JP2008115378A - Method for forming polyimide resin layer - Google Patents

Method for forming polyimide resin layer Download PDF

Info

Publication number
JP2008115378A
JP2008115378A JP2007263980A JP2007263980A JP2008115378A JP 2008115378 A JP2008115378 A JP 2008115378A JP 2007263980 A JP2007263980 A JP 2007263980A JP 2007263980 A JP2007263980 A JP 2007263980A JP 2008115378 A JP2008115378 A JP 2008115378A
Authority
JP
Japan
Prior art keywords
resin layer
polyimide
polyimide resin
nitrogen
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007263980A
Other languages
Japanese (ja)
Other versions
JP5417595B2 (en
Inventor
Takeshi Sasaki
健 佐々木
Masakazu Katayama
正和 片山
Masahiko Takeuchi
正彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2007263980A priority Critical patent/JP5417595B2/en
Publication of JP2008115378A publication Critical patent/JP2008115378A/en
Application granted granted Critical
Publication of JP5417595B2 publication Critical patent/JP5417595B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a polyimide resin layer having excellent dimensional stability in a short heat-treatment period and, consequently, to remarkably increase the productivity of a flexible laminated sheet having the polyimide resin layer. <P>SOLUTION: A polyimide precursor resin having a structural unit expressed by formula (1) and a nitrogen-containing aromatic heterocyclic compound as a cure accelerator of the polyimide precursor resin are dissolved in an organic polar solvent, the obtained solution containing the polyimide precursor resin is applied to a substrate and the product is dried and imidized by the subsequent heat-treatment to complete the formation of a polyimide resin layer within a temperature range of 280-380&deg;C while controlling the linear thermal expansion coefficient of the obtained polyimide resin layer within the range of 10-20 ppm/K. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、ポリイミド前駆体樹脂を塗布・乾燥し、加熱処理によってポリイミド樹脂層を形成する方法又はポリイミド樹脂フィルムを製造する方法に関するものであり、より詳しくは、硬化促進剤を使用したポリイミド樹脂層の形成方法に関するものである。   The present invention relates to a method of applying a polyimide precursor resin, drying, and forming a polyimide resin layer by heat treatment or a method of manufacturing a polyimide resin film, and more specifically, a polyimide resin layer using a curing accelerator. It is related with the formation method of this.

フレキシブル基板の主要材料である銅張積層板は、導電性金属箔(以下、単に金属箔という)と絶縁層から構成され、可とう性を有することから、柔軟性や屈曲性が要求される部分の配線基板に用いられ、電子機器の小型化、軽量化に貢献している。銅張積層板の中でも、絶縁層にポリイミド樹脂を用いたものは、耐熱性や寸法安定性に優れることから、携帯電話やデジタルカメラなどの情報端末機等の配線基板に広く使用されている。これらのデジタル情報端末の需要は年々拡大を続けており、今後もさらに増加することが予想されるために、銅張積層板の生産数量を増加させることが製品供給上重要となる。   Copper-clad laminates, the main material of flexible substrates, are composed of conductive metal foil (hereinafter simply referred to as metal foil) and an insulating layer, and have flexibility, so parts that require flexibility and flexibility This contributes to reducing the size and weight of electronic devices. Among copper-clad laminates, those using a polyimide resin as an insulating layer are widely used in wiring boards for information terminals such as mobile phones and digital cameras because they are excellent in heat resistance and dimensional stability. Since the demand for these digital information terminals continues to increase year by year and is expected to increase further in the future, increasing the production quantity of copper clad laminates is important for product supply.

銅張積層板を製造する方法の一つとして、ポリイミド前駆体樹脂溶液を金属箔上に塗工し、硬化するキャスト法が挙げられる。このキャスト法は、樹脂溶液を金属箔上に塗工する工程、樹脂中の溶剤を除去する乾燥工程とポリイミド前駆体樹脂からポリイミドに変換するイミド化工程(硬化工程ともいう)で構成される。ポリイミド前駆体樹脂を閉環してポリイミド樹脂を製造する方法としては熱的閉環法と化学閉環法が知られている。化学閉環法は、熱的閉環法では困難な低い温度領域で閉環する方法として提案がなされている。例えば、特開昭59−223727号公報(特許文献1)、特開昭60−15426号公報(特許文献2)が挙げられる。しかしながら、これらの製造方法では、低温領域で閉環を行うため、処理時間を長くしなければならないという問題があった。   One method for producing a copper-clad laminate is a casting method in which a polyimide precursor resin solution is applied onto a metal foil and cured. This casting method includes a step of coating a resin solution on a metal foil, a drying step of removing a solvent in the resin, and an imidization step (also referred to as a curing step) for converting the polyimide precursor resin into polyimide. As a method for producing a polyimide resin by closing a polyimide precursor resin, a thermal ring closing method and a chemical ring closing method are known. The chemical ring closure method has been proposed as a method for ring closure in a low temperature region, which is difficult with the thermal ring closure method. For example, JP-A-59-223727 (Patent Document 1) and JP-A-60-15426 (Patent Document 2) can be mentioned. However, these manufacturing methods have a problem that the processing time must be increased because ring closure is performed in a low temperature region.

また、熱的閉環法と化学閉環法を併用した方法も提案されている。例えば、特開昭61−181833号公報(特許文献3)及び特開平7−278298号公報(特許文献4)が挙げられる。これらの製造方法では、熱線膨張係数の小さいポリイミド樹脂を製造する方法を開示しているが、250℃以下の温度制御を必要とし、また加熱処理時間を長くしなければならないという問題があった。また、低温で有効とされる硬化促進剤も提案されている。例えば、特開2004−115813号公報(特許文献5)が挙げられる。しかしながら、このような製造方法では、200℃以上の加熱閉環処理において、寸法安定性のあるポリイミド樹脂を製造するためには、十分に注意を払う必要があり、加熱処理時間の短縮に困難を要した。また、特開2004−359868号公報(特許文献6)では、硬化促進剤を用いた熱可塑性ポリイミド樹脂の製造方法について開示している。しかしながら、このような熱可塑性ポリイミド樹脂は、熱線膨張係数が高いため、寸法安定性の制御が困難であった。   In addition, a method using both the thermal ring closure method and the chemical ring closure method has been proposed. For example, JP-A-61-181833 (Patent Document 3) and JP-A-7-278298 (Patent Document 4) can be mentioned. In these production methods, methods for producing a polyimide resin having a small coefficient of thermal linear expansion are disclosed, but there is a problem that a temperature control of 250 ° C. or lower is required and the heat treatment time must be lengthened. In addition, a curing accelerator effective at a low temperature has been proposed. For example, JP 2004-115813 A (Patent Document 5) is cited. However, in such a production method, it is necessary to pay sufficient attention to produce a dimensionally stable polyimide resin in a heat ring closure process at 200 ° C. or higher, and it is difficult to shorten the heat treatment time. did. Japanese Patent Laying-Open No. 2004-359868 (Patent Document 6) discloses a method for producing a thermoplastic polyimide resin using a curing accelerator. However, since such a thermoplastic polyimide resin has a high coefficient of thermal linear expansion, it has been difficult to control dimensional stability.

特開昭59−223727号公報JP 59-223727 A 特開昭60−15426号公報Japanese Patent Laid-Open No. 60-15426 特開昭61−181833号公報JP 61-181833 A 特開平7−278298号公報JP 7-278298 A 特開2004−115813号公報JP 2004-115815 A 特開2004−359868号公報JP 2004-359868 A

熱線膨張係数の小さいポリイミド樹脂を形成する場合、従来はポリイミド前駆体樹脂をイミド化させるために、加熱処理時間を長くしなければならず、生産性が低下するという問題がある。   In the case of forming a polyimide resin having a small coefficient of thermal linear expansion, conventionally, in order to imidize the polyimide precursor resin, it is necessary to lengthen the heat treatment time, resulting in a problem that productivity is lowered.

本発明は、係る問題点を解決すべく検討した結果なされたものであり、ポリイミド樹脂層の形成方法において、ポリイミド前駆体樹脂溶液を加熱処理する時間を短縮させ、しかも寸法安定性に優れたポリイミド樹脂層を提供することを目的とする。   The present invention has been made as a result of studies to solve such problems, and in the method for forming a polyimide resin layer, the polyimide precursor resin solution is shortened in the time for heat treatment, and has excellent dimensional stability. An object is to provide a resin layer.

本発明者らは、上記の課題を解決するため検討を重ねた結果、ポリイミド前駆体樹脂を特定の構造とし、高温で有効な硬化促進剤を併用することで、熱的閉環法と化学閉環法を有効に利用できる製造方法を見出し、本発明を完成するに至った。   As a result of repeated investigations to solve the above problems, the present inventors have made a polyimide precursor resin a specific structure, and in combination with a curing accelerator effective at high temperature, a thermal ring closure method and a chemical ring closure method. The present inventors have found a production method that can effectively utilize the above and have completed the present invention.

すなわち、本発明は、下記式(1)で表される構造単位を有するポリイミド前駆体樹脂及びポリイミド前駆体樹脂の硬化促進剤を有機極性溶媒に溶解したポリイミド前駆体樹脂含有溶液を基材上に塗布し、続く熱処理で乾燥及びイミド化によるポリイミド樹脂層の形成を280〜380℃の範囲内で完結し、形成されたポリイミド樹脂層の熱線膨張係数を10〜20ppm/Kの範囲内に制御するポリイミド樹脂層の形成方法であって、前記硬化促進剤は、該複素環中に少なくとも1つのイミンを有する含窒素複素環式芳香族化合物であり、該含窒素複素環式芳香族化合物は、窒素が2つ以上の単環の5員複素環若しくは6員複素環化合物、窒素が1つの複素環に置換基が結合した単環の6員複素環化合物、又は縮合環を有する該含窒素5員環若しくは6員環の縮合複素環化合物から選らばれる該含窒素複素環式芳香族化合物であることを特徴とするポリイミド樹脂層の形成方法である。   That is, the present invention provides a polyimide precursor resin-containing solution in which a polyimide precursor resin having a structural unit represented by the following formula (1) and a curing accelerator for polyimide precursor resin are dissolved in an organic polar solvent on a substrate. The polyimide resin layer is formed by applying and drying and imidization by subsequent heat treatment within a range of 280 to 380 ° C., and the thermal expansion coefficient of the formed polyimide resin layer is controlled within a range of 10 to 20 ppm / K. A method for forming a polyimide resin layer, wherein the curing accelerator is a nitrogen-containing heterocyclic aromatic compound having at least one imine in the heterocyclic ring, and the nitrogen-containing heterocyclic aromatic compound is nitrogen 2 or more monocyclic 5-membered or 6-membered heterocyclic compounds, nitrogen is a monocyclic 6-membered heterocyclic compound in which a substituent is bonded to one heterocyclic ring, or the nitrogen-containing 5-membered compound having a condensed ring Environment Is a method for forming a polyimide resin layer, which is a nitrogen-containing heterocyclic aromatic compound Bareru independent from fused heterocyclic compound 6-membered ring.

Figure 2008115378
Figure 2008115378
式(1)中、Ar1は式(2)又は式(3)で表される2価の芳香族基を示し、Ar2は式(4)又は式(5)で表される4価の芳香族基を示し、式(2)〜式(3)において、R1は独立に炭素数1〜6の1価の炭化水素基又はアルコキシ基を示し、nは独立に0〜4の整数を示し、式(4)〜式(5)において、Xは独立に単結合、又は-(CH2)m-、-O-、-S-、-SO2-、-NH-、-CO-若しくは-CONH-から選ばれる2価の基(Y)を示し、mは独立に1〜5の整数を示すが、Ar21モルに対して2価の基(Y)を0.2〜0.6モル含む。
Figure 2008115378
Figure 2008115378
In Formula (1), Ar 1 represents a divalent aromatic group represented by Formula (2) or Formula (3), and Ar 2 represents a tetravalent group represented by Formula (4) or Formula (5). Represents an aromatic group, and in formulas (2) to (3), R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and n represents an integer of 0 to 4 independently. In the formulas (4) to (5), X is independently a single bond, or — (CH 2 ) m—, —O—, —S—, —SO 2 —, —NH—, —CO— or represents a divalent group (Y) is selected from -CONH-, m is an integer of 1 to 5 independently, but divalent groups relative Ar 2 1 mole of the (Y) from 0.2 to 0. Contains 6 moles.

上記含窒素複素環式芳香族化合物としては、水溶液中でのプロトン錯体の酸解離指数(pKa)が5.5〜7.5の範囲であり、ポリイミド前駆体樹脂の硬化促進剤として作用する置換若しくは非置換のイミダゾール、2−ピコリン、N−メチルイミダゾール及び2,6−ルチジンから選択された少なくとも1種の含窒素複素環化合物が好ましく挙げられる。   As the nitrogen-containing heterocyclic aromatic compound, the acid dissociation index (pKa) of the proton complex in an aqueous solution is in the range of 5.5 to 7.5, and it is a substituted or unsubstituted that acts as a curing accelerator for the polyimide precursor resin. Preferable examples include at least one nitrogen-containing heterocyclic compound selected from imidazole, 2-picoline, N-methylimidazole and 2,6-lutidine.

また、本発明は、ポリイミド樹脂層の熱線膨張係数が15〜20ppm/K、引張り弾性率が3〜6GPaの範囲内にある上記のポリイミド樹脂層の形成方法である。更に、本発明は、上記のポリイミド樹脂層の形成方法で得られたポリイミド樹脂層を有することを特徴とする積層体である。更にまた、本発明は、上記の積層体からポリイミド樹脂層を単離することを特徴とするポリイミド樹脂フィルムの製造方法である。   Moreover, this invention is a formation method of said polyimide resin layer in which the thermal linear expansion coefficient of a polyimide resin layer is 15-20 ppm / K, and the tensile elasticity modulus exists in the range of 3-6 GPa. Furthermore, this invention is a laminated body characterized by having the polyimide resin layer obtained by the formation method of said polyimide resin layer. Furthermore, this invention is a manufacturing method of the polyimide resin film characterized by isolating a polyimide resin layer from said laminated body.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において用いられるポリイミド前駆体樹脂は、一般に、ジアミンと酸無水物を反応させて製造されるので、ジアミンと酸無水物を説明することにより、ポリイミド前駆体樹脂の具体例が理解される。ポリイミド前駆体樹脂は、上記式(1)で表される構造単位を有するが、Ar1はジアミンの残基ということができ、Ar2は酸無水物の残基ということができる。式(1)で表される構造単位は、式(2)又は(3)で表される基を有するジアミンの1種若しくは2種以上のジアミンと、式(4)又は(5)で表される基を有する酸無水物の1種若しくは2種以上の酸無水物を反応させて得られる。ポリイミド前駆体樹脂(PA)は、式(1)で表される構造単位を単独重合体中に存在しても、共重合体の構造単位として存在してもよく、構造単位を複数有する共重合体である場合は、ブロックとして存在しても、ランダムに存在してもよい。式(1)で表される構造単位は複数あるが、1種であっても2種以上であってもよい。有利には、式(1)で表される構造単位を主成分とすることであり、好ましくは60モル%以上、より好ましくは80モル%以上含むポリイミド前駆体樹脂であることがよい。 Since the polyimide precursor resin used in the present invention is generally produced by reacting a diamine and an acid anhydride, a specific example of the polyimide precursor resin can be understood by explaining the diamine and the acid anhydride. The polyimide precursor resin has a structural unit represented by the above formula (1), but Ar 1 can be referred to as a diamine residue, and Ar 2 can be referred to as an acid anhydride residue. The structural unit represented by the formula (1) is represented by one or more diamines having a group represented by the formula (2) or (3) and the formula (4) or (5). It can be obtained by reacting one or two or more acid anhydrides having an acid group. In the polyimide precursor resin (PA), the structural unit represented by the formula (1) may be present in a homopolymer or as a structural unit of a copolymer, and a copolymer having a plurality of structural units. When they are combined, they may exist as blocks or randomly. There are a plurality of structural units represented by the formula (1), but they may be one type or two or more types. Advantageously, the main component is the structural unit represented by the formula (1), and it is preferably a polyimide precursor resin containing 60 mol% or more, more preferably 80 mol% or more.

式(1)中、Ar1は、式(2)又は(3)で表される2価の芳香族基を示すが、これらは剛直な構造を与えるため、ポリイミド樹脂層としての低熱膨張特性を向上させることができる。式(2)又は(3)で表される2価の芳香族基は1種であっても2種以上であってもよい。このような構造を有するポリイミド前駆体樹脂は熱的閉環法を好適に利用でき、加熱温度を制御することによって熱線膨張係数を低く抑えることが可能となる。また、Ar1中のR1は独立に炭素数1〜6の1価の炭化水素基又はアルコキシ基を示すが、炭素数1〜2のアルキル基又はアルコキシ基が好ましく、nは独立に0〜4の整数であるが、0〜1の整数が好ましい。更に好ましくは、下式(6)又は(7)で表される構造単位である。

Figure 2008115378
In the formula (1), Ar 1 represents a divalent aromatic group represented by the formula (2) or (3). Since these give a rigid structure, low thermal expansion characteristics as a polyimide resin layer are exhibited. Can be improved. The divalent aromatic group represented by the formula (2) or (3) may be one type or two or more types. The polyimide precursor resin having such a structure can suitably use the thermal ring closure method, and the thermal expansion coefficient can be kept low by controlling the heating temperature. R 1 in Ar 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, preferably an alkyl group or alkoxy group having 1 to 2 carbon atoms, and n is independently 0 to 0. Although it is an integer of 4, the integer of 0-1 is preferable. More preferably, it is a structural unit represented by the following formula (6) or (7).
Figure 2008115378

具体例としては、下式(8)、(9)又は(10)で表されるジアミンの残基が好ましく挙げられる。

Figure 2008115378
As a specific example, a diamine residue represented by the following formula (8), (9) or (10) is preferably exemplified.
Figure 2008115378

また、式(1)中のAr2は、式(4)又は式(5)で表される4価の芳香族基を示す。式(4)又は式(5)で表される4価の芳香族基は1種であっても2種以上であってもよい。式(4)又は式(5)において、Xは独立に単結合又は2価の基(Y)である。ここで、2価の基(Y)は、-(CH2)m-、-O-、-S-、-SO2-、-NH-、-CO-若しくは-CONH-から選ばれる少なくとも1種の基であり、mは1〜5の整数である。そして、2価の基(Y)は、柔軟な構造を与えるため、剛直な構造を与える単結合との割合を制御することにより、バランスのとれたポリイミド樹脂を与える。そのため、2価の基(Y)の合計はAr21モルに対して0.2〜0.6モル含む。 Ar 2 in formula (1) represents a tetravalent aromatic group represented by formula (4) or formula (5). The tetravalent aromatic group represented by the formula (4) or the formula (5) may be one type or two or more types. In formula (4) or formula (5), X is independently a single bond or a divalent group (Y). Here, the divalent group (Y) is at least one selected from — (CH 2 ) m—, —O—, —S—, —SO 2 —, —NH—, —CO— or —CONH—. M is an integer of 1-5. Since the divalent group (Y) gives a flexible structure, a balanced polyimide resin is given by controlling the ratio of a single bond that gives a rigid structure. Therefore, the sum of the divalent group (Y) contains 0.2 to 0.6 moles relative to Ar 2 1 mol.

すなわち、Ar2は、式(4)又は式(5)で表される4価の芳香族基であるが、式(4)は1つのXを有し、式(5)は2つのXを有するので、ポリイミド前駆体樹脂中のAr2が、式(4)をAモル、式(5)をBモル含み、Ar21モルの場合は、Xのモル数はA+2Bと計算される(但し、A+B=1モル)。Xのモル数A+2Bの内、2価の基(Y)のモル数Yが0.2〜0.6モルであり、単結合のモル数はA+2B−Yであると理解される。 That is, Ar 2 is a tetravalent aromatic group represented by formula (4) or formula (5), but formula (4) has one X, and formula (5) has two X Therefore, when Ar 2 in the polyimide precursor resin contains A mole of formula (4), B mole of formula (5), and 1 mole of Ar 2 , the number of moles of X is calculated as A + 2B (however, , A + B = 1 mol). It is understood that the mole number Y of the divalent group (Y) is 0.2 to 0.6 moles in the mole number A + 2B of X, and the mole number of the single bond is A + 2B−Y.

なお、2価の基(Y)を、Ar2の1モルに対して0.2〜0.6モル含むという意味について、別の観点から説明する。特に限定されないが、例えば、ジアミン(1モル)と酸無水物(1モル)とを反応させてポリイミド前駆体樹脂を製造するとすれば、ジアミン(1モル)に対して、下式(11)又は(12)で表される酸無水物を合計で0.2〜0.6モル、そして下式(13)又は(14)で表される酸無水物を合計で0.4〜0.8モル反応させればよい。あるいは、下式(15)で表される酸無水物を0.1〜0.3モル、そして下式(13)又は(14)で表される酸無水物を合計で0.7〜0.9モル反応させればよい。 The meaning that the divalent group (Y) is contained in an amount of 0.2 to 0.6 mol relative to 1 mol of Ar 2 will be described from another viewpoint. Although not particularly limited, for example, if a polyimide precursor resin is produced by reacting a diamine (1 mol) with an acid anhydride (1 mol), the following formula (11) or The acid anhydride represented by (12) is 0.2 to 0.6 mol in total, and the acid anhydride represented by the following formula (13) or (14) is 0.4 to 0.8 mol in total What is necessary is just to make it react. Alternatively, the acid anhydride represented by the following formula (15) is 0.1 to 0.3 mol, and the acid anhydride represented by the following formula (13) or (14) is 0.7 to 0.00 in total. What is necessary is just to make 9 mol react.

Figure 2008115378
Figure 2008115378

屈曲性基である2価の基(Y)は、ポリイミド樹脂層として高熱膨張特性を向上させることができる。ポリイミド前駆体樹脂中に含まれる2価の基(Y)の割合が多くなる程、得られるポリイミド樹脂層は熱可塑性としての性質が高くなる反面、熱的閉環法を利用した加熱温度の制御によって、熱線膨張係数を低く抑えることが困難となるが、2価の基(Y)が上記範囲内であれば、後述する硬化促進剤が効果的に作用し、ポリイミド前駆体樹脂のイミド化を280℃〜380℃の範囲内で完結し、形成されるポリイミド樹脂層の熱線膨張係数を10〜20ppm/Kの範囲内にある制御することができる。このようなポリイミド樹脂層を与えるポリイミド前駆体樹脂は、2価の基(Y)が-CH2 -、-(CH2)2-、-O-、-S-、-SO2-、-NH-、-CO-若しくは-CONH-であることが好ましい。更に好ましくは、Ar2が下式(16)又は(17)で表される構造単位である。

Figure 2008115378
The divalent group (Y) which is a flexible group can improve the high thermal expansion property as a polyimide resin layer. The higher the proportion of the divalent group (Y) contained in the polyimide precursor resin, the higher the properties of the resulting polyimide resin layer as thermoplastic, but by controlling the heating temperature using a thermal ring closure method. However, if the divalent group (Y) is within the above range, it becomes difficult to keep the thermal expansion coefficient low, and the curing accelerator described later acts effectively, and imidation of the polyimide precursor resin is 280. Completed within the range of 380C to 380C, the thermal linear expansion coefficient of the formed polyimide resin layer can be controlled to be within the range of 10 to 20 ppm / K. The polyimide precursor resin that provides such a polyimide resin layer has divalent groups (Y) of —CH 2 —, — (CH 2 ) 2 —, —O—, —S—, —SO 2 —, —NH. -, -CO- or -CONH- are preferred. More preferably, Ar 2 is a structural unit represented by the following formula (16) or (17).
Figure 2008115378

具体例としては、下式(18)、(19)、(20)又は(21)で表される酸無水物の残基が好ましく挙げられる。

Figure 2008115378
As a specific example, a residue of an acid anhydride represented by the following formula (18), (19), (20) or (21) is preferably exemplified.
Figure 2008115378

本発明で用いる硬化促進剤は、複素環骨格中に少なくとも1つのイミン(-C=N-構造をいう)を有する含窒素複素環式芳香族化合物であり、該含窒素複素環式芳香族化合物は、窒素が2つ以上の単環の5員若しくは6員の複素環化合物、窒素が1つの単環の複素環に置換基が結合した6員の複素環化合物、又は5員若しくは6員の縮合含窒素複素環化合物から選ばれる。   The curing accelerator used in the present invention is a nitrogen-containing heterocyclic aromatic compound having at least one imine (referred to as —C═N— structure) in the heterocyclic skeleton, and the nitrogen-containing heterocyclic aromatic compound Is a 5-membered or 6-membered heterocyclic compound having 2 or more monocyclic nitrogen atoms, a 6-membered heterocyclic compound having a substituent bonded to one monocyclic heterocyclic ring, or a 5- or 6-membered heterocyclic compound. It is selected from condensed nitrogen-containing heterocyclic compounds.

含窒素複素環式芳香族化合物において、該複素環骨格に含まれるイミンは、ポリイミド前駆体樹脂のアミド基(-CONH-)のプロトンを引き抜き、求核性の増加した-CON--がポリアミド前駆体樹脂のカルボキシル基(-COOH)のカルボニルを攻撃し、イミド化を促進させると考えられる。このプロトン引き抜きの強さを表す指標として、含窒素複素環式芳香族化合物の水溶液中でのプロトン錯体の酸解離指数(pKa)を適用することができる。本発明で使用する含窒素複素環式芳香族化合物酸の解離指数は5.5以上あるものが好ましく、より好ましくは5.5〜8.0の範囲、更に好ましくは5.8〜7.8の範囲がよい。また、本発明で用いる硬化促進剤は、含窒素複素環の特徴ある分子骨格を効果的に利用でき、ポリイミド前駆体樹脂の分子間に配位させることで、ポリイミド前駆体樹脂の分子配向性が向上し、その結果として熱線膨張係数を低く制御できると考えられる。なお、イミンを有する環状の化合物であっても、例えば、DBU(ジアザビシクロウンデセン)、DABCO(ジアザビシクロオクタン)などのような脂肪族アミノ化合物は、その化合物自体がポリイミド前駆体樹脂と反応し、イミド化する可能性があるため好ましくない。 In the nitrogen-containing heterocyclic aromatic compound, -CON imine contained in the heterocyclic skeleton, which abstracts a proton of the polyimide precursor resin of an amide group (-CONH-), an increase of nucleophilic - - polyamide precursor It is thought to attack the carbonyl of the carboxyl group (—COOH) of the body resin and promote imidization. The acid dissociation index (pKa) of a proton complex in an aqueous solution of a nitrogen-containing heterocyclic aromatic compound can be applied as an index representing the proton abstraction strength. The dissociation index of the nitrogen-containing heterocyclic aromatic acid used in the present invention is preferably 5.5 or more, more preferably in the range of 5.5 to 8.0, still more preferably 5.8 to 7.8. The range is good. In addition, the curing accelerator used in the present invention can effectively utilize the characteristic molecular skeleton of the nitrogen-containing heterocycle, and the molecular orientation of the polyimide precursor resin can be coordinated between the molecules of the polyimide precursor resin. As a result, it is considered that the coefficient of thermal expansion can be controlled to be low. Even if it is a cyclic compound having an imine, for example, an aliphatic amino compound such as DBU (diazabicycloundecene), DABCO (diazabicyclooctane), etc., the compound itself is a polyimide precursor resin. Since it may react and imidize, it is not preferable.

上記窒素が2つ以上の単環の5員若しくは6員の複素環化合物は、その複素環に置換基が結合しているものであっても無くてもよいが、置換基が結合しているものがよい。置換基の数は5員の複素環化合物の場合は、1〜2個が、6員の複素環化合物の場合は、1〜3個が好ましい。各置換基は独立に炭素数1〜6のアルキル基又はフェニル基が好ましく、より好ましくは炭素数1〜2のアルキル基、更に好ましくはメチル基がよい。このような置換基を有することで、複素環骨格中のイミンのプロトン親和性が向上し、その結果としてポリイミド前駆体樹脂のイミド化をより促進させることができるものと考えられる。なお、置換基が水酸基、アミノ基、カルボキシル基又はメルカプト基のような官能基であるものは、ポリイミド前駆体樹脂そのものと反応する可能性があるので好ましくない。   The monocyclic 5- or 6-membered heterocyclic compound having two or more nitrogen atoms may or may not have a substituent bonded to the heterocyclic ring, but the substituent is bonded. Things are good. The number of substituents is preferably 1 to 2 in the case of a 5-membered heterocyclic compound, and 1 to 3 in the case of a 6-membered heterocyclic compound. Each substituent is preferably independently an alkyl group having 1 to 6 carbon atoms or a phenyl group, more preferably an alkyl group having 1 to 2 carbon atoms, and still more preferably a methyl group. By having such a substituent, it is considered that the proton affinity of the imine in the heterocyclic skeleton is improved, and as a result, the imidization of the polyimide precursor resin can be further promoted. In addition, it is not preferable that the substituent is a functional group such as a hydroxyl group, an amino group, a carboxyl group, or a mercapto group because it may react with the polyimide precursor resin itself.

また、上記窒素が1つの単環の複素環に置換基が結合した6員の複素環化合物は、複素環に置換基が結合しているものであり、好ましい置換基は前述のとおりである。なお、非置換の窒素が1つの単環の複素環に置換基が結合した6員の複素環化合物の具体例はピリジンであるが、このような化合物の単独の使用では本発明の効果を得ることが困難であり、本発明からは除外される。   In addition, the 6-membered heterocyclic compound in which a substituent is bonded to a monocyclic heterocyclic ring with nitrogen is that in which the substituent is bonded to the heterocyclic ring, and preferable substituents are as described above. A specific example of a 6-membered heterocyclic compound in which a substituent is bonded to one monocyclic heterocyclic ring with unsubstituted nitrogen is pyridine, but the effect of the present invention can be obtained by using such a compound alone. And is excluded from the present invention.

また、上記5員若しくは6員の縮合含窒素複素環化合物は、複素環骨格中に少なくとも1つのイミンを有する含窒素複素環式芳香族化合物であって、イミン含有の5員複素環若しくは6員複素環に他の芳香環が縮合している含窒素複素環式芳香族化合物である。好ましくは、前記イミン含有複素環に、1〜2個の芳香環が縮合しているものが好ましく、より好ましくは1個の芳香環が縮合しているものがよい。縮合環を構成する芳香環が3つ(前記イミン含有複素環を含めて)を超えると、その構造上から、立体的な障害が生じ易くなり、硬化促進剤としての機能が低下する傾向になる。   The 5- or 6-membered condensed nitrogen-containing heterocyclic compound is a nitrogen-containing heterocyclic aromatic compound having at least one imine in the heterocyclic skeleton, and is an imine-containing 5-membered heterocyclic ring or 6-membered heterocyclic compound. It is a nitrogen-containing heterocyclic aromatic compound in which another aromatic ring is condensed to the heterocyclic ring. Preferably, the imine-containing heterocyclic ring is preferably one having 1 to 2 aromatic rings condensed, more preferably one aromatic ring is condensed. When the number of aromatic rings constituting the condensed ring exceeds three (including the imine-containing heterocycle), steric hindrance is likely to occur due to the structure, and the function as a curing accelerator tends to be reduced. .

本発明の含窒素複素環式芳香族化合物の具体例としては、置換のピリジン、置換もしくは非置換の、ビピリジン、イミダゾール、ピコリン、ルチジン、ピラゾール、トリアゾール、ベンゾイミダゾール、プリン、イミダゾリン、ピラゾリン、キノリン、イソキノリン、ジピリジル、ジキノリル、ピリダジン、ピリミジン、ピラジン、フタラジン、キノキサリン、キナゾリン、シンノリン、ナフチリジン、アクリジン、フェナントリジン、ベンゾキノリン、ベンゾイソキノリン、ベンゾシンノリン、ベンゾフタラジン、ベンゾキノキサリン、ベンゾキナゾリン、フェナントロリン、フェナジン、カルボリン、ペリミジン、トリアジン、テトラジン、プテリジン、オキサゾール、ベンゾオキサゾール、イソオキサゾール、ベンゾイソオキサゾール等が挙げられる。これらの含窒素複素環式芳香族化合物は、2種以上を組み合わせて用いることができる。この中でも、イミダゾール、2−ピコリン、N−メチルイミダゾール、2−メチルイミダゾール及び2,6−ルチジンから選択された少なくとも1種が好ましく、更に好ましくは、N−メチルイミダゾールである。   Specific examples of the nitrogen-containing heterocyclic aromatic compound of the present invention include substituted pyridine, substituted or unsubstituted bipyridine, imidazole, picoline, lutidine, pyrazole, triazole, benzimidazole, purine, imidazoline, pyrazoline, quinoline, Isoquinoline, dipyridyl, diquinolyl, pyridazine, pyrimidine, pyrazine, phthalazine, quinoxaline, quinazoline, cinnoline, naphthyridine, acridine, phenanthridine, benzoquinoline, benzoisoquinoline, benzocinnoline, benzophthalazine, benzoquinoxaline, benzoquinazoline, phenanthroline, phenazine Carboline, perimidine, triazine, tetrazine, pteridine, oxazole, benzoxazole, isoxazole, benzoisoxazole And the like. These nitrogen-containing heterocyclic aromatic compounds can be used in combination of two or more. Among these, at least one selected from imidazole, 2-picoline, N-methylimidazole, 2-methylimidazole and 2,6-lutidine is preferable, and N-methylimidazole is more preferable.

また、好ましくは、硬化促進剤は、水溶液中でのプロトン錯体の酸解離指数(pKa)は5.5〜7.5の範囲であり、好ましくは5.8〜7.2であり、更に好ましくは5.9〜7.0である。酸解離定数がこの範囲を外れると、ポリイミド前駆体樹脂のイミド化反応の十分な促進が得られにくい。このような硬化促進剤は、置換もしくは非置換のイミダゾール、2−ピコリン、N−メチルイミダゾール及び2,6−ルチジンから選択された少なくとも1種の含窒素複素環化合物であり、好ましくは非置換のイミダゾール、2−ピコリン、N−メチルイミダゾール及び2,6−ルチジンから選択された少なくとも1種がよく、更に好ましくはN−メチルイミダゾールである。これらの硬化促進剤は、含窒素複素環の特徴ある分子骨格を効果的に利用でき、ポリイミド前駆体樹脂の分子間に配位させることで、ポリイミド前駆体樹脂の分子配向性が向上し、その結果として熱線膨張係数を低く制御できると考えられる。   Preferably, the curing accelerator has an acid dissociation index (pKa) of the proton complex in an aqueous solution in the range of 5.5 to 7.5, preferably 5.8 to 7.2, and more preferably 5.9 to 7.0. When the acid dissociation constant is out of this range, it is difficult to sufficiently promote the imidation reaction of the polyimide precursor resin. Such a curing accelerator is at least one nitrogen-containing heterocyclic compound selected from substituted or unsubstituted imidazole, 2-picoline, N-methylimidazole and 2,6-lutidine, preferably unsubstituted. At least one selected from imidazole, 2-picoline, N-methylimidazole and 2,6-lutidine is preferable, and N-methylimidazole is more preferable. These curing accelerators can effectively utilize the characteristic molecular skeleton of the nitrogen-containing heterocycle, and by coordination between the polyimide precursor resin molecules, the molecular orientation of the polyimide precursor resin is improved. As a result, it is considered that the thermal linear expansion coefficient can be controlled low.

上記の含窒素複素環式芳香族化合物(以下、硬化促進剤ともいう)の中でも、その沸点が120℃を越えるものを使用することが好ましい。沸点が120℃以下のものは、後述の熱処理によって、ポリイミド前駆体樹脂中に存在する硬化促進剤が揮発しやすく、十分な硬化促進効果を発揮できないまま系外に放出される傾向にある。一方、沸点の上限は特に制限はないが、熱処理の上限温度を超えないものを選択することが好ましい。沸点が、例えば400℃以上の硬化促進剤は、イミド化後のポリイミド樹脂層中に残存する割合が高くなり、ポリイミド樹脂層の機能に影響を与える傾向にある。硬化促進剤の選択及び添加量は、ポリイミド前駆体樹脂のイミド化後における硬化促進剤の残存量を考慮し、適宜、熱処理条件を考慮した硬化促進剤及びその添加量を選択することが好ましい。硬化促進剤の添加量は、上記式(1)で表される構造単位1モルに対して、好ましくは0.1〜2モル、より好ましくは0.5〜1モルの範囲がよい。   Among the nitrogen-containing heterocyclic aromatic compounds (hereinafter also referred to as curing accelerators), those having a boiling point exceeding 120 ° C. are preferably used. When the boiling point is 120 ° C. or lower, the curing accelerator present in the polyimide precursor resin is easily volatilized by the heat treatment described later, and tends to be released out of the system without exhibiting a sufficient curing acceleration effect. On the other hand, the upper limit of the boiling point is not particularly limited, but it is preferable to select one that does not exceed the upper limit temperature of the heat treatment. A curing accelerator having a boiling point of, for example, 400 ° C. or higher has a higher ratio of remaining in the polyimide resin layer after imidization, and tends to affect the function of the polyimide resin layer. The selection and addition amount of the curing accelerator is preferably selected in consideration of the residual amount of the curing accelerator after imidization of the polyimide precursor resin, and appropriately selecting the curing accelerator and the addition amount in consideration of heat treatment conditions. The addition amount of the curing accelerator is preferably 0.1 to 2 mol, more preferably 0.5 to 1 mol, per 1 mol of the structural unit represented by the above formula (1).

本発明で用いるポリイミド前駆体樹脂は、公知の方法で製造することができる。例えば、ジアミノ化合物とテトラカルボン酸二無水物とをほぼ等モルで有機溶媒中に溶解させて、0〜100℃で30分〜24時間撹拌し重合反応させることで得られる。反応にあたっては、得られるポリイミド前駆体樹脂が有機溶媒中に5〜30重量%、好ましくは10〜20重量%となるように反応成分を溶解することがよい。ポリイミド前駆体樹脂溶液は、有機極性溶媒に溶解したポリイミド前駆体樹脂溶液として使用することが好ましく選択され、重合反応する際に用いる有機溶媒については、極性を有するものを使用することがよい。有機極性溶媒としては、例えば、N, N−ジメチルホルムアミド、N, N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルフォキシド、硫酸ジメチル、フェノール、ハロゲン化フェノール、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム等が挙げられる。これらを2種類以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の一部使用も可能である。ポリイミド前駆体樹脂溶液の有機極性溶媒溶液の粘度は、500cP〜100,000cPの範囲であることが好ましい。この範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。ポリイミド前駆体樹脂の有機極性溶媒溶液に、前述した硬化促進剤を添加し、ポリイミド前駆体樹脂溶液を得る。   The polyimide precursor resin used in the present invention can be produced by a known method. For example, it can be obtained by dissolving a diamino compound and tetracarboxylic dianhydride in an organic solvent in an approximately equimolar amount and stirring at 0 to 100 ° C. for 30 minutes to 24 hours to cause a polymerization reaction. In the reaction, it is preferable to dissolve the reaction components so that the obtained polyimide precursor resin is 5 to 30 wt%, preferably 10 to 20 wt% in the organic solvent. The polyimide precursor resin solution is preferably selected to be used as a polyimide precursor resin solution dissolved in an organic polar solvent, and an organic solvent having a polarity is preferably used for the polymerization reaction. Examples of the organic polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfate, phenol, halogenated phenol, cyclohexanone, dioxane, tetrahydrofuran, Examples include diglyme and triglyme. Two or more of these can be used in combination, and some aromatic hydrocarbons such as xylene and toluene can also be used. The viscosity of the organic polar solvent solution of the polyimide precursor resin solution is preferably in the range of 500 cP to 100,000 cP. If it is out of this range, defects such as uneven thickness and streaks are likely to occur in the film during coating by a coater or the like. The above-mentioned curing accelerator is added to the organic polar solvent solution of the polyimide precursor resin to obtain a polyimide precursor resin solution.

ポリイミド前駆体樹脂溶液を基材上に塗布し、続く熱処理で乾燥及びイミド化(又は硬化)される。この場合の熱処理条件は、60〜380℃の温度範囲で計10〜40分程度行うことができるが、溶媒を除去する乾燥条件は、60〜200℃で30秒〜20分、好ましくは100〜150℃で1〜10分がよい。この乾燥工程において、硬化促進剤の作用によりイミド化が進行している場合には、乾燥工程に要する時間は、その後の熱処理の時間と合わせて合計30分以内、好ましくは25分以内、更に好ましくは20分以内とすることがよい。そして、イミド化を完結させるためには、280〜380℃の範囲内で行うことが必要であり、好ましくは280〜360℃の範囲内で行うことがよい。また、熱処理における130〜380℃の範囲での合計加熱時間は3〜25分の範囲とすること好ましく、更に好ましくは130〜360℃の範囲での合計加熱時間は5〜15分の範囲とすることがよく、特に好ましくは130〜360℃の範囲での合計加熱時間は5〜11分の範囲とすることがよい。前述したように、上記式(1)で表される構造単位からなる又は構造単位を含むポリイミド前駆体樹脂に存在する屈曲性基である2価の基(Y)量は、加熱温度の制御と密接な関係があることから、2価の基(Y)をAr21モルに対して0.2〜0.4モル含むポリアミド酸である場合には、熱処理における130〜380℃の範囲での合計加熱時間は3〜7分の範囲とすることが好ましく、更に好ましくは3〜5分の範囲とすることがよい。また、2価の基(Y)をAr21モルに対して0.4〜0.6モル含むポリアミド酸である場合には、熱処理における130〜380℃の範囲での合計加熱時間は5〜25分の範囲とすることが好ましく、更に好ましくは5〜15分の範囲とすることがよいが、特に好ましくは130〜360℃の範囲での合計加熱時間は5〜11分の範囲とすることがよい。上記熱処理により、ポリイミド前駆体樹脂はポリイミド樹脂となり、熱線膨張係数が10〜20ppm/Kの範囲内にあるポリイミド樹脂層が得られる。また別の観点から、ポリイミド前駆体樹脂をイミド化して、熱線膨張係数が10〜20pm/Kの範囲内にあるポリイミド樹脂層を形成するときに、本発明の製造方法における130〜380℃の範囲での合計加熱時間(T)と、硬化促進剤を使用しない場合の130〜380℃の範囲での合計加熱時間(t)との比(t/T)が、1.5以上であることが好ましく、より好ましくは1.6以上であることがよい。 A polyimide precursor resin solution is applied onto a substrate and dried and imidized (or cured) by subsequent heat treatment. The heat treatment conditions in this case can be performed in a temperature range of 60 to 380 ° C. for a total of about 10 to 40 minutes, but the drying conditions for removing the solvent are 60 to 200 ° C. for 30 seconds to 20 minutes, preferably 100 to 100 minutes. 1 to 10 minutes is preferable at 150 ° C. In this drying step, when imidization has progressed due to the action of the curing accelerator, the time required for the drying step is within 30 minutes in total, preferably within 25 minutes, more preferably, together with the time of the subsequent heat treatment. Should be within 20 minutes. And in order to complete imidation, it is necessary to carry out within the range of 280-380 degreeC, Preferably it is good to carry out within the range of 280-360 degreeC. Moreover, it is preferable to make the total heating time in the range of 130-380 degreeC in heat processing into the range of 3-25 minutes, More preferably, the total heating time in the range of 130-360 degreeC shall be the range of 5-15 minutes. The total heating time in the range of 130 to 360 ° C. is particularly preferably 5 to 11 minutes. As described above, the amount of the divalent group (Y) which is a flexible group consisting of the structural unit represented by the above formula (1) or existing in the polyimide precursor resin containing the structural unit is determined by controlling the heating temperature. Since there is a close relationship, in the case of a polyamic acid containing 0.2 to 0.4 mol of the divalent group (Y) with respect to 1 mol of Ar 2 , the heat treatment is performed in the range of 130 to 380 ° C. The total heating time is preferably in the range of 3-7 minutes, more preferably in the range of 3-5 minutes. Further, the divalent group of (Y) in the case of 0.4 to 0.6 moles containing polyamic acid with respect to Ar 2 1 mole of the total heating time in the range of one hundred and thirty to three hundred and eighty ° C. in the heat treatment is 5 The range is preferably 25 minutes, more preferably 5 to 15 minutes, and most preferably the total heating time in the range 130 to 360 ° C. is 5 to 11 minutes. Is good. By the heat treatment, the polyimide precursor resin becomes a polyimide resin, and a polyimide resin layer having a thermal linear expansion coefficient in the range of 10 to 20 ppm / K is obtained. From another point of view, when the polyimide precursor resin is imidized to form a polyimide resin layer having a thermal expansion coefficient in the range of 10 to 20 pm / K, the range of 130 to 380 ° C. in the production method of the present invention. The ratio (t / T) of the total heating time (T) in the above and the total heating time (t) in the range of 130 to 380 ° C. when the curing accelerator is not used is 1.5 or more. More preferably, it is 1.6 or more.

本発明において、ポリイミド樹脂層の熱線膨張係数が15〜20ppm/K、引張り弾性率が3〜6GPaの範囲内にあるポリイミド樹脂層を形成することもできる。このようなポリイミド樹脂層を得るために、上記式(1)中のAr1は上記式(6)又は(7)で表される2価の基の少なくとも1種が好ましく挙げられ、Ar2は式(16)又は(17)で表される4価の基の少なくとも1種が好ましく挙げられる。 In the present invention, a polyimide resin layer having a thermal linear expansion coefficient of 15 to 20 ppm / K and a tensile elastic modulus of 3 to 6 GPa can be formed. In order to obtain such a polyimide resin layer, Ar 1 in the above formula (1) is preferably at least one divalent group represented by the above formula (6) or (7), and Ar 2 is Preferable examples include at least one tetravalent group represented by formula (16) or (17).

具体例としては、上記式(8)、(9)又は(10)で表されるジアミンの残基の少なくとも1種及び式(18)、(19)、(20)又は(21)で表される酸無水物の残基の少なくとも1種が好ましく挙げられる。   Specific examples include at least one diamine residue represented by the above formula (8), (9) or (10) and the formula (18), (19), (20) or (21). Preferred examples include at least one residue of the acid anhydride.

このようなポリイミド樹脂層を得るために、ポリイミド前駆体樹脂は、好ましくは下式(22)で表される構造単位を有するものがよい。

Figure 2008115378
In order to obtain such a polyimide resin layer, the polyimide precursor resin preferably has a structural unit represented by the following formula (22).
Figure 2008115378

式中、Rは、-CH3、-C2H5、-OCH3、-OC2H5のいずれかの置換基である。好ましくは、Rは-CH3である。また、式中、x及びyは、それぞれ構成単位の構成比率を表し、xは0.4〜0.6の範囲、yは0.6〜0.4の範囲とすることが好ましく、x+y=1である。xとyの割合において、xが0.4より小さくなると、ポリイミド樹脂層の熱線膨張係数が大きくなり、一方、xが0.6より大きくなると、ポリイミド樹脂層の引張り弾性率が大きくなる。 In the formula, R is a substituent of any of —CH 3 , —C 2 H 5 , —OCH 3 , and —OC 2 H 5 . Preferably R is —CH 3 . Moreover, in the formula, x and y each represent a structural ratio of structural units, x is preferably in the range of 0.4 to 0.6, y is preferably in the range of 0.6 to 0.4, and x + y = 1. In the ratio of x and y, when x is smaller than 0.4, the thermal expansion coefficient of the polyimide resin layer is increased. On the other hand, when x is larger than 0.6, the tensile elastic modulus of the polyimide resin layer is increased.

本発明のポリイミド樹脂層の形成方法では、基材上にポリイミド前駆体樹脂溶液を塗布するため、積層体が得られる。そして、必要によりこの積層体から基材層を剥がしたり、エッチングしたりするなどして除去すればポリイミド樹脂フィルムが得られる。基材が銅箔等の導体である場合は、本発明の積層体は、フレキシブル基板用材料として適する。   In the method for forming a polyimide resin layer according to the present invention, a polyimide precursor resin solution is applied on a substrate, so that a laminate is obtained. Then, if necessary, the polyimide resin film can be obtained by removing the base material layer from the laminate or removing it by etching. When the base material is a conductor such as copper foil, the laminate of the present invention is suitable as a material for a flexible substrate.

本発明によれば、熱膨張特性が高いポリイミド樹脂を与える構造を有するポリイミド前駆体樹脂においても、熱的閉環法を有効に利用して低熱膨張化を可能としたことにより、このようなポリイミド樹脂層をフレキシブル積層板の製造方法に適用することで、その生産性を飛躍的に高める効果がある。   According to the present invention, even in a polyimide precursor resin having a structure that gives a polyimide resin having high thermal expansion characteristics, the thermal ring closure method can be effectively used to reduce the thermal expansion, and thus such polyimide resin can be obtained. By applying the layer to the manufacturing method of the flexible laminate, there is an effect of dramatically improving the productivity.

以下、本発明の実施例について述べる。なお、以下の実施例において特にことわりのない限り各種測定、評価は下記によるものである。   Examples of the present invention will be described below. In the following examples, various measurements and evaluations are as follows unless otherwise specified.

[熱線膨張係数の測定]
熱線膨張係数の測定は、セイコーインスツル(株)製熱機械分析装置TMA/SS6100を用いて、合成例から得られたポリイミドフィルムを室温から255℃まで20℃/分の速度で昇温し、更にその温度で10分保持した後、5℃/分の速度で室温まで冷却し、ポリイミドフィルムの寸法変化から100℃から240℃までの平均熱膨張係数(熱線膨張係数)を算出した。
[Measurement of thermal linear expansion coefficient]
The measurement of the thermal linear expansion coefficient was performed by using a thermomechanical analyzer TMA / SS6100 manufactured by Seiko Instruments Inc., and raising the temperature of the polyimide film obtained from the synthesis example from room temperature to 255 ° C. at a rate of 20 ° C./min. The temperature was further maintained at that temperature for 10 minutes, and then cooled to room temperature at a rate of 5 ° C./minute, and an average thermal expansion coefficient (thermal linear expansion coefficient) from 100 ° C. to 240 ° C. was calculated from the dimensional change of the polyimide film.

[引張り弾性率の測定]
引張り弾性率の測定は、東洋精機(株)製ストログラフR-1を用いて、幅12.4mm、長さ210mmのポリイミド樹脂を50kgの荷重を加えながら50mm/分で引張り試験を行った。
[Measurement of tensile modulus]
The tensile modulus was measured by using a Strograph R-1 manufactured by Toyo Seiki Co., Ltd. and performing a tensile test at a rate of 50 mm / min while applying a load of 50 kg to a polyimide resin having a width of 12.4 mm and a length of 210 mm.

[イミド化率の評価]
ポリイミド前駆体樹脂のイミド化率は、フーリエ変換赤外分光光度計(日本分光製FT/IR620)を用い、透過法にてポリイミド薄膜の赤外線吸収スペクトルを測定することによって、1000cm-1のベンゼン環炭素水素結合を基準とし、1720cm-1のイミド基由来の吸光度から算出した。
[Evaluation of imidization rate]
Imidization ratio of the polyimide precursor resin, using a Fourier transform infrared spectrophotometer (manufactured by JASCO Corporation FT / IR620), by measuring the infrared absorption spectrum of the polyimide thin film by a transmission method, the 1000 cm -1 benzene ring Based on the carbon-hydrogen bond, it was calculated from the absorbance derived from the imide group at 1720 cm −1 .

以下、実施例に基づいて、本発明を具体的に説明するが、本発明はこれに限定されないことは勿論である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, of course, this invention is not limited to this.

以下、本発明を実施例により詳細に説明する。また、実施例中に用いられる略号は、次の通りである。
DMAc: N,N−ジメチルアセトアミド
1,3-FDA:4,4'−(1,3−ジフェノキシ)ジフタル酸二無水物
BPDA:3,3',4,4'−ビフェニルテトラカルボン酸二無水物
ODPA:4,4'−オキシジフタル酸二無水物
m-TB:2,2'−ジメチル−4,4'−ジアミノビフェニル
PPD:パラフェニレンジアミン
Hereinafter, the present invention will be described in detail with reference to examples. The abbreviations used in the examples are as follows.
DMAc: N, N-dimethylacetamide
1,3-FDA: 4,4 '-(1,3-diphenoxy) diphthalic dianhydride
BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride
ODPA: 4,4'-oxydiphthalic dianhydride
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl
PPD: Paraphenylenediamine

実施例1
200mlのセパラブルフラスコ中において、室温下で撹拌しながら5.5gのm-TB(26.1mmol)及び0.3gのPPD(2.9mmol)を84gのDMAcに溶解させた。次に、1.2gの1,3-FDA(2.9mmol)及び7.7gのBPDA(26.1mmol)を加え、3時間撹拌させた。続いて5gのDMAcに溶解した2.4gのN−メチルイミダゾール(29.0mmol)の溶液を加えた。その後、30分間撹拌を続けて重合反応を行い、粘稠なポリイミド前駆体樹脂溶液aを得た。このとき、式(1)中のAr21mol中の2価の基(Y)は0.2モルである。得られた樹脂溶液aを銅箔上に均一に塗布し、125℃で3分間乾燥を行い、溶媒を除去した後、130〜360℃の範囲で6分間熱処理を行い、約25μm厚のポリイミド層が銅箔上に形成された積層体1を得た。このとき、熱処理における280〜360℃の範囲での合計加熱時間は2分であった。得られた積層体1の銅箔層をエッチング処理により除去し、ポリイミドフィルムAを得た。得られたポリイミドフィルムAの熱膨張係数は12.8ppm/Kであった。
Example 1
In a 200 ml separable flask, 5.5 g m-TB (26.1 mmol) and 0.3 g PPD (2.9 mmol) were dissolved in 84 g DMAc with stirring at room temperature. Next, 1.2 g of 1,3-FDA (2.9 mmol) and 7.7 g of BPDA (26.1 mmol) were added and allowed to stir for 3 hours. Subsequently, a solution of 2.4 g N-methylimidazole (29.0 mmol) dissolved in 5 g DMAc was added. Thereafter, stirring was continued for 30 minutes to carry out a polymerization reaction to obtain a viscous polyimide precursor resin solution a. At this time, the divalent group (Y) in 1 mol of Ar 2 in the formula (1) is 0.2 mol. The obtained resin solution a is uniformly coated on a copper foil, dried at 125 ° C. for 3 minutes, and after removing the solvent, heat-treated at 130 to 360 ° C. for 6 minutes to obtain a polyimide layer having a thickness of about 25 μm Obtained a laminate 1 formed on a copper foil. At this time, the total heating time in the range of 280-360 degreeC in heat processing was 2 minutes. The copper foil layer of the obtained laminate 1 was removed by etching treatment to obtain a polyimide film A. The resulting polyimide film A had a thermal expansion coefficient of 12.8 ppm / K.

実施例2
ジアミンとして4.2gのm-TB(20.0mmol)、1.8gのPPD(16.3mmol)を97gのDMAcに溶解させ、酸無水物として5.1gのODPA(16.3mmol)、5.9gのBPDA(20.0mmol)、及び3.0gのN−メチルイミダゾール(36.3mmol)を使用した以外は、実施例1と同様の方法で行い、ポリイミド前駆体樹脂溶液bを得た。このとき、式(1)中のAr21mol中の2価の基(Y)は0.45molである。得られた樹脂溶液bを使用し、実施例1と同様の方法でポリイミドフィルムBを得た。得られたポリイミドフィルムBの熱膨張係数は16.0ppm/K、引張り弾性率は5.2GPaであった。
Example 2
4. 4.2 g of m-TB (20.0 mmol) as diamine and 1.8 g of PPD (16.3 mmol) were dissolved in 97 g of DMAc, and 5.1 g of ODPA (16.3 mmol) as an acid anhydride. A polyimide precursor resin solution b was obtained in the same manner as in Example 1 except that 9 g of BPDA (20.0 mmol) and 3.0 g of N-methylimidazole (36.3 mmol) were used. At this time, the divalent group (Y) in 1 mol of Ar 2 in the formula (1) is 0.45 mol. A polyimide film B was obtained in the same manner as in Example 1 using the obtained resin solution b. The obtained polyimide film B had a thermal expansion coefficient of 16.0 ppm / K and a tensile modulus of 5.2 GPa.

実施例3
ジアミンとして4.2gのm-TB(20.0mmol)、1.8gのPPD(16.3mmol)を97gのDMAcに溶解させ、酸無水物として0.7gのODPA(2.3mmol)、7.3gのBPDA(24.8mmol)及び3.7gの1,3-FDA(9.2mmol)、並びに3.0gのN−メチルイミダゾール(36.3mmol)を使用した以外は、実施例1と同様の方法で行い、ポリイミド前駆体樹脂溶液cを得た。このとき、式(1)中のAr21mol中の2価の基(Y)は0.57molである。得られた樹脂溶液cを使用し、実施例1と同様の方法でポリイミドフィルムCを得た。得られたポリイミドフィルムCの熱膨張係数は17.0ppm/Kであった。
Example 3
6. 4.2 g m-TB (20.0 mmol) and 1.8 g PPD (16.3 mmol) as diamine were dissolved in 97 g DMAc, 0.7 g ODPA (2.3 mmol) as acid anhydride, Same as Example 1 except 3 g BPDA (24.8 mmol) and 3.7 g 1,3-FDA (9.2 mmol) and 3.0 g N-methylimidazole (36.3 mmol) were used. To obtain a polyimide precursor resin solution c. At this time, the divalent group (Y) in 1 mol of Ar 2 in the formula (1) is 0.57 mol. A polyimide film C was obtained in the same manner as in Example 1 using the obtained resin solution c. The resulting polyimide film C had a thermal expansion coefficient of 17.0 ppm / K.

実施例4
3.0gのN−メチルイミダゾール(36.3mmol)を使用する代わりに、2.5gのイミダゾール(36.3mmol)(pKaが7.0)を使用した以外は、実施例2と同様の方法で行い、樹脂溶液を得た。得られた樹脂溶液を使用し、実施例2と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、16.3ppm/K、引張り弾性率は5.4GPaであった。
Example 4
In the same manner as in Example 2 except that 2.5 g of imidazole (36.3 mmol) (pKa is 7.0) was used instead of using 3.0 g of N-methylimidazole (36.3 mmol). And a resin solution was obtained. Using the obtained resin solution, a polyimide film was obtained by the same method as in Example 2, and the thermal expansion coefficient was measured. As a result, it was 16.3 ppm / K, and the tensile modulus was 5.4 GPa.

実施例5
3.0gのN−メチルイミダゾール(36.3mmol)を使用する代わりに、3.4gの2-ピコリン(36.3mmol)(pKaが6.0)を使用した以外は、実施例2と同様の方法で行い、樹脂溶液を得た。得られた樹脂溶液を使用し、実施例2と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、15.7ppm/K、引張り弾性率は6.0GPaであった。
Example 5
Similar to Example 2 except that 3.4 g 2-picoline (36.3 mmol) (pKa 6.0) was used instead of using 3.0 g N-methylimidazole (36.3 mmol). And a resin solution was obtained. Using the obtained resin solution, a polyimide film was obtained in the same manner as in Example 2, and the thermal expansion coefficient was measured. As a result, it was 15.7 ppm / K, and the tensile modulus was 6.0 GPa.

実施例6
3.0gのN−メチルイミダゾール(36.3mmol)を使用する代わりに、3.9gの2,6-ルチジン(36.3mmol)(pKaが6.7)を使用した以外は、実施例2と同様の方法で行い、樹脂溶液を得た。得られた樹脂溶液を使用し、実施例2と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、16.3ppm/K、引張り弾性率は5.9GPaであった。
Example 6
Instead of using 3.0 g N-methylimidazole (36.3 mmol), 3.9 g 2,6-lutidine (36.3 mmol) (pKa 6.7) was used, with the exception of Example 2 A resin solution was obtained in the same manner. Using the obtained resin solution, a polyimide film was obtained in the same manner as in Example 2, and the thermal expansion coefficient was measured. As a result, it was 16.3 ppm / K and the tensile modulus was 5.9 GPa.

実施例7
3.0gのN−メチルイミダゾール(36.3mmol)を使用する代わりに、3.0gの2−メチルイミダゾール(36.3mmol)(pKaが7.8)を使用した以外は、実施例2と同様の方法で行い、樹脂溶液を得た。得られた樹脂溶液を使用し、実施例2と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、16.0ppm/K、引張り弾性率は5.2GPaであった。
Example 7
Similar to Example 2 except that 3.0 g 2-methylimidazole (36.3 mmol) (pKa 7.8) was used instead of using 3.0 g N-methylimidazole (36.3 mmol). To obtain a resin solution. Using the obtained resin solution, a polyimide film was obtained in the same manner as in Example 2, and the thermal expansion coefficient was measured. As a result, it was 16.0 ppm / K, and the tensile modulus was 5.2 GPa.

実施例8
3.0gのN−メチルイミダゾール(36.3mmol)を使用する代わりに、4.7gのキノリン(36.3mmol)を使用した以外は、実施例2と同様の方法で行い、樹脂溶液を得た。得られた樹脂溶液を使用し、実施例2と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、16.3ppm/K、引張り弾性率は5.4GPaであった。
Example 8
A resin solution was obtained in the same manner as in Example 2 except that 4.7 g of quinoline (36.3 mmol) was used instead of 3.0 g of N-methylimidazole (36.3 mmol). . Using the obtained resin solution, a polyimide film was obtained by the same method as in Example 2, and the thermal expansion coefficient was measured. As a result, it was 16.3 ppm / K, and the tensile modulus was 5.4 GPa.

比較例1
N−メチルイミダゾールを使用しなかった以外は、合成例1と同様の方法で行い、樹脂溶液を得た。調製した樹脂溶液を使用し、実施例1と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、28.8ppm/Kであった。
Comparative Example 1
A resin solution was obtained in the same manner as in Synthesis Example 1 except that N-methylimidazole was not used. Using the prepared resin solution, a polyimide film was obtained in the same manner as in Example 1, and the coefficient of thermal expansion was measured. As a result, it was 28.8 ppm / K.

比較例2
2.4gのN−メチルイミダゾール(29.0mmol)を使用する代わりに、2.3gのピリジン(29.0mmol)(pKaが5.2)を使用した以外は、実施例1と同様の方法で行い、樹脂溶液を得た。得られた樹脂溶液を使用し、実施例1と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、27.0ppm/Kであった。
Comparative Example 2
In the same manner as in Example 1, except that 2.3 g of pyridine (29.0 mmol) (pKa is 5.2) was used instead of 2.4 g of N-methylimidazole (29.0 mmol). And a resin solution was obtained. Using the obtained resin solution, a polyimide film was obtained in the same manner as in Example 1, and the coefficient of thermal expansion was measured. As a result, it was 27.0 ppm / K.

比較例3
N−メチルイミダゾールを使用しなかった以外は、実施例2と同様の方法で行い、樹脂溶液を得た。調製した樹脂溶液を使用し、実施例2と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、20.9ppm/K、引張り弾性率は6.2GPaであった。
Comparative Example 3
A resin solution was obtained in the same manner as in Example 2 except that N-methylimidazole was not used. Using the prepared resin solution, a polyimide film was obtained in the same manner as in Example 2, and the thermal expansion coefficient was measured. As a result, it was 20.9 ppm / K, and the tensile modulus was 6.2 GPa.

比較例4
3.0gのN−メチルイミダゾール(36.3mmol)を使用する代わりに、2.9gのピリジン(36.3mmol)を使用した以外は、実施例2と同様の方法で行い、樹脂溶液を得た。調製した樹脂溶液を使用し、実施例2と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、21.5ppm/K、引張り弾性率は6.5GPaであった。
Comparative Example 4
A resin solution was obtained in the same manner as in Example 2 except that 2.9 g of pyridine (36.3 mmol) was used instead of 3.0 g of N-methylimidazole (36.3 mmol). . Using the prepared resin solution, a polyimide film was obtained in the same manner as in Example 2, and the thermal expansion coefficient was measured. As a result, it was 21.5 ppm / K, and the tensile modulus was 6.5 GPa.

比較例5
N−メチルイミダゾールを使用しなかった以外は、実施例3と同様の方法で行い、樹脂溶液を得た。調製した樹脂溶液を使用し、実施例3と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、23.4ppm/Kであった。
Comparative Example 5
A resin solution was obtained in the same manner as in Example 3 except that N-methylimidazole was not used. Using the prepared resin solution, a polyimide film was obtained in the same manner as in Example 3. The thermal expansion coefficient was measured and found to be 23.4 ppm / K.

比較例6
2.4gのN−メチルイミダゾール(29.0mmol)を使用する代わりに、2.3gのピリジン(29.0mmol)を使用した以外は、実施例3と同様の方法で行い、樹脂溶液を得た。得られた樹脂溶液を使用し、実施例1と同様の方法でポリイミドフィルムを得、熱膨張係数を測定したところ、22.0ppm/Kであった。
Comparative Example 6
A resin solution was obtained in the same manner as in Example 3 except that 2.3 g of pyridine (29.0 mmol) was used instead of 2.4 g of N-methylimidazole (29.0 mmol). . Using the obtained resin solution, a polyimide film was obtained in the same manner as in Example 1, and the thermal expansion coefficient was measured and found to be 22.0 ppm / K.

Claims (5)

下記式(1)で表される構造単位を有するポリイミド前駆体樹脂及びポリイミド前駆体樹脂の硬化促進剤を有機極性溶媒に溶解したポリイミド前駆体樹脂含有溶液を基材上に塗布し、続く熱処理で乾燥及びイミド化によるポリイミド樹脂層の形成を280〜380℃の範囲内で完結し、形成されたポリイミド樹脂層の熱線膨張係数を10〜20ppm/Kの範囲内に制御するポリイミド樹脂層の形成方法であって、前記硬化促進剤は、複素環中に少なくとも1つのイミンを有する含窒素複素環式芳香族化合物であり、該含窒素複素環式芳香族化合物は、窒素が2つ以上の単環の5員若しくは6員の複素環化合物、窒素が1つの複素環に置換基が結合した単環の6員の複素環化合物、又は縮合環を有する含窒素5員若しくは6員の複素環の縮合複素環化合物から選らばれる該含窒素複素環式芳香族化合物であることを特徴とするポリイミド樹脂層の形成方法。
Figure 2008115378
Figure 2008115378
(式(1)中、Ar1は式(2)又は式(3)で表される2価の芳香族基を示し、Ar2は式(4)又は式(5)で表される4価の芳香族基を示し、式(2)〜式(3)において、R1は独立に炭素数1〜6の1価の炭化水素基又はアルコキシ基を示し、nは独立に0〜4の整数を示し、式(4)〜式(5)において、Xは独立に単結合、又は-(CH2)m-、-O-、-S-、-SO2-、-NH-、-CO-若しくは-CONH-から選ばれる2価の基(Y)を示し、mは独立に1〜5の整数を示すが、Ar21モルに対して2価の基(Y)を0.2〜0.6モル含む。)
In the subsequent heat treatment, a polyimide precursor resin having a structural unit represented by the following formula (1) and a polyimide precursor resin-containing solution obtained by dissolving a curing accelerator for a polyimide precursor resin in an organic polar solvent are applied on a substrate. A method for forming a polyimide resin layer by completing formation of a polyimide resin layer by drying and imidization within a range of 280 to 380 ° C., and controlling a coefficient of thermal expansion of the formed polyimide resin layer within a range of 10 to 20 ppm / K The curing accelerator is a nitrogen-containing heterocyclic aromatic compound having at least one imine in the heterocyclic ring, and the nitrogen-containing heterocyclic aromatic compound is a monocyclic ring having two or more nitrogen atoms. 5-membered or 6-membered heterocyclic compounds, monocyclic 6-membered heterocyclic compounds in which nitrogen is substituted on one heterocyclic ring, or condensation of nitrogen-containing 5- or 6-membered heterocyclic rings having a condensed ring Heterocycle Forming a polyimide resin layer, which is a nitrogen-containing heterocyclic aromatic compound Bareru independent from compound.
Figure 2008115378
Figure 2008115378
(In formula (1), Ar 1 represents a divalent aromatic group represented by formula (2) or formula (3), and Ar 2 represents a tetravalent group represented by formula (4) or formula (5). In formulas (2) to (3), R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and n represents an integer of 0 to 4 independently. In the formulas (4) to (5), X is independently a single bond, or — (CH 2 ) m—, —O—, —S—, —SO 2 —, —NH—, —CO— Or, it represents a divalent group (Y) selected from -CONH-, and m independently represents an integer of 1 to 5, but the divalent group (Y) is 0.2 to 0 with respect to 1 mol of Ar 2. .6 moles included.)
該含窒素複素環式芳香族化合物が、水溶液中でのプロトン錯体の酸解離指数(pKa)が5.5〜7.5の範囲であり、ポリイミド前駆体樹脂の硬化促進剤として作用する置換若しくは非置換のイミダゾール、2−ピコリン、N−メチルイミダゾール及び2,6−ルチジンから選択された少なくとも1種の含窒素複素環化合物である請求項1のポリイミド樹脂層の形成方法。   The nitrogen-containing heterocyclic aromatic compound is a substituted or unsubstituted imidazole having a proton complex acid dissociation index (pKa) in an aqueous solution in the range of 5.5 to 7.5 and acting as a curing accelerator for the polyimide precursor resin. The method for forming a polyimide resin layer according to claim 1, wherein the polyimide resin layer is at least one nitrogen-containing heterocyclic compound selected from 2-picoline, N-methylimidazole, and 2,6-lutidine. ポリイミド樹脂層の熱線膨張係数が15〜20ppm/K、引張り弾性率が3〜6GPaの範囲内にあることを特徴とする請求項1又は2記載のポリイミド樹脂層の形成方法。   The method for forming a polyimide resin layer according to claim 1 or 2, wherein the thermal expansion coefficient of the polyimide resin layer is in the range of 15 to 20 ppm / K and the tensile modulus is in the range of 3 to 6 GPa. 請求項1〜3のいずれかに記載のポリイミド樹脂層の形成方法で得られたポリイミド樹脂層を有することを特徴とする積層体。   It has a polyimide resin layer obtained with the formation method of the polyimide resin layer in any one of Claims 1-3, The laminated body characterized by the above-mentioned. 請求項4記載の積層体からポリイミド樹脂層を単離することを特徴とするポリイミド樹脂フィルムの製造方法。   The manufacturing method of the polyimide resin film characterized by isolating a polyimide resin layer from the laminated body of Claim 4.
JP2007263980A 2006-10-10 2007-10-10 Formation method of polyimide resin layer Expired - Fee Related JP5417595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007263980A JP5417595B2 (en) 2006-10-10 2007-10-10 Formation method of polyimide resin layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006276348 2006-10-10
JP2006276348 2006-10-10
JP2007263980A JP5417595B2 (en) 2006-10-10 2007-10-10 Formation method of polyimide resin layer

Publications (2)

Publication Number Publication Date
JP2008115378A true JP2008115378A (en) 2008-05-22
JP5417595B2 JP5417595B2 (en) 2014-02-19

Family

ID=39501583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263980A Expired - Fee Related JP5417595B2 (en) 2006-10-10 2007-10-10 Formation method of polyimide resin layer

Country Status (1)

Country Link
JP (1) JP5417595B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115377A (en) * 2006-10-10 2008-05-22 Nippon Steel Chem Co Ltd Method for producing polyimide resin layer
JP2009221398A (en) * 2008-03-18 2009-10-01 Ube Ind Ltd Polyamic acid solution composition, and polyimide film
JP2009221397A (en) * 2008-03-18 2009-10-01 Ube Ind Ltd Polyimide precursor solution composition, and polyimide film
JP2010077311A (en) * 2008-09-26 2010-04-08 Kaneka Corp Method for manufacturing polyimide film and polyimide film
JP2015101710A (en) * 2013-11-27 2015-06-04 宇部興産株式会社 Polyimide precursor composition, method of producing polyimide, polyimide, polyimide film, and substrate
WO2015080156A1 (en) * 2013-11-27 2015-06-04 宇部興産株式会社 Polyimide precursor composition, polyimide manufacturing process, polyimide, polyimide film, and base material
KR20160091936A (en) 2013-11-27 2016-08-03 우베 고산 가부시키가이샤 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
JP2017066400A (en) * 2015-09-29 2017-04-06 新日鉄住金化学株式会社 Method for producing polyimide film
KR20170072929A (en) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 Polyimide film, polyimide precursor, and polyimide
KR20170072930A (en) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 Polyimide precursor, polyimide, and polyimide film
CN109957109A (en) * 2017-12-22 2019-07-02 株式会社斗山 Polyamic acid solution, clear polyimides resin film and transparent substrate using it
WO2023229154A1 (en) * 2022-05-24 2023-11-30 주식회사 엘지화학 Method for manufacturing polymer resin film, polymer resin film and substrate for display device using same, and optical device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339835A (en) * 1990-11-27 1992-11-26 Ube Ind Ltd Preparation of aromatic polyimide film
JP2000043211A (en) * 1998-07-31 2000-02-15 Ube Ind Ltd Polyimide film improved in adhesion, production thereof and laminate
JP2003165850A (en) * 2001-11-30 2003-06-10 Kanegafuchi Chem Ind Co Ltd Polyimide film and method for producing the same
JP2004115813A (en) * 1996-03-14 2004-04-15 Toshiba Corp Polyimide precursor composition, method of forming polyimide film, electronic part, and liquid crystal element
JP2006083205A (en) * 2004-09-14 2006-03-30 Du Pont Toray Co Ltd Polyimide film, its manufacturing process and metal wiring board using it as substrate
JP2006183040A (en) * 2004-12-03 2006-07-13 Ube Ind Ltd Polyimide, polyimide film and laminated body
JP2008115377A (en) * 2006-10-10 2008-05-22 Nippon Steel Chem Co Ltd Method for producing polyimide resin layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339835A (en) * 1990-11-27 1992-11-26 Ube Ind Ltd Preparation of aromatic polyimide film
JP2004115813A (en) * 1996-03-14 2004-04-15 Toshiba Corp Polyimide precursor composition, method of forming polyimide film, electronic part, and liquid crystal element
JP2000043211A (en) * 1998-07-31 2000-02-15 Ube Ind Ltd Polyimide film improved in adhesion, production thereof and laminate
JP2003165850A (en) * 2001-11-30 2003-06-10 Kanegafuchi Chem Ind Co Ltd Polyimide film and method for producing the same
JP2006083205A (en) * 2004-09-14 2006-03-30 Du Pont Toray Co Ltd Polyimide film, its manufacturing process and metal wiring board using it as substrate
JP2006183040A (en) * 2004-12-03 2006-07-13 Ube Ind Ltd Polyimide, polyimide film and laminated body
JP2008115377A (en) * 2006-10-10 2008-05-22 Nippon Steel Chem Co Ltd Method for producing polyimide resin layer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115377A (en) * 2006-10-10 2008-05-22 Nippon Steel Chem Co Ltd Method for producing polyimide resin layer
JP2009221398A (en) * 2008-03-18 2009-10-01 Ube Ind Ltd Polyamic acid solution composition, and polyimide film
JP2009221397A (en) * 2008-03-18 2009-10-01 Ube Ind Ltd Polyimide precursor solution composition, and polyimide film
JP2010077311A (en) * 2008-09-26 2010-04-08 Kaneka Corp Method for manufacturing polyimide film and polyimide film
JP2015101710A (en) * 2013-11-27 2015-06-04 宇部興産株式会社 Polyimide precursor composition, method of producing polyimide, polyimide, polyimide film, and substrate
WO2015080156A1 (en) * 2013-11-27 2015-06-04 宇部興産株式会社 Polyimide precursor composition, polyimide manufacturing process, polyimide, polyimide film, and base material
KR20160091936A (en) 2013-11-27 2016-08-03 우베 고산 가부시키가이샤 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
KR20210063447A (en) 2013-11-27 2021-06-01 우베 고산 가부시키가이샤 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
KR20170072929A (en) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 Polyimide film, polyimide precursor, and polyimide
KR20170072930A (en) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 Polyimide precursor, polyimide, and polyimide film
JP2017066400A (en) * 2015-09-29 2017-04-06 新日鉄住金化学株式会社 Method for producing polyimide film
JP6995470B2 (en) 2015-09-29 2022-01-14 日鉄ケミカル&マテリアル株式会社 Method of manufacturing polyimide film
CN109957109A (en) * 2017-12-22 2019-07-02 株式会社斗山 Polyamic acid solution, clear polyimides resin film and transparent substrate using it
KR20190076170A (en) * 2017-12-22 2019-07-02 주식회사 두산 Polyamic acid solution and transparent polyimide film using the same
JP2019112632A (en) * 2017-12-22 2019-07-11 ドゥーサン コーポレイション Polyamic acid solution and transparent polyimide resin film based on the same
CN109957109B (en) * 2017-12-22 2021-08-03 株式会社斗山 Polyamide acid solution, transparent polyimide resin film using same, and transparent substrate
KR102471861B1 (en) 2017-12-22 2022-11-29 주식회사 두산 Polyamic acid solution and transparent polyimide film using the same
WO2023229154A1 (en) * 2022-05-24 2023-11-30 주식회사 엘지화학 Method for manufacturing polymer resin film, polymer resin film and substrate for display device using same, and optical device

Also Published As

Publication number Publication date
JP5417595B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5417595B2 (en) Formation method of polyimide resin layer
JP5275604B2 (en) Method for producing polyimide resin layer
JP6780211B2 (en) High-strength transparent polyamide-imide and its manufacturing method
EP3199581B1 (en) Composition for preparing article including polyimide or poly(imide-amide) copolymer, article including polyimide or poly(imide-amide) copolymer, and electronic device including the article
JP6082390B2 (en) Polyimide precursor, polyimide, polyimide film, polyimide metal laminate and polyimide solution
TWI617596B (en) High strength transparent polyamide-imide and process for preparing same, and polyamide-imide film
JP6862652B2 (en) High-strength transparent polyamide-imide and its manufacturing method
EP3162837B1 (en) Poly(imide-amide) copolymer, a method for preparing a poly(imide-amide) copolymer, and an article including a poly(imide-amide) copolymer
JP3759454B2 (en) Laminated body and method for producing the same
JP4823953B2 (en) Method for producing flexible laminate
JP2020104340A (en) Metal-clad laminate and circuit board
JP2009270023A (en) Method of manufacturing polyimide precursor and polyimide obtained by using the method for manufacturing
WO2018207706A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, flexible device, and production method for polyimide film
JP2024028411A (en) Polyamic acid composition and transparent polyimide film using the same
JP6852970B2 (en) Method of manufacturing polyimide film
JP4108808B2 (en) Polyimide composition
JP4615401B2 (en) Laminated body
JP2017165911A (en) Method for producing polyimide film
JP6788976B2 (en) Method of manufacturing polyimide film
JPH0366824B2 (en)
JP2017165910A (en) Method for producing polyimide film
JP7319950B2 (en) Polyamic acid, polyimide, polyimide film, materials for electronic substrates and electronic substrates
JP3144013B2 (en) Novel polyimide and its manufacturing method
TW202323389A (en) Polyimide film, flexible metal foil laminate and electronic part including the same
KR20240098938A (en) Composition for forming polyimide film, polyimide film formed from the composition, and display device comprising the polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5417595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees