JP4108808B2 - Polyimide composition - Google Patents

Polyimide composition Download PDF

Info

Publication number
JP4108808B2
JP4108808B2 JP03722098A JP3722098A JP4108808B2 JP 4108808 B2 JP4108808 B2 JP 4108808B2 JP 03722098 A JP03722098 A JP 03722098A JP 3722098 A JP3722098 A JP 3722098A JP 4108808 B2 JP4108808 B2 JP 4108808B2
Authority
JP
Japan
Prior art keywords
polyamic acid
minutes
polyimide film
film
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03722098A
Other languages
Japanese (ja)
Other versions
JPH11228694A (en
Inventor
好史 岡田
仁志 野尻
広作 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP03722098A priority Critical patent/JP4108808B2/en
Publication of JPH11228694A publication Critical patent/JPH11228694A/en
Application granted granted Critical
Publication of JP4108808B2 publication Critical patent/JP4108808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリイミド組成物に関し、詳しくは、半導体デバイスの組み立て工程において、デバイスの多ピン化、小型化、高密度実装に際し、注目されているTAB(Tape Automated Bonding)方式に用いられるフィルムキャリアテープ(FCテープ)用ベースフィルム、及びフレキシブルプリント基板(FPC)用ベースフィルムに有用な接着性が改善され且つ、靭性の改善されたフィルム、インク、及びレジストの用途に適するポリイミド組成物に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
近年、各種電子機器において、プリント基板及び接続ケーブルとして柔軟性に優れているフレキシブルプリント基板(以下FPCという。)が多く使用されている。FPCは、長尺の絶縁材であるベースフィルムをロールツーロールで、▲1▼接着剤塗布・乾燥、▲2▼銅箔ラミネーティング・接着剤硬化、▲3▼配線パターン形成(レジスト塗布・銅のエッチング・レジスト剥離)というような加工工程より製造される。
【0003】
また近年、半導体デバイスの多ピン化、小型化、高密度実装に対応できる技術として、長尺の絶縁フィルムにLSI等の半導体チップを搭載するための孔(デバイスフォール)を設け、その上に非常に薄い銅箔リードを形成し、このリードを介してLSI等とプリント配線板等を接続するTAB技術が注目されている。TABテープの加工工程は、▲1▼テープ状のベースフィルムに接着剤層と保護層を設けたフィルムキャリアテープ(FCテープ)をパンチングによりスプロッケトホール、デバイスホールを形成する工程、▲2▼保護層を除去した後、銅箔ラミネーティング後、接着剤を硬化する工程、▲3▼配線パターン形成工程(レジスト塗布、銅のエッチング、レジスト剥離)、▲4▼メッキ処理工程、▲5▼インナーリードボンディング工程、▲6▼樹脂封止工程、▲7▼パンチング工程、▲8▼アウターリードボンディング工程の8工程で行われ、LSIが実装されるのである。
【0004】
FPC及びTABテープともに絶縁材であるフィルムに接着剤により銅箔が接着されており、その銅箔は近年の電子機器の小型化、高密度化により、非常に細線化されている。そのため細線化した銅箔を安定して固定するため接着剤の高接着化が図られてきており、接着剤とフィルム界面での接着強度は向上してきた。接着剤とフィルム界面での接着強度が強くなったため、フィルム界面に近いフィルム内で破壊(フィルムの凝集破壊と呼ぶこととする。)してしまい充分な接着強度が得られないという新たな問題が生じた。
【0005】
また、FPCの銅箔パターンを保護するために、銅箔パターン上にポリアミド酸溶液(インク溶液)を塗布、乾燥してカバーレイを形成するインク用途において、銅箔パターンとカバーレイとの充分な接着強度が得られないという問題が生じた。
【0006】
また、その他レジスト用途としても、同様に保護する基材とポリイミドレジストとの充分な接着強度が得られないという問題が生じた。
【0007】
フィルム界面に近いフィルム内での凝集破壊、銅箔パターンとカバーレイ及び保護する基材とポリイミドレジストの充分な接着強度が得られないという問題の原因はすべて、ポリイミドの低分子量物が、表面にブリードするため接着強度の小さい層が表面に発生に起因する。
【0008】
[発明の目的]
本発明は上記の実情に鑑みてなされたものであり、その目的は、分子量分布の小さなポリアミド酸を用いることにより、従来のフィルムにおける上記のような問題、つまりフィルムの凝集破壊を防ぎ、銅箔パターンとカバーレイの接着強度が改善され、保護する基材とポリイミドレジストの接着強度が改善されたポリイミド組成物を提供するところにある。
【0009】
【課題を解決するための手段】
本発明者らは、この目的を達成するために鋭意検討の結果、次のようなポリイミド組成物を発明した。
【0010】
即ち、本発明のポリイミド組成物は、分子量分布(Mw/Mn)が1.3以上3.5以下であり、Mw(重量平均分子量)の範囲が50,000以上1,000,000以下でありかつ含まれる水分量が5%未満であるポリアミド酸を脱水閉環して得られるポリイミド組成物であって、そのポリイミド組成物の硫酸溶解時の固有粘度が0.5以上でありかつ焼成段階において250℃に達したときにイミド化率が90%以上であることを特徴とする。
【0011】
【発明の実施の形態】
ポリイミド組成物は、その前駆体であるポリアミド酸共重合体を脱水閉環して得られる。このポリアミド酸共重合体溶液は、酸二無水物とジアミン成分を実質的に等モル使用し、有機極性溶媒中で重合して得られる。このポリイミド組成物の1例として、その製造方法を述べる。まず、ポリアミド酸共重合体の製造方法について述べる。
【0012】
アルゴン、窒素等の不活性ガス雰囲気中において、下記一般式(1)
N−R−NH(式中、Rは、2価の有機基を示す。)で表される1種或いは、2種以上のジアミンを有機溶媒に溶解、或いは、スラリー状に拡散させる。この溶液に、下記一般式(2)
【化1】

Figure 0004108808
(式中、Rは、4価の有機基を示す。)で表される少なくとも1種の芳香族酸二無水物を固体またはスラリー或いは有機溶媒溶液の状態で添加し、ポリアミド酸共重合体の溶液を得る。ジアミン成分の総量と酸二無水物成分の総量は、実質的に等モルにする事が好ましい。
【0013】
この時の反応温度は−20℃〜100℃、望ましくは60℃以下が好ましい。反応時間は0.5〜12時間程度である。
【0014】
また、この反応において、上記添加順序とは逆に、まず少なくとも1種の芳香族酸二無水物を有機溶媒中に溶解または拡散させ、該溶液中に1種或いは、2種以上の前記ジアミンの固体もしくは有機溶媒による溶液もしくはスラリーを添加させても良い。また、同時に混合させてもよく、芳香族酸二無水物成分、ジアミン成分の混合の順序は限定されない。
【0015】
ポリアミド酸の重量平均分子量(Mw)は10,000〜1,000,000であることが望ましい。平均分子量が10,000未満ではできあがったフィルムが脆くなり、一方、1,000,000を越えるとポリアミド酸ワニスの粘度が高くなりすぎ取扱いが難しくなって好ましくない。望ましくは、5万〜100万、更に望ましくは10万〜80万程度である。
【0016】
分子量分布(Mw/Mn=重量平均分子量/数平均分子量)は出来るだけ小さいことが望ましいが、ポリアミド酸を生成するジアミンと酸二無水物の反応においては、1.3程度より小さくすることは困難である。また、5.0より大きくするとポリアミド酸中の低分子量物が増え、接着性や靭性などの物性を落としてしまうため望ましくない。範囲として望ましくは、1.3〜4.0であり、更に望ましくは1.3〜3.5程度である。
【0017】
ポリアミド酸の分子量分布を小さくするのに有効な重合方法についてのべる。
アルゴン、窒素等の不活性ガス雰囲気中において、下記一般式(1)
N−R−NH(式中、Rは、2価の有機基を示す。)で表される1種或いは、2種以上のジアミンを有機溶媒に溶解、或いは、スラリー状に拡散させる。この溶液に、下記一般式(2)
【化2】
Figure 0004108808
(式中、Rは、4価の有機基を示す。)で表される少なくとも1種の芳香族酸二無水物を固体またはスラリー或いは有機溶媒溶液の状態で添加し、ポリアミド酸共重合体のプレポリマー溶液を得る。この際のモル比として芳香族酸二無水物>ジアミンとし、このあと1種或いは、2種以上のジアミンを有機溶媒に溶解、或いは、スラリー状に拡散させポリアミド酸溶液を得る。ジアミン成分の総量と酸二無水物成分の総量は、実質的に等モルにする事が好ましい。既に記載している重合法との違いは、本重合法が酸二無水物末端のプレポリマーにジアミン成分を加えることにより、高分子量のポリアミド酸溶液を得ることである。本重合法は、ジアミン1種と酸二無水物1種でも、ジアミン数種と酸二無水物数種でも同様に酸二無水物末端のプレポリマーにジアミン成分を加え、分子量分布の小さな高分子量のポリアミド酸溶液を得ることができる。
【0018】
ポリアミド酸中に水分が多く含まれれば、水分によりポリアミド酸が加水分解され、ポリアミド酸の保存安定性が著しく低下するため好ましくない。そのためポリアミド酸中に含まれる水分量は5%未満、望ましくは3%以下、更に望ましくは1%以下である。なお、含水率の測定方法は次のとおりである。すなわち、ポリアミド酸溶液を無水メタノールに入れ、よく振ってポリアミド酸溶液中の水をメタノール中に抽出する。このメタノールをカール・フィッシャー滴定によって水分量を測定する。
【0019】
本発明の中で用いるジアミン化合物のうち直線性ジアミンとは、エーテル結合等の屈曲基を含まず、2つの窒素原子を結ぶ直線とジアミンの主鎖方向が一致するような構造を有するジアミン化合物及び特定のエステル基或いはアミド基を含むジアミン化合物をさす。例えば、
【化3】
Figure 0004108808
(ただし、XはF,Cl,I,Br,CH,CHO,CFを示す。)等のジアミンを例示することができる。
【0020】
一方、本発明の中で用いるジアミン化合物のうち屈曲性ジアミンとは、主鎖中に、エーテル結合やカルボニル基等の屈曲基を含む様な構造をさし、例えば、
【化4】
Figure 0004108808
等のジアミンを例示することができる。
【0021】
ジアミン成分として直線性ジアミンを用いれば、高弾性のフィルムを得ることができ、屈曲性ジアミンを用いれば、低吸水性のフィルムを得ることができる。もちろん、直線性ジアミンや屈曲性ジアミンの共重合比を調整し、物性バランスを取ることが好ましい。
【0022】
また、本発明に係るポリイミドフィルムに用いられる酸無水物は、本質的に種々の酸二無水物が使用可能であるが、より具体的には、諸物性のバランスから、
【化5】
Figure 0004108808
(式中、Rは、化6を示す。)
【化6】
Figure 0004108808
から選択される酸二無水物を用いることが望ましい。
【0023】
また、このポリイミドフィルムに各種の有機添加剤、或は無機のフィラー類、或は各種の強化材を複合することも可能である。
【0024】
ここで該ポリアミド酸の生成反応に使用される有機極性溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドなどのホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドンなどのピロリドン系溶媒、フェノール、o−、m−、またはp−クレゾール、キシレノール、ハロゲン化フェノ−ル、カテコールなどのフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ−ブチロラクトンなどをあげることができ、これらを単独または混合物として用いるのが望ましいが、更にはキシレン、トルエンのような芳香族炭化水素の一部使用も可能である。
【0025】
このポリアミド酸は各々前記の有機極性溶媒中に5〜40重量%、好ましくは10〜30重量%溶解されているのが取扱いの面からも望ましい。
【0026】
このポリアミド酸溶液から本発明のポリイミド組成物を得るためには熱的に脱水する熱的方法、脱水剤を用いる化学的方法のいずれを用いてもよいが、化学的方法によると生成するポリイミド組成物の伸びや引張強度等の機械特性が優れたものになるので好ましい。
【0027】
以下にポリイミドフィルムの作成方法についての例を説明する。
【0028】
1)化学的脱水法
上記ポリアミド酸重合体またはその溶液に化学量論以上の脱水剤と触媒量の第3級アミンを加えた溶液をドラム或はエンドレスベルト上に流延または塗布して膜状とし、その膜を150℃以下の温度で約5〜90分間乾燥し、自己支持性のポリアミド酸の膜を得る。ついで、これを支持体より引き剥し、その後端部を固定する。その後約100〜500℃まで徐々に加熱することによりイミド化し、冷却後これより取り外し本発明のポリイミドフィルムを得る。
【0029】
ここで言う脱水剤としては、例えば無水酢酸等の脂肪族酸無水物、芳香族酸無水物などが挙げられる。また触媒としては、例えばトリエチルアミンなどの脂肪族第3級アミン類、ジメチルアニリン等の芳香族第3級アミン類、ピリジン、ピコリン、イソキノリン等の複素環式第3級アミン類などが挙げられる。
【0030】
2)熱的脱水法
上記ポリアミド酸重合体またはその溶液をドラム或はエンドレスベルト上に流延または塗布して膜状とし、その膜を200℃以下の温度で約5〜90分間乾燥し、自己支持性のポリアミド酸の膜を得る。ついで、これを支持体より引き剥し、端部を固定する。その後約100〜500℃まで徐々に加熱することによりイミド化し、冷却後これより取り外し本発明のポリイミドフィルムを得る。
【0031】
固有粘度の測定法について説明する。ポリイミドを0.5g/dlになるように硫酸に溶解し、ウベローデ型粘度計を用い25℃での硫酸に対する比粘度を測定する。濃硫酸を用いると固有粘度は時間とともに減少する。このため溶解開始からの経過時間に対して固有粘度をプロットし、それを溶解開始時間(0時間)に外挿したものを固有粘度とする。この固有粘度は、フィルム分子量に対し相関があり、値が大きいほど分子量が高い。よって、このポリイミドフィルムの硫酸溶解時の固有粘度が0.5以上である、望ましくは、1以上、更に望ましくは2以上である。硫酸粘度を測定する際、硫酸に溶解しなかった場合、固有粘度が2以上であるものとみなすこととする。
【0032】
イミド化率について説明する。イミド化率とは、(焼成段階でのイミド基のモル数)/(100%理論的にイミド化された場合のイミド基のモル数)×100のことで、IRにより測定したイミド基の特性吸収の吸光度比により決定する。例えば、イミドの特性吸収の1つである725cm−1とベンゼン環の特性吸収1,015cm−1の吸光度比により求める。具体的には下記式のxがイミド化率である(今回はこの方法を採用した。)。
【0033】
【数1】
Figure 0004108808

【0034】
別の方法としては、同様に下記式により求めても良い。
【0035】
【数2】
Figure 0004108808

【0036】
また別の方法として、イミドの特性吸収の1つである725cm−1とポリアミド酸の特性吸収1,535cm−1の吸光度比の変化により求めても良い。
【0037】
すでに説明したように、化学的脱水法・熱的脱水法ともに徐々に昇温或いはステップをふんで昇温することにより焼成する。この焼成時に、250℃の温度となった時のイミド化率が90%以上となることが必要である。イミド化率が小さいことは、ポリアミド酸の部位が多数残っていることを意味し、そのままで焼成すると(高温にさらされると)、熱分解が起こるため好ましくない。望ましくは、250℃の温度となった時のイミド化率が93%以上であり。更に望ましくは、95%以上であり、最も望ましくは98%以上である。
【0038】
このポリイミドフィルムは、その前駆体であるポリアミド酸共重合体溶液から得られるが、このポリアミド酸共重合体溶液は、酸無水物とジアミン成分を実質等モル使用し有機極性溶媒中で重合して得られる。
【0039】
ポリイミドフィルムの厚みは7.5μm〜250μm程度で用いられるが、取扱い上の利便性、フィルム強度、小型化対応のための薄厚化要求などのバランスから12.5μm〜125μmがより好適である。
【0040】
接着性を向上させるためにコロナ処理、プラズマ処理、カップリング剤処理などを行っても良い。
【0041】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
【0042】
実施例中、ODAは4,4’−ジアミノジフェニルエーテル、p−PDAはパラフェニレンジアミン、PMDAは無水ピロメリット酸、s−BPDAは、3,3’4,4’−ビフェニルテトラカルボン酸2無水物、ODPAは、3,3’4,4’−ジフェニルエーテルテトラカルボン酸2無水物、BTDAはベンゾフェノンテトラカルボン酸2無水物、DMAcはジメチルアセトアミド、DMFは、ジメチルフォルムアミドを表す。
【0043】
熱膨張係数は、セイコー電子(株)製TMA120Cを用い、平面方向は3mm×10mmのサンプルに3gfの加重下(引っ張りモード)で測定した。
【0044】
分子量は、Waters製GPCを用いて以下条件で測定した(カラム:Shodex KD-806M 2本、温度:60℃、検出器:RI、流量:1ml/分、展開液:DMF(臭化リチウム0.03M,リン酸0.03M)、試料濃度:0.2%wt、注入量:20μl、基準物質:ポリエチレンオキサイド)。
【0045】
引張伸び率は、ASTM D882による。
【0046】
なお、実施例および比較例のポリアミド酸溶液は、B型粘度計で23℃で測定した粘度が3000ポイズ程度になるように調整してある。
【0047】
<フィルムとしての評価>
実施例1
セパラブルフラスコにDMAcとODAを0.75当量とりジアミン化合物が完全に溶解するまで室温でよく撹拌した。次に、PMDA1当量を粉体で1時間かけて徐々に加え、その後40分撹拌した。そして、ODA0.25当量をDMAcに溶かし、徐々に加え、このあと1時間冷却撹拌し、ポリアミド酸のDMAc溶液を得た。なおDMAcの使用量はジアミン類および芳トラカルボン酸二無水物類のモノマー仕込濃度が、18重量%となるようにした。
【0048】
次に、ポリアミド酸溶液を無水酢酸、βピコリンと混合し、ガラス板上に流延塗布し、約100℃に約5分間乾燥後、ポリアミド酸塗膜をガラス板より剥し、次にその塗膜を支持枠に固定し、その後、約200℃で約5分間、約300℃で約5分間加熱し、約400℃で約5分間加熱し、約450℃で約5分間加熱して脱水閉環乾燥し、約25μmのポリイミドフィルムを得た。
得られたポリアミド酸及びポリイミドフィルムの物性を表1に示した。
【0049】
デュポン製pyralux と上記ポリイミドフィルム及び銅箔(三井金属製3ECVLP1oz)を、180℃の熱ラミネーターによりラミネートし、その後180℃1時間オーブンにて乾燥することにより、ポリイミドフィルム/pyralux /銅箔の3層積層体(以後CCLと呼ぶ)が得られる。接着強度はJIS C 5016に従って測定した。
【0050】
実施例2
実施例1と同じポリアミド酸溶液を、ガラス板上に流延塗布し、約100℃に約30分間乾燥後、ポリアミド酸塗膜をガラス板より剥し、その塗膜を支持枠に固定し、その後、約100℃で約30分間、約150℃で約60分間加熱し、約200℃で約60分間加熱し、約300℃で約30分間加熱し、約400℃で約30分間、約450℃で約5分加熱して脱水閉環乾燥し、約25μmのポリイミドフィルムを得た。得られたポリイミドフィルムの物性を表1に示した。
【0051】
実施例3
セパラブルフラスコにDMFとODAを1.0当量採り、ジアミン化合物が完全に溶解するまで室温でよく撹拌した。次に、PMDA0.95当量を粉体で1時間かけて徐々に加え、その後40分撹拌した。そして、PMDA0.05当量をDMFに溶かし、徐々に加え、このあと1時間冷却撹拌し、ポリアミド酸のDMF溶液を得た。なお、DMFの使用量はジアミン類および芳トラカルボン酸二無水物類のモノマー仕込濃度が18重量%となるようにした。
【0052】
次に、ポリアミド酸溶液を無水酢酸、βピコリンと混合し、ガラス板上に流延塗布し、約100℃に約5分間乾燥後、ポリアミド酸塗膜をガラス板より剥し、次にその塗膜を支持枠に固定し、その後、約200℃で約5分間、約300℃で約5分間加熱し、約400℃で約5分間加熱し、約450℃で約5分間加熱して脱水閉環乾燥し、約25μmのポリイミドフィルムを得た。
【0053】
実施例4
DMFの使用量は、ジアミン類および芳トラカルボン酸二無水物類のモノマー仕込濃度が10重量%となるようにしたという以外は、実施例3と同様の方法でポリアミド酸のDMF溶液を得た。
【0054】
比較例1
セパラブルフラスコにDMAcとODAを1当量とりジアミン化合物が完全に溶解するまで室温でよく撹拌した。次に、PMDA0.80当量を粉体で一気に加え、その後40分撹拌した。PMDA0.15当量を粉体で一気に加え、その後40分撹拌した。そして、PMDA0.05当量をDMAcに溶かし加え、このあと1時間冷却撹拌し、ポリアミド酸のDMAc溶液を得た。なおDMAcの使用量はジアミン類および芳トラカルボン酸二無水物類のモノマー仕込濃度が、18重量%となるようにした。その他は、実施例1と同様の方法でポリイミドフィルムを得た。得られたポリアミド酸、ポリイミドフィルムの物性を表1に示した。
【0055】
比較例2
実施例1と同じポリアミド酸溶液に溶液全量の5重量%になるように水分を加えた。その他は実施例1と同様の方法でポリイミドフィルムを得た。得られたポリイミドフィルムの物性を表1に示した。
【0056】
比較例3
実施例1と同じポリアミド酸溶液を無水酢酸、βピコリンと混合し、ガラス板上に流延塗布し、約100℃に約5分間乾燥後、ポリアミド酸塗膜をガラス板より剥し、次にその塗膜を支持枠に固定し、その後、約200℃で約5分間、約300℃で約5分間加熱し、約400℃で約2分間加熱して脱水閉環乾燥し、約25μmのポリイミドフィルムを得た。
【0057】
その他は実施例1と同様の方法でポリイミドフィルムを得た。得られたポリイミドフィルムの物性を表1に示した。
【0058】
比較例4
実施例1と同じポリアミド酸溶液を無水酢酸、βピコリンと混合し、ガラス板上に流延塗布し、約70℃に約5分間乾燥後、ポリアミド酸塗膜をガラス板より剥し、その塗膜を支持枠に固定し、約400℃で約5分間加熱し、約450℃で約5分間加熱して脱水閉環乾燥し、約25μmのポリイミドフィルムを得た。
【0059】
その他は実施例1と同様の方法でポリイミドフィルムを得た。得られたポリイミドフィルムの物性を表1に示した。
【0060】
<インク(カバーフィルム)としての評価>
実施例5
実施例1と同じポリアミド酸溶液を銅箔(三井金属製3ECVLP1oz)上に流延塗布し、約100℃に約60分間、約150℃で約60分間加熱し、約200℃で約60分間加熱し、約300℃で約30分間加熱し、約400℃で約30分間、約450℃で約5分加熱して脱水閉環乾燥し、銅箔に約25μmの厚みのポリイミドフィルム積層した2層CCLを得た。接着強度はJIS C 5016に従って測定した。また、銅箔をエッチングして25μmのポリイミドフィルムとし、引張強度を測定した。これらの結果を表1に示す。
【0061】
比較例5
比較例1と同じポリアミド酸溶液を用いた他は、実施例3と同様に行った。その結果を表1に示す。
【0062】
比較例6
実施例1と同じポリアミド酸溶液に溶液全量の5重量%になるように水分を加えた。その他は実施例3と同様の方法で銅箔に約25μm厚みのポリイミドフィルム積層した2層CCLを得た。接着強度はJIS C 5016に従って測定した。また、銅箔をエッチングして25μmのポリイミドフィルムとし、引張強度を測定した。これらの結果を表1に示す。
【0063】
比較例7
実施例1と同じポリアミド酸溶液を無水酢酸、βピコリンと混合し、ガラス板上に流延塗布し、約100℃に約5分間乾燥後、ポリアミド酸塗膜をガラス板より剥し、次にその塗膜を支持枠に固定し、その後、約200℃で約5分間、約300℃で約5分間加熱し、約400℃で約2分間加熱して脱水閉環乾燥し、銅箔に約25μm厚みのポリイミドフィルム積層した2層CCLを得た。接着強度はJIS C 5016に従って測定した。また、銅箔をエッチングして25μmのポリイミドフィルムとし、引張強度を測定した。これらの結果を表1に示す。
比較例8
実施例1と同じポリアミド酸溶液を無水酢酸、βピコリンと混合し、ガラス板上に流延塗布し、約70℃に約5分間乾燥後、ポリアミド酸塗膜をガラス板より剥し、その塗膜を支持枠に固定し、約400℃で約5分間加熱し、約450℃で約5分間加熱して脱水閉環乾燥し、銅箔に約25μm厚みのポリイミドフィルム積層した2層CCLを得た。接着強度はJIS C 5016に従って測定した。また、銅箔をエッチングして25μmのポリイミドフィルムとし、引張強度を測定した。これらの結果を表1に示す。約25μmのポリイミドフィルムを得た。
【0064】
<レジストとしての評価>
実施例6
実施例1と同じポリアミド酸溶液をガラス板上に流延塗布し、約100℃に約60分間、約150℃で約60分間加熱し、約200℃で約60分間加熱し、約300℃で約30分間加熱し、約400℃で約30分間、約450℃で約5分加熱して脱水閉環乾燥し、ガラス上に約25μm厚みのポリイミドフィルムを得た。ガラスとの接着強度はJIS C 5016に従って測定した。これらの結果を表1に示す。
【0065】
比較例9
比較例1と同じポリアミド酸溶液を用いた他は、実施例4と同様に行った。その結果を表1に示す。
【0066】
比較例10
実施例1と同じポリアミド酸溶液に溶液全量の5重量%になるように水分を加えた。その他は実施例3と同様の方法でガラス板に約25μm厚みのポリイミドフィルム積層した。ガラス板との接着強度はJIS C 5016に準じて測定した。これらの結果を表1に示す。
【0067】
比較例11
実施例1と同じポリアミド酸溶液を無水酢酸、βピコリンと混合し、ガラス板上に流延塗布し、約100℃に約5分間乾燥後、その塗膜を支持枠に固定し、その後、約200℃で約5分間、約300℃で約5分間加熱し、約400℃で約2分間加熱して脱水閉環乾燥し、銅箔に約25μm厚みのポリイミドフィルム積層した2層CCLを得た。接着強度はJIS C 5016に従って測定した。また、銅箔をエッチングして25μmのポリイミドフィルムとし、引張強度を測定した。これらの結果を表1に示す。
【0068】
比較例12
実施例1と同じポリアミド酸溶液を無水酢酸、βピコリンと混合し、ガラス板上に流延塗布し、約70℃に約5分間乾燥後、約400℃で約5分間加熱し、約450℃で約5分間加熱して脱水閉環乾燥し、ガラス上に約25μm厚みのポリイミドフィルムを得た。接着強度はJIS C 5016に準じて測定した。これらの結果を表1に示す。
【0070】
【表1】
Figure 0004108808
【0071】
【発明の効果】
本発明により、フィルムの凝集破壊を防ぎ、銅箔パターンとカバーレイの接着強度が改善され、保護する基材とポリイミドレジストの接着強度が改善されたポリイミド組成物を提供するところにある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyimide composition, and more specifically, in a semiconductor device assembly process, a film carrier tape (Tape Automated Bonding) used in a TAB (Tape Automated Bonding) method, which has been attracting attention in the process of increasing the number of pins, miniaturization, and high-density mounting of a device. The present invention relates to a polyimide composition suitable for use in films, inks, and resists having improved adhesion and improved toughness useful for base films for FC tapes and flexible printed circuit boards (FPCs).
[0002]
[Prior art and problems to be solved by the invention]
In recent years, in various electronic devices, a flexible printed circuit board (hereinafter referred to as FPC) having excellent flexibility as a printed circuit board and a connection cable is often used. FPC is a roll-to-roll base film that is a long insulating material. (1) Adhesive application and drying, (2) Copper foil laminating and adhesive curing, (3) Wiring pattern formation (resist application and copper And etching / resist stripping).
[0003]
Also, in recent years, as a technology that can cope with the increase in the number of pins, miniaturization, and high-density mounting of semiconductor devices, a hole (device fall) for mounting a semiconductor chip such as an LSI or the like has been provided on a long insulating film. Attention has been focused on a TAB technique in which a thin copper foil lead is formed on the substrate and an LSI or the like is connected to the printed wiring board or the like through the lead. TAB tape processing steps are as follows: (1) Forming sprocket holes and device holes by punching a film carrier tape (FC tape) with an adhesive layer and protective layer on a tape-like base film; (2) Protection After removing the layer, after laminating the copper foil, curing the adhesive, (3) wiring pattern forming process (resist application, copper etching, resist stripping), (4) plating process, (5) inner lead The LSI is mounted in 8 steps of bonding step, (6) resin sealing step, (7) punching step, and (8) outer lead bonding step.
[0004]
In both FPC and TAB tape, a copper foil is bonded to a film which is an insulating material by an adhesive, and the copper foil is very thin due to the recent miniaturization and higher density of electronic devices. Therefore, in order to stably fix the thinned copper foil, the adhesive has been made highly adhesive, and the adhesive strength at the interface between the adhesive and the film has been improved. Since the adhesive strength at the interface between the adhesive and the film has become stronger, there is a new problem that sufficient adhesive strength cannot be obtained because it breaks in the film near the film interface (referred to as cohesive failure of the film). occured.
[0005]
In addition, in order to protect the copper foil pattern of the FPC, a polyamic acid solution (ink solution) is applied on the copper foil pattern and dried to form a coverlay. There arises a problem that the adhesive strength cannot be obtained.
[0006]
In addition, for other resist applications, there was a problem that sufficient adhesive strength between the base material to be protected and the polyimide resist could not be obtained.
[0007]
The causes of cohesive failure in the film near the film interface, copper foil pattern and coverlay, and insufficient adhesion strength between the substrate to be protected and the polyimide resist are all caused by low molecular weight polyimide on the surface. Due to bleeding, a layer with low adhesive strength is caused on the surface.
[0008]
[Object of invention]
The present invention has been made in view of the above circumstances, and the object thereof is to prevent the above-described problems in conventional films, that is, cohesive failure of the film, by using a polyamic acid having a small molecular weight distribution, and a copper foil. An object of the present invention is to provide a polyimide composition in which the adhesive strength between the pattern and the coverlay is improved, and the adhesive strength between the substrate to be protected and the polyimide resist is improved.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have invented the following polyimide composition as a result of intensive studies in order to achieve this object.
[0010]
  That is, the polyimide composition of the present invention has a molecular weight distribution (Mw / Mn) of 1.3 or more.3.5And the range of Mw (weight average molecular weight) is50,000A polyimide composition obtained by dehydrating and ring-closing a polyamic acid having a content of 1,000,000 or less and a water content of less than 5%, wherein the polyimide composition has an intrinsic viscosity of 0. The imidation ratio is 90% or more when it is 5 or more and reaches 250 ° C. in the firing stage.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The polyimide composition is obtained by dehydrating and ring-closing the polyamic acid copolymer that is a precursor thereof. This polyamic acid copolymer solution is obtained by polymerizing in an organic polar solvent using substantially equal moles of an acid dianhydride and a diamine component. As an example of this polyimide composition, a production method thereof will be described. First, a method for producing a polyamic acid copolymer will be described.
[0012]
In an inert gas atmosphere such as argon or nitrogen, the following general formula (1)
H2N-R1-NH2(Wherein R1Represents a divalent organic group. 1 type or 2 or more types of diamines represented by formula (1) are dissolved in an organic solvent or diffused in a slurry form. In this solution, the following general formula (2)
[Chemical 1]
Figure 0004108808
(Wherein R2Represents a tetravalent organic group. At least one aromatic dianhydride represented by the formula (1) is added in the form of a solid, slurry, or organic solvent solution to obtain a polyamic acid copolymer solution. The total amount of the diamine component and the total amount of the acid dianhydride component are preferably substantially equimolar.
[0013]
The reaction temperature at this time is −20 ° C. to 100 ° C., desirably 60 ° C. or less. The reaction time is about 0.5 to 12 hours.
[0014]
In this reaction, contrary to the order of addition, at least one aromatic dianhydride is first dissolved or diffused in an organic solvent, and one or more of the diamines are added to the solution. You may add the solution or slurry by a solid or an organic solvent. Moreover, you may mix simultaneously, and the order of mixing of an aromatic dianhydride component and a diamine component is not limited.
[0015]
The weight average molecular weight (Mw) of the polyamic acid is desirably 10,000 to 1,000,000. If the average molecular weight is less than 10,000, the resulting film becomes brittle. On the other hand, if it exceeds 1,000,000, the viscosity of the polyamic acid varnish becomes too high and handling becomes difficult. Preferably, it is about 50,000 to 1,000,000, more preferably about 100,000 to 800,000.
[0016]
The molecular weight distribution (Mw / Mn = weight average molecular weight / number average molecular weight) is desirably as small as possible, but it is difficult to make it smaller than about 1.3 in the reaction of diamine and acid dianhydride forming polyamic acid. It is. On the other hand, if it is larger than 5.0, low molecular weight substances in the polyamic acid increase, and physical properties such as adhesion and toughness are deteriorated. The range is preferably 1.3 to 4.0, and more preferably about 1.3 to 3.5.
[0017]
A polymerization method effective for reducing the molecular weight distribution of polyamic acid will be described.
In an inert gas atmosphere such as argon or nitrogen, the following general formula (1)
H2N-R1-NH2(Wherein R1Represents a divalent organic group. 1 type or 2 or more types of diamines represented by formula (1) are dissolved in an organic solvent or diffused in a slurry form. In this solution, the following general formula (2)
[Chemical 2]
Figure 0004108808
(Wherein R2Represents a tetravalent organic group. At least one kind of aromatic dianhydride represented by the following formula is added in the form of a solid, slurry or organic solvent solution to obtain a prepolymer solution of a polyamic acid copolymer. In this case, the molar ratio of aromatic acid dianhydride> diamine is used, and then one or more diamines are dissolved in an organic solvent or diffused in a slurry to obtain a polyamic acid solution. The total amount of the diamine component and the total amount of the acid dianhydride component are preferably substantially equimolar. The difference from the polymerization method already described is that this polymerization method adds a diamine component to the acid dianhydride-terminated prepolymer to obtain a high molecular weight polyamic acid solution. In this polymerization method, a diamine component is added to a prepolymer at the terminal of an acid dianhydride, regardless of whether it is one kind of diamine and one kind of acid dianhydride, or several kinds of diamine and several kinds of acid dianhydrides. A polyamic acid solution can be obtained.
[0018]
If the polyamic acid contains a large amount of water, it is not preferable because the polyamic acid is hydrolyzed by the water and storage stability of the polyamic acid is significantly reduced. Therefore, the amount of water contained in the polyamic acid is less than 5%, desirably 3% or less, more desirably 1% or less. In addition, the measuring method of a moisture content is as follows. That is, the polyamic acid solution is put into anhydrous methanol and shaken well to extract water in the polyamic acid solution into methanol. The methanol is measured for water content by Karl Fischer titration.
[0019]
Among the diamine compounds used in the present invention, the linear diamine does not include a bending group such as an ether bond, and has a structure in which the straight line connecting two nitrogen atoms and the main chain direction of the diamine coincide with each other; A diamine compound containing a specific ester group or amide group. For example,
[Chemical Formula 3]
Figure 0004108808
(Where X is F, Cl, I, Br, CH3, CH3O, CF3Indicates. ) And the like.
[0020]
On the other hand, the flexible diamine among the diamine compounds used in the present invention refers to a structure containing a bending group such as an ether bond or a carbonyl group in the main chain.
[Formula 4]
Figure 0004108808
Examples of such diamines can be given.
[0021]
If linear diamine is used as the diamine component, a highly elastic film can be obtained, and if flexible diamine is used, a low water-absorbing film can be obtained. Of course, it is preferable to adjust the copolymerization ratio of the linear diamine or the flexible diamine to balance the physical properties.
[0022]
In addition, as the acid anhydride used for the polyimide film according to the present invention, various acid dianhydrides can be used essentially, but more specifically, from the balance of various physical properties,
[Chemical formula 5]
Figure 0004108808
(Wherein R2Indicates Chemical Formula 6. )
[Chemical 6]
Figure 0004108808
It is desirable to use an acid dianhydride selected from:
[0023]
In addition, various organic additives, inorganic fillers, or various reinforcing materials can be combined with the polyimide film.
[0024]
Examples of the organic polar solvent used in the polyamic acid production reaction include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, Acetamide solvents such as N, N-dimethylacetamide and N, N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, phenol, o-, m-, or p -Phenolic solvents such as cresol, xylenol, halogenated phenol, catechol, etc., or hexamethylphosphoramide, γ-butyrolactone, etc. can be mentioned, and these are preferably used alone or as a mixture. , Good like toluene Some use of the family hydrocarbon are also possible.
[0025]
It is also desirable from the viewpoint of handling that the polyamic acid is dissolved in the organic polar solvent in an amount of 5 to 40% by weight, preferably 10 to 30% by weight.
[0026]
In order to obtain the polyimide composition of the present invention from this polyamic acid solution, either a thermal method of thermally dehydrating or a chemical method using a dehydrating agent may be used, but the polyimide composition produced according to the chemical method This is preferable because mechanical properties such as elongation and tensile strength of the product are excellent.
[0027]
The example about the preparation method of a polyimide film is demonstrated below.
[0028]
1) Chemical dehydration method
A solution obtained by adding a stoichiometric or higher amount of a dehydrating agent and a catalytic amount of a tertiary amine to the polyamic acid polymer or a solution thereof is cast or coated on a drum or an endless belt to form a film. Drying at a temperature of ℃ or less for about 5 to 90 minutes, a self-supporting polyamic acid film is obtained. Next, it is peeled off from the support and the rear end is fixed. Thereafter, it is imidized by gradually heating to about 100 to 500 ° C., and after cooling, it is removed therefrom to obtain the polyimide film of the present invention.
[0029]
Examples of the dehydrating agent here include aliphatic acid anhydrides such as acetic anhydride, aromatic acid anhydrides, and the like. Examples of the catalyst include aliphatic tertiary amines such as triethylamine, aromatic tertiary amines such as dimethylaniline, and heterocyclic tertiary amines such as pyridine, picoline, and isoquinoline.
[0030]
2) Thermal dehydration method
The polyamic acid polymer or a solution thereof is cast or coated on a drum or an endless belt to form a film, and the film is dried at a temperature of 200 ° C. or less for about 5 to 90 minutes to form a self-supporting polyamic acid. Get a membrane. Then, this is peeled off from the support and the end is fixed. Thereafter, it is imidized by gradually heating to about 100 to 500 ° C., and after cooling, it is removed therefrom to obtain the polyimide film of the present invention.
[0031]
A method for measuring the intrinsic viscosity will be described. The polyimide is dissolved in sulfuric acid so as to be 0.5 g / dl, and the specific viscosity with respect to sulfuric acid at 25 ° C. is measured using an Ubbelohde viscometer. When concentrated sulfuric acid is used, the intrinsic viscosity decreases with time. For this reason, the intrinsic viscosity is plotted against the elapsed time from the start of dissolution, and the value obtained by extrapolating it to the dissolution start time (0 hour) is taken as the intrinsic viscosity. This intrinsic viscosity has a correlation with the film molecular weight, and the larger the value, the higher the molecular weight. Therefore, the intrinsic viscosity of this polyimide film when dissolved in sulfuric acid is 0.5 or more, preferably 1 or more, and more preferably 2 or more. When the sulfuric acid viscosity is measured, if it is not dissolved in sulfuric acid, it is assumed that the intrinsic viscosity is 2 or more.
[0032]
The imidization rate will be described. The imidation ratio is (number of moles of imide group in the firing stage) / (number of moles of imide group when theoretically imidized 100%) × 100, and the characteristics of the imide group measured by IR Determined by absorbance ratio of absorption. For example, 725 cm, which is one of the characteristic absorptions of imide-1And characteristic absorption of benzene ring 1,015cm-1The absorbance ratio is obtained. Specifically, x in the following formula is an imidization ratio (this method was adopted this time).
[0033]
[Expression 1]
Figure 0004108808
.
[0034]
As another method, you may obtain | require similarly by the following formula.
[0035]
[Expression 2]
Figure 0004108808
.
[0036]
As another method, 725 cm, which is one of the characteristic absorptions of imides.-1And polyamic acid characteristic absorption 1,535cm-1You may obtain | require by the change of the light absorbency ratio.
[0037]
As already described, both the chemical dehydration method and the thermal dehydration method are performed by gradually raising the temperature or raising the temperature by taking steps. It is necessary that the imidization rate when the temperature reaches 250 ° C. during the firing is 90% or more. A small imidation ratio means that many sites of polyamic acid remain, and if it is baked as it is (exposed to a high temperature), thermal decomposition occurs, which is not preferable. Desirably, the imidation rate when the temperature reaches 250 ° C. is 93% or more. More desirably, it is 95% or more, and most desirably 98% or more.
[0038]
This polyimide film is obtained from the precursor polyamic acid copolymer solution. This polyamic acid copolymer solution is polymerized in an organic polar solvent using a substantially equimolar amount of an acid anhydride and a diamine component. can get.
[0039]
The thickness of the polyimide film is about 7.5 μm to 250 μm, but 12.5 μm to 125 μm is more preferable in terms of balance in terms of convenience in handling, film strength, and thinning requirements for miniaturization.
[0040]
In order to improve adhesiveness, corona treatment, plasma treatment, coupling agent treatment, or the like may be performed.
[0041]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
[0042]
In Examples, ODA is 4,4′-diaminodiphenyl ether, p-PDA is paraphenylenediamine, PMDA is pyromellitic anhydride, and s-BPDA is 3,3′4,4′-biphenyltetracarboxylic dianhydride. , ODPA represents 3,3′4,4′-diphenyl ether tetracarboxylic dianhydride, BTDA represents benzophenone tetracarboxylic dianhydride, DMAc represents dimethylacetamide, and DMF represents dimethylformamide.
[0043]
The coefficient of thermal expansion was measured using a TMA120C manufactured by Seiko Electronics Co., Ltd., and the plane direction was measured under a load of 3 gf (tensile mode) on a 3 mm × 10 mm sample.
[0044]
The molecular weight was measured using GPC manufactured by Waters under the following conditions (column: two Shodex KD-806M, temperature: 60 ° C., detector: RI, flow rate: 1 ml / min, developing solution: DMF (lithium bromide 0. 03M, phosphoric acid 0.03M), sample concentration: 0.2% wt, injection amount: 20 μl, reference substance: polyethylene oxide).
[0045]
Tensile elongation is in accordance with ASTM D882.
[0046]
In addition, the polyamic acid solutions of Examples and Comparative Examples are adjusted so that the viscosity measured at 23 ° C. with a B-type viscometer is about 3000 poise.
[0047]
<Evaluation as a film>
Example 1
0.75 equivalents of DMAc and ODA were taken in a separable flask and stirred well at room temperature until the diamine compound was completely dissolved. Next, 1 equivalent of PMDA was gradually added as a powder over 1 hour and then stirred for 40 minutes. Then, 0.25 equivalent of ODA was dissolved in DMAc, gradually added, and then cooled and stirred for 1 hour to obtain a DMAc solution of polyamic acid. The amount of DMAc used was such that the monomer concentration of diamines and aromatic carboxylic dianhydrides was 18% by weight.
[0048]
Next, the polyamic acid solution is mixed with acetic anhydride and β-picoline, cast on a glass plate, dried at about 100 ° C. for about 5 minutes, and then the polyamic acid coating film is peeled off from the glass plate. Is fixed to the support frame, and then heated at about 200 ° C. for about 5 minutes, at about 300 ° C. for about 5 minutes, heated at about 400 ° C. for about 5 minutes, and heated at about 450 ° C. for about 5 minutes, followed by dehydration ring closure drying As a result, a polyimide film of about 25 μm was obtained.
The physical properties of the obtained polyamic acid and polyimide film are shown in Table 1.
[0049]
Three layers of polyimide film / pyralux / copper foil are prepared by laminating Dupont pyralux, the polyimide film and copper foil (Mitsui Metals 3ECVLP1oz) with a 180 ° C. thermal laminator and then drying in an oven at 180 ° C. for 1 hour. A laminate (hereinafter referred to as CCL) is obtained. The adhesive strength was measured according to JIS C 5016.
[0050]
Example 2
The same polyamic acid solution as in Example 1 was cast on a glass plate, dried at about 100 ° C. for about 30 minutes, then the polyamic acid coating film was peeled off from the glass plate, and the coating film was fixed to a support frame. About 100 ° C. for about 30 minutes, about 150 ° C. for about 60 minutes, about 200 ° C. for about 60 minutes, about 300 ° C. for about 30 minutes, about 400 ° C. for about 30 minutes, about 450 ° C. Was heated for about 5 minutes and dehydrated and closed and dried to obtain a polyimide film of about 25 μm. The physical properties of the obtained polyimide film are shown in Table 1.
[0051]
Example 3
1.0 equivalent of DMF and ODA was taken in a separable flask and stirred well at room temperature until the diamine compound was completely dissolved. Next, 0.95 equivalent of PMDA was gradually added as a powder over 1 hour, and then stirred for 40 minutes. Then, 0.05 equivalent of PMDA was dissolved in DMF, gradually added, and then cooled and stirred for 1 hour to obtain a DMF solution of polyamic acid. The amount of DMF used was adjusted so that the monomer charge concentration of diamines and aromatic carboxylic dianhydrides was 18% by weight.
[0052]
Next, the polyamic acid solution is mixed with acetic anhydride and β-picoline, cast on a glass plate, dried at about 100 ° C. for about 5 minutes, and then the polyamic acid coating film is peeled off from the glass plate. Is fixed to the support frame, and then heated at about 200 ° C. for about 5 minutes, at about 300 ° C. for about 5 minutes, heated at about 400 ° C. for about 5 minutes, and heated at about 450 ° C. for about 5 minutes, followed by dehydration ring closure drying As a result, a polyimide film of about 25 μm was obtained.
[0053]
Example 4
A DMF solution of polyamic acid was obtained in the same manner as in Example 3 except that the amount of DMF used was such that the monomer charge concentration of diamines and aromatic carboxylic dianhydrides was 10% by weight. .
[0054]
Comparative Example 1
One equivalent of DMAc and ODA was taken in a separable flask and stirred well at room temperature until the diamine compound was completely dissolved. Next, 0.80 equivalent of PMDA was added all at once with powder, and then stirred for 40 minutes. PMDA 0.15 equivalent was added at once with powder, and then stirred for 40 minutes. Then, 0.05 equivalent of PMDA was dissolved in DMAc and added, followed by cooling and stirring for 1 hour to obtain a DMAc solution of polyamic acid. The amount of DMAc used was such that the monomer concentration of diamines and aromatic carboxylic dianhydrides was 18% by weight. Otherwise, a polyimide film was obtained in the same manner as in Example 1. Table 1 shows the physical properties of the obtained polyamic acid and polyimide film.
[0055]
Comparative Example 2
Water was added to the same polyamic acid solution as in Example 1 so as to be 5% by weight of the total solution. Otherwise, a polyimide film was obtained in the same manner as in Example 1. The physical properties of the obtained polyimide film are shown in Table 1.
[0056]
Comparative Example 3
The same polyamic acid solution as in Example 1 was mixed with acetic anhydride and β-picoline, cast on a glass plate, dried at about 100 ° C. for about 5 minutes, and then the polyamic acid coating film was peeled off from the glass plate. The coating film is fixed to the support frame, and then heated at about 200 ° C. for about 5 minutes, at about 300 ° C. for about 5 minutes, heated at about 400 ° C. for about 2 minutes, dehydrated and ring-closed and dried to obtain a polyimide film of about 25 μm. Obtained.
[0057]
Otherwise, a polyimide film was obtained in the same manner as in Example 1. The physical properties of the obtained polyimide film are shown in Table 1.
[0058]
Comparative Example 4
The same polyamic acid solution as in Example 1 was mixed with acetic anhydride and β-picoline, cast on a glass plate, dried at about 70 ° C. for about 5 minutes, and then the polyamic acid coating film was peeled off from the glass plate. Was fixed to a support frame, heated at about 400 ° C. for about 5 minutes, heated at about 450 ° C. for about 5 minutes, and dehydrated and closed and dried to obtain a polyimide film of about 25 μm.
[0059]
Otherwise, a polyimide film was obtained in the same manner as in Example 1. The physical properties of the obtained polyimide film are shown in Table 1.
[0060]
<Evaluation as ink (cover film)>
Example 5
The same polyamic acid solution as in Example 1 was cast on a copper foil (Mitsui Metals 3ECVLP1oz), heated to about 100 ° C. for about 60 minutes, about 150 ° C. for about 60 minutes, and heated to about 200 ° C. for about 60 minutes. Heated at about 300 ° C. for about 30 minutes, heated at about 400 ° C. for about 30 minutes and at about 450 ° C. for about 5 minutes, dehydrated and ring-closed and dried, and a two-layer CCL in which a polyimide film having a thickness of about 25 μm is laminated on copper foil Got. The adhesive strength was measured according to JIS C 5016. Moreover, the copper foil was etched to form a 25 μm polyimide film, and the tensile strength was measured. These results are shown in Table 1.
[0061]
Comparative Example 5
The same procedure as in Example 3 was performed except that the same polyamic acid solution as in Comparative Example 1 was used. The results are shown in Table 1.
[0062]
Comparative Example 6
Water was added to the same polyamic acid solution as in Example 1 so as to be 5% by weight of the total solution. Others were obtained in the same manner as in Example 3 to obtain a two-layer CCL in which a polyimide film having a thickness of about 25 μm was laminated on a copper foil. The adhesive strength was measured according to JIS C 5016. Moreover, the copper foil was etched to form a 25 μm polyimide film, and the tensile strength was measured. These results are shown in Table 1.
[0063]
Comparative Example 7
The same polyamic acid solution as in Example 1 was mixed with acetic anhydride and β-picoline, cast on a glass plate, dried at about 100 ° C. for about 5 minutes, and then the polyamic acid coating film was peeled off from the glass plate. The coated film is fixed to the support frame, and then heated at about 200 ° C. for about 5 minutes, at about 300 ° C. for about 5 minutes, heated at about 400 ° C. for about 2 minutes, dehydrated and ring-closed and dried to a copper foil thickness of about 25 μm. A two-layer CCL laminated with a polyimide film was obtained. The adhesive strength was measured according to JIS C 5016. Moreover, the copper foil was etched to form a 25 μm polyimide film, and the tensile strength was measured. These results are shown in Table 1.
Comparative Example 8
The same polyamic acid solution as in Example 1 was mixed with acetic anhydride and β-picoline, cast on a glass plate, dried at about 70 ° C. for about 5 minutes, and then the polyamic acid coating film was peeled off from the glass plate. Was fixed to a support frame, heated at about 400 ° C. for about 5 minutes, heated at about 450 ° C. for about 5 minutes, dehydrated and closed and dried to obtain a two-layer CCL in which a polyimide film having a thickness of about 25 μm was laminated on a copper foil. The adhesive strength was measured according to JIS C 5016. Moreover, the copper foil was etched to form a 25 μm polyimide film, and the tensile strength was measured. These results are shown in Table 1. About 25 μm polyimide film was obtained.
[0064]
<Evaluation as resist>
Example 6
The same polyamic acid solution as in Example 1 was cast on a glass plate, heated to about 100 ° C. for about 60 minutes, about 150 ° C. for about 60 minutes, about 200 ° C. for about 60 minutes, and about 300 ° C. The mixture was heated for about 30 minutes, heated at about 400 ° C. for about 30 minutes, and heated at about 450 ° C. for about 5 minutes, followed by dehydration ring-closing drying to obtain a polyimide film having a thickness of about 25 μm on glass. The adhesive strength with glass was measured according to JIS C 5016. These results are shown in Table 1.
[0065]
Comparative Example 9
The same procedure as in Example 4 was performed except that the same polyamic acid solution as in Comparative Example 1 was used. The results are shown in Table 1.
[0066]
Comparative Example 10
Water was added to the same polyamic acid solution as in Example 1 so as to be 5% by weight of the total solution. Other than that, a polyimide film having a thickness of about 25 μm was laminated on a glass plate in the same manner as in Example 3. The adhesive strength with the glass plate was measured according to JIS C 5016. These results are shown in Table 1.
[0067]
Comparative Example 11
The same polyamic acid solution as in Example 1 was mixed with acetic anhydride and β-picoline, cast on a glass plate, dried at about 100 ° C. for about 5 minutes, and then the coating film was fixed to a support frame. It was heated at 200 ° C. for about 5 minutes, at about 300 ° C. for about 5 minutes, heated at about 400 ° C. for about 2 minutes, dehydrated and ring-closed and dried to obtain a two-layer CCL in which a polyimide film having a thickness of about 25 μm was laminated on a copper foil. The adhesive strength was measured according to JIS C 5016. Moreover, the copper foil was etched to form a 25 μm polyimide film, and the tensile strength was measured. These results are shown in Table 1.
[0068]
Comparative Example 12
The same polyamic acid solution as in Example 1 was mixed with acetic anhydride and β-picoline, cast on a glass plate, dried at about 70 ° C. for about 5 minutes, heated at about 400 ° C. for about 5 minutes, and about 450 ° C. Was heated for about 5 minutes and dehydrated and closed and dried to obtain a polyimide film having a thickness of about 25 μm on glass. The adhesive strength was measured according to JIS C 5016. These results are shown in Table 1.
[0070]
[Table 1]
Figure 0004108808
[0071]
【The invention's effect】
The present invention provides a polyimide composition that prevents cohesive failure of the film, improves the adhesive strength between the copper foil pattern and the coverlay, and improves the adhesive strength between the base material to be protected and the polyimide resist.

Claims (4)

重量平均分子量Mw/数平均分子量Mnである分子量分布Mw/Mnが1.3以上3.5以下であり、重量平均分子量Mwの範囲が50,000以上1,000,000以下であり、かつ含まれる水分量が5%未満であり、4,4’−ジアミノジフェニルエーテルと無水ピロメリット酸との反応により生成されるポリアミド酸について脱水閉環することにより得られるポリイミドフィルムであって、焼成後のポリイミドフィルムの硫酸溶解時の固有粘度が0.5以上であり、かつ焼成段階において250℃に達したときのイミド化率が90%以上であることを特徴とするポリイミドフィルム。The molecular weight distribution Mw / Mn, which is the weight average molecular weight Mw / number average molecular weight Mn, is 1.3 or more and 3.5 or less, and the range of the weight average molecular weight Mw is 50,000 or more and 1,000,000 or less. moisture content less than 5% der that is, a polyimide film obtained by cyclodehydration the polyamic acid produced by reaction with 4,4'-diaminodiphenyl ether and pyromellitic anhydride, polyimide after baking A polyimide film, wherein the film has an intrinsic viscosity of 0.5 or more when dissolved in sulfuric acid and an imidization ratio of 90% or more when the film reaches 250 ° C. in the baking step. 250℃に達したときのイミド化率が95%以上であり、接着強度が0.5kgf/cm以上であることを特徴とする請求項1記載のポリイミドフィルム。  2. The polyimide film according to claim 1, wherein the imidization ratio when reaching 250 ° C. is 95% or more, and the adhesive strength is 0.5 kgf / cm or more. 引張伸び率が10%以上であることを特徴とする請求項1〜2のいずれか1項記載のポリイミドフィルム。  The polyimide film according to claim 1, wherein a tensile elongation is 10% or more. カバーレイを形成するインク用途またはレジスト用途に用いられることを特徴とする請求項1〜3のいずれか1項記載のポリイミドフィルム。  The polyimide film according to claim 1, wherein the polyimide film is used for an ink application or a resist application for forming a coverlay.
JP03722098A 1998-02-19 1998-02-19 Polyimide composition Expired - Lifetime JP4108808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03722098A JP4108808B2 (en) 1998-02-19 1998-02-19 Polyimide composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03722098A JP4108808B2 (en) 1998-02-19 1998-02-19 Polyimide composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005302303A Division JP2006124700A (en) 2005-10-17 2005-10-17 Polyimide composition

Publications (2)

Publication Number Publication Date
JPH11228694A JPH11228694A (en) 1999-08-24
JP4108808B2 true JP4108808B2 (en) 2008-06-25

Family

ID=12491517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03722098A Expired - Lifetime JP4108808B2 (en) 1998-02-19 1998-02-19 Polyimide composition

Country Status (1)

Country Link
JP (1) JP4108808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080598A1 (en) * 2018-10-19 2020-04-23 에스케이씨코오롱피아이 주식회사 Thick polyimide film having improved surface quality and method for manufacturing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI320046B (en) 2002-02-26 2010-02-01 Polyamide-imide resin, flexible metal-clad laminate and flexible print substrate
JP2006160974A (en) * 2004-12-10 2006-06-22 Du Pont Toray Co Ltd Polyimide film
JP5009714B2 (en) * 2006-08-10 2012-08-22 新日鐵化学株式会社 Laminated body for flexible wiring board and flexible wiring board for COF
JP4805173B2 (en) * 2007-01-16 2011-11-02 新日鐵化学株式会社 Multilayer laminate and method for producing flexible copper clad laminate
JP5592463B2 (en) * 2012-11-30 2014-09-17 株式会社カネカ Isotropic adhesive film, method for producing the same, and flexible metal laminate using the adhesive film
WO2020137871A1 (en) * 2018-12-26 2020-07-02 住友化学株式会社 Polyimide resin and method for producing same
JP2020105497A (en) * 2018-12-26 2020-07-09 住友化学株式会社 Polyimide resin and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080598A1 (en) * 2018-10-19 2020-04-23 에스케이씨코오롱피아이 주식회사 Thick polyimide film having improved surface quality and method for manufacturing same
KR20200044404A (en) * 2018-10-19 2020-04-29 에스케이씨코오롱피아이 주식회사 Thick Polyimide Film with Improved Surface Property and Method for Preparing the Same
KR102200961B1 (en) * 2018-10-19 2021-01-11 피아이첨단소재 주식회사 Thick Polyimide Film with Improved Surface Property and Method for Preparing the Same
US11945922B2 (en) 2018-10-19 2024-04-02 Pi Advanced Materials Co., Ltd. Thick polyimide film having improved surface quality and method of manufacturing same

Also Published As

Publication number Publication date
JPH11228694A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
KR100963376B1 (en) Method for preparing polyimide and polyimide prepared by the same method
JPH091723A (en) Heat resisting bonding sheet
JPH10126019A (en) Flexible printed board, fc tape, and tab(tape automated bonding) tape composed of fc tape
JP4108808B2 (en) Polyimide composition
JP3635384B2 (en) Heat resistant bonding sheet
JP3590902B2 (en) Polyimide film with improved adhesion and method for producing the same
JPH1070157A (en) Fc type and tab tape using new polyimide film as base film
JP2597215B2 (en) Polyimide siloxane composition and solidified film
US20060009615A1 (en) Polyamic acids, polyimide films and polymide-metal laminates and methods for making same
JP4796687B2 (en) Adhesive composition
JP2004285364A (en) Base film for flexible printed circuit board, polyimide film usable for carrier tape for tab
JP3805546B2 (en) Manufacturing method of heat-resistant bonding sheet
JP3596556B2 (en) Flexible printed circuit board materials
JP2002114848A (en) New thermoplastic polyimide resin and flexible metal foil-clad laminate
JP2005054172A (en) Polyamic acid, polyimide film formed out of the same, method for producing the same, and flexible circuit board
JP4017034B2 (en) New polyimide film
JP2006124700A (en) Polyimide composition
JPH08199124A (en) Bonding sheet
JPH08294993A (en) Flexible copper plated laminate board
JP2004285103A (en) Thermoplastic polyimide and adhesive comprising the same
JP2001139807A (en) Method of manufacturing heat-resistant bonding sheet
JP4150403B2 (en) Flexible printed circuit board, FC tape and TAB tape comprising the same
JPH0770524A (en) Double face polyimide adhesive sheet
JP2957738B2 (en) Thermosetting resin composition
JP3115666B2 (en) TAB tape

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term