JP6245630B2 - Interior materials for vehicles - Google Patents

Interior materials for vehicles Download PDF

Info

Publication number
JP6245630B2
JP6245630B2 JP2013083832A JP2013083832A JP6245630B2 JP 6245630 B2 JP6245630 B2 JP 6245630B2 JP 2013083832 A JP2013083832 A JP 2013083832A JP 2013083832 A JP2013083832 A JP 2013083832A JP 6245630 B2 JP6245630 B2 JP 6245630B2
Authority
JP
Japan
Prior art keywords
resin
carbon fiber
cfrp
base material
vinyl ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013083832A
Other languages
Japanese (ja)
Other versions
JP2014205932A (en
Inventor
村上 豪
豪 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Electric IndustriesLtd
Original Assignee
Koito Electric IndustriesLtd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Electric IndustriesLtd filed Critical Koito Electric IndustriesLtd
Priority to JP2013083832A priority Critical patent/JP6245630B2/en
Publication of JP2014205932A publication Critical patent/JP2014205932A/en
Application granted granted Critical
Publication of JP6245630B2 publication Critical patent/JP6245630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭素繊維強化プラスチックで構成された車両用内装材に関する。   The present invention relates to a vehicle interior material made of carbon fiber reinforced plastic.

炭素繊維強化プラスチック(以下、CFRP(Carbon Fiber Reinforced Plastic)ともいう。)は、マトリクス樹脂に炭素繊維を強化材として織り交ぜた複合材料である。CFRPは、軽量かつ高強度であるため、近年では、自動車、建築土木、産業機材、航空宇宙、スポーツ・レジャー等の各種分野において広く用いられている。   Carbon fiber reinforced plastic (hereinafter also referred to as CFRP (Carbon Fiber Reinforced Plastic)) is a composite material in which a carbon fiber is woven into a matrix resin as a reinforcing material. In recent years, CFRP is widely used in various fields such as automobiles, architectural civil engineering, industrial equipment, aerospace, sports and leisure because of its light weight and high strength.

一方、CFRPは、鉄道車両のシート等を構成する車両内装材としても使用されているが、この種の分野ではCFRPに不燃性であることが要求される。不燃性CFRPを構成する上では、典型的にはマトリクス樹脂として不燃性樹脂が用いられ、不燃性樹脂としては従来、フェノール樹脂が用いられていた(下記特許文献1,2参照)。   On the other hand, CFRP is also used as a vehicle interior material constituting a rail vehicle seat or the like. In this type of field, the CFRP is required to be nonflammable. In composing the non-combustible CFRP, a non-combustible resin is typically used as the matrix resin, and a phenol resin has been conventionally used as the non-combustible resin (see Patent Documents 1 and 2 below).

特開2008−48938号公報JP 2008-48938 A 特開平8−118527号公報JP-A-8-118527

しかしながら従来の不燃性CFRPにおいては、マトリクス樹脂に用いられる樹脂材料が限られていため、材料に選択の余地がなく、用途や使用環境に応じた材料の選定をすることができないという問題がある。   However, in the conventional non-combustible CFRP, since the resin material used for the matrix resin is limited, there is no room for selection of the material, and there is a problem that the material cannot be selected according to the use and the use environment.

以上のような事情に鑑み、本発明の目的は、フェノール樹脂以外の樹脂材料により不燃性を実現することができる不燃性炭素繊維強化プラスチックで構成された車両用内装材を提供することにある。   In view of the circumstances as described above, an object of the present invention is to provide a vehicle interior material made of a non-combustible carbon fiber reinforced plastic capable of realizing non-combustibility with a resin material other than a phenol resin.

上記目的を達成するため、本発明の一形態に係る車両用内装材は、繊維質基材と、樹脂層とを具備する。
上記繊維質基材は、ピッチ系炭素繊維で構成される。
上記樹脂層は、上記繊維質基材に含浸され、難燃性ビニルエステル樹脂の硬化物で構成される。
上記車両用内装材は、鉄道車両用材料燃焼試験における燃焼性規格(鉄運第81号 鉄道監督局長から陸運局長あて通達「鉄道車両用材料の燃焼性規格」)の区分「不燃性」の判定基準を満たす。
In order to achieve the above object, a vehicle interior material according to an embodiment of the present invention includes a fibrous base material and a resin layer.
The fibrous base material is composed of pitch-based carbon fibers.
The resin layer is impregnated into the fibrous base material and is made of a cured product of a flame retardant vinyl ester resin.
The above vehicle interior materials are classified as “non-combustible” in the flammability standards in the material combustion test for railway vehicles (Iron Transport No. 81 Director General of Railway Supervision and Director General of Land Transport Bureau “Combustibility Standards for Rail Vehicle Materials”). It meets the criteria.

本発明の一実施形態に係る車両用内装材を示す概略断面図である。It is a schematic sectional drawing which shows the vehicle interior material which concerns on one Embodiment of this invention. 鉄道車両用材料燃焼試験における燃焼性規格(鉄運第81号 鉄道監督局長から陸運局長あて通達「鉄道車両用材料の燃焼性規格」)の試験方法を説明する図である。It is a figure explaining the test method of the flammability standard in the material combustion test for railway vehicles (Iron Transport No. 81 Railway Director General's notice to the Land Transportation Bureau Director, "Combustibility Standards for Railway Vehicle Materials").

本発明者は、難燃グレードのビニルエステル樹脂にピッチ系炭素繊維を組み合わせることで、不燃性の炭素繊維強化プラスチック(CFRP)材料を得ることができることを見いだし、本発明を完成するに至った。   The present inventor has found that a non-combustible carbon fiber reinforced plastic (CFRP) material can be obtained by combining pitch-based carbon fibers with a flame-retardant grade vinyl ester resin, and has completed the present invention.

すなわち本発明の一実施形態に係る車両用内装材は、繊維質基材と、樹脂層とを具備する。
上記繊維質基材は、熱伝導率が140W/mK以上のピッチ系炭素繊維で構成される。
上記樹脂層は、上記繊維質基材に含浸され、難燃性ビニルエステル樹脂の硬化物で構成される。
That is, the vehicle interior material according to an embodiment of the present invention includes a fibrous base material and a resin layer.
The fibrous base material is composed of pitch-based carbon fibers having a thermal conductivity of 140 W / mK or more.
The resin layer is impregnated into the fibrous base material and is made of a cured product of a flame retardant vinyl ester resin.

ビニルエステル樹脂は、フェノール樹脂と比較して、高強度、高靭性、高耐食性を有すると共に、炭素繊維との相性がよいため密着性に優れる。上記樹脂層を構成する難燃性ビニルエステル樹脂としては、例えば、ビニルエステル樹脂に適宜の難燃剤が添加された難燃グレードのビニルエステル樹脂(例えば、日本ユピカ社製「ネオポール8197」(商品名)等)が適用可能である。   The vinyl ester resin has high strength, high toughness, and high corrosion resistance as compared with the phenol resin, and is excellent in adhesion because it is compatible with the carbon fiber. Examples of the flame retardant vinyl ester resin constituting the resin layer include, for example, a flame retardant vinyl ester resin in which an appropriate flame retardant is added to a vinyl ester resin (for example, “Neopol 8197” (trade name, manufactured by Iupika Japan) ) Etc.) is applicable.

炭素繊維は、原料の種類に応じて、ポリアクリロニトリル(PAN:Polyacrylonitrile)系炭素繊維と、ピッチ系炭素繊維とに分けられる。いずれの炭素繊維も強度は優れるが、ピッチ系炭素繊維は、PAN系炭素繊維と比較して熱伝導率が高い。このためピッチ系炭素繊維で上記繊維質基材を構成することにより、樹脂層に印加された熱を効率よく拡散でき、CFRP全体として不燃グレードの特性を得ることができる。   Carbon fibers are classified into polyacrylonitrile (PAN) -based carbon fibers and pitch-based carbon fibers according to the type of raw material. All carbon fibers have excellent strength, but pitch-based carbon fibers have higher thermal conductivity than PAN-based carbon fibers. Therefore, by constituting the fibrous base material with pitch-based carbon fibers, the heat applied to the resin layer can be efficiently diffused, and non-combustible grade characteristics can be obtained as a whole of CFRP.

ピッチ系炭素繊維は、さらに、等方性ピッチ系炭素繊維と異方性ピッチ系炭素繊維とが知られているが、強度、弾性率及び熱伝導率といった力学的特性に優れた異方性ピッチ系炭素繊維が好ましい。特に熱伝導率が140W/mK以上のピッチ系炭素繊維で上記繊維質基材が構成されることで、「不燃」規格を満足するCFRPを得ることができる。   As for pitch-based carbon fibers, isotropic pitch-based carbon fibers and anisotropic pitch-based carbon fibers are further known, but anisotropic pitches excellent in mechanical properties such as strength, elastic modulus and thermal conductivity are known. Carbon fiber is preferable. In particular, when the fibrous base material is composed of pitch-based carbon fibers having a thermal conductivity of 140 W / mK or more, CFRP that satisfies the “non-combustible” standard can be obtained.

上記車両用内装材によれば、フェノール樹脂以外の樹脂材料により不燃性を実現することができる。これによりマトリクス樹脂に用いられる樹脂材料の選択の幅が広がり、用途や使用環境に応じた材料の選定が可能となる。   According to the vehicle interior material, nonflammability can be realized by a resin material other than phenol resin. Thereby, the range of selection of the resin material used for the matrix resin is widened, and it is possible to select the material according to the application and the use environment.

上記車両用内装材は、鉄道車両用材料燃焼試験における燃焼性規格(鉄運第81号 鉄道監督局長から陸運局長あて通達「鉄道車両用材料の燃焼性規格」)の区分「不燃性」の判定基準を満たすように構成される。これにより、鉄道車両の荷棚より上の天井部位、航空機の内装材等のように「不燃」規格あるいはそれ相当の規格に適合する耐火性を備えた構造体を製造できる。   The above vehicle interior materials are classified as “non-combustible” in the flammability standards in the material combustion test for railway vehicles (Iron Transport No. 81 Director General of Railway Supervision and Director General of Land Transport Bureau “Combustibility Standards for Rail Vehicle Materials”). Configured to meet standards. As a result, it is possible to manufacture a structure having fire resistance conforming to the “non-combustible” standard or an equivalent standard such as a ceiling portion above the cargo rack of a railway vehicle, an aircraft interior material, and the like.

上記難燃性ビニルエステル樹脂は、常温硬化型樹脂であってもよい。これにより硬化のための高温処理が不要となり、生産性の向上を図ることができる。   The flame retardant vinyl ester resin may be a room temperature curable resin. This eliminates the need for high-temperature treatment for curing, and can improve productivity.

以下、図面を参照しながら、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る車両用内装材を示す概略断面図である。図においてX軸、Y軸及びZ軸は、相互に直交する3軸方向を示しており、Z軸方向は不燃性CFRPの厚み方向に相当する。   FIG. 1 is a schematic cross-sectional view showing a vehicle interior material according to an embodiment of the present invention. In the figure, an X axis, a Y axis, and a Z axis indicate triaxial directions orthogonal to each other, and the Z axis direction corresponds to the thickness direction of the non-combustible CFRP.

本実施形態の車両用内装材10は、繊維質基材11と、樹脂層12とを有する不燃性炭素繊維強化プラスチック(以下、不燃性CFRPともいう。)で構成される。車両用内装材10は、例えば、鉄道車両用シートの肘掛部分、テーブル、足回りのカバー部品等の構成材料として使用される。   The vehicle interior material 10 of the present embodiment is composed of a non-combustible carbon fiber reinforced plastic (hereinafter also referred to as non-combustible CFRP) having a fibrous base material 11 and a resin layer 12. The vehicle interior material 10 is used as a constituent material of, for example, an armrest portion of a railcar seat, a table, a cover part for an undercarriage, and the like.

繊維質基材11は、太さが例えば7〜11μmの炭素繊維からなる縦糸11a及び横糸11bを織り込んだ織布が用いられ、典型的には、XY平面内において連続するカーボンクロスで構成される。炭素繊維の織り方は特に限定されず、典型的には平織であるが、綾織や繻子織等であってもよい。繊維質基材11は、織布に限られず、不織布であってもよい。繊維質基材11は、市販のピッチ系炭素繊維基材であってもよく、例えば、三菱樹脂社製「K63712」等の炭素繊維基材が採用可能である。   The fibrous base material 11 is a woven fabric in which warp yarns 11a and weft yarns 11b made of carbon fibers having a thickness of, for example, 7 to 11 μm are used, and is typically composed of carbon cloth continuous in an XY plane. . The weaving method of the carbon fiber is not particularly limited and is typically a plain weave, but may be a twill weave or a satin weave. The fibrous base material 11 is not limited to a woven fabric, and may be a non-woven fabric. The fibrous base material 11 may be a commercially available pitch-based carbon fiber base material. For example, a carbon fiber base material such as “K63712” manufactured by Mitsubishi Plastics, Inc. can be used.

本実施形態の繊維質基材11は、熱伝導率が140W/mK以上のピッチ系炭素繊維で構成されている。炭素繊維は、ピッチ系炭素繊維とPAN系炭素繊維とに分類される。特にピッチ系炭素繊維は、石油精製あるいは石炭乾留の副産物であるピッチから製造され、ポリアクリロニトリル繊維から製造されるPAN系炭素繊維と比較して、熱伝導性に優れるという特性を有する。   The fibrous base material 11 of this embodiment is comprised by the pitch-type carbon fiber whose heat conductivity is 140 W / mK or more. Carbon fibers are classified into pitch-based carbon fibers and PAN-based carbon fibers. In particular, pitch-based carbon fibers are manufactured from pitch, which is a by-product of petroleum refining or coal dry distillation, and have a characteristic of excellent thermal conductivity as compared with PAN-based carbon fibers manufactured from polyacrylonitrile fibers.

ピッチ系炭素繊維は、さらに、等方性ピッチ系炭素繊維と異方性ピッチ系炭素繊維とが知られているが、強度的に優れた異方性ピッチ系炭素繊維が好ましい。   As the pitch-based carbon fiber, an isotropic pitch-based carbon fiber and an anisotropic pitch-based carbon fiber are further known, and an anisotropic pitch-based carbon fiber excellent in strength is preferable.

樹脂層12は、車両材用内装材10を構成する不燃性CFRPのマトリクス樹脂に相当し、繊維質基材11に含浸された難燃性ビニルエステル樹脂の硬化物で構成される。樹脂層12は、例えば適宜の難燃剤が添加されたビニルエステル樹脂を繊維質基材11に含浸硬化させることで構成される。   The resin layer 12 corresponds to a non-combustible CFRP matrix resin that constitutes the vehicle interior material 10, and is formed of a cured product of a flame-retardant vinyl ester resin impregnated in the fibrous base material 11. The resin layer 12 is configured, for example, by impregnating and curing the fibrous base material 11 with a vinyl ester resin to which an appropriate flame retardant is added.

難燃剤には適宜のものを用いることができ、例えば、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物が挙げられる。難燃剤のほか、難燃助剤が添加されてもよい。また上記難燃性ビニルエステル樹脂は、市販されている難燃グレードのビニルエステル樹脂を用いてもよく、例えば、日本ユピカ社製「ネオポール 8197」等が採用可能である。   Any appropriate flame retardant can be used, and examples thereof include metal hydroxides such as aluminum hydroxide and magnesium hydroxide. In addition to the flame retardant, a flame retardant aid may be added. As the flame retardant vinyl ester resin, a commercially available flame retardant grade vinyl ester resin may be used. For example, “Neopol 8197” manufactured by Iupika Japan Co., Ltd. may be used.

ビニルエステル樹脂は、熱硬化性樹脂であり、本実施形態では常温硬化型の難燃性ビニルエステル樹脂が用いられる。硬化温度は、例えば硬化剤の種類等に応じて選定することができる。これにより硬化のための高温処理が不要となり、作業性及び生産性の向上を図ることができる。   The vinyl ester resin is a thermosetting resin, and in this embodiment, a room temperature curable flame retardant vinyl ester resin is used. The curing temperature can be selected according to, for example, the type of curing agent. This eliminates the need for high-temperature treatment for curing, and improves workability and productivity.

本実施形態の車両用内装材10は、繊維質基材11と樹脂層12とをZ軸方向に交互に複数積層して構成される。繊維質基材11の層数は特に限定されず、1層でもよいし、2層以上であっても良いが、強度を考慮すると2層以上が好ましく、本実施形態では3層の繊維質基材11を有する。樹脂層12は、最上層の繊維質基材11の表面、最下層の繊維質基材11の裏面および繊維質基材11間にそれぞれ設けられている。   The vehicle interior material 10 of the present embodiment is configured by stacking a plurality of fibrous base materials 11 and resin layers 12 alternately in the Z-axis direction. The number of layers of the fibrous base material 11 is not particularly limited, and may be one layer or two or more layers. However, in consideration of strength, two or more layers are preferable. In this embodiment, a three-layer fibrous base is used. The material 11 is included. The resin layer 12 is provided between the surface of the uppermost fibrous base material 11, the back surface of the lowermost fibrous base material 11, and the fibrous base material 11.

典型的には、上層側の繊維質基材11と下層側の繊維質基材11とは樹脂層12の介在によって相互に離間しているが、一部で相互に接触していてもよい。また典型的には、車両用内装材10の表面あるいは裏面が樹脂層12で覆われるが、繊維質基材11の一部が露出していても構わない。   Typically, the upper-layer-side fibrous base material 11 and the lower-layer-side fibrous base material 11 are separated from each other by the interposition of the resin layer 12, but may be partially in contact with each other. Typically, the front or back surface of the vehicle interior material 10 is covered with the resin layer 12, but a part of the fibrous base material 11 may be exposed.

繊維質基材11の層数や樹脂層12の厚みは特に限定されず、車両用内装材10に要求される強度、厚み、繊維体積含有率(Vf)等に応じて適宜設定される。繊維体積含有率(Vf)は、典型的には、50%以上60%以下である。また車両用内装材10は、平板状等の平面形状で形成される例に限られず、一部に湾曲面あるいは屈曲面を含む立体形状に形成されてもよい。   The number of layers of the fibrous base material 11 and the thickness of the resin layer 12 are not particularly limited, and are appropriately set according to the strength, thickness, fiber volume content (Vf), etc. required for the vehicle interior material 10. The fiber volume content (Vf) is typically 50% or more and 60% or less. Further, the vehicle interior material 10 is not limited to an example formed in a flat shape such as a flat plate shape, and may be formed in a three-dimensional shape partially including a curved surface or a bent surface.

車両用内装材10の成形方法は特に限定されず、ハンドレイアップ法、インフュージョン法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assist Resin Transfer Molding)法等の適宜の成形方法が採用可能である。   The molding method of the vehicle interior material 10 is not particularly limited, and an appropriate molding method such as a hand lay-up method, an infusion method, an RTM (Resin Transfer Molding) method, or a VaRTM (Vacuum assist Resin Transfer Molding) method can be adopted. is there.

以上のように構成される本実施形態の車両用内装材10によれば、強化繊維として熱伝導特性に優れたピッチ系炭素繊維が用いられているため、樹脂層12に印加された熱が繊維質基材11を介して周囲(XY平面方向)へ伝導する。これにより樹脂層12の局所的な温度上昇が抑制され、樹脂層12の着火あるいは着炎を阻止することができる。   According to the vehicle interior material 10 of the present embodiment configured as described above, pitch-based carbon fibers having excellent heat conduction characteristics are used as the reinforcing fibers, so that the heat applied to the resin layer 12 is the fibers. Conducted to the surroundings (XY plane direction) through the porous substrate 11. Thereby, the local temperature rise of the resin layer 12 is suppressed, and the ignition or flame of the resin layer 12 can be prevented.

また本実施形態によれば、樹脂層12に不燃性樹脂を用いることなくCFRP全体の難燃性を高めることが可能となり、後述するように、鉄道車両用材料燃焼試験における燃焼性規格の区分「不燃性」の判定基準を満たすことができる。このため、フェノール樹脂に代表される不燃性樹脂材料を用いることなく、不燃性適格を満たすCFRPを実現することができる。またマトリクス樹脂に用いられる樹脂材料の選択の幅が広がり、用途や使用環境に応じた材料の選定が可能となる。   In addition, according to the present embodiment, it is possible to increase the flame retardance of the entire CFRP without using a non-combustible resin for the resin layer 12, and as described later, the classification “ It can meet the criteria of “non-flammability”. For this reason, CFRP which satisfy | fills nonflammability qualification is realizable, without using the nonflammable resin material represented by the phenol resin. Moreover, the range of selection of the resin material used for the matrix resin is widened, and it is possible to select a material according to the application and the use environment.

特に、ビニルエステル樹脂は、フェノール樹脂よりも炭素繊維との相性がよく、したがって炭素繊維との密着性に優れる。したがって本実施形態の車両用内装材10によれば、フェノール樹脂をマトリクス樹脂に用いたCFRPよりも機械的強度を高めることができる。   In particular, the vinyl ester resin has better compatibility with the carbon fiber than the phenol resin, and therefore has excellent adhesion to the carbon fiber. Therefore, according to the vehicle interior material 10 of the present embodiment, the mechanical strength can be increased as compared with CFRP using a phenol resin as a matrix resin.

さらに本実施形態によれば、CFRPの不燃化を実現する上で樹脂層12に不燃性であることを必要としない。したがって、例えば水酸化アルミニウムや水酸化マグネシウム等の難燃剤や難燃助剤を添加することで樹脂を不燃レベルにまで難燃化させる必要がなくなるため、不燃性CFRPの製造コストを低減化することができるとともに、成形性を損なうことなく所望の形状に製造することができる。   Furthermore, according to the present embodiment, it is not necessary for the resin layer 12 to be nonflammable in realizing nonflammable CFRP. Therefore, it is not necessary to make the resin flame-retardant by adding a flame retardant such as aluminum hydroxide or magnesium hydroxide, or a flame retardant aid, thereby reducing the production cost of non-flammable CFRP. And can be manufactured into a desired shape without impairing moldability.

すなわち、例えばフェノール樹脂よりも強度の高いビニルエステル樹脂を用いて不燃性CFRPを製造する場合は、樹脂を目的とする不燃性が得られるようにカスタマイズするか、樹脂に難燃剤を過剰に添加する必要がある。ところが可燃性の樹脂を不燃化することは、長大な開発費用、開発期間が必要になり、難燃剤の過剰の添加は、樹脂の成形性を著しく低下させることになるため、いずれの場合も現実的でない。これに対して本実施形態によればビニルエステル樹脂を不燃化することなくCFRPの不燃化を実現することができるため、製造の低コスト化を図ることができると共に、良好な成形性を確保することができる。   That is, for example, when producing a non-combustible CFRP using a vinyl ester resin having a strength higher than that of a phenol resin, the resin is customized so as to obtain a non-combustible property, or an excessive amount of a flame retardant is added to the resin. There is a need. However, making flammable resin incombustible requires a long development cost and development period, and excessive addition of flame retardant significantly reduces the moldability of the resin. Not right. On the other hand, according to the present embodiment, CFRP can be made incombustible without making the vinyl ester resin incombustible, so that the manufacturing cost can be reduced and good moldability can be ensured. be able to.

さらに本実施形態によれば、製造方法はハンドレイアップ成形のように繊維質基材に直接樹脂を含浸させる方法であるため、プリプレグのような中間基材を予め製造する必要がない。すなわち、中間基材を製作するコストが発生しないので、製造コストを低減化することもできる。   Furthermore, according to this embodiment, since the manufacturing method is a method in which a fibrous base material is directly impregnated with resin as in hand lay-up molding, it is not necessary to manufacture an intermediate base material such as a prepreg in advance. That is, since the cost for manufacturing the intermediate base material does not occur, the manufacturing cost can be reduced.

続いて、本発明に係る車両用内装材の実施例について説明する。   Next, examples of the vehicle interior material according to the present invention will be described.

(実施例)
ピッチ系炭素繊維基材として三菱樹脂社製「FT37Y960」に、難燃性ビニルエステル樹脂(日本ユピカ社製「ネオポール8197」)を含浸し、常温で2時間硬化させることにより、厚み2mmの板状CFRPを作製した。成形方法はハンドレイアップ法とし、炭素繊維基材は3層とした。得られたCFRPの炭素繊維体積含有率(Vf)は60%であった。そのCFRPを182mm×257mmの長方形に切断し、これを供試材とした。得られた供試材について、温度26℃、相対湿度62%の環境下で、以下のような鉄道車両用材料の燃焼性規格(鉄運第81号 鉄道監督局長から陸運局長あて通達「鉄道車両用材料の燃焼性規格」)試験に準じた燃焼性試験を行った。
(Example)
As a pitch-based carbon fiber base material, “FT37Y960” manufactured by Mitsubishi Plastics Co., Ltd. is impregnated with flame retardant vinyl ester resin (“Neopol 8197” manufactured by Iupika Japan), and cured at room temperature for 2 hours to form a plate with a thickness of 2 mm. CFRP was produced. The molding method was a hand lay-up method, and the carbon fiber substrate was composed of three layers. The carbon fiber volume content (Vf) of the obtained CFRP was 60%. The CFRP was cut into a 182 mm × 257 mm rectangle and used as a test material. Regarding the obtained test materials, in the environment of temperature 26 ° C and relative humidity 62%, the following flammability standards for railcar materials (Notification "Railway Vehicles" The flammability test according to the flammability standard “) test was performed.

図2に示すように、供試材Sを保持具101に載せ、水平面に対して45°に傾斜させ保持する。供試材Sの下面中心の垂直下方25.4mm(1インチ)の位置に、燃料容器102を配置する。燃料容器102は、コルクのような熱伝導率の低い材料の台103の上に配置される。そして、燃料としての純エチルアルコール0.5ccを燃料容器102に入れ、アルコールに着火し、燃料が燃え尽きるまで放置した。アルコールの燃焼中は、供試材Sへの着火の有無、発煙状態、炎の状況を観察し、アルコールの燃焼後は、残炎の有無、残塵、炭化、変形状態を調べ、燃焼性規格及び耐溶融滴下平滑性を判定した。   As shown in FIG. 2, the specimen S is placed on the holder 101 and is held at an angle of 45 ° with respect to the horizontal plane. The fuel container 102 is arranged at a position of 25.4 mm (1 inch) vertically below the center of the lower surface of the specimen S. The fuel container 102 is disposed on a base 103 made of a material having low thermal conductivity such as cork. Then, 0.5 cc of pure ethyl alcohol as fuel was placed in the fuel container 102, the alcohol was ignited and left until the fuel was burned out. During the combustion of alcohol, the specimen S was observed for ignition, smoke generation, and flame conditions. After alcohol was burned, the presence of residual flame, residual dust, carbonization, and deformation were examined to determine the flammability standard. And the melt-resistant dropping smoothness was determined.

(比較例1)
PAN系炭素繊維基材として三菱レイヨン社製「TR6110HM」に、難燃性ビニルエステル樹脂(日本ユピカ社製「ネオポール8197」)を含浸し、常温で2時間硬化させることにより、厚み2mmの板状CFRPを作製した。成形方法はハンドレイアップ法とし、炭素繊維基材は6層とした。得られたCFRPの炭素繊維体積含有率(Vf)は42%であった。そのCFRPを182mm×257mmの長方形に切断し、これを供試材とした。得られた供試材について、温度26℃、相対湿度62%の環境下で、実施例と同様の鉄道車両用材料の燃焼性規格試験に準じた燃焼性試験を行い、判定した。
(Comparative Example 1)
As a PAN-based carbon fiber base material, TR6110HM manufactured by Mitsubishi Rayon Co., Ltd. is impregnated with a flame retardant vinyl ester resin (Neopol 8197 manufactured by Nippon Iupika Co., Ltd.), and cured at room temperature for 2 hours to form a plate having a thickness of 2 mm. CFRP was produced. The molding method was a hand lay-up method, and the carbon fiber base was 6 layers. The carbon fiber volume content (Vf) of the obtained CFRP was 42%. The CFRP was cut into a 182 mm × 257 mm rectangle and used as a test material. About the obtained test material, in the environment of temperature 26 degreeC and relative humidity 62%, the combustibility test according to the combustibility standard test of the material for rail vehicles similar to an Example was performed, and it determined.

(比較例2)
PAN系炭素繊維基材として三菱レイヨン社製「TR6110HM」に、フェノール樹脂(住友ベークライト社製「PR-50273」)を含浸し、常温で3時間硬化させることにより、厚み2mmの板状CFRPを作製した。成形方法はハンドレイアップ法とし、炭素繊維基材は6層とした。得られたCFRPの炭素繊維体積含有率(Vf)は44%であった。そのCFRPを182mm×257mmの長方形に切断し、これを供試材とした。得られた供試材について、温度26℃、相対湿度62%の環境下で、以下のような鉄道車両用材料の燃焼性規格試験に準じた燃焼性試験を行い、判定した。
(Comparative Example 2)
As a PAN-based carbon fiber base material, “TR6110HM” manufactured by Mitsubishi Rayon Co., Ltd. is impregnated with phenol resin (“PR-50273” manufactured by Sumitomo Bakelite Co., Ltd.) and cured at room temperature for 3 hours to produce a plate-like CFRP having a thickness of 2 mm. did. The molding method was a hand lay-up method, and the carbon fiber base was 6 layers. The carbon fiber volume content (Vf) of the obtained CFRP was 44%. The CFRP was cut into a 182 mm × 257 mm rectangle and used as a test material. The obtained test material was judged by conducting a flammability test according to the following flammability standard test for railcar materials in an environment of a temperature of 26 ° C. and a relative humidity of 62%.

(比較例3)
PAN系炭素繊維基材として三菱レイヨン社製「TR6110HM」に、ポリエーテルイミド樹脂(帝人社製)を含浸させたプリプレグを作製し、280℃で数十分硬化させることにより、厚み2mmの板状CFRPを作製した。成形方法はコンプレッション成形法とし、炭素繊維基材は11層とした。得られたCFRPの炭素繊維体積含有率(Vf)は60%であった。そのCFRPを182mm×257mmの長方形に切断し、これを供試材とした。得られた供試材について、温度26℃、相対湿度62%の環境下で、実施例と同様の鉄道車両用材料の燃焼性規格試験に準じた燃焼性試験を行い、判定した。
(Comparative Example 3)
A prepreg in which a polyether imide resin (manufactured by Teijin Ltd.) is impregnated with “TR6110HM” manufactured by Mitsubishi Rayon Co., Ltd. as a PAN-based carbon fiber base material and cured at 280 ° C. for several tens of minutes to form a plate having a thickness of 2 mm. CFRP was produced. The molding method was a compression molding method, and the carbon fiber base material was 11 layers. The carbon fiber volume content (Vf) of the obtained CFRP was 60%. The CFRP was cut into a 182 mm × 257 mm rectangle and used as a test material. About the obtained test material, in the environment of temperature 26 degreeC and relative humidity 62%, the combustibility test according to the combustibility standard test of the material for rail vehicles similar to an Example was performed, and it determined.

上記燃焼性規格試験の判定基準を表1に示す。また上記実施例及び比較例1〜3の結果を表2に示す。   Table 1 shows the judgment criteria of the flammability standard test. The results of the above Examples and Comparative Examples 1 to 3 are shown in Table 2.

Figure 0006245630
Figure 0006245630

Figure 0006245630
Figure 0006245630

表2に示すように、本実施例に係る供試材について、鉄道車両用材料燃焼試験における燃焼性規格の区分「不燃性」の判定基準を満たすことが確認された。本実施例によれば炭素繊維にピッチ系炭素繊維が用いられているため、PAN系炭素繊維を用いた比較例1と比較して、難燃性が高いことが確認された。   As shown in Table 2, it was confirmed that the test material according to the present example satisfies the judgment standard of the category “nonflammability” of the flammability standard in the material combustion test for railway vehicles. According to the present example, pitch-based carbon fibers are used as the carbon fibers, so that it was confirmed that the flame retardancy is high as compared with Comparative Example 1 using PAN-based carbon fibers.

さらに本実施例によれば、耐溶融滴下性試験において「平滑」すなわち表面変形なしの判定が得られた。このことからも、本実施例に係る不燃性CFRPは車両用内装材や天井付近に使用される機器筐体に用いて好適な材料であることが確認された。   Furthermore, according to the present example, a determination of “smooth”, that is, no surface deformation was obtained in the melt-drip resistance test. Also from this fact, it was confirmed that the non-combustible CFRP according to the present example is a suitable material for use in the vehicle interior material and the equipment casing used in the vicinity of the ceiling.

また比較例2,3についても実施例と同様に「不燃性」の判定が得られた。このことから、本実施例によれば、不燃性CFRPを構成する上で、フェノール樹脂やポリエーテルイミド樹脂に代わるマトリクス樹脂を提供できることが確認された。これにより用途や使用環境に応じた樹脂材料の選定が可能となり、不燃性CFRPの設計自由度が高められる。しかも比較例2,3における耐溶融滴下性試験の結果については溶融滴下はないものの、表面変形が認められた。このことから、本実施例は比較例2,3よりも耐溶融滴下性に優れることが確認された。   Further, in Comparative Examples 2 and 3, the determination of “non-flammability” was obtained in the same manner as in the Examples. From this, according to the present Example, it was confirmed that a matrix resin can be provided in place of a phenol resin or a polyetherimide resin in constituting a nonflammable CFRP. As a result, it is possible to select a resin material according to the application and use environment, and the degree of freedom in designing the non-combustible CFRP is increased. In addition, as a result of the melt-drip resistance test in Comparative Examples 2 and 3, surface deformation was observed although there was no melt-drip. From this, it was confirmed that the present example was superior to Comparative Examples 2 and 3 in melt-drop resistance.

さらに比較例3に係るポリエーテルイミドは熱可塑性樹脂であるため、樹脂の流動化に高温処理が必要となる。このため本実施例によれば、比較例3と比較して良好な成形作業性を得ることができる。   Furthermore, since the polyetherimide according to Comparative Example 3 is a thermoplastic resin, high temperature treatment is required for fluidization of the resin. For this reason, according to the present Example, compared with the comparative example 3, favorable workability | operativity can be obtained.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

例えば以上の実施形態では、マトリクス樹脂層の構成材料として常温硬化型のビニルエステル樹脂を用いたが、これに限られず、成形方法や成形条件等に応じて加熱硬化型のビニルエステル樹脂が用いられてもよい。   For example, in the above embodiment, a room temperature curable vinyl ester resin is used as a constituent material of the matrix resin layer. However, the present invention is not limited to this, and a thermosetting vinyl ester resin is used according to a molding method, molding conditions, and the like. May be.

また本実施形態のCFRPは、良好な熱伝導性を有するため、不燃性だけでなく、例えば放熱用伝熱部材として用いることもできる。これにより不燃特性に強度と良好な熱伝導特性とを兼ね備えた車両用内装材を構成することができる。   Moreover, since CFRP of this embodiment has favorable thermal conductivity, it can be used not only as nonflammable but also as a heat transfer member for heat dissipation, for example. As a result, it is possible to configure an interior material for a vehicle that has both non-combustible characteristics and strength and good heat conduction characteristics.

10…車両用内装材
11…繊維質基材
12…樹脂層
DESCRIPTION OF SYMBOLS 10 ... Interior material for vehicles 11 ... Fiber base material 12 ... Resin layer

Claims (2)

熱伝導率が140W/mK以上のピッチ系炭素繊維で構成された繊維質基材と、前記繊維質基材に含浸された難燃性ビニルエステル樹脂の硬化物で構成された樹脂層とを有する炭素繊維強化プラスチックで構成され、
前記炭素繊維強化プラスチックは、それ単独で、鉄道車両用材料燃焼試験における燃焼性規格(鉄運第81号 鉄道監督局長から陸運局長あて通達「鉄道車両用材料の燃焼性規格」)の区分「不燃性」の判定基準を満たす
車両用内装材。
It has a fibrous base material thermal conductivity composed of pitch-based carbon fiber of more than 140 W / mK, and a resin layer composed of a cured product of the flame-retardant vinyl ester resin impregnated in the fibrous substrate Composed of carbon fiber reinforced plastic,
The above carbon fiber reinforced plastics are categorized as “non-combustible” by itself in the flammability standard in the material combustion test for railway vehicles (Iron Transport No. 81 Director General of Railway Supervision and Director General of Land Transportation Bureau “Combustibility Standards for Rail Vehicle Materials”). A vehicle interior material that meets the criteria for "
請求項1に記載の車両用内装材であって、
前記難燃性ビニルエステル樹脂は、常温硬化型樹脂である
車両用内装材。
The vehicle interior material according to claim 1,
The flame retardant vinyl ester resin is a room temperature curable resin.
JP2013083832A 2013-04-12 2013-04-12 Interior materials for vehicles Active JP6245630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083832A JP6245630B2 (en) 2013-04-12 2013-04-12 Interior materials for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083832A JP6245630B2 (en) 2013-04-12 2013-04-12 Interior materials for vehicles

Publications (2)

Publication Number Publication Date
JP2014205932A JP2014205932A (en) 2014-10-30
JP6245630B2 true JP6245630B2 (en) 2017-12-13

Family

ID=52119716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083832A Active JP6245630B2 (en) 2013-04-12 2013-04-12 Interior materials for vehicles

Country Status (1)

Country Link
JP (1) JP6245630B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5986693B2 (en) * 2014-09-26 2016-09-06 積水化学工業株式会社 Flame retardant urethane resin composition
CN111201269A (en) * 2017-10-13 2020-05-26 学校法人东京理科大学 Flame-retardant material
JP7202141B2 (en) * 2018-10-29 2023-01-11 Tomatec株式会社 Reinforced plastic molding with gel coat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087977A (en) * 1996-09-13 1998-04-07 Nippon Yupika Kk Flame-retardant thermosetting resin compound and composite material
US7585558B2 (en) * 2003-01-30 2009-09-08 Toho Tenax Co., Ltd. Carbon fiber-reinforced resin composite materials
JP3853760B2 (en) * 2003-06-26 2006-12-06 日鉄コンポジット株式会社 Vehicle components
JP2005239939A (en) * 2004-02-27 2005-09-08 Toray Ind Inc Fiber reinforced resin composite material

Also Published As

Publication number Publication date
JP2014205932A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
US9498904B2 (en) Molding process of highly heat-resistant sound absorbing and insulating materials
US9881599B2 (en) Sound absorbing and insulating material with improved heat resistance and moldability and method for manufacturing the same
JP4862913B2 (en) Prepregs and preforms
JP5749587B2 (en) Lightweight molded body having an upright part and method for producing the same
WO2016080238A1 (en) Laminate, integrated molding, and method for producing same
JP4807477B2 (en) Manufacturing method of press-molded products
BR112015010321B1 (en) method for manufacturing a highly heat resistant sound absorbing and insulating material; and method for noise reduction of a noise generating device
JP6245630B2 (en) Interior materials for vehicles
WO2018199091A1 (en) Laminate composite and method for producing same
CN108136694A (en) It is capable of providing the prepreg material of lightning strike protection and burn-through resistant
WO2014109021A1 (en) Fiber-reinforced composite material, method for producing same, and elevator constituent member and elevator car each manufactured using same
US8585864B2 (en) Fire and smoke retardant composite materials
JP2020006943A (en) Floor panel assembly, and method of making heated floor panel assembly
CN107531883B (en) Resin composition, resin sheet, cured resin product, and resin substrate
JP3853760B2 (en) Vehicle components
JP2018199267A (en) Manufacturing method of fire retardant honeycomb core sandwich panel structure, and fire retardant honeycomb core sandwich panel structure
WO2016031637A1 (en) Flame-retardant shaped object comprising three-dimensional woven material, and production process
JP6913399B2 (en) Thermosetting resin composition, fiber reinforced resin composite material and its manufacturing method
JP2008265160A (en) Frp molding
JP2006077342A (en) Interior material for aircraft
JP6453703B2 (en) FRP panel and manufacturing method thereof
JP6854028B1 (en) Prepreg and non-combustible materials
TW201922876A (en) Prepreg, fiber-reinforced composite material, and molded article
JP2021147522A (en) Prepreg and fiber-reinforced plastic
CN215283801U (en) Injection-molded multilayer flame-retardant fireproof structural member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171109

R150 Certificate of patent or registration of utility model

Ref document number: 6245630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150