、X及びXはメチル基もしくはエチル基であることがより好ましい。 When X 1 and X 2 are alkyl groups having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, the storage stability of the polyimide precursor tends to be excellent. In this case, X 1 and X 2 are more preferably a methyl group or an ethyl group.
 更に、X及びXが炭素数3~9のアルキルシリル基である場合、ポリイミド前駆体の溶解性が優れる傾向がある。この場合、X及びXはトリメチルシリル基もしくはt-ブチルジメチルシリル基であることがより好ましい。 Furthermore, when X 1 and X 2 is an alkyl silyl group having 3 to 9 carbon atoms, there is a tendency that the solubility of the polyimide precursor excellent. In this case, X 1 and X 2 are more preferably a trimethylsilyl group or a t-butyldimethylsilyl group.
 官能基の導入率は、特に限定されないが、アルキル基もしくはアルキルシリル基を導入する場合、X及びXはそれぞれ、25%以上、好ましくは50%以上、より好ましくは75%以上をアルキル基もしくはアルキルシリル基にすることができる。 The introduction rate of the functional group is not particularly limited, but when an alkyl group or an alkylsilyl group is introduced, X 1 and X 2 are each 25% or more, preferably 50% or more, more preferably 75% or more of the alkyl group. Alternatively, it can be an alkylsilyl group.
 本発明のポリイミド前駆体は、X及びXが取る化学構造によって、1)ポリアミド酸(X及びXが水素)、2)ポリアミド酸エステル(X及びXの少なくとも一部がアルキル基)、3)4)ポリアミド酸シリルエステル(X及びXの少なくとも一部がアルキルシリル基)に分類することができる。そして、本発明のポリイミド前駆体は、この分類ごとに、以下の製造方法により容易に製造することができる。ただし、本発明のポリイミド前駆体の製造方法は、以下の製造方法に限定されるものではない。 The polyimide precursor of the present invention has a chemical structure taken by X 1 and X 2 , 1) polyamic acid (X 1 and X 2 are hydrogen), 2) polyamic acid ester (at least part of X 1 and X 2 is alkyl) Group), 3) and 4) polyamic acid silyl ester (at least a part of X 1 and X 2 is an alkylsilyl group). And the polyimide precursor of this invention can be easily manufactured with the following manufacturing methods for every classification. However, the manufacturing method of the polyimide precursor of this invention is not limited to the following manufacturing methods.
1)ポリアミド酸
 本発明のポリイミド前駆体は、溶媒中でテトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が好ましくは0.90~1.10、より好ましくは0.95~1.05の割合で、例えば120℃以下の比較的低温度でイミド化を抑制しながら反応することによって、ポリイミド前駆体溶液組成物として好適に得ることができる。
1) Polyamic acid The polyimide precursor of the present invention comprises a tetracarboxylic dianhydride as a tetracarboxylic acid component and a diamine component in a solvent in an equimolar amount, preferably a molar ratio of the diamine component to the tetracarboxylic acid component The number of moles of the component / the number of moles of the tetracarboxylic acid component] is preferably 0.90 to 1.10, more preferably 0.95 to 1.05, for example, imidization at a relatively low temperature of 120 ° C. or less. It can obtain suitably as a polyimide precursor solution composition by reacting, suppressing.
 限定するものではないが、より具体的には、有機溶剤にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。上記製造方法でのジアミンとテトラカルボン酸二無水物の添加順序は、ポリイミド前駆体の分子量が上がりやすいため、好ましい。また、上記製造方法のジアミンとテトラカルボン酸二無水物の添加順序を逆にすることも可能であり、析出物が低減することから、好ましい。 More specifically, although not limited, diamine is dissolved in an organic solvent, and tetracarboxylic dianhydride is gradually added to this solution while stirring, and 0 to 120 ° C., preferably 5 to 80 ° C. A polyimide precursor is obtained by stirring for 1 to 72 hours in the range of ° C. When the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably. The order of addition of diamine and tetracarboxylic dianhydride in the above production method is preferable because the molecular weight of the polyimide precursor is likely to increase. Moreover, it is also possible to reverse the order of addition of the diamine and tetracarboxylic dianhydride in the above production method, and this is preferable because precipitates are reduced.
 また、テトラカルボン酸成分とジアミン成分のモル比がジアミン成分過剰である場合、必要に応じて、ジアミン成分の過剰モル数に略相当する量のカルボン酸誘導体を添加し、テトラカルボン酸成分とジアミン成分のモル比を略当量に近づけることができる。ここでのカルボン酸誘導体としては、実質的にポリイミド前駆体溶液の粘度を増加させない、つまり実質的に分子鎖延長に関与しないテトラカルボン酸、もしくは末端停止剤として機能するトリカルボン酸とその無水物、ジカルボン酸とその無水物などが好適である。 Moreover, when the molar ratio of the tetracarboxylic acid component and the diamine component is an excess of the diamine component, an amount of a carboxylic acid derivative substantially corresponding to the excess number of moles of the diamine component is added as necessary, The molar ratio of the components can be approximated to the equivalent. As the carboxylic acid derivative herein, a tetracarboxylic acid that does not substantially increase the viscosity of the polyimide precursor solution, that is, substantially does not participate in molecular chain extension, or a tricarboxylic acid that functions as a terminal terminator and its anhydride, Dicarboxylic acid and its anhydride are preferred.
2)ポリアミド酸エステル
 テトラカルボン酸二無水物を任意のアルコールと反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを-20~120℃、好ましくは-5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。
2) Polyamic acid ester After reacting tetracarboxylic dianhydride with an arbitrary alcohol to obtain a diester dicarboxylic acid, it is reacted with a chlorinating reagent (thionyl chloride, oxalyl chloride, etc.) to obtain a diester dicarboxylic acid chloride. The diester dicarboxylic acid chloride and diamine are stirred in the range of −20 to 120 ° C., preferably −5 to 80 ° C. for 1 to 72 hours to obtain a polyimide precursor. When the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably. Alternatively, a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent.
 この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加えて再沈殿などの精製を行うこともできる。 Since the polyimide precursor obtained by this method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
3)ポリアミド酸シリルエステル(間接法)
 あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る。必要に応じて、蒸留等により、シリル化されたジアミンの精製を行う。そして、脱水された溶剤中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
3) Polyamide acid silyl ester (indirect method)
A diamine and a silylating agent are reacted in advance to obtain a silylated diamine. If necessary, the silylated diamine is purified by distillation or the like. Then, the silylated diamine is dissolved in the dehydrated solvent, and the tetracarboxylic dianhydride is gradually added while stirring, and the temperature is 0 to 120 ° C., preferably 5 to 80 ° C. A polyimide precursor is obtained by stirring for ˜72 hours. When the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably.
 ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたジアミンを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。 It is preferable to use a silylating agent that does not contain chlorine as the silylating agent used here, because it is not necessary to purify the silylated diamine. Examples of the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane. N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
 また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。 In the silylation reaction of diamine, an amine catalyst such as pyridine, piperidine or triethylamine can be used to accelerate the reaction. This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
4)ポリアミド酸シリルエステル(直接法)
 1)の方法で得られたポリアミド酸溶液とシリル化剤を混合し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
4) Polyamide acid silyl ester (direct method)
A polyimide precursor is obtained by mixing the polyamic acid solution obtained by the method 1) and a silylating agent and stirring at 0 to 120 ° C., preferably 5 to 80 ° C. for 1 to 72 hours. When the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably.
 ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたポリアミド酸、もしくは、得られたポリイミドを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。 As the silylating agent used here, it is preferable to use a silylating agent not containing chlorine because it is not necessary to purify the silylated polyamic acid or the obtained polyimide. Examples of the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane. N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
 前記製造方法は、いずれも有機溶媒中で好適に行なうことができるので、その結果として、ポリイミド前駆体を含む溶液または溶液組成物を容易に得ることができる。 Any of the above production methods can be suitably carried out in an organic solvent, and as a result, a solution or solution composition containing a polyimide precursor can be easily obtained.
 ポリイミド前駆体を調製する際に使用する溶媒は、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等の非プロトン性溶媒が好ましく、特にN,N-ジメチルアセトアミドが好ましいが、原料モノマー成分と生成するポリイミド前駆体が溶解すれば、どんな種類の溶媒であっても問題はなく使用できるので、特にその構造には限定されない。溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。なお、溶媒は、複数種を組み合わせて使用することもできる。 Solvents used in preparing the polyimide precursor are, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide An aprotic solvent such as N, N-dimethylacetamide is preferred, but any type of solvent can be used without any problem as long as the raw material monomer component and the polyimide precursor to be produced are dissolved. The structure is not limited. As solvents, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α- Cyclic ester solvents such as methyl-γ-butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, phenols such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol A system solvent, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably employed. In addition, other common organic solvents such as phenol, o-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, tetrahydrofuran , Dimethoxyethane, diethoxyethane, dibutyl ether, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, petroleum A naphtha solvent can also be used. In addition, a solvent can also be used in combination of multiple types.
 本発明において、ポリイミド前駆体の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N-ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.3dL/g以上、特に好ましくは0.4dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。 In the present invention, the logarithmic viscosity of the polyimide precursor is not particularly limited, but the logarithmic viscosity in an N, N-dimethylacetamide solution having a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g or more, more preferably 0. .3 dL / g or more, particularly preferably 0.4 dL / g or more. When the logarithmic viscosity is 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, and the mechanical strength and heat resistance of the resulting polyimide are excellent.
 本発明のポリイミド前駆体組成物は、ポリイミド前駆体と、イミダゾール系化合物とを含むものであり、前記製造方法により得られるポリイミド前駆体溶液または溶液組成物にイミダゾール系化合物を加えて調製することができる。また、必要に応じて、溶媒を除去または加えてもよく、イミダゾール系化合物以外の所望の成分を添加してもよい。また、溶媒にテトラカルボン酸成分(テトラカルボン酸二無水物等)とジアミン成分とイミダゾール系化合物を加え、イミダゾール系化合物の存在下で、テトラカルボン酸成分とジアミン成分とを反応させて、本発明のポリイミド前駆体組成物(ポリイミド前駆体と、イミダゾール系化合物とを含む溶液組成物)を得ることもできる。 The polyimide precursor composition of the present invention includes a polyimide precursor and an imidazole compound, and may be prepared by adding an imidazole compound to a polyimide precursor solution or solution composition obtained by the above production method. it can. Moreover, a solvent may be removed or added as needed, and desired components other than an imidazole compound may be added. In addition, a tetracarboxylic acid component (tetracarboxylic dianhydride or the like), a diamine component, and an imidazole compound are added to a solvent, and the tetracarboxylic acid component and the diamine component are reacted in the presence of the imidazole compound. The polyimide precursor composition (solution composition containing a polyimide precursor and an imidazole compound) can also be obtained.
 本発明において用いるイミダゾール系化合物は、イミダゾール骨格を有すれば特に限定されない。イミダゾール系化合物を添加することによって、より透明性が高く、線熱膨張係数が低いポリイミドが得られる。 The imidazole compound used in the present invention is not particularly limited as long as it has an imidazole skeleton. By adding an imidazole compound, a polyimide having higher transparency and a lower linear thermal expansion coefficient can be obtained.
 本発明において用いるイミダゾール系化合物としては、特に限定されないが、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、イミダゾール、ベンゾイミダゾールなどが挙げられる。イミダゾール系化合物は、1種を単独で使用してもよく、複数種を組み合わせて使用することもできる。 The imidazole compound used in the present invention is not particularly limited, and examples thereof include 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, imidazole, and benzimidazole. An imidazole compound may be used individually by 1 type, and can also be used in combination of multiple types.
 本発明において、ポリイミド前駆体組成物のイミダゾール系化合物の含有量は、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満である。イミダゾール系化合物の含有量がポリイミド前駆体の繰り返し単位1モルに対して4モル以上になると、ポリイミド前駆体組成物の保存安定性が悪くなる。イミダゾール系化合物の含有量は、ポリイミド前駆体の繰り返し単位1モルに対して0.05モル以上であることが好ましく、また、ポリイミド前駆体の繰り返し単位1モルに対して2モル以下であることが好ましい。なお、ここで、ポリイミド前駆体の繰り返し単位1モルは、テトラカルボン酸成分1モルに対応する。 In the present invention, the content of the imidazole compound in the polyimide precursor composition is less than 4 mol with respect to 1 mol of the repeating unit of the polyimide precursor. When the content of the imidazole compound is 4 mol or more with respect to 1 mol of the repeating unit of the polyimide precursor, the storage stability of the polyimide precursor composition is deteriorated. The content of the imidazole compound is preferably 0.05 mol or more with respect to 1 mol of the repeating unit of the polyimide precursor, and is 2 mol or less with respect to 1 mol of the repeating unit of the polyimide precursor. preferable. Here, 1 mol of the repeating unit of the polyimide precursor corresponds to 1 mol of the tetracarboxylic acid component.
 本発明のポリイミド前駆体組成物は、通常、溶媒を含む。本発明のポリイミド前駆体組成物に用いる溶媒としては、ポリイミド前駆体が溶解すれば問題はなく、特にその構造は限定されない。溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。また、これらを複数種組み合わせて使用することもできる。なお、ポリイミド前駆体組成物の溶媒は、ポリイミド前駆体を調製する際に使用した溶媒をそのまま使用することができる。 The polyimide precursor composition of the present invention usually contains a solvent. The solvent used for the polyimide precursor composition of the present invention is not a problem as long as the polyimide precursor is dissolved, and the structure is not particularly limited. As solvents, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone , Cyclic ester solvents such as α-methyl-γ-butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol Phenol solvents such as acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably employed. In addition, other common organic solvents such as phenol, o-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, tetrahydrofuran , Dimethoxyethane, diethoxyethane, dibutyl ether, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, petroleum A naphtha solvent can also be used. Moreover, these can also be used combining multiple types. In addition, the solvent used when preparing a polyimide precursor can be used for the solvent of a polyimide precursor composition as it is.
 本発明において、テトラカルボン酸成分とジアミン成分との合計量は、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上の割合であることが好適である。なお、通常は、テトラカルボン酸成分とジアミン成分との合計量は、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、60質量%以下、好ましくは50質量%以下であることが好適である。この濃度は、ポリイミド前駆体に起因する固形分濃度にほぼ近似される濃度であるが、この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。 In the present invention, the total amount of the tetracarboxylic acid component and the diamine component is 5% by mass or more, preferably 10% by mass or more, more preferably 15%, based on the total amount of the solvent, the tetracarboxylic acid component and the diamine component. A ratio of not less than mass% is preferred. In general, the total amount of the tetracarboxylic acid component and the diamine component is 60% by mass or less, preferably 50% by mass or less, based on the total amount of the solvent, the tetracarboxylic acid component, and the diamine component. Is preferred. This concentration is a concentration approximately approximate to the solid content concentration resulting from the polyimide precursor, but if this concentration is too low, it becomes difficult to control the film thickness of the polyimide film obtained, for example, when producing a polyimide film. Sometimes.
 本発明において、ポリイミド前駆体組成物の粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec-1で測定した回転粘度が、0.01~1000Pa・secが好ましく、0.1~100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。 In the present invention, the viscosity (rotational viscosity) of the polyimide precursor composition is not particularly limited, but the rotational viscosity measured using an E-type rotational viscometer at a temperature of 25 ° C. and a shear rate of 20 sec −1 is 0.01 to 1000 Pa · sec is preferable, and 0.1 to 100 Pa · sec is more preferable. Moreover, thixotropy can also be provided as needed. When the viscosity is in the above range, it is easy to handle when coating or forming a film, and the repelling is suppressed and the leveling property is excellent, so that a good film can be obtained.
 本発明のポリイミド前駆体組成物は、必要に応じて、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)、酸化防止剤、フィラー(シリカ等の無機粒子など)、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを含有することができる。 The polyimide precursor composition of the present invention includes chemical imidizing agents (acid anhydrides such as acetic anhydride, amine compounds such as pyridine and isoquinoline), antioxidants, fillers (inorganic particles such as silica, etc.) as necessary. ), Dyes, pigments, coupling agents such as silane coupling agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents and the like.
 本発明のポリイミドは、前記のような本発明のポリイミド前駆体組成物をイミド化する(すなわち、ポリイミド前駆体を脱水閉環反応する)ことで得ることができる。イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。得られるポリイミドの形態は、フィルム、ポリイミドフィルムと他の基材との積層体、コーティング膜、粉末、ビーズ、成型体、発泡体などを好適に挙げることができる。 The polyimide of the present invention can be obtained by imidizing the polyimide precursor composition of the present invention as described above (that is, dehydrating and ring-closing reaction of the polyimide precursor). The imidization method is not particularly limited, and a known thermal imidation or chemical imidization method can be suitably applied. The form of the polyimide obtained can mention suitably a film, the laminated body of a polyimide film and another base material, a coating film, powder, a bead, a molded object, a foam.
 本発明においては、ポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化することが好ましい。イミド化のための加熱処理の最高加熱温度は、380℃を超えることがより好ましく、400℃を超えることが特に好ましい。イミド化のための加熱処理の最高加熱温度を、350℃を超える温度、より好ましくは380℃を超える温度、特に好ましくは400℃を超える温度とすることにより、得られるポリイミドの機械的特性が向上する。加熱処理の最高加熱温度の上限は特に限定されないが、通常、500℃以下が好ましい。 In the present invention, it is preferable to imidize the polyimide precursor by heat-treating the polyimide precursor composition at a maximum heating temperature exceeding 350 ° C. The maximum heating temperature of the heat treatment for imidization is more preferably higher than 380 ° C, and particularly preferably higher than 400 ° C. By setting the maximum heating temperature of the heat treatment for imidization to a temperature exceeding 350 ° C., more preferably a temperature exceeding 380 ° C., particularly preferably a temperature exceeding 400 ° C., the mechanical properties of the resulting polyimide are improved. To do. Although the upper limit of the maximum heating temperature of heat processing is not specifically limited, Usually, 500 degrees C or less is preferable.
 例えば、本発明のポリイミド前駆体組成物を基材上に流延・塗布し、この基材上のポリイミド前駆体組成物を最高加熱温度350℃超、より好ましくは380℃超、特に好ましくは400℃を超える温度で加熱処理して、ポリイミド前駆体をイミド化することにより、ポリイミドを好適に製造することができる。なお、加熱プロファイルは特に限定されず、適宜選択することができるが、生産性の点からは、加熱処理する時間は短い方が好ましい。 For example, the polyimide precursor composition of the present invention is cast and applied on a substrate, and the polyimide precursor composition on the substrate is heated to a maximum heating temperature of 350 ° C., more preferably 380 ° C., particularly preferably 400. A polyimide can be suitably manufactured by heat-processing at the temperature exceeding 0 degreeC and imidating a polyimide precursor. The heating profile is not particularly limited and can be selected as appropriate. However, from the viewpoint of productivity, it is preferable that the heat treatment time is short.
 また、本発明のポリイミド前駆体組成物を基材上に流延・塗布し、好ましくは180℃以下の温度範囲で乾燥して、基材上にポリイミド前駆体組成物の膜を形成し、得られたポリイミド前駆体組成物の膜を基材上から剥離して、その膜の端部を固定した状態で、最高加熱温度350℃超、より好ましくは380℃超、特に好ましくは400℃を超える温度で加熱処理して、ポリイミド前駆体をイミド化することによっても、ポリイミドを好適に製造することができる。 In addition, the polyimide precursor composition of the present invention is cast and applied on a substrate, and preferably dried in a temperature range of 180 ° C. or less to form a polyimide precursor composition film on the substrate. In the state where the film of the obtained polyimide precursor composition is peeled off from the substrate and the end of the film is fixed, the maximum heating temperature exceeds 350 ° C., more preferably exceeds 380 ° C., and particularly preferably exceeds 400 ° C. A polyimide can be suitably manufactured also by heat-processing at temperature and imidizing a polyimide precursor.
 より具体的な本発明のポリイミド(ポリイミドフィルム/基材積層体、もしくはポリイミドフィルム)の製造方法の一例については、後述する。 A more specific example of the method for producing the polyimide (polyimide film / base material laminate or polyimide film) of the present invention will be described later.
 本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、特に限定されないが、フィルムにしたときの150℃から250℃までの線熱膨張係数が、好ましくは40ppm/K以下、より好ましくは35ppm/K以下、さらに好ましくは30ppm/K以下、特に好ましくは25ppm/K以下であることができる。線熱膨張係数が大きいと、金属などの導体との線熱膨張係数の差が大きく、回路基板を形成する際に反りが増大するなどの不具合が生じることがある。 The polyimide obtained from the polyimide precursor composition of the present invention (polyimide of the present invention) is not particularly limited, but the linear thermal expansion coefficient from 150 ° C. to 250 ° C. when formed into a film is preferably 40 ppm / K or less, More preferably, it is 35 ppm / K or less, More preferably, it is 30 ppm / K or less, Most preferably, it is 25 ppm / K or less. When the linear thermal expansion coefficient is large, the difference in the linear thermal expansion coefficient with a conductor such as metal is large, which may cause problems such as an increase in warpage when a circuit board is formed.
 本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、特に限定されないが、厚さ10μmのフィルムでの全光透過率(波長380nm~780nmの平均光透過率)が、好ましくは86%以上、より好ましくは87%以上、さらに好ましくは88%以上であることができる。ディスプレイ用途等で使用する場合、全光透過率が低いと光源を強くする必要があり、エネルギーがかかるといった問題等を生じることがある。 The polyimide obtained from the polyimide precursor composition of the present invention (polyimide of the present invention) is not particularly limited, but preferably has a total light transmittance (average light transmittance of a wavelength of 380 nm to 780 nm) in a film having a thickness of 10 μm. May be 86% or more, more preferably 87% or more, and still more preferably 88% or more. When used for a display application or the like, if the total light transmittance is low, it is necessary to strengthen the light source, which may cause a problem that energy is applied.
 特にディスプレイ用途などのポリイミドフィルムを光が透過する用途に使用する場合、ポリイミドフィルムは透明性が高い方が望ましい。本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、特に限定されないが、厚さ10μmのフィルムでの波長400nmにおける光透過率が、好ましくは75%以上、より好ましくは80%以上、より好ましくは80%超、さらに好ましくは81%以上、特に好ましくは82%以上であることができる。 In particular, when a polyimide film such as a display application is used for an application where light is transmitted, it is desirable that the polyimide film has high transparency. The polyimide obtained from the polyimide precursor composition of the present invention (polyimide of the present invention) is not particularly limited, but the light transmittance at a wavelength of 400 nm in a 10 μm-thick film is preferably 75% or more, more preferably 80 % Or more, more preferably more than 80%, still more preferably 81% or more, and particularly preferably 82% or more.
 なお、本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)からなるフィルムは、用途にもよるが、フィルムの厚みとしては、好ましくは0.1μm~250μm、より好ましくは1μm~150μm、さらに好ましくは1μm~50μm、特に好ましくは1μm~30μmである。ポリイミドフィルムを光が透過する用途に使用する場合、ポリイミドフィルムが厚すぎると光透過率が低くなる恐れがある。 The film made of the polyimide obtained from the polyimide precursor composition of the present invention (polyimide of the present invention) depends on the use, but the thickness of the film is preferably 0.1 μm to 250 μm, more preferably 1 μm to The thickness is 150 μm, more preferably 1 μm to 50 μm, particularly preferably 1 μm to 30 μm. When the polyimide film is used for light transmission, if the polyimide film is too thick, the light transmittance may be lowered.
 本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、特に限定されないが、ポリイミドフィルムの耐熱性の指標である1%重量減少温度が、好ましくは470℃以上、より好ましくは480℃以上、さらに好ましくは485℃以上、特に好ましくは490℃以上であることができる。ポリイミド上にトランジスタを形成する等で、ポリイミド上にガスバリア膜等を形成する場合、耐熱性が低いと、ポリイミドとバリア膜との間で、ポリイミドの分解に伴うアウトガスにより膨れが生じることがある。 The polyimide obtained from the polyimide precursor composition of the present invention (polyimide of the present invention) is not particularly limited, but the 1% weight loss temperature, which is an index of heat resistance of the polyimide film, is preferably 470 ° C. or more, more preferably It can be 480 ° C or higher, more preferably 485 ° C or higher, particularly preferably 490 ° C or higher. When a gas barrier film or the like is formed on a polyimide by forming a transistor on the polyimide or the like, if the heat resistance is low, swelling may occur between the polyimide and the barrier film due to outgas accompanying decomposition of the polyimide.
 本発明のポリイミド前駆体組成物から得られるポリイミド、すなわち本発明のポリイミドは、高い透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線熱膨張係数を有することから、ディスプレイ用透明基板、タッチパネル用透明基板、或いは太陽電池用基板の用途において、好適に用いることができる。 The polyimide obtained from the polyimide precursor composition of the present invention, that is, the polyimide of the present invention has excellent properties such as high transparency, bending resistance and high heat resistance, and also has a very low linear thermal expansion coefficient. In a use of a transparent substrate for a display, a transparent substrate for a touch panel, or a substrate for a solar cell, it can be suitably used.
 以下では、本発明のポリイミド前駆体組成物を用いた、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムの製造方法の一例について述べる。ただし、以下の方法に限定されるものではない。 Hereinafter, an example of a method for producing a polyimide film / substrate laminate or a polyimide film using the polyimide precursor composition of the present invention will be described. However, it is not limited to the following method.
 例えばセラミック(ガラス、シリコン、アルミナなど)、金属(銅、アルミニウム、ステンレスなど)、耐熱プラスチックフィルム(ポリイミドフィルムなど)等の基材に、本発明のポリイミド前駆体組成物(ワニス)を流延し、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用いて、20~180℃、好ましくは20~150℃の温度範囲で乾燥する。次いで、得られたポリイミド前駆体フィルムを基材上で、もしくはポリイミド前駆体フィルムを基材上から剥離し、そのフィルムの端部を固定した状態で、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用い、例えば200~500℃、好ましくは最高加熱温度350℃超、より好ましくは380℃超、特に好ましくは400℃を超える温度で加熱イミド化することでポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを製造することができる。なお、得られるポリイミドフィルムが酸化劣化するのを防ぐため、加熱イミド化は、真空中、或いは不活性ガス中で行うことが望ましい。ここでのポリイミドフィルム(ポリイミドフィルム/基材積層体の場合は、ポリイミドフィルム層)の厚さは、以後の工程の搬送性のため、好ましくは1~250μm、より好ましくは1~150μmである。 For example, the polyimide precursor composition (varnish) of the present invention is cast on a substrate such as ceramic (glass, silicon, alumina, etc.), metal (copper, aluminum, stainless steel, etc.), heat resistant plastic film (polyimide film, etc.), etc. In a vacuum, in an inert gas such as nitrogen, or in the air, drying is performed in a temperature range of 20 to 180 ° C., preferably 20 to 150 ° C. using hot air or infrared rays. Next, the obtained polyimide precursor film is peeled off from the substrate or the polyimide precursor film from the substrate, and the end of the film is fixed, in vacuum, in an inert gas such as nitrogen, Alternatively, the polyimide film is heated and imidized using hot air or infrared rays in the air, for example, at 200 to 500 ° C., preferably at a maximum heating temperature of over 350 ° C., more preferably over 380 ° C., and particularly preferably over 400 ° C. / A substrate laminate or a polyimide film can be produced. In order to prevent the resulting polyimide film from being oxidized and deteriorated, it is desirable to carry out the heating imidization in a vacuum or in an inert gas. The thickness of the polyimide film here (in the case of a polyimide film / substrate laminate) is preferably 1 to 250 μm, more preferably 1 to 150 μm, because of the transportability in the subsequent steps.
 また、ポリイミド前駆体のイミド化反応は、前記のような加熱処理による加熱イミド化に代えて、ポリイミド前駆体をピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬するなどの化学的処理によって行うことも可能である。また、これらの脱水環化試薬をあらかじめ、ポリイミド前駆体組成物(ワニス)中に投入・攪拌し、それを基材上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体を作製することもでき、これを更に前記のような加熱処理することで、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを得ることができる。 Also, the imidization reaction of the polyimide precursor, instead of the heat imidation by the heat treatment as described above, contains a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution. In addition, these dehydrating cyclization reagents are previously charged and stirred in a polyimide precursor composition (varnish), and cast and dried on a base material to obtain a partially imidized polyimide precursor. A polyimide film / base material laminate or a polyimide film can be obtained by further heat treatment as described above.
 この様にして得られたポリイミドフィルム/基材積層体、もしくはポリイミドフィルムは、その片面もしくは両面に導電性層を形成することによって、フレキシブルな導電性基板を得ることができる。 A flexible conductive substrate can be obtained by forming a conductive layer on one side or both sides of the polyimide film / base laminate or the polyimide film obtained in this way.
 フレキシブルな導電性基板は、例えば次の方法によって得ることができる。すなわち、第一の方法としては、ポリイミドフィルム/基材積層体を基材からポリイミドフィルムを剥離せずに、そのポリイミドフィルム表面に、スパッタ、蒸着、印刷などによって、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を形成させ、導電性層/ポリイミドフィルム/基材の導電性積層体を製造する。その後必要に応じて、基材より導電性層/ポリイミドフィルム積層体を剥離することによって、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。 A flexible conductive substrate can be obtained, for example, by the following method. That is, as a first method, the polyimide film / substrate laminate is not peeled off from the substrate, and the surface of the polyimide film is sputtered, vapor-deposited, printed, etc. by a conductive substance (metal or metal oxide). A conductive layer of conductive layer / polyimide film / base material is produced. Then, if necessary, a transparent and flexible conductive substrate comprising the conductive layer / polyimide film laminate can be obtained by peeling the conductive layer / polyimide film laminate from the substrate.
 第二の方法としては、ポリイミドフィルム/基材積層体の基材からポリイミドフィルムを剥離して、ポリイミドフィルムを得、そのポリイミドフィルム表面に、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を、第一の方法と同様にして形成させ、導電性層/ポリイミドフィルム積層体、導電性層/ポリイミドフィルム積層体/導電性層からなる透明でフレキシブルな導電性基板を得ることができる。 As a second method, the polyimide film is peeled off from the substrate of the polyimide film / substrate laminate to obtain a polyimide film, and a conductive substance (metal or metal oxide, conductive organic substance, A conductive layer of conductive carbon, etc.) is formed in the same manner as in the first method, and is a transparent and flexible conductive layer comprising a conductive layer / polyimide film laminate and a conductive layer / polyimide film laminate / conductive layer. A substrate can be obtained.
 なお、第一、第二の方法において、必要に応じて、ポリイミドフィルムの表面に導電層を形成する前に、スパッタ、蒸着やゲル-ゾル法などによって、水蒸気、酸素などのガスバリヤ層、光調整層などの無機層を形成しても構わない。 In the first and second methods, if necessary, before forming a conductive layer on the surface of the polyimide film, a gas barrier layer such as water vapor or oxygen, light adjustment by sputtering, vapor deposition or gel-sol method, etc. An inorganic layer such as a layer may be formed.
 また、導電層は、フォトリソグラフィ法や各種印刷法、インクジェット法などの方法によって、回路が好適に形成される。 Further, the conductive layer is preferably formed with a circuit by a method such as a photolithography method, various printing methods, or an ink jet method.
 このようにして得られる本発明の基板は、本発明のポリイミドによって構成されたポリイミドフィルムの表面に、必要に応じてガスバリヤ層や無機層を介し、導電層の回路を有するものである。この基板は、フレキシブルであり、高い透明性、折り曲げ性、耐熱性が優れ、さらに極めて低い線熱膨張係数や優れた耐溶剤性を併せ有するので微細な回路の形成が容易である。したがって、この基板は、ディスプレイ用、タッチパネル用、または太陽電池用の基板として好適に用いることができる。 The substrate of the present invention thus obtained has a circuit of a conductive layer on the surface of a polyimide film composed of the polyimide of the present invention, with a gas barrier layer or an inorganic layer as necessary. This substrate is flexible, has excellent transparency, bendability, and heat resistance, and further has a very low linear thermal expansion coefficient and excellent solvent resistance, so that a fine circuit can be easily formed. Therefore, this board | substrate can be used suitably as a board | substrate for displays, a touch panel, or a solar cell.
 すなわち、この基板に、蒸着、各種印刷法、或いはインクジェット法などによって、さらにトランジスタ(無機トランジスタ、有機トランジスタ)が形成されてフレキシブル薄膜トランジスタが製造され、そして、表示デバイス用の液晶素子、EL素子、光電素子として好適に用いられる。 That is, a transistor (inorganic transistor, organic transistor) is further formed on this substrate by vapor deposition, various printing methods, an ink jet method or the like to manufacture a flexible thin film transistor, and a liquid crystal element, an EL element, a photoelectric transistor for a display device are manufactured. It is suitably used as an element.
 以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples and comparative examples. In addition, this invention is not limited to a following example.
 以下の各例において評価は次の方法で行った。 In the following examples, evaluation was performed by the following method.
<ポリイミド前駆体溶液(ワニス)の評価>
 [保存安定性]
 23℃でワニスを保存し、3日後に流動性のある均一な状態であれば○、
3日後に白濁、もしくはゲル化していれば×とする。
<Evaluation of polyimide precursor solution (varnish)>
[Storage stability]
If the varnish is stored at 23 ° C. and is in a uniform state with fluidity after 3 days,
If it becomes cloudy or gelled after 3 days, it is marked as x.
<ポリイミドフィルムの評価>
 [400nm光透過率、全光透過率]
 紫外可視分光光度計/V-650DS(日本分光製)を用いて、膜厚約10μmのポリイミド膜の400nmにおける光透過率と、全光透過率(380nm~780nmにおける平均透過率)を測定した。測定した400nmにおける光透過率と、全光透過率を反射率を10%としてランベルト・ベール式を用いて、10μm厚の400nmにおける光透過率と、全光透過率を算出した。算出式を下記に示す。
<Evaluation of polyimide film>
[400 nm light transmittance, total light transmittance]
Using a UV-visible spectrophotometer / V-650DS (manufactured by JASCO), the light transmittance at 400 nm and the total light transmittance (average transmittance from 380 nm to 780 nm) of a polyimide film having a thickness of about 10 μm were measured. The light transmittance at 400 nm and the total light transmittance were calculated using the Lambert-Beer formula with the total light transmittance being 10% and the light transmittance at 400 nm having a thickness of 10 μm and the total light transmittance were calculated. The calculation formula is shown below.
 Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
 Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
:反射率を10%としたときの10μm厚のポリイミドフィルムの400nmにおける光透過率(%)
’:測定した400nmにおける光透過率(%)
:反射率を10%としたときの10μm厚のポリイミドフィルムの全光透過率(%)
’:測定した全光透過率(%)
L:測定したポリイミドフィルムの膜厚(μm)
Log 10 ((T 1 +10) / 100) = 10 / L × (Log 10 ((T 1 ′ +10) / 100))
Log 10 ((T 2 +10) / 100) = 10 / L × (Log 10 ((T 2 ′ +10) / 100))
T 1 : Light transmittance (%) at 400 nm of a 10 μm-thick polyimide film with a reflectance of 10%
T 1 ′: measured light transmittance at 400 nm (%)
T 2 : Total light transmittance (%) of a 10 μm-thick polyimide film with a reflectance of 10%
T 2 ': Measured total light transmittance (%)
L: Film thickness of the measured polyimide film (μm)
 [弾性率、破断点伸度]
 膜厚約10μmのポリイミドフィルムをIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間長30mm、引張速度2mm/分で、初期の弾性率、破断点伸度を測定した。
[Elastic modulus, elongation at break]
A polyimide film with a film thickness of about 10 μm is punched into a IEC450 standard dumbbell shape to make a test piece. Using ENSILON manufactured by ORIENTEC, the initial elastic modulus and elongation at break are 30 mm between chucks and 2 mm / min in tensile speed. It was measured.
 [線熱膨張係数(CTE)]
 膜厚約10μmのポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、TMA/SS6100 (エスアイアイ・ナノテクノロジー株式会社製)を用い、チャック間長15mm、荷重2g、昇温速度20℃/分で500℃まで昇温した。得られたTMA曲線から、150℃から250℃までの線熱膨張係数を求めた。
[Linear thermal expansion coefficient (CTE)]
A polyimide film having a thickness of about 10 μm is cut into a strip having a width of 4 mm to form a test piece, and TMA / SS6100 (manufactured by SII Nano Technology Co., Ltd.) is used. The length between chucks is 15 mm, the load is 2 g, and the heating rate is 20 ° C. / The temperature was raised to 500 ° C. in minutes. The linear thermal expansion coefficient from 150 ° C. to 250 ° C. was determined from the obtained TMA curve.
 [1%重量減少温度]
 膜厚約10μmのポリイミドフィルムを試験片とし、TAインスツルメント社製 熱量計測定装置(Q5000IR)を用い、窒素気流中、昇温速度10℃/分で25℃から600℃まで昇温した。得られた重量曲線から、1%重量減少温度を求めた。
[1% weight loss temperature]
A polyimide film having a film thickness of about 10 μm was used as a test piece, and the temperature was raised from 25 ° C. to 600 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen stream using a calorimeter measuring device (Q5000IR) manufactured by TA Instruments. From the obtained weight curve, a 1% weight loss temperature was determined.
 以下の各例で使用した原材料の略称、純度等は、次のとおりである。 The abbreviations, purity, etc. of the raw materials used in the following examples are as follows.
 [ジアミン成分]
DABAN: 4,4’-ジアミノベンズアニリド〔純度:99.90%(GC分析)〕
PPD: p-フェニレンジアミン〔純度:99.9%(GC分析)〕
BAPB: 4,4’-ビス(4-アミノフェノキシ)ビフェニル〔純度:99.93%(HPLC分析)〕
 [テトラカルボン酸成分]
DNDAxx:(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸二無水物〔DNDAxxとしての純度:99.2%(GC分析)〕
[Diamine component]
DABAN: 4,4′-diaminobenzanilide [Purity: 99.90% (GC analysis)]
PPD: p-phenylenediamine [Purity: 99.9% (GC analysis)]
BAPB: 4,4′-bis (4-aminophenoxy) biphenyl [Purity: 99.93% (HPLC analysis)]
[Tetracarboxylic acid component]
DNDAxx: (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethanonaphthalene-2t, 3t, 6c, 7c-tetracarboxylic dianhydride [purity as DNDAxx: 99.2% (GC analysis) ]
 [イミダゾール・イミダゾリン化合物]
1,2-ジメチルイミダゾール
1-メチルイミダゾール
2-メチルイミダゾール
2-フェニルイミダゾール
イミダゾール
ベンゾイミダゾール
2-エチル-2-イミダゾリン
[Imidazole-imidazoline compound]
1,2-dimethylimidazole 1-methylimidazole 2-methylimidazole 2-phenylimidazoleimidazolebenzimidazole 2-ethyl-2-imidazoline
 [溶媒]
NMP: N-メチル-2-ピロリドン
DMAc: N,N-ジメチルアセトアミド
[solvent]
NMP: N-methyl-2-pyrrolidone DMAc: N, N-dimethylacetamide
 表1-1に実施例、比較例で使用したテトラカルボン酸成分、表1-2に実施例、比較例で使用したジアミン成分、表1-3に実施例、比較例で使用したイミダゾール・イミダゾリン化合物の構造式を記す。 Table 1-1 shows tetracarboxylic acid components used in Examples and Comparative Examples, Table 1-2 shows Examples and Comparative Examples, and Diamine Components Used in Comparative Examples, Table 1-3 Examples and Imidazole Imidazolines Used in Comparative Examples The structural formula of the compound is described.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 〔合成例1〕
 窒素ガスで置換した反応容器中にDABAN 11.36g(0.050モル)とPPD 5.41g(0.050モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の187.99gを加え、室温で1時間攪拌した。この溶液にDNDAxx 30.23g(0.100モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスA)を得た。
[Synthesis Example 1]
In a reaction vessel substituted with nitrogen gas, 11.36 g (0.050 mol) of DABAN and 5.41 g (0.050 mol) of PPD were charged, N-methyl-2-pyrrolidone was charged, and the total mass of monomers (diamine component and 187.999 g of an amount such that the total of the carboxylic acid components was 20% by mass was added and stirred at room temperature for 1 hour. To this solution, 30.23 g (0.100 mol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution (varnish A).
 〔合成例2〕
 窒素ガスで置換した反応容器中にDABAN 11.36g(0.050モル)とPPD 5.41g(0.050モル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の187.99gを加え、室温で1時間攪拌した。この溶液にDNDAxx 30.23g(0.100モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスB)を得た。
[Synthesis Example 2]
In a reaction vessel substituted with nitrogen gas, 11.36 g (0.050 mol) of DABAN and 5.41 g (0.050 mol) of PPD were charged, N, N-dimethylacetamide was charged, and the total mass of the monomer (diamine component and carbon 187.999 g of an amount such that the total of the acid components was 20% by mass was added and stirred at room temperature for 1 hour. To this solution, 30.23 g (0.100 mol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution (varnish B).
 〔合成例3〕
 窒素ガスで置換した反応容器中にDABAN 6.82g(0.030モル)とPPD 4.33g(0.040モル)とBAPB 11.05g(0.030モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の209.70gを加え、室温で1時間攪拌した。この溶液にDNDAxx 30.23g(0.100モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスC)を得た。
[Synthesis Example 3]
In a reaction vessel substituted with nitrogen gas, 6.82 g (0.030 mol) of DABAN, 4.33 g (0.040 mol) of PPD, and 11.05 g (0.030 mol) of BAPB were placed, and N-methyl-2- Pyrrolidone was added in an amount of 209.70 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 30.23 g (0.100 mol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution (varnish C).
 〔合成例4〕
 窒素ガスで置換した反応容器中にDABAN 15.91g(0.070モル)とBAPB 11.05g(0.030モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の228.76gを加え、室温で1時間攪拌した。この溶液にDNDAxx 30.23g(0.100モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスD)を得た。
[Synthesis Example 4]
In a reaction vessel substituted with nitrogen gas, 15.91 g (0.070 mol) of DABAN and 11.05 g (0.030 mol) of BAPB were charged, N-methyl-2-pyrrolidone was charged, and the total mass of monomers (diamine component and 228.76 g in such an amount that the total amount of carboxylic acid components was 20% by mass was added and stirred at room temperature for 1 hour. To this solution, 30.23 g (0.100 mol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution (varnish D).
 〔合成例5〕
 窒素ガスで置換した反応容器中にDABAN 9.09g(0.040モル)とPPD 4.33g(0.040モル)とBAPB 7.37g(0.020モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の204.06gを加え、室温で1時間攪拌した。この溶液にDNDAxx 30.23g(0.100モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスE)を得た。
[Synthesis Example 5]
In a reaction vessel purged with nitrogen gas, 9.09 g (0.040 mol) of DABAN, 4.33 g (0.040 mol) of PPD, and 7.37 g (0.020 mol) of BAPB were placed, and N-methyl-2- Pyrrolidone was added in an amount of 204.06 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 30.23 g (0.100 mol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution (varnish E).
 〔実施例1〕
 1,2-ジメチルイミダゾール 0.10g(1.0ミリモル)とN-メチル-2-ピロリドン 0.10gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 23.50g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は0.1等量である。
[Example 1]
0.10 g (1.0 mmol) of 1,2-dimethylimidazole and 0.10 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 23.50 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per mole of the repeating unit of the polyimide precursor is 0.1 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔実施例2〕
 1,2-ジメチルイミダゾール 0.38g(4.0ミリモル)とN-メチル-2-ピロリドン 0.38gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 23.50g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は0.4等量である。
[Example 2]
1,8-dimethylimidazole (0.38 g, 4.0 mmol) and N-methyl-2-pyrrolidone (0.38 g) were added to the reaction vessel to obtain a uniform solution. 23.50 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per 0.4 mole of the repeating unit of the polyimide precursor is 0.4 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔実施例3〕
 1,2-ジメチルイミダゾール 0.96g(10.0ミリモル)とN-メチル-2-ピロリドン 0.48gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 23.50g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は1.0等量である。
Example 3
0.96 g (10.0 mmol) of 1,2-dimethylimidazole and 0.48 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 23.50 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per 1.0 mole of the repeating unit of the polyimide precursor is 1.0 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔実施例4〕
 1,2-ジメチルイミダゾール 1.92g(20.0ミリモル)とN-メチル-2-ピロリドン 0.48gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 23.50g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は2.0等量である。
Example 4
1.92 g (20.0 mmol) of 1,2-dimethylimidazole and 0.48 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 23.50 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per 2.0 moles of repeating units of the polyimide precursor is 2.0 equivalents.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔比較例1〕
 PTFE製メンブレンフィルターでろ過した合成例1で得られたワニスAをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
[Comparative Example 1]
Varnish A obtained in Synthesis Example 1 filtered through a PTFE membrane filter was applied to a glass substrate and heated from room temperature to 440 ° C. as it was on a glass substrate in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) to thermally imidize. A colorless transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔実施例5〕
 1,2-ジメチルイミダゾール 0.10g(1.0ミリモル)とN,N-ジメチルアセトアミド 0.10gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 23.50g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は0.1等量である。
Example 5
0.10 g (1.0 mmol) of 1,2-dimethylimidazole and 0.10 g of N, N-dimethylacetamide were added to the reaction vessel to obtain a uniform solution. 23.50 g of varnish B obtained in Synthesis Example 2 (10 mmol with respect to the molecular weight of the polyimide precursor repeating unit in varnish B) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per mole of the repeating unit of the polyimide precursor is 0.1 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔実施例6〕
 1,2-ジメチルイミダゾール 0.38g(4.0ミリモル)とN,N-ジメチルアセトアミド 0.38gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 23.50g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は0.4等量である。
Example 6
A uniform solution was obtained by adding 0.38 g (4.0 mmol) of 1,2-dimethylimidazole and 0.38 g of N, N-dimethylacetamide to the reaction vessel. 23.50 g of varnish B obtained in Synthesis Example 2 (10 mmol with respect to the molecular weight of the polyimide precursor repeating unit in varnish B) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per 0.4 mole of the repeating unit of the polyimide precursor is 0.4 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔比較例2〕
 PTFE製メンブレンフィルターでろ過した合成例2で得られたワニスBをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
[Comparative Example 2]
Varnish B obtained in Synthesis Example 2 filtered through a PTFE membrane filter was applied to a glass substrate, and heated from room temperature to 440 ° C. as it was on a glass substrate in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) to thermally imidize. A colorless transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔実施例7〕
 1,2-ジメチルイミダゾール 0.19g(2.0ミリモル)とN-メチル-2-ピロリドン 0.19gを反応容器に加え均一な溶液を得た。その溶液に合成例3で得られたワニスC 26.21g(ワニスC中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は0.2等量である。
Example 7
0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. To the solution, 26.21 g of varnish C obtained in Synthesis Example 3 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish C) was added and stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔比較例3〕
 PTFE製メンブレンフィルターでろ過した合成例3で得られたワニスCをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
[Comparative Example 3]
Varnish C obtained in Synthesis Example 3 filtered through a PTFE membrane filter was applied to a glass substrate and heated from room temperature to 440 ° C. as it was on a glass substrate in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) to thermally imidize. A colorless transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔実施例8〕
 1,2-ジメチルイミダゾール 0.19g(2.0ミリモル)とN-メチル-2-ピロリドン 0.19gを反応容器に加え均一な溶液を得た。その溶液に合成例4で得られたワニスD 28.60g(ワニスD中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は0.2等量である。
Example 8
0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 28.60 g of varnish D obtained in Synthesis Example 4 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish D) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔比較例4〕
 PTFE製メンブレンフィルターでろ過した合成例4で得られたワニスDをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
[Comparative Example 4]
Varnish D obtained in Synthesis Example 4 filtered through a PTFE membrane filter was applied to a glass substrate, and heated from room temperature to 440 ° C. as it was on a glass substrate in a nitrogen atmosphere (oxygen concentration 200 ppm or less) to thermally imidize. A colorless transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-1.
 〔実施例9〕
 1,2-ジメチルイミダゾール 0.19g(2.0ミリモル)とN-メチル-2-ピロリドン 0.19gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 25.51g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は0.2等量である。
Example 9
0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-2.
 〔実施例10〕
 1-メチルイミダゾール 0.16g(2.0ミリモル)とN-メチル-2-ピロリドン 0.16gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 25.51g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1-メチルイミダゾールのモル数は0.2等量である。
Example 10
0.16 g (2.0 mmol) of 1-methylimidazole and 0.16 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1-methylimidazole per 0.2 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-2.
 〔実施例11〕
 2-メチルイミダゾール 0.16g(2.0ミリモル)とN-メチル-2-ピロリドン 0.16gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 25.51g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-メチルイミダゾールのモル数は0.2等量である。
Example 11
0.16 g (2.0 mmol) of 2-methylimidazole and 0.16 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 2-methylimidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-2.
 〔実施例12〕
 イミダゾール 0.14g(2.0ミリモル)とN-メチル-2-ピロリドン 0.14gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 25.51g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、イミダゾールのモル数は0.2等量である。
Example 12
0.14 g (2.0 mmol) of imidazole and 0.14 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of imidazole relative to 1 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-2.
 〔実施例13〕
 2-フェニルイミダゾール 0.29g(2.0ミリモル)とN-メチル-2-ピロリドン 0.29gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 25.51g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-フェニルイミダゾールのモル数は0.2等量である。
Example 13
0.29 g (2.0 mmol) of 2-phenylimidazole and 0.29 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 2-phenylimidazole per 0.2 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-2.
 〔実施例14〕
 ベンゾイミダゾール 0.24g(2.0ミリモル)とN-メチル-2-ピロリドン 0.24gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 25.51g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、ベンゾイミダゾールのモル数は0.2等量である。
Example 14
A uniform solution was obtained by adding 0.24 g (2.0 mmol) of benzimidazole and 0.24 g of N-methyl-2-pyrrolidone to the reaction vessel. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of benzimidazole per 0.2 mol of the repeating unit of the polyimide precursor is 0.2 equivalent.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。 A polyimide precursor solution filtered with a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 440 ° C. on the glass substrate to thermally imidize it. A transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-2.
 〔比較例5〕
 PTFE製メンブレンフィルターでろ過した合成例5で得られたワニスEをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
[Comparative Example 5]
Varnish E obtained in Synthesis Example 5 filtered through a PTFE membrane filter was applied to a glass substrate, and heated from room temperature to 440 ° C. on a glass substrate in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) to thermally imidize. A colorless transparent polyimide film / glass laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 μm.
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。 The results of measuring the properties of this polyimide film are shown in Table 2-2.
 〔比較例6〕
 2-エチル-2-イミダゾリン 0.10g(1.0ミリモル)とN-メチル-2-ピロリドン 0.90gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 25.51g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加えるとワニスがゲル化した。そのまま室温で3時間攪拌しても、均一なポリイミド前駆体溶液を得られなかった。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-エチル-2-イミダゾリンのモル数は0.1等量である。
[Comparative Example 6]
0.10 g (1.0 mmol) of 2-ethyl-2-imidazoline and 0.90 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. When 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol relative to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, the varnish gelled. Even if it was stirred at room temperature for 3 hours, a uniform polyimide precursor solution could not be obtained. When calculated from the charged amount, the number of moles of 2-ethyl-2-imidazoline per mole of the repeating unit of the polyimide precursor is 0.1 equivalent.
 〔比較例7〕
 2-エチル-2-イミダゾリン 0.20g(2.0ミリモル)とN-メチル-2-ピロリドン 1.80gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 25.51g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加えるとワニスがゲル化した。そのまま室温で3時間攪拌しても、均一なポリイミド前駆体溶液を得られなかった。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-エチル-2-イミダゾリンのモル数は0.2等量である。
[Comparative Example 7]
0.20 g (2.0 mmol) of 2-ethyl-2-imidazoline and 1.80 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. When 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol relative to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, the varnish gelled. Even if it was stirred at room temperature for 3 hours, a uniform polyimide precursor solution could not be obtained. When calculated from the charged amount, the number of moles of 2-ethyl-2-imidazoline per 0.2 mole of the repeating unit of the polyimide precursor is 0.2 equivalent.
 〔比較例8〕
 1,2-ジメチルイミダゾール 3.85g(40.0ミリモル)とN-メチル-2-ピロリドン 0.50gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 25.51g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールのモル数は4.0等量である。得られたポリイミド前駆体溶液を23℃で保管すると、3日目までにポリイミド前駆体溶液がゲル化した。
[Comparative Example 8]
1.85 g (40.0 mmol) of 1,2-dimethylimidazole and 0.50 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 25.51 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the number of moles of 1,2-dimethylimidazole per 4.0 moles of repeating units of the polyimide precursor is 4.0 equivalents. When the obtained polyimide precursor solution was stored at 23 ° C., the polyimide precursor solution gelled by the third day.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表2-1~2-2に示した結果から、イミダゾール系化合物を含むポリイミド前駆体組成物から得られたポリイミドは、より透明性に優れ、線熱膨張係数が小さいことが分かる(実施例1~4と比較例1、実施例5~6と比較例2、実施例7と比較例3、実施例8と比較例4、実施例9~14と比較例5)。また、イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満であると、保存安定性にも優れることが分かる(実施例9と比較例8)。 From the results shown in Tables 2-1 and 2-2, it can be seen that the polyimide obtained from the polyimide precursor composition containing the imidazole compound is superior in transparency and has a small linear thermal expansion coefficient (Example 1). To 4 and Comparative Example 1, Examples 5 to 6 and Comparative Example 2, Example 7 and Comparative Example 3, Example 8 and Comparative Example 4, Examples 9 to 14 and Comparative Example 5). Moreover, it turns out that it is excellent also in storage stability as content of an imidazole type compound is less than 4 mol with respect to 1 mol of repeating units of a polyimide precursor (Example 9 and Comparative Example 8).
 前記のとおり、本発明のポリイミド前駆体組成物から得られたポリイミドは、優れた光透過性、機械的特性を有すると共に、低線熱膨張係数を有しており、本発明のポリイミドフィルムは、ディスプレイ用途などの無色透明で微細な回路形成可能な透明基板として好適に用いることができる。 As described above, the polyimide obtained from the polyimide precursor composition of the present invention has excellent light transmittance and mechanical properties, and also has a low linear thermal expansion coefficient. It can be suitably used as a transparent substrate capable of forming a colorless and transparent and fine circuit for display applications and the like.
 本発明によって、同一組成のポリイミドでも、より透明性に優れ、低い線熱膨張係数を有するポリイミド、または、より透明性に優れ、低い線熱膨張係数を有し、機械的特性にも優れたポリイミドが得られるポリイミド前駆体組成物(ポリイミド前駆体を含む溶液組成物)、及びポリイミドの製造方法を提供することができる。このポリイミド前駆体組成物から得られるポリイミドは、透明性が高く、且つ低線熱膨張係数であって微細な回路の形成が容易であるので、特にディスプレイ用、タッチパネル用、太陽電池用などの基板を形成するために好適に用いることができる。 According to the present invention, even a polyimide having the same composition is superior in transparency and has a low linear thermal expansion coefficient, or more transparent, has a low linear thermal expansion coefficient, and has excellent mechanical properties. Can be provided, and a polyimide precursor composition (solution composition containing a polyimide precursor) and a method for producing polyimide can be provided. The polyimide obtained from this polyimide precursor composition is highly transparent and has a low linear thermal expansion coefficient, so that it is easy to form a fine circuit. It can be suitably used to form.

Claims (13)

  1.  下記化学式(1-1)で表される繰り返し単位を含むポリイミド前駆体と、
     イミダゾール系化合物を含み、
     イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満であることを特徴とするポリイミド前駆体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは芳香族環を有する2価の基であり、X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
     
    A polyimide precursor containing a repeating unit represented by the following chemical formula (1-1);
    Including imidazole compounds,
    Content of an imidazole type compound is less than 4 mol with respect to 1 mol of repeating units of a polyimide precursor, The polyimide precursor composition characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, A is a divalent group having an aromatic ring, and X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms. .)
  2.  前記ポリイミド前駆体が、下記化学式(1-2)で表される繰り返し単位を含むことを特徴とする請求項1に記載のポリイミド前駆体組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aは芳香族環を有する2価の基であり、X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
     
    The polyimide precursor composition according to claim 1, wherein the polyimide precursor includes a repeating unit represented by the following chemical formula (1-2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, A is a divalent group having an aromatic ring, and X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms. .)
  3.  前記化学式(1-1)または前記化学式(1-2)中のAが下記化学式(1-A)で表される基であることを特徴とする請求項1又は2に記載のポリイミド前駆体組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、mは0~3の整数を、nは0~3の整数をそれぞれ独立に示す。Y、Y、Yはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、Q、Rはそれぞれ独立に直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種を示す。)
     
    The polyimide precursor composition according to claim 1 or 2, wherein A in the chemical formula (1-1) or the chemical formula (1-2) is a group represented by the following chemical formula (1-A). object.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, m represents an integer of 0 to 3, and n represents an integer of 0 to 3 independently. Y 1 , Y 2 , and Y 3 are each independently a hydrogen atom, a methyl group, or a trifluoromethyl group. One selected from the group, Q and R are each independently a direct bond, or selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO— 1 type is shown.)
  4.  このポリイミド前駆体組成物から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が75%以上であることを特徴とする請求項1~3のいずれかに記載のポリイミド前駆体組成物。 The polyimide precursor according to any one of claims 1 to 3, wherein the polyimide obtained from the polyimide precursor composition has a light transmittance at a wavelength of 400 nm of a film having a thickness of 10 µm of 75% or more. Composition.
  5.  前記イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して0.05モル以上2モル以下であることを特徴とする請求項1~4のいずれかに記載のポリイミド前駆体組成物。 5. The polyimide precursor composition according to claim 1, wherein the content of the imidazole compound is 0.05 mol or more and 2 mol or less with respect to 1 mol of the repeating unit of the polyimide precursor. object.
  6.  前記イミダゾール系化合物が、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、イミダゾール、またはベンゾイミダゾールのいずれかであることを特徴とする請求項1~5のいずれかに記載のポリイミド前駆体組成物。 6. The imidazole compound is any one of 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, imidazole, and benzimidazole. A polyimide precursor composition according to claim 1.
  7.  請求項1~6のいずれかに記載のポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化することを特徴とするポリイミドの製造方法。 A method for producing a polyimide, characterized in that the polyimide precursor composition according to any one of claims 1 to 6 is heat-treated at a maximum heating temperature exceeding 350 ° C to imidize the polyimide precursor.
  8.  請求項1~6のいずれかに記載のポリイミド前駆体組成物を基材上に塗布する工程と、
     基材上のポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化する工程と
    を有することを特徴とする請求項7に記載のポリイミドの製造方法。
    Applying the polyimide precursor composition according to any one of claims 1 to 6 on a substrate;
    The method for producing a polyimide according to claim 7, further comprising a step of heat-treating the polyimide precursor composition on the substrate at a maximum heating temperature exceeding 350 ° C. to imidize the polyimide precursor.
  9.  前記加熱処理の最高加熱温度が400℃を超えることを特徴とする請求項7又は8に記載のポリイミドの製造方法。 The method for producing polyimide according to claim 7 or 8, wherein a maximum heating temperature of the heat treatment exceeds 400 ° C.
  10.  請求項7~9のいずれかに記載の方法により製造されるポリイミド。 A polyimide produced by the method according to any one of claims 7 to 9.
  11.  厚さ10μmのフィルムでの波長400nmの光透過率が75%以上であることを特徴とする請求項10に記載のポリイミド。 The polyimide according to claim 10, wherein a light transmittance at a wavelength of 400 nm in a film having a thickness of 10 μm is 75% or more.
  12.  請求項7~9のいずれかに記載の方法により製造されるポリイミドフィルム。 A polyimide film produced by the method according to any one of claims 7 to 9.
  13.  請求項10又は11に記載のポリイミド、又は請求項12に記載のポリイミドフィルムを含むことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。 A substrate for a display, a touch panel, or a solar cell, comprising the polyimide according to claim 10 or 11, or the polyimide film according to claim 12.
PCT/JP2014/081258 2013-11-27 2014-11-26 Polyimide precursor composition, polyimide manufacturing process, polyimide, polyimide film, and base material WO2015080156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-245483 2013-11-27
JP2013245483 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015080156A1 true WO2015080156A1 (en) 2015-06-04

Family

ID=53199095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081258 WO2015080156A1 (en) 2013-11-27 2014-11-26 Polyimide precursor composition, polyimide manufacturing process, polyimide, polyimide film, and base material

Country Status (2)

Country Link
TW (1) TW201529728A (en)
WO (1) WO2015080156A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066519A (en) * 2016-09-30 2022-04-28 東京応化工業株式会社 Resin composition, method for producing cured product, and cured product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267030A (en) * 1985-05-22 1986-11-26 Toray Ind Inc Liquid crystal display element
JPH0485363A (en) * 1990-07-27 1992-03-18 Nippon Steel Chem Co Ltd Resin composition and printed wiring board
JP2008115378A (en) * 2006-10-10 2008-05-22 Nippon Steel Chem Co Ltd Method for forming polyimide resin layer
JP2008238572A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method of manufacturing flexible laminate plate
WO2012124664A1 (en) * 2011-03-11 2012-09-20 宇部興産株式会社 Polyimide precursor and polyimide
JP2013166929A (en) * 2012-01-20 2013-08-29 Ube Industries Ltd Polyimide precursor and polyimide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267030A (en) * 1985-05-22 1986-11-26 Toray Ind Inc Liquid crystal display element
JPH0485363A (en) * 1990-07-27 1992-03-18 Nippon Steel Chem Co Ltd Resin composition and printed wiring board
JP2008115378A (en) * 2006-10-10 2008-05-22 Nippon Steel Chem Co Ltd Method for forming polyimide resin layer
JP2008238572A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method of manufacturing flexible laminate plate
WO2012124664A1 (en) * 2011-03-11 2012-09-20 宇部興産株式会社 Polyimide precursor and polyimide
JP2013166929A (en) * 2012-01-20 2013-08-29 Ube Industries Ltd Polyimide precursor and polyimide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066519A (en) * 2016-09-30 2022-04-28 東京応化工業株式会社 Resin composition, method for producing cured product, and cured product
JP7376630B2 (en) 2016-09-30 2023-11-08 東京応化工業株式会社 Resin composition, method for producing cured product, and cured product

Also Published As

Publication number Publication date
TW201529728A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
JP6721070B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JP6531812B2 (en) Polyimide precursor and polyimide
JP6669074B2 (en) Polyimide film, polyimide precursor, and polyimide
JP6607193B2 (en) Polyimide precursor, polyimide, and polyimide film
JP5978288B2 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
JP6283954B2 (en) Polyimide precursor, polyimide, varnish, polyimide film, and substrate
JP6627510B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
WO2015053312A1 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
WO2014208704A1 (en) Polyimide precursor and polyimide
JP6283953B2 (en) Polyimide precursor, polyimide, varnish, polyimide film, and substrate
JP7047852B2 (en) Polyimide precursors, polyimides, polyimide films, varnishes, and substrates
JP6461470B2 (en) Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
WO2019131896A1 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
JP6638744B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
WO2015080156A1 (en) Polyimide precursor composition, polyimide manufacturing process, polyimide, polyimide film, and base material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP