WO2016031637A1 - Flame-retardant shaped object comprising three-dimensional woven material, and production process - Google Patents

Flame-retardant shaped object comprising three-dimensional woven material, and production process Download PDF

Info

Publication number
WO2016031637A1
WO2016031637A1 PCT/JP2015/073181 JP2015073181W WO2016031637A1 WO 2016031637 A1 WO2016031637 A1 WO 2016031637A1 JP 2015073181 W JP2015073181 W JP 2015073181W WO 2016031637 A1 WO2016031637 A1 WO 2016031637A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
dimensional fabric
retardant
molded article
fabric according
Prior art date
Application number
PCT/JP2015/073181
Other languages
French (fr)
Japanese (ja)
Inventor
一雄 堀口
豊 誉田
Original Assignee
有限会社ケプラ
アイティシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ケプラ, アイティシー株式会社 filed Critical 有限会社ケプラ
Priority to JP2016545452A priority Critical patent/JPWO2016031637A1/en
Publication of WO2016031637A1 publication Critical patent/WO2016031637A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • D03D11/02Fabrics formed with pockets, tubes, loops, folds, tucks or flaps
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/021Lofty fabric with equidistantly spaced front and back plies, e.g. spacer fabrics

Definitions

  • the present invention relates to an inner wall material or an outer wall material such as a building material or interior of a vehicle that has flame retardancy, requires heat insulation, light weight and high strength.
  • Patent Document 1 discloses a gypsum board that is increased in strength by adding organic fibers, inorganic fibers, or a mixture thereof.
  • lighter weight and higher strength are required for interiors of high-rise buildings and vehicles such as railway vehicles and aircraft.
  • FRP fiber reinforced plastic
  • Patent Document 2 discloses a sandwich structure using a resin foam as a core.
  • the sandwich structure is a plate-like laminated molded product, following the curved surface shape is insufficient.
  • the present invention provides a flame-retardant molded article that has flame retardancy, can be effectively used for building materials and interiors of vehicles that require heat insulation, light weight and high strength, and a manufacturing method. It is aimed.
  • the present invention includes the following aspects.
  • a three-dimensional woven body having a structure in which a plurality of yarns are connected with a third thread is impregnated with a flame retardant and a polymer precursor mixture, and then the polymer precursor mixture is solidified. Flame retardant molded body.
  • ⁇ 2> The flame retardancy using the three-dimensional fabric according to ⁇ 1>, wherein the third yarn forms an angle of 60 degrees to 90 degrees with respect to the fabric forming the flat surface or the curved surface. Molded body.
  • ⁇ 3> The above ⁇ 1> or ⁇ 2>, wherein the third yarn has a structure of connecting two woven fabrics forming the plane or curved surface at a density of 45,000 to 300,000 per square meter.
  • ⁇ 4> A flame-retardant molded article using the three-dimensional fabric according to any one of ⁇ 1> to ⁇ 3>, wherein the three-dimensional fabric is made of inorganic fibers.
  • ⁇ 5> A flame-retardant molded article using the three-dimensional woven fabric according to ⁇ 4>, wherein the inorganic fiber is made of E glass.
  • ⁇ 6> A flame-retardant molded article using the three-dimensional fabric according to any one of ⁇ 1> to ⁇ 5>, wherein the flame retardant is an aluminum hydroxide compound and / or a magnesium hydroxide compound.
  • ⁇ 7> A flame-retardant molded article using the three-dimensional woven fabric according to any one of ⁇ 1> to ⁇ 6>, wherein the flame retardant is an organic phosphorus type.
  • ⁇ 8> A flame-retardant molded article using the three-dimensional fabric according to any one of ⁇ 1> to ⁇ 7>, wherein the polymer precursor includes an acrylic acid derivative and / or a methacrylic acid derivative.
  • ⁇ 9> The flame retardant molded article using the three-dimensional woven fabric according to any one of ⁇ 1> to ⁇ 8>, wherein the polymer precursor includes a polyester compound and / or an epoxy compound.
  • ⁇ 10> A flame-retardant molded article using the three-dimensional woven fabric according to any one of ⁇ 1> to ⁇ 9>, wherein the polymer precursor mixture includes solid particles.
  • ⁇ 11> The flame-retardant molded article using the three-dimensional fabric according to ⁇ 10>, wherein the solid particles are gypsum whose main component is calcium sulfate.
  • ⁇ 12> The three-dimensional fabric according to any one of ⁇ 1> to ⁇ 11>, wherein the three-dimensional fabric is pretreated with a silane compound and impregnated with a flame retardant and a polymer precursor mixture. The flame-retardant molded product used.
  • ⁇ 13> A flame-retardant molded article using the three-dimensional fabric according to any one of ⁇ 1> to ⁇ 12>, wherein a layer composed of another member is disposed on one side or both sides.
  • the present invention it is possible to obtain a flame-retardant molded article that can be effectively used for a lightweight and high-strength building material or vehicle interior that has flame retardancy and is excellent in heat insulation, and can be manufactured. Become. Furthermore, by designing the shape of the two woven fabrics freely, it is possible to obtain the flame retardant molded body having not only a flat plate shape but also a curved surface shape.
  • polymer precursor refers to monomers, oligomers and prepolymers which are raw materials for producing a polymer by reaction.
  • ⁇ Three-dimensional fabric> In the three-dimensional woven fabric according to this embodiment, two woven fabrics that form a plane or curved surface composed of warp and weft yarns are arranged so that their surfaces face each other, and a gap formed by the two woven fabrics is maintained.
  • 1 is a three-dimensional woven body having a structure in which two woven fabrics are connected by a third thread, and the three-dimensional woven body 100 in FIG. 1 or the three-dimensional woven body 102 in FIG. 2 is illustrated as an embodiment. it can.
  • the first woven fabric and the second woven fabric are shown in a planar structure. However, if the first woven fabric and the second woven fabric are composed of warps and wefts, the first woven fabric and / or the second woven fabric are used.
  • the fabric of No. 2 can have a curved surface structure, whereby a flame-retardant molded body using a three-dimensional fabric can be designed to have an arbitrary curved surface shape and can be widely applied to building materials and interiors of vehicles.
  • the weaving method of warp and weft is not particularly limited, and the woven fabric can be obtained by a general method such as plain weaving, oblique weaving, satin weaving, leno weaving, imitation weaving and the like. It is preferable that the third yarn forms an angle of 60 degrees to 90 degrees with respect to the first fabric and the second fabric. In the case of 90 degrees, since the third yarn is perpendicular to the surface of the molded body according to the present embodiment, the strength in the direction perpendicular to the surface of the molded body is maximum, but at less than 60 degrees In some cases, sufficient strength of the molded body cannot be obtained.
  • the third yarn connects two woven fabrics forming the plane or curved surface at a density of 45,000 to 300,000 per square meter.
  • the density of the third yarn does not necessarily need to be uniform, and even if there is a portion that does not partially satisfy the density range, the molded body as a whole satisfies the density range.
  • the desired strength can be expressed.
  • the density of the third yarn is less than 45,000 per square meter, the strength in the direction perpendicular to the surface of the molded body is reduced due to the shortage of the number, and when the density exceeds 300,000, the three-dimensional The weight of the woven body becomes heavy, which is disadvantageous for the weight reduction that is the object of the present invention.
  • the fiber used for the three-dimensional fabric is not particularly limited, and organic fibers and / or inorganic fibers can be used.
  • organic fibers include polyester fibers typified by polyethylene terephthalate fibers, polyolefin fibers such as polypropylene fibers and polyethylene fibers, fibers made of amide bonds such as nylon fibers and aramid fibers, vinylon fibers, and acrylic fibers.
  • inorganic fiber include glass fiber, carbon fiber, basalt, andesite, or rock fiber made from rocks having similar components.
  • glass fiber general glass for fibers, such as E glass which is glass for general purpose fibers, S glass which is glass for high-strength fibers, and C glass which is glass for fibers excellent in acid resistance, depending on the purpose.
  • E glass which is a glass for general-purpose fibers is preferable.
  • the basalt fiber (basalt fiber) which uses basalt as a raw material is preferable.
  • the three-dimensional fabric can be previously treated with a silane compound. Accordingly, in the step of impregnating the flame retardant and the polymer precursor mixture, the wettability of the polymer precursor mixture is improved and the impregnation property is improved. Furthermore, regarding the flame-retardant molded article using the three-dimensional fabric as the final product, the adhesion of the interface between the three-dimensional fabric and the polymer precursor mixture is improved, and the strength of the molded article is increased.
  • the method of treating the three-dimensional fabric with the silane compound is not particularly limited, but any one or all of the warp, weft and third yarn forming the three-dimensional fabric are preliminarily treated, and then the three-dimensional fabric is treated.
  • silane compound used for the treatment of the three-dimensional fabric a general silane coupling agent can be used.
  • vinyltrichlorosilane vinyltris (2-methoxy) silane, ⁇ -glycidoxypropyltri Methoxysilane, methacryloxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, 3-aminopropyl Triethoxysilane, 3-aminopropylmethyldiethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxy Syrah And its hydrochloride, N- ⁇ - (N-vinylbenzylaminoethyl)
  • Examples of the flame retardant according to this embodiment include phosphorus compounds such as red phosphorus, phosphate esters, and phosphine oxides, melamine, melamine derivatives, melamine-modified phenol resins, compounds having a triazine ring, nitrogen compounds such as cyanuric acid derivatives and isocyanuric acid derivatives. Containing compounds, phosphorus and nitrogen containing compounds such as cyclophosphazene, aluminum hydroxide, magnesium hydroxide, composite metal hydroxides, zinc oxide, zinc stannate, zinc borate, iron oxide, molybdenum oxide, zinc molybdate and other metal elements The compound containing these etc.
  • aluminum hydroxide is preferred from the viewpoint of flame retardancy.
  • the compounding amount of aluminum hydroxide is preferably 50 to 300 parts by mass with respect to 100 parts by mass of the polymer precursor. When it is 50 parts by mass or more, the flame retardancy is improved, and when it is 300 parts by mass or less, the impregnation property to the three-dimensional fabric is improved.
  • As aluminum hydroxide fine and fine aluminum hydroxides B303, B153, B103 (all manufactured by Nippon Light Metal Co., Ltd., trade names) and the like are commercially available.
  • an organic phosphorus flame retardant is preferable, and a phosphate ester compound is particularly preferable.
  • the phosphate ester is not particularly limited as long as it is an ester compound of phosphoric acid and an alcohol compound or a phenol compound.
  • trimethyl phosphate triethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate , Xylenyl diphenyl phosphate, tris (2,6 dimethylphenyl) phosphate, and aromatic condensed phosphate.
  • aromatic condensed phosphate esters having a low viscosity are preferable, such as CR-733S and CR-741 (both manufactured by Daihachi Chemical Co., Ltd.). It is available as a commercial product.
  • the amount is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the polymer precursor. When it is 10 parts by mass or more, flame retardancy is improved, and when it is 100 parts by mass or less, the strength of the molded body is improved.
  • thermosetting resin precursor As the polymer precursor according to the present embodiment, a general-purpose thermosetting resin precursor or an acrylic resin precursor that is polymerized by heat or light can be used. In consideration of the impregnation property of the three-dimensional fabric, the precursor is preferably liquid at normal temperature or an impregnation temperature.
  • thermosetting resin precursors include precursors such as epoxy resins, phenol resins, urea resins, melamine resins, unsaturated polyester resins, diallyl phthalate resins, vinyl ester resins, silicone resins, and polyurethane resins. Of these, epoxy resins and unsaturated polyester resin precursors are preferred.
  • the unsaturated polyester resin precursor is obtained by a condensation reaction of a dibasic acid such as maleic anhydride, phthalic anhydride, or fumaric acid and a dihydric alcohol such as ethylene glycol, propylene glycol, or bisphenol A alkylene oxide adduct. Further, a mixture of a vinyl monomer for crosslinking such as styrene or methacrylic acid methyl ester can be used.
  • a general radical initiator can be used for curing the unsaturated polyester resin precursor, but in the case of curing at room temperature, a combination of methyl ethyl ketone peroxide and cobalt naphthenate is preferable.
  • t-butylperoxy-2-ethylhexanoate is preferable when cured at 100 ° C. or lower, and benzoyl peroxide, cyclohexanone peroxide, and lauroyl peroxide are preferable when cured at higher temperatures. Can be used alone or in combination of two or more.
  • the epoxy resin is preferably a liquid at normal temperature or an impregnation temperature in consideration of the impregnation property to the three-dimensional fabric.
  • bisphenol A, bisphenol F, bisphenol AD, bisphenol S, hydrogenated bisphenol A, and other diglycidyl ether type epoxy resins, orthocresol novolac type epoxy resins and phenols and aldehydes novolac resins Glycidyl obtained by reaction of epichlorohydrin with epoxidized, glycidyl ester type epoxy resin obtained by reaction of polybasic acid such as phthalic acid and dimer acid and epichlorohydrin, p-aminophenol, diaminodiphenylmethane, isocyanuric acid and the like
  • Examples include amine type epoxy resins, linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, alicyclic epoxy resins, and the like. It can be used in combination of more kinds. Among
  • a curing agent for the curing reaction of the epoxy resin.
  • Aromatic amines such as bis (4-aminophenyl) methane and bis (4-aminophenyl) sulfone.
  • Imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole, and imidazole derivatives.
  • Carboxylic anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
  • a polyphenol compound such as a novolak resin, a Lewis acid complex such as a boron trifluoride ethylamine complex, or the like can be used. Among these, it is preferable to use an aliphatic amine having active hydrogen as a curing agent that can be cured at a low temperature.
  • the acrylic resin precursor is an acrylic acid derivative and / or a methacrylic acid derivative, and indicates monomers and oligomers of various acrylic resins.
  • Alkyl (meth) acrylates such as butyl, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate
  • hydroxyl group-containing (meth) acrylate-based monomers such as esters, ethyl ⁇ -hydroxy (meth) acrylate, n-methylolacrylamide, and oligomers obtained by
  • acrylic acid ester copolymer oligomers of these (meth) acrylic acid ester monomers and radical polymerizable monomers such as styrene, vinyl toluene, vinyl acetate, (meth) acrylonitrile, vinyl chloride, vinylidene chloride, ethyl vinyl ether, etc. Etc.
  • acrylic resin precursors can be used alone or in combination of two or more.
  • a polymerization initiator for the curing reaction of the acrylic resin precursor.
  • organic peroxides such as diacyl peroxide compounds, peroxy ester compounds, hydroperoxide compounds, ketone peroxide compounds, alkyl perester compounds, and carbonate compounds in the case of heat curing. Things.
  • photocuring such as ultraviolet rays
  • photopolymerization initiators such as acetophenone, ketone, benzophenone, benzoin, ketal, anthraquinone, disulfide, thioxanthone, thiuram, and fluoroamine are listed. Of these, acetophenone, ketone, and benzophenone are preferred.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the polymer precursor mixture according to the present embodiment can contain solid particles in addition to the flame retardant such as aluminum hydroxide.
  • the flame retardant such as aluminum hydroxide.
  • solid particles include calcium sulfate, calcium silicate, calcium carbonate, fused silica, crystalline silica, alumina, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, fosterite, steatite, spinel, mullite, titania Or powders such as beads, glass fibers and the like.
  • Solid particles have effects of improving strength, reducing linear expansion coefficient, improving thermal conductivity, and reducing hygroscopicity, and among these, gypsum mainly composed of calcium sulfate is preferable.
  • the blending amount of the solid particles is preferably 50 to 300 parts by mass, more preferably 100 to 200 parts by mass with respect to 100 parts by mass of the polymer precursor. When it is 50 parts by mass or more, strength, linear expansion coefficient, thermal conductivity and hygroscopicity are improved, and when it is 300 parts by mass or less, impregnation into a three-dimensional fabric body is improved.
  • Examples of the method for producing a three-dimensional woven fabric according to the present embodiment include a lamination molding method such as hand lay-up and spray-up, a press molding method, an injection molding method, a vacuum or pressure back method, a continuous molding method, and an injection molding method.
  • Known methods such as It is preferable to sufficiently impregnate the three-dimensional fabric body with the polymer precursor mixture at the time of production. However, if the amount of the polymer precursor mixture is too large, it is not possible to secure a void portion which is a feature using the three-dimensional fabric body. A lightweight structure cannot be realized.
  • the weight ratio of the three-dimensional fabric and the polymer precursor mixture is preferably 1.0: 0.8 to 1.6, and more preferably 1.0: 1.0 to 1.4.
  • the polymer precursor mixture is crushed so that voids do not enter the two fabric portions while crushing the third yarn forming the three-dimensional fabric using a defoaming roller.
  • the material is sufficiently impregnated and then hand-laid up so that the third yarn is raised by a defoaming roller.
  • the molding method using a mold there is a method in which the three-dimensional fabric is sufficiently impregnated with the polymer precursor mixture in the first stage, and the mold is opened by a predetermined thickness and cured in the second stage. It is done.
  • the curing conditions for the polymer precursor mixture are preferably in the range of room temperature to 120 ° C., and the curing time is preferably in the range of 1 to 12 hours.
  • the three-dimensional woven fabric according to the present embodiment can be arranged with layers composed of other members on one side or both sides.
  • the other member means a member that is not integrated with the three-dimensional fabric, and the constituent material may be the same as or different from that of the three-dimensional fabric.
  • Specific examples include mats or woven fabrics using organic fibers such as inorganic fibers such as glass fibers and carbon fibers, nylon fibers, polyester fibers, polyimide fibers, and aramid fibers, and prepregs using these.
  • a metal plate made of a metal such as aluminum, copper, iron, or an alloy thereof, or a mat or mesh using a metal fiber may be used.
  • it can be used as a member combined with resin.
  • a metal layer or a layer containing a metal layer is effective as another member, and aluminum, copper, iron, and alloys thereof can be suitably used as the material of the metal layer.
  • the shape is preferably a metal foil, a metal foil having a plurality of through holes in the thickness direction, or a mesh.
  • a structure having a plurality of through holes in the thickness direction including commercially available punching metals and meshes, is preferable.
  • the ratio of the through-holes to the metal layer is preferably 50% or less, more preferably 30% or less by volume.
  • the thickness of these other members is preferably 50 to 500 ⁇ m, and more preferably 100 to 300 ⁇ m, in order to reduce the weight and suppress the occurrence of warpage due to the difference in thermal expansion coefficient from the three-dimensional fabric.
  • the layer including the metal layer is a structure having a non-metal layer on one side or both sides of the metal layer, and has effects of preventing corrosion of the metal layer surface and adjusting the appearance and texture. Examples of the material for the non-metallic layer include glassy inorganic substances and resins.
  • Examples of a method for forming a glassy inorganic substance on the surface of the metal layer include a method in which a silicone compound such as an alkoxysilane compound or a silazane compound is applied, and then a glassy film is formed by heat condensation.
  • a method of curing after applying a thermosetting resin such as epoxy resin, phenol resin, polyester resin, or silicone resin, or curing these resin films after pressure adhesion The method etc. are mentioned.
  • the composition of these resin layers is not particularly limited, but when the three-dimensional fabric of the present invention is applied to a railway vehicle material, it is preferable that the residue of carbide is as small as possible after contact with a flame.
  • a resin composition of 10% or less in terms of the residual carbon content based on Japanese Industrial Standard JIS K 2270-2 is preferable.
  • a silicone compound having a Si—O bond as a main chain and forming a three-dimensional crosslinked structure such as methyl silicone resin and methylphenyl silicone resin, can be preferably used.
  • These silicone compounds are commercially available as silicone resin varnishes such as 804RESIN, 805RESIN, 806ARESIN, 840RESIN, and SR2400 (all are trade names, manufactured by Toray Dow Corning Co., Ltd.).
  • an inorganic filler can be added to the resin layer in order to increase the flame retardancy of the surface and reduce the residual carbon content.
  • the inorganic filler aluminum hydroxide, magnesium hydroxide, composite metal hydroxide, zinc oxide, zinc stannate, zinc borate, iron oxide, molybdenum oxide, zinc molybdate, etc. that can be used as the above flame retardant
  • the compound containing a metal element etc. are mentioned, These 1 type (s) or 2 or more types can be used together and used.
  • the above-mentioned solid particles which can be added to the above-mentioned polymer precursor mixture as an inorganic filler can be used alone or in combination.
  • Examples of the method for arranging the other member include a method of manufacturing a mat, a woven fabric or a mesh composed of the three-dimensional fabric body and the other member at the time of hand lay-up, a prepreg after forming the three-dimensional fabric body, and a metal plate Alternatively, it is possible to use a method in which a member combined with resin is bonded and integrated by press molding. An image of this structure is shown in FIG.
  • Epoxy resin EPOLAM2500 (Axon) 100 parts by mass and amine curing agent EPOLAM2501 (Axon) 18 parts by mass are mixed uniformly at room temperature, and then aluminum hydroxide B153 (Nippon Light Metal Co., Ltd.) 60 as a flame retardant.
  • the polymer precursor mixture was prepared by mixing the mass parts by hand.
  • the body PG3 (manufactured by Parabeam) is placed on top of each other, and the polymer precursor mixture having a mass of 1.2 times the total mass of these three layers of glass cloth and the three-dimensional fabric is resinized with a defoaming roller. After the impregnation, a 3 mm-thick hand lay-up molded product was produced by causing the third yarn of the three-dimensional fabric body by a defoaming roller so as to be nearly perpendicular to the fabric surface. All the work so far was performed at room temperature. Thereafter, the epoxy resin was cured in two stages of 30 ° C./5 hours and 50 ° C./1 hour in a dryer, and a flame-retardant molded article using a three-dimensional fabric was produced.
  • Example 2 Three-dimensional as in Example 1, except that 20 parts by mass of aromatic condensed phosphate ester CR-733S as a flame retardant was added to the polymer precursor mixture of Example 1 to prepare a polymer precursor mixture. A flame-retardant molded article using a woven fabric was prepared.
  • Example 1 The polymer used in Example 1 with a thickness of about 100 ⁇ m on one side of an aluminum foil of 182 ⁇ 257 ⁇ 0.1 mm (B5 size) in which through holes having a diameter of about 0.5 mm are provided on lattice points at intervals of about 20 mm.
  • a coating film-formed aluminum foil was prepared that was treated with a dryer at 30 ° C. for 5 hours.
  • a 3D woven fabric PG3 (manufactured by Parabeam) of the same size and 3 mm thickness is placed between two sheets of E glass glass cloth WF230 100BX (manufactured by Nitto Boseki Co., Ltd.) having the same size as the aluminum foil
  • the polymer precursor mixture used in Example 1 having a mass 1.2 times the total mass of the three-layer glass cloth and the three-dimensional fabric body was impregnated with a resin by a defoaming roller, and then three-dimensional.
  • a hand lay-up molded product having a thickness of 3 mm was produced by causing the third yarn of the woven fabric to be nearly perpendicular to the woven surface by a defoaming roller.
  • the high-strength gypsum board of the comparative example is nonflammable, but has a large specific gravity and low strength.
  • the glass fiber reinforced epoxy molded body has a high elastic modulus and strength, it has a large specific gravity and is inferior in flame retardancy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Woven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A flame-retardant shaped object which has flame retardancy and heat-insulating properties and which is lightweight and tough and can be used as a building material, an interior vehicular trim, etc.; and a production process therefor. The flame-retardant shaped object 101 comprises a three-dimensional woven material and is obtained by: infiltrating a mixture of a flame retardant and a polymer precursor into a three-dimensional woven object 100 having a structure configured of two woven materials for forming flat or curved surfaces, the woven materials each being composed of warps 11 and wefts 10 and having been disposed so that the woven materials face each other, and a third yarn 12, by which the two woven materials have been connected to each other at a large number of points so that a space is maintained between the two woven materials; and thereafter solidifying the polymer precursor mixture. According to the present invention, it is possible to obtain a flame-retardant shaped object that is effectively usable as, for example, building materials, interior vehicular trims, and the like which have flame retardancy and excellent heat-insulating properties and which are lightweight and have high strength. Hence, production of these is rendered possible. By designing the shape of the two woven materials at will, the flame-retardant shaped object is obtained not only in a flat shape but also in a curved shape.

Description

3次元織物を用いた難燃性成形体及び製造方法Flame-retardant molded article using three-dimensional fabric and manufacturing method
 本発明は、難燃性を有し、断熱性、軽量高強度が必要な建材や乗物の内装などの内壁材または外壁材に関する。 The present invention relates to an inner wall material or an outer wall material such as a building material or interior of a vehicle that has flame retardancy, requires heat insulation, light weight and high strength.
 代表的な建築材料として石膏ボードがあり、一般住宅用壁材としては防火性、断熱性、強度が十分であり広く普及している。さらに強度が必要な用途に対しては特許文献1に有機繊維、無機繊維またはこれらの混合物を添加することで高強度化を図った石膏ボードが開示されている。
 しかし、高層ビルの高層階や鉄道車両、航空機などの乗物の内装ではさらなる軽量、高強度が要求されている。特に、鉄道車両、航空機の用途に対しては、十分な強度を持つFRP(繊維強化プラスチック)が適用されているが、軽量化のためには部材を薄くする必要があり、それに伴い断熱性や遮音性が損なわれる。
 さらにFRPの軽量化に関しては、特許文献2に樹脂の発泡体をコアとしたサンドイッチ構造が開示されている。しかしながら、サンドイッチ構造は板状の積層成形品のため、曲面形状への追従は不十分である。
A typical building material is gypsum board, and it is widely used as a general residential wall material because it has sufficient fire resistance, heat insulation, and strength. For applications that require further strength, Patent Document 1 discloses a gypsum board that is increased in strength by adding organic fibers, inorganic fibers, or a mixture thereof.
However, lighter weight and higher strength are required for interiors of high-rise buildings and vehicles such as railway vehicles and aircraft. In particular, FRP (fiber reinforced plastic) with sufficient strength is applied to railway vehicles and aircraft applications, but it is necessary to make the member thinner for weight reduction. Sound insulation is impaired.
Furthermore, regarding the weight reduction of FRP, Patent Document 2 discloses a sandwich structure using a resin foam as a core. However, since the sandwich structure is a plate-like laminated molded product, following the curved surface shape is insufficient.
特許第3051305号Japanese Patent No.3051305 特開平5-138797号Japanese Patent Laid-Open No. 5-138797
 本発明は、かかる従来技術に鑑み、難燃性を有し、断熱性、軽量高強度が必要な建材や乗物の内装などに有効に使用できる難燃性成形体及び製造方法を提供する事を目的としている。 In view of the conventional technology, the present invention provides a flame-retardant molded article that has flame retardancy, can be effectively used for building materials and interiors of vehicles that require heat insulation, light weight and high strength, and a manufacturing method. It is aimed.
 本発明者らが鋭意検討した結果、特定の3次元織物と難燃性高分子組成物を用いた成形体により、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の態様を包含する。
<1> 縦糸と横糸からなる平面または曲面を形成する2枚の織物が、各々の面が対向する形で配置され、当該2枚の織物により形成される間隙を保持する形で2枚の織物を第3の糸で多数箇所連結する構造を持つ3次元織物体に、難燃剤と高分子前駆体混合物を含浸させ、その後、高分子前駆体混合物を固化させることにより得られる3次元織物を用いた難燃性成形体。
<2> 前記第3の糸が前記の平面または曲面を形成する織物に対して60度から90度の角度をなすことを特徴とする前記<1>記載の3次元織物を用いた難燃性成形体。
<3> 前記第3の糸が1平方メートル当たり45,000~300,000本の密度で前記の平面または曲面を形成する2枚の織物を連結する構造を持つ前記<1>又は<2>記載の3次元織物を用いた難燃性成形体。
<4> 前記3次元織物体が無機繊維からなる前記<1>~<3>のいずれか一項に記載の3次元織物を用いた難燃性成形体。
<5> 前記無機繊維がEガラスからなる前記<4>記載の3次元織物を用いた難燃性成形体。
<6> 前記難燃剤が水酸化アルミニウム化合物及び/または水酸化マグネシウム化合物である前記<1>~<5>のいずれか一項に記載の3次元織物を用いた難燃性成形体。
<7> 前記難燃剤が有機リン系である前記<1>~<6>のいずれか一項に記載の3次元織物を用いた難燃性成形体。
<8> 前記高分子前駆体がアクリル酸誘導体及び/またはメタクリル酸誘導体を含む前記<1>~<7>のいずれか一項に記載の3次元織物を用いた難燃性成形体。
<9> 前記高分子前駆体がポリエステル化合物及び/またはエポキシ化合物を含む前記<1>~<8>のいずれか一項に記載の3次元織物を用いた難燃性成形体。
<10> 前記高分子前駆体混合物が固形粒子を含む前記<1>~<9>のいずれか一項に記載の3次元織物を用いた難燃性成形体。
<11> 前記固形粒子が硫酸カルシウムを主成分とする石膏である前記<10>記載の3次元織物を用いた難燃性成形体。
<12> 前記3次元織物体を予めシラン化合物で処理を行い、難燃剤と高分子前駆体混合物を含浸させてなる前記<1>~<11>のいずれか一項に記載の3次元織物を用いた難燃性成形体。
<13>片面または両面に他の部材から構成される層が配置されてなる前記<1>~<12>のいずれか一項に記載の3次元織物を用いた難燃性成形体。
As a result of intensive studies by the present inventors, it has been found that the above problems can be solved by a molded article using a specific three-dimensional fabric and a flame retardant polymer composition, and the present invention has been completed.
That is, the present invention includes the following aspects.
<1> Two woven fabrics in which two woven fabrics forming a plane or curved surface composed of warp and weft yarns are arranged in such a manner that the respective surfaces face each other and hold a gap formed by the two woven fabrics. A three-dimensional woven body having a structure in which a plurality of yarns are connected with a third thread is impregnated with a flame retardant and a polymer precursor mixture, and then the polymer precursor mixture is solidified. Flame retardant molded body.
<2> The flame retardancy using the three-dimensional fabric according to <1>, wherein the third yarn forms an angle of 60 degrees to 90 degrees with respect to the fabric forming the flat surface or the curved surface. Molded body.
<3> The above <1> or <2>, wherein the third yarn has a structure of connecting two woven fabrics forming the plane or curved surface at a density of 45,000 to 300,000 per square meter. A flame-retardant molded article using a three-dimensional fabric.
<4> A flame-retardant molded article using the three-dimensional fabric according to any one of <1> to <3>, wherein the three-dimensional fabric is made of inorganic fibers.
<5> A flame-retardant molded article using the three-dimensional woven fabric according to <4>, wherein the inorganic fiber is made of E glass.
<6> A flame-retardant molded article using the three-dimensional fabric according to any one of <1> to <5>, wherein the flame retardant is an aluminum hydroxide compound and / or a magnesium hydroxide compound.
<7> A flame-retardant molded article using the three-dimensional woven fabric according to any one of <1> to <6>, wherein the flame retardant is an organic phosphorus type.
<8> A flame-retardant molded article using the three-dimensional fabric according to any one of <1> to <7>, wherein the polymer precursor includes an acrylic acid derivative and / or a methacrylic acid derivative.
<9> The flame retardant molded article using the three-dimensional woven fabric according to any one of <1> to <8>, wherein the polymer precursor includes a polyester compound and / or an epoxy compound.
<10> A flame-retardant molded article using the three-dimensional woven fabric according to any one of <1> to <9>, wherein the polymer precursor mixture includes solid particles.
<11> The flame-retardant molded article using the three-dimensional fabric according to <10>, wherein the solid particles are gypsum whose main component is calcium sulfate.
<12> The three-dimensional fabric according to any one of <1> to <11>, wherein the three-dimensional fabric is pretreated with a silane compound and impregnated with a flame retardant and a polymer precursor mixture. The flame-retardant molded product used.
<13> A flame-retardant molded article using the three-dimensional fabric according to any one of <1> to <12>, wherein a layer composed of another member is disposed on one side or both sides.
 本発明によれば、難燃性を有し、断熱性にも優れる軽量高強度な建材や乗物の内装などに有効に使用できる難燃性成形体が得られ、これらを製造することが可能となる。さらには、2枚の織物の形状を自由に設計することで、平板形状だけでなく曲面形状を有する当該難燃性成形体を得られる。 According to the present invention, it is possible to obtain a flame-retardant molded article that can be effectively used for a lightweight and high-strength building material or vehicle interior that has flame retardancy and is excellent in heat insulation, and can be manufactured. Become. Furthermore, by designing the shape of the two woven fabrics freely, it is possible to obtain the flame retardant molded body having not only a flat plate shape but also a curved surface shape.
本発明の一実施形態である、3次元織物とそれを用いた難燃性成形体の断面図である。It is sectional drawing of the three-dimensional fabric which is one Embodiment of this invention, and a flame-retardant molded object using the same. 本発明の一実施形態であり、2枚の織物を連結する第3の糸の配置が図1と異なる3次元織物とそれを用いた難燃性成形体の断面図である。It is one Embodiment of this invention, and is sectional drawing of the flame-retardant molded object using the three-dimensional fabric from which the arrangement | positioning of the 3rd thread | yarn which connects two fabrics differs from FIG. 本発明の一実施形態であり、図1及び図2の成形体表面に他の部材からなる層が配置された、3次元織物とそれを用いた難燃性成形体の断面図である。It is one Embodiment of this invention, and is sectional drawing of the flame-retardant molded object using the three-dimensional fabric by which the layer which consists of another member was arrange | positioned on the molded object surface of FIG.1 and FIG.2. 難燃性試験時の供試材の保持状態を示す図である。It is a figure which shows the holding | maintenance state of the test material at the time of a flame retardance test.
 以下、本発明に係る3次元織物を用いた難燃性成形体及び製造方法に関する実施形態を説明するが、本発明はこれらの実施形態に何ら限定されるものではない。
なお、本明細書において、「高分子前駆体」とは反応により高分子を生成する原料であるモノマー、オリゴマー及びプレポリマーである。
Hereinafter, although the embodiment regarding the flame-retardant molded object using the three-dimensional fabric which concerns on this invention, and a manufacturing method is described, this invention is not limited to these embodiment at all.
In the present specification, “polymer precursor” refers to monomers, oligomers and prepolymers which are raw materials for producing a polymer by reaction.
<3次元織物>
 本実施形態に係る3次元織物は縦糸と横糸からなる平面または曲面を形成する2枚の織物が、各々の面が対向する形で配置され、当該2枚の織物により形成される間隙を保持する形で2枚の織物を第3の糸で多数箇所連結する構造を持つ3次元織物体であり、一実施形態として図1の3次元織物体100または、図2の3次元織物体102が例示できる。
図1及び図2の例示では、縦糸11と横糸10からなる第1の織物と、縦糸11’と横糸10’からなる第2の織物を、第3の糸12により多数箇所連結することで、全体として3次元織物体を構成している。
<Three-dimensional fabric>
In the three-dimensional woven fabric according to this embodiment, two woven fabrics that form a plane or curved surface composed of warp and weft yarns are arranged so that their surfaces face each other, and a gap formed by the two woven fabrics is maintained. 1 is a three-dimensional woven body having a structure in which two woven fabrics are connected by a third thread, and the three-dimensional woven body 100 in FIG. 1 or the three-dimensional woven body 102 in FIG. 2 is illustrated as an embodiment. it can.
In the illustration of FIG.1 and FIG.2, by connecting the 1st fabric consisting of the warp 11 and the weft 10 and the 2nd fabric consisting of the warp 11 'and the weft 10' by many places with the third yarn 12, A three-dimensional fabric is formed as a whole.
 図1及び図2の3次元織物体では、前記第1の織物と第2の織物は平面構造で示されているが、縦糸と横糸で構成されていれば、第1の織物及び/または第2の織物は曲面構造であることが可能であり、これにより3次元織物を用いた難燃性成形体は任意の曲面形状を設計でき、建材や乗物の内装などへ幅広く適用することが出来る。
 さらに、縦糸と横糸の織り方としては特に限定されず、一般的な平織、斜文織、朱子織、からみ織、模紗織などの方法により当該織物を得ることができる。
 前記第3の糸は前記第1の織物及び第2の織物に対して60度から90度の角度をなすことが好ましい。90度の場合、本実施形態に係る成形体の面に対して、第3の糸が垂直となるため、当該成形体の面に対して垂直方向の強度は最大となるが、60度未満では当該成形体の強度が十分得られない場合がある。
 また、前記第3の糸が1平方メートル当たり45,000~300,000本の密度で前記の平面または曲面を形成する2枚の織物を連結する構造が好適である。この場合、第3の糸の密度に関しては必ずしも均一である必要は無く、部分的に前記の密度範囲を満たさない部位が存在しても、当該成形体全体として前記の密度範囲を満足することで目的の強度を発現できる。第3の糸の密度が1平方メートル当たり45,000本未満の場合は本数の不足により、当該成形体の面に対して垂直方向の強度が低くなり、300,000本を超える場合は当該3次元織物体の重量が重くなり本発明の目的である軽量化に対し不利になる。
In the three-dimensional woven fabric of FIGS. 1 and 2, the first woven fabric and the second woven fabric are shown in a planar structure. However, if the first woven fabric and the second woven fabric are composed of warps and wefts, the first woven fabric and / or the second woven fabric are used. The fabric of No. 2 can have a curved surface structure, whereby a flame-retardant molded body using a three-dimensional fabric can be designed to have an arbitrary curved surface shape and can be widely applied to building materials and interiors of vehicles.
Further, the weaving method of warp and weft is not particularly limited, and the woven fabric can be obtained by a general method such as plain weaving, oblique weaving, satin weaving, leno weaving, imitation weaving and the like.
It is preferable that the third yarn forms an angle of 60 degrees to 90 degrees with respect to the first fabric and the second fabric. In the case of 90 degrees, since the third yarn is perpendicular to the surface of the molded body according to the present embodiment, the strength in the direction perpendicular to the surface of the molded body is maximum, but at less than 60 degrees In some cases, sufficient strength of the molded body cannot be obtained.
In addition, a structure in which the third yarn connects two woven fabrics forming the plane or curved surface at a density of 45,000 to 300,000 per square meter is preferable. In this case, the density of the third yarn does not necessarily need to be uniform, and even if there is a portion that does not partially satisfy the density range, the molded body as a whole satisfies the density range. The desired strength can be expressed. When the density of the third yarn is less than 45,000 per square meter, the strength in the direction perpendicular to the surface of the molded body is reduced due to the shortage of the number, and when the density exceeds 300,000, the three-dimensional The weight of the woven body becomes heavy, which is disadvantageous for the weight reduction that is the object of the present invention.
 前記3次元織物体に用いられる繊維は特に限定されず、有機繊維及び/または無機繊維を使用することができる。
 有機繊維としてはポリエチレンテレフタレート繊維に代表されるポリエステル繊維、ポリプロピレン繊維やポリエチレン繊維などのポリオレフィン繊維、ナイロン繊維やアラミド繊維などのアミド結合からなる繊維、ビニロン繊維、アクリル繊維などが挙げられる。
無機繊維としてはガラス繊維、カーボン繊維、玄武岩、安山岩、またはこれらと類似の成分をもつ岩石を原料とした岩石繊維などが挙げられる。
 前記のガラス繊維としては、汎用繊維用ガラスであるEガラス、高強度繊維用ガラスであるSガラス、耐酸性に優れる繊維用ガラスであるCガラスなど、一般的な繊維用ガラスを目的に応じて使用できるが、なかでも汎用繊維用ガラスであるEガラスが好適である。
また、前記の岩石繊維としては、玄武岩を原料とする玄武岩繊維(バサルト繊維)が好ましい。
The fiber used for the three-dimensional fabric is not particularly limited, and organic fibers and / or inorganic fibers can be used.
Examples of the organic fibers include polyester fibers typified by polyethylene terephthalate fibers, polyolefin fibers such as polypropylene fibers and polyethylene fibers, fibers made of amide bonds such as nylon fibers and aramid fibers, vinylon fibers, and acrylic fibers.
Examples of the inorganic fiber include glass fiber, carbon fiber, basalt, andesite, or rock fiber made from rocks having similar components.
As said glass fiber, general glass for fibers, such as E glass which is glass for general purpose fibers, S glass which is glass for high-strength fibers, and C glass which is glass for fibers excellent in acid resistance, depending on the purpose. Among them, E glass which is a glass for general-purpose fibers is preferable.
Moreover, as said rock fiber, the basalt fiber (basalt fiber) which uses basalt as a raw material is preferable.
 また、前記3次元織物体を予めシラン化合物で処理することができる。これにより、難燃剤と高分子前駆体混合物を含浸させる工程で、高分子前駆体混合物の濡れ性が改善されて含浸性が良くなる。さらには、最終製品としての3次元織物を用いた難燃性成形体に関して、前記3次元織物体と高分子前駆体混合物界面の接着が改善されて成形体の強度が高くなる。
 前記3次元織物体のシラン化合物での処理方法は特に限定されないが、3次元織物体を形成する縦糸、横糸及び第3の糸のいずれか、または全部について予め処理を行い、その後に3次元織物体を形成する方法と、3次元織物体を形成した後に処理する方法があり、いずれかの方法または両者の方法を用いることができる。
 前記3次元織物体の処理に用いられるシラン化合物としては一般的なシランカップリング剤が使用でき、それらを例示すれば、ビニルトリクロロシラン、ビニルトリス(2-メトキシ)シラン、γ-グリシドキシプロピルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン及びその塩酸塩、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジメトキシシラン及びその塩酸塩、N-β-(N-ベンジルアミノエチルアミノプロピル)トリメトキシシラン及びその塩酸塩、N-β-(N-ベンジルアミノエチルアミノプロピル)メチルジメトキシシラン及びその塩酸塩、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルジメトキシシラン等のシラン化合物が挙げられ、上記シランカップリング剤の中から好ましいものを1種類、または2種類以上を併用して用いることができる。
In addition, the three-dimensional fabric can be previously treated with a silane compound. Accordingly, in the step of impregnating the flame retardant and the polymer precursor mixture, the wettability of the polymer precursor mixture is improved and the impregnation property is improved. Furthermore, regarding the flame-retardant molded article using the three-dimensional fabric as the final product, the adhesion of the interface between the three-dimensional fabric and the polymer precursor mixture is improved, and the strength of the molded article is increased.
The method of treating the three-dimensional fabric with the silane compound is not particularly limited, but any one or all of the warp, weft and third yarn forming the three-dimensional fabric are preliminarily treated, and then the three-dimensional fabric is treated. There are a method of forming a body and a method of processing after forming a three-dimensional fabric, and either or both methods can be used.
As the silane compound used for the treatment of the three-dimensional fabric, a general silane coupling agent can be used. For example, vinyltrichlorosilane, vinyltris (2-methoxy) silane, γ-glycidoxypropyltri Methoxysilane, methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, 3-aminopropyl Triethoxysilane, 3-aminopropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxy Syrah And its hydrochloride, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropylmethyldimethoxysilane and its hydrochloride, N-β- (N-benzylaminoethylaminopropyl) trimethoxysilane and its hydrochloric acid Silane compounds such as salts, N-β- (N-benzylaminoethylaminopropyl) methyldimethoxysilane and its hydrochloride, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyldimethoxysilane, etc. One of the preferred silane coupling agents can be used, or two or more can be used in combination.
<難燃剤>
 本実施形態に係る難燃剤としては、赤リン、リン酸エステル、ホスフィンオキサイドなどのリン化合物、メラミン、メラミン誘導体、メラミン変性フェノール樹脂、トリアジン環を有する化合物、シアヌル酸誘導体、イソシアヌル酸誘導体などの窒素含有化合物、シクロホスファゼンなどのリン及び窒素含有化合物、水酸化アルミニウム、水酸化マグネシウム、複合金属水酸化物、酸化亜鉛、錫酸亜鉛、硼酸亜鉛、酸化鉄、酸化モリブデン、モリブデン酸亜鉛などの金属元素を含む化合物などが挙げられ、これらの1種、または2種類以上を併用して用いることができる。
なかでも、難燃性の観点からは、水酸化アルミニウムが好ましい。水酸化アルミニウムの配合量は、高分子前駆体量100質量部に対して50~300質量部とすることが好ましい。50質量部以上であると難燃性が向上し、300質量部以下であると3次元織物体への含浸性が向上する。水酸化アルミニウムとしては、市販品として細粒・微粒水酸化アルミニウムB303、B153、B103(いずれも日本軽金属株式会社製、商品名)などが市販品として入手可能である。
 また、難燃性及び流動性の観点からは、有機リン系難燃剤が好ましく、特にリン酸エステル化合物が好ましい。リン酸エステルはリン酸とアルコール化合物またはフェノール化合物のエステル化合物であれば特に制限はないが、例えば、トリメチルホスフェート、トリエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリス(2,6ジメチルフェニル)ホスフェート及び芳香族縮合リン酸エステルなどが挙げられる。なかでも、3次元織物体への含浸性の観点からは、低粘度の芳香族縮合リン酸エステルが好ましく、CR-733S、CR-741(いずれも大八化学株式会社製、商品名)などが市販品として入手可能である。高分子前駆体量100質量部に対して10~100質量部とすることが好ましい。10質量部以上であると難燃性が向上し、100質量部以下であると成形体の強度が向上する。
<Flame Retardant>
Examples of the flame retardant according to this embodiment include phosphorus compounds such as red phosphorus, phosphate esters, and phosphine oxides, melamine, melamine derivatives, melamine-modified phenol resins, compounds having a triazine ring, nitrogen compounds such as cyanuric acid derivatives and isocyanuric acid derivatives. Containing compounds, phosphorus and nitrogen containing compounds such as cyclophosphazene, aluminum hydroxide, magnesium hydroxide, composite metal hydroxides, zinc oxide, zinc stannate, zinc borate, iron oxide, molybdenum oxide, zinc molybdate and other metal elements The compound containing these etc. is mentioned, These 1 type (s) or 2 or more types can be used together and used.
Of these, aluminum hydroxide is preferred from the viewpoint of flame retardancy. The compounding amount of aluminum hydroxide is preferably 50 to 300 parts by mass with respect to 100 parts by mass of the polymer precursor. When it is 50 parts by mass or more, the flame retardancy is improved, and when it is 300 parts by mass or less, the impregnation property to the three-dimensional fabric is improved. As aluminum hydroxide, fine and fine aluminum hydroxides B303, B153, B103 (all manufactured by Nippon Light Metal Co., Ltd., trade names) and the like are commercially available.
From the viewpoint of flame retardancy and fluidity, an organic phosphorus flame retardant is preferable, and a phosphate ester compound is particularly preferable. The phosphate ester is not particularly limited as long as it is an ester compound of phosphoric acid and an alcohol compound or a phenol compound. For example, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate , Xylenyl diphenyl phosphate, tris (2,6 dimethylphenyl) phosphate, and aromatic condensed phosphate. Among these, from the viewpoint of impregnation into a three-dimensional fabric, aromatic condensed phosphate esters having a low viscosity are preferable, such as CR-733S and CR-741 (both manufactured by Daihachi Chemical Co., Ltd.). It is available as a commercial product. The amount is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the polymer precursor. When it is 10 parts by mass or more, flame retardancy is improved, and when it is 100 parts by mass or less, the strength of the molded body is improved.
<高分子前駆体>
 本実施形態に係る高分子前駆体としては、汎用の熱硬化性樹脂前駆体や熱または光により高分子量化するアクリル樹脂前駆体などを使用できる。前記3次元織物体への含浸性を考慮すると、当該前駆体は常温または含浸温度で液体であることが好ましい。
 熱硬化性樹脂前駆体を例示すれば、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、シリコーン樹脂、ポリウレタン樹脂などの前駆体が挙げられる。なかでも、エポキシ樹脂及び不飽和ポリエステル樹脂前駆体が好ましい。
 前記の不飽和ポリエステル樹脂前駆体は、無水マレイン酸、無水フタル酸、フマル酸などの二塩基酸と、エチレングリコール、プロピレングリコール、ビスフェノールAアルキレンオキシド付加物などの二価アルコールの縮合反応で得られ、これにスチレンやメタクリル酸メチルエステルなどの架橋用ビニルモノマーを混合したものを用いることができる。
不飽和ポリエステル樹脂前駆体の硬化には一般的なラジカル開始剤を使用できるが、常温で硬化させる場合は、メチルエチルケトンパーオキサイドとナフテン酸コバルトの組み合わせが好ましい。また、100℃以下の加熱で硬化させる場合は、t-ブチルパーオキシ‐2‐エチルヘキサノエートが、さらに高い温度で硬化させる場合はベンゾイルパーオキサイド、シクロヘキサノンパーオキサイド、ラウロイルパーオキサイドが好ましく、これらを1種類、または2種類以上を併用して用いることができる。
<Polymer precursor>
As the polymer precursor according to the present embodiment, a general-purpose thermosetting resin precursor or an acrylic resin precursor that is polymerized by heat or light can be used. In consideration of the impregnation property of the three-dimensional fabric, the precursor is preferably liquid at normal temperature or an impregnation temperature.
Examples of thermosetting resin precursors include precursors such as epoxy resins, phenol resins, urea resins, melamine resins, unsaturated polyester resins, diallyl phthalate resins, vinyl ester resins, silicone resins, and polyurethane resins. Of these, epoxy resins and unsaturated polyester resin precursors are preferred.
The unsaturated polyester resin precursor is obtained by a condensation reaction of a dibasic acid such as maleic anhydride, phthalic anhydride, or fumaric acid and a dihydric alcohol such as ethylene glycol, propylene glycol, or bisphenol A alkylene oxide adduct. Further, a mixture of a vinyl monomer for crosslinking such as styrene or methacrylic acid methyl ester can be used.
A general radical initiator can be used for curing the unsaturated polyester resin precursor, but in the case of curing at room temperature, a combination of methyl ethyl ketone peroxide and cobalt naphthenate is preferable. In addition, t-butylperoxy-2-ethylhexanoate is preferable when cured at 100 ° C. or lower, and benzoyl peroxide, cyclohexanone peroxide, and lauroyl peroxide are preferable when cured at higher temperatures. Can be used alone or in combination of two or more.
 前記のエポキシ樹脂としては、前記3次元織物体への含浸性を考慮すると、常温または含浸温度で液体であることが好ましい。これらを例示すれば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、水添ビスフェノールAなどのジグリシジルエーテル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂を代表とするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、フタル酸、ダイマー酸などの多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、p―アミノフェノール、ジアミノジフェニルメタン、イソシアヌル酸などのアミン化合物とエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸などの過酸により酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂などが挙げられ、これらを1種類、または2種類以上を併用して用いることができる。なかでも、含浸性の観点からは液状ビスフェノール型エポキシ樹脂が好ましく、耐熱性及び流動性の観点からは液状グリシジルアミン型エポキシ樹脂が好ましい。 The epoxy resin is preferably a liquid at normal temperature or an impregnation temperature in consideration of the impregnation property to the three-dimensional fabric. For example, bisphenol A, bisphenol F, bisphenol AD, bisphenol S, hydrogenated bisphenol A, and other diglycidyl ether type epoxy resins, orthocresol novolac type epoxy resins and phenols and aldehydes novolac resins Glycidyl obtained by reaction of epichlorohydrin with epoxidized, glycidyl ester type epoxy resin obtained by reaction of polybasic acid such as phthalic acid and dimer acid and epichlorohydrin, p-aminophenol, diaminodiphenylmethane, isocyanuric acid and the like Examples include amine type epoxy resins, linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, alicyclic epoxy resins, and the like. It can be used in combination of more kinds. Among these, a liquid bisphenol type epoxy resin is preferable from the viewpoint of impregnation, and a liquid glycidylamine type epoxy resin is preferable from the viewpoint of heat resistance and fluidity.
 前記エポキシ樹脂の硬化反応には、硬化剤を使用することが好ましい。これらを例示すれば、エチレンジアミン、ブタン-1,4-ジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタアミン、ジプロピレントリアミン、トリプロピレンテトラアミン、N-(ヒドロキシエチル)ジエチレントリアミン、トリエチレンテトラアミンのモノ-N-2-ヒドロキシプロピル置換体、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、3-アミノメチルー3,5,5-トリメチルシクロヘキシルアミン、イソホロンジアミン、ビス(アミノメチル)ノルボルナン、ビス(4-アミノシクロヘキシル)メタン、ポリエチレンイミンのダイマー酸エステルなどの活性水素を有する脂肪族アミン。ビス(4-アミノフェニル)メタン、ビス(4-アミノフェニル)スルホンなどの芳香族アミン。2-メチルイミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール類およびイミダゾール誘導体。ヘキサヒドロフタル酸無水物、テトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物などのカルボン酸無水物。ノボラック樹脂などのポリフェノール化合物、および、三フッ化ホウ素エチルアミン錯体のようなルイス酸錯体などを用いることができる。これらの中でも、低温で硬化が可能な硬化剤として活性水素を有する脂肪族アミンを使用することが好ましい。 It is preferable to use a curing agent for the curing reaction of the epoxy resin. For example, ethylenediamine, butane-1,4-diamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine, tripropylenetetraamine, N- (hydroxyethyl) diethylenetriamine, monoethylene of triethylenetetraamine —N-2-hydroxypropyl substituted, 4,4′-methylenebis (2-methylcyclohexylamine), 3-aminomethyl-3,5,5-trimethylcyclohexylamine, isophoronediamine, bis (aminomethyl) norbornane, bis (4 -Aminocyclohexyl) aliphatic amines having active hydrogen such as methane, dimer acid ester of polyethyleneimine. Aromatic amines such as bis (4-aminophenyl) methane and bis (4-aminophenyl) sulfone. Imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole, and imidazole derivatives. Carboxylic anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride. A polyphenol compound such as a novolak resin, a Lewis acid complex such as a boron trifluoride ethylamine complex, or the like can be used. Among these, it is preferable to use an aliphatic amine having active hydrogen as a curing agent that can be cured at a low temperature.
 前記のアクリル樹脂前駆体は、アクリル酸誘導体及び/またはメタクリル酸誘導体であり、各種アクリル樹脂のモノマー及びオリゴマーを示す。これらを例示すれば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリルなどの(メタ)アクリル酸アルキルエステル、β-ヒドロキシ(メタ)アクリル酸エチル、n-メチロールアクリルアミドなどのヒドロキシル基含有(メタ)アクリル酸エステル系モノマー及び、これらを単独または共重合させたオリゴマーが挙げられる。さらには、これらの(メタ)アクリル酸エステルモノマーと、スチレン、ビニルトルエン、酢酸ビニル、(メタ)アクリロニトリル、塩化ビニル、塩化ビニリデン、エチルビニルエーテルなどのラジカル重合性モノマーとのアクリル酸エステル共重合体オリゴマーなどが挙げられる。これらアクリル樹脂前駆体は1種類、または2種類以上を併用して用いることができる。 The acrylic resin precursor is an acrylic acid derivative and / or a methacrylic acid derivative, and indicates monomers and oligomers of various acrylic resins. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, i- (meth) acrylate Alkyl (meth) acrylates such as butyl, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate Examples thereof include hydroxyl group-containing (meth) acrylate-based monomers such as esters, ethyl β-hydroxy (meth) acrylate, n-methylolacrylamide, and oligomers obtained by homo- or copolymerization thereof. Furthermore, acrylic acid ester copolymer oligomers of these (meth) acrylic acid ester monomers and radical polymerizable monomers such as styrene, vinyl toluene, vinyl acetate, (meth) acrylonitrile, vinyl chloride, vinylidene chloride, ethyl vinyl ether, etc. Etc. These acrylic resin precursors can be used alone or in combination of two or more.
 前記のアクリル樹脂前駆体の硬化反応には、重合開始剤を使用することが好ましい。これらを例示すれば、加熱硬化の場合はジアシルパーオキサイド系化合物、パーオキシエステル系化合物、ハイドロパーオキサイド系化合物、ケトンパーオキサイド系化合物、アルキルパーエステル系化合物、パーカーボネート系化合物などの有機過酸化物が挙げられる。また、紫外線などの光硬化の場合はアセトフェノン系、ケトン系、ベンゾフェノン系、ベンゾイン系、ケタール系、アントラキノン系、ジスルフィド系、チオキサントン系、チウラム系、フルオロアミン系などの光重合開始剤が挙げられる。なかでも、アセトフェノン系、ケトン系、ベンゾフェノン系が好ましく挙げられる。これらの重合開始剤は1種類、または2種類以上を併用して用いることができる。 It is preferable to use a polymerization initiator for the curing reaction of the acrylic resin precursor. For example, organic peroxides such as diacyl peroxide compounds, peroxy ester compounds, hydroperoxide compounds, ketone peroxide compounds, alkyl perester compounds, and carbonate compounds in the case of heat curing. Things. In the case of photocuring such as ultraviolet rays, photopolymerization initiators such as acetophenone, ketone, benzophenone, benzoin, ketal, anthraquinone, disulfide, thioxanthone, thiuram, and fluoroamine are listed. Of these, acetophenone, ketone, and benzophenone are preferred. These polymerization initiators can be used alone or in combination of two or more.
<固形粒子>
 本実施形態に係る高分子前駆体混合物は、前記水酸化アルミニウムなどの難燃剤以外に、固形粒子を含むことができる。これらを例示すれば、硫酸カルシウム、珪酸カルシウム、炭酸カルシウム、溶融シリカ、結晶シリカ、アルミナ、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、フォステライト、ステアタイト、スピネル、ムライト、チタニアなどの粉体、またはこれらを球形化したビーズ、ガラス繊維などが挙げられる。固形粒子は強度向上、線膨張係数低減、熱伝導性向上及び吸湿性低減の効果があり、なかでも、硫酸カルシウムを主成分とする石膏が好ましい。
 固形粒子の配合量は、高分子前駆体量100質量部に対して50~300質量部とすることが好ましく、100~200質量部とすることがさらに好ましい。50質量部以上であると強度、線膨張係数、熱伝導性及び吸湿性が向上し、300質量部以下であると3次元織物体への含浸性が向上する。
<Solid particles>
The polymer precursor mixture according to the present embodiment can contain solid particles in addition to the flame retardant such as aluminum hydroxide. For example, calcium sulfate, calcium silicate, calcium carbonate, fused silica, crystalline silica, alumina, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, fosterite, steatite, spinel, mullite, titania Or powders such as beads, glass fibers and the like. Solid particles have effects of improving strength, reducing linear expansion coefficient, improving thermal conductivity, and reducing hygroscopicity, and among these, gypsum mainly composed of calcium sulfate is preferable.
The blending amount of the solid particles is preferably 50 to 300 parts by mass, more preferably 100 to 200 parts by mass with respect to 100 parts by mass of the polymer precursor. When it is 50 parts by mass or more, strength, linear expansion coefficient, thermal conductivity and hygroscopicity are improved, and when it is 300 parts by mass or less, impregnation into a three-dimensional fabric body is improved.
<難燃性成形体の製造方法>
 本実施形態に係る3次元織物体の製造方法としては、例えばハンドレイアップやスプレイアップなどの積層成形法、プレス成形法、注入成形法、真空または加圧バック法、連続成形法、射出成形法等の公知の方法が挙げられる。製造時に3次元織物体に高分子前駆体混合物を十分に含浸させることが好ましいが、高分子前駆体混合物の分量が多すぎると3次元織物体を用いた特長である空隙部分の確保ができず、軽量な構造体を実現できない。したがって、3次元織物体と高分子前駆体混合物の重量比率は1.0:0.8~1.6が好ましく、さらに好ましくは1.0:1.0~1.4の範囲である。
 製造方法を例示すれば、脱泡ローラを用いて3次元織物体を形成する第3の糸を寝かせる形に押し潰しながら、2枚の織物部分にボイドが入らないように高分子前駆体混合物を十分に含浸させ、その後に脱泡ローラで第3の糸を立ち上げるようにハンドレイアップする方法が挙げられる。また金型を用いた成形方法では、第一段目で3次元織物体に高分子前駆体混合物を十分に含浸させ、第二段目で所定の厚み分だけ型開きし、硬化させる方法が挙げられる。
 高分子前駆体混合物の硬化条件としては、室温から120℃の範囲が好ましく、硬化時間としては1~12時間の範囲が好ましい。特に、成形体の反りを小さく抑えるためには低温から高温へ多段階の温度で処理を行うことが好ましい。金型成形を行う場合は、金型でゲル化するまで成形した後に、金型から取り出して、乾燥機で多段階の加熱硬化を組み合わせることができる。
<Method for producing flame-retardant molded article>
Examples of the method for producing a three-dimensional woven fabric according to the present embodiment include a lamination molding method such as hand lay-up and spray-up, a press molding method, an injection molding method, a vacuum or pressure back method, a continuous molding method, and an injection molding method. Known methods such as It is preferable to sufficiently impregnate the three-dimensional fabric body with the polymer precursor mixture at the time of production. However, if the amount of the polymer precursor mixture is too large, it is not possible to secure a void portion which is a feature using the three-dimensional fabric body. A lightweight structure cannot be realized. Accordingly, the weight ratio of the three-dimensional fabric and the polymer precursor mixture is preferably 1.0: 0.8 to 1.6, and more preferably 1.0: 1.0 to 1.4.
As an example of the production method, the polymer precursor mixture is crushed so that voids do not enter the two fabric portions while crushing the third yarn forming the three-dimensional fabric using a defoaming roller. There is a method in which the material is sufficiently impregnated and then hand-laid up so that the third yarn is raised by a defoaming roller. In the molding method using a mold, there is a method in which the three-dimensional fabric is sufficiently impregnated with the polymer precursor mixture in the first stage, and the mold is opened by a predetermined thickness and cured in the second stage. It is done.
The curing conditions for the polymer precursor mixture are preferably in the range of room temperature to 120 ° C., and the curing time is preferably in the range of 1 to 12 hours. In particular, in order to suppress the warpage of the compact, it is preferable to perform the treatment at a multistage temperature from a low temperature to a high temperature. In the case of performing mold molding, after molding until gelation with the mold, it is possible to take out from the mold and combine multi-stage heat curing with a dryer.
 さらに、本実施形態に係る3次元織物体は片面または両面に他の部材から構成される層を配置することができる。ここで、他の部材とは前記3次元織物体と一体となっていない部材を示し、その構成素材は3次元織物体と同じでも異なっていてもよい。具体的には、ガラス繊維や炭素繊維などの無機繊維、ナイロン繊維、ポリエステル繊維、ポリイミド繊維、アラミド繊維などの有機繊維を用いたマットまたは織物や、これらを用いたプリプレグが挙げられる。さらにはアルミ、銅、鉄などの金属及びその合金類からなる金属板または金属繊維を用いたマットまたはメッシュなどが挙げられる。また、これら金属製他部材を使用する場合も樹脂で複合化した部材として使用することができる。これらを複合化することで用途に応じた特長を発揮できる。
 特に難燃性の観点から、他の部材としては金属層又は金属層を含む層が有効であり、金属層の材質としてはアルミ、銅、鉄及びその合金類を好適に用いることができる。それらの形状としては金属箔、厚み方向に貫通孔を複数個有する金属箔、メッシュなどの形状が好ましい。3次元織物層との密着性向上の観点からは市販のパンチングメタル、メッシュなども含め、厚み方向に貫通孔を複数個有する構造が好ましい。この場合、金属層に対する貫通孔の占める割合は体積比で50%以下が好ましく、さらに好ましくは30%以下である。これら他の部材の厚みは軽量化や3次元織物との熱膨張係数の違いによる反りの発生を抑制するために、50~500μmが好ましく、100~300μmがさらに好ましい。
 前記金属層を含む層とは、金属層の片面または両面に非金属層を有する構造であり、金属層表面の腐食防止や外観及び質感を整える効果がある。非金属層の材質としてはガラス状の無機物や樹脂が挙げられる。金属層の表面にガラス状の無機物を形成する方法としてはアルコキシシラン化合物やシラザン化合物などのシリコーン化合物を塗布後、加熱縮合によりガラス状被膜を形成する方法などが挙げられる。金属層の表面に樹脂層を形成する場合は、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、シリコーン樹脂などの熱硬化性樹脂を塗布した後に硬化させる方法や、これらの樹脂フィルムを加圧密着後に硬化させる方法などが挙げられる。これらの樹脂層の組成は特に限定されるものではないが、本発明の3次元織物体を鉄道車両用材料へ適用する場合などでは、火炎が接触した後に炭化物の残留が極力少ないことが好ましい。具体的には日本工業規格JIS K 2270-2に準拠した残留炭素分の求め方で10%以下の樹脂組成物が好ましい。中でもメチル系シリコーンレジンやメチルフェニル系シリコーンレジンなどSi-O結合を主鎖とし、3次元架橋構造を形成するシリコーン化合物を好適に用いることができる。これらのシリコーン化合物は市販品として804RESIN、805RESIN、806ARESIN、840RESIN、SR2400(いずれも東レ・ダウコーニング株式会社製、商品名)などのシリコーンレジンワニスとして入手可能である。さらに表面の難燃性を高め、残留炭素分を低減するために樹脂層に無機充填剤を添加することができる。無機充填剤としては前出の難燃剤として用いることのできる水酸化アルミニウム、水酸化マグネシウム、複合金属水酸化物、酸化亜鉛、錫酸亜鉛、硼酸亜鉛、酸化鉄、酸化モリブデン、モリブデン酸亜鉛などの金属元素を含む化合物などが挙げられ、これらの1種、または2種類以上を併用して用いることができる。また、無機充填剤として前出の高分子前駆体混合物に添加することができる前出の固形粒子を単独または併用して用いることができる。
Furthermore, the three-dimensional woven fabric according to the present embodiment can be arranged with layers composed of other members on one side or both sides. Here, the other member means a member that is not integrated with the three-dimensional fabric, and the constituent material may be the same as or different from that of the three-dimensional fabric. Specific examples include mats or woven fabrics using organic fibers such as inorganic fibers such as glass fibers and carbon fibers, nylon fibers, polyester fibers, polyimide fibers, and aramid fibers, and prepregs using these. Furthermore, a metal plate made of a metal such as aluminum, copper, iron, or an alloy thereof, or a mat or mesh using a metal fiber may be used. Moreover, when using these metal other members, it can be used as a member combined with resin. By combining these, it is possible to demonstrate the features according to the application.
In particular, from the viewpoint of flame retardancy, a metal layer or a layer containing a metal layer is effective as another member, and aluminum, copper, iron, and alloys thereof can be suitably used as the material of the metal layer. The shape is preferably a metal foil, a metal foil having a plurality of through holes in the thickness direction, or a mesh. From the viewpoint of improving the adhesion to the three-dimensional fabric layer, a structure having a plurality of through holes in the thickness direction, including commercially available punching metals and meshes, is preferable. In this case, the ratio of the through-holes to the metal layer is preferably 50% or less, more preferably 30% or less by volume. The thickness of these other members is preferably 50 to 500 μm, and more preferably 100 to 300 μm, in order to reduce the weight and suppress the occurrence of warpage due to the difference in thermal expansion coefficient from the three-dimensional fabric.
The layer including the metal layer is a structure having a non-metal layer on one side or both sides of the metal layer, and has effects of preventing corrosion of the metal layer surface and adjusting the appearance and texture. Examples of the material for the non-metallic layer include glassy inorganic substances and resins. Examples of a method for forming a glassy inorganic substance on the surface of the metal layer include a method in which a silicone compound such as an alkoxysilane compound or a silazane compound is applied, and then a glassy film is formed by heat condensation. When forming a resin layer on the surface of the metal layer, a method of curing after applying a thermosetting resin such as epoxy resin, phenol resin, polyester resin, or silicone resin, or curing these resin films after pressure adhesion The method etc. are mentioned. The composition of these resin layers is not particularly limited, but when the three-dimensional fabric of the present invention is applied to a railway vehicle material, it is preferable that the residue of carbide is as small as possible after contact with a flame. Specifically, a resin composition of 10% or less in terms of the residual carbon content based on Japanese Industrial Standard JIS K 2270-2 is preferable. Among these, a silicone compound having a Si—O bond as a main chain and forming a three-dimensional crosslinked structure, such as methyl silicone resin and methylphenyl silicone resin, can be preferably used. These silicone compounds are commercially available as silicone resin varnishes such as 804RESIN, 805RESIN, 806ARESIN, 840RESIN, and SR2400 (all are trade names, manufactured by Toray Dow Corning Co., Ltd.). Furthermore, an inorganic filler can be added to the resin layer in order to increase the flame retardancy of the surface and reduce the residual carbon content. As the inorganic filler, aluminum hydroxide, magnesium hydroxide, composite metal hydroxide, zinc oxide, zinc stannate, zinc borate, iron oxide, molybdenum oxide, zinc molybdate, etc. that can be used as the above flame retardant The compound containing a metal element etc. are mentioned, These 1 type (s) or 2 or more types can be used together and used. Moreover, the above-mentioned solid particles which can be added to the above-mentioned polymer precursor mixture as an inorganic filler can be used alone or in combination.
 他部材の配置方法としては、例えば、ハンドレイアップ時に3次元織物体と前記他部材から構成されるマット、織物またはメッシュを重ねて製造する方法や、3次元織物体を形成後にプリプレグ、金属板または樹脂で複合化した部材などをプレス成形により接着・一体化させる方法などが可能である。この構造については図3にイメージを示した。 Examples of the method for arranging the other member include a method of manufacturing a mat, a woven fabric or a mesh composed of the three-dimensional fabric body and the other member at the time of hand lay-up, a prepreg after forming the three-dimensional fabric body, and a metal plate Alternatively, it is possible to use a method in which a member combined with resin is bonded and integrated by press molding. An image of this structure is shown in FIG.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 エポキシ樹脂EPOLAM2500(アクソン社製)100質量部、アミン硬化剤EPOLAM2501(アクソン社製)18質量部を室温にて均一に混合し、その後、難燃剤として水酸化アルミニウムB153(日本軽金属株式会社製)60質量部を手混ぜ混合することにより高分子前駆体混合物を作製した。
 アルミ製の平滑面を有する作業台の上に、182×257mm(B5サイズ)のEガラス製ガラスクロスWF230 100BX(日東紡績株式会社製)2枚の間に、同サイズで3mm厚みの3次元織物体PG3(パラビーム社製)を重ねて配置し、これら3層のガラスクロスと3次元織物体合計質量に対して、1.2倍の質量の前記高分子前駆体混合物を脱泡ローラにて樹脂含浸させた後、3次元織物体の第3の糸が織物面に対して垂直に近くなるように、脱泡ローラにて引き起こし、3mm厚みのハンドレイアップ成形品を作製した。ここまでの作業は全て室温で行った。その後、乾燥機にて30℃/5時間と50℃/1時間の2段階でエポキシ樹脂の硬化を行い、3次元織物を用いた難燃性成形体の作製を行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
Epoxy resin EPOLAM2500 (Axon) 100 parts by mass and amine curing agent EPOLAM2501 (Axon) 18 parts by mass are mixed uniformly at room temperature, and then aluminum hydroxide B153 (Nippon Light Metal Co., Ltd.) 60 as a flame retardant. The polymer precursor mixture was prepared by mixing the mass parts by hand.
A three-dimensional fabric of the same size and 3 mm thickness between two sheets of 182 × 257 mm (B5 size) E glass glass cloth WF230 100BX (manufactured by Nitto Boseki Co., Ltd.) on a work table having a smooth surface made of aluminum. The body PG3 (manufactured by Parabeam) is placed on top of each other, and the polymer precursor mixture having a mass of 1.2 times the total mass of these three layers of glass cloth and the three-dimensional fabric is resinized with a defoaming roller. After the impregnation, a 3 mm-thick hand lay-up molded product was produced by causing the third yarn of the three-dimensional fabric body by a defoaming roller so as to be nearly perpendicular to the fabric surface. All the work so far was performed at room temperature. Thereafter, the epoxy resin was cured in two stages of 30 ° C./5 hours and 50 ° C./1 hour in a dryer, and a flame-retardant molded article using a three-dimensional fabric was produced.
 実施例1の高分子前駆体混合物に難燃剤として芳香族縮合リン酸エステルCR-733Sを20質量部、追加添加して高分子前駆体混合物を作製した以外は、実施例1と同様に3次元織物を用いた難燃性成形体の作製を行った。 Three-dimensional as in Example 1, except that 20 parts by mass of aromatic condensed phosphate ester CR-733S as a flame retardant was added to the polymer precursor mixture of Example 1 to prepare a polymer precursor mixture. A flame-retardant molded article using a woven fabric was prepared.
 約20mm間隔の格子点上に直径が約0.5mmの貫通孔を設けた182×257×0.1mm(B5サイズ)のアルミ箔の片面に約100μm厚さで実施例1に使用した高分子前駆体混合物を塗布した後に乾燥機にて30℃/5時間処理した塗膜形成アルミ箔を準備した。次にアルミ製の平滑面を有する作業台の上に塗膜面を作業台に接する形で準備した塗膜形成アルミ箔を配置した。その上にアルミ箔と同サイズのEガラス製ガラスクロスWF230 100BX(日東紡績株式会社製)2枚の間に、同サイズで3mm厚みの3次元織物体PG3(パラビーム社製)を重ねて配置し、これら3層のガラスクロスと3次元織物体合計質量に対して、1.2倍の質量の実施例1に使用した高分子前駆体混合物を脱泡ローラにて樹脂含浸させた後、3次元織物体の第3の糸が織物面に対して垂直に近くなるように、脱泡ローラにて引き起こし、3mm厚みのハンドレイアップ成形品を作製した。ここまでの作業は全て室温で行った。その後、乾燥機にて30℃/5時間と50℃/1時間の2段階でエポキシ樹脂の硬化を行い、3次元織物を用いた難燃性成形体の作製を行った。
[比較例1]
The polymer used in Example 1 with a thickness of about 100 μm on one side of an aluminum foil of 182 × 257 × 0.1 mm (B5 size) in which through holes having a diameter of about 0.5 mm are provided on lattice points at intervals of about 20 mm. After applying the precursor mixture, a coating film-formed aluminum foil was prepared that was treated with a dryer at 30 ° C. for 5 hours. Next, the coating-film formation aluminum foil prepared in the form which touches a coating-film surface in contact with a work bench on the work bench which has the smooth surface made from aluminum was arrange | positioned. On top of that, a 3D woven fabric PG3 (manufactured by Parabeam) of the same size and 3 mm thickness is placed between two sheets of E glass glass cloth WF230 100BX (manufactured by Nitto Boseki Co., Ltd.) having the same size as the aluminum foil The polymer precursor mixture used in Example 1 having a mass 1.2 times the total mass of the three-layer glass cloth and the three-dimensional fabric body was impregnated with a resin by a defoaming roller, and then three-dimensional. A hand lay-up molded product having a thickness of 3 mm was produced by causing the third yarn of the woven fabric to be nearly perpendicular to the woven surface by a defoaming roller. All the work so far was performed at room temperature. Thereafter, the epoxy resin was cured in two stages of 30 ° C./5 hours and 50 ° C./1 hour in a dryer, and a flame-retardant molded article using a three-dimensional fabric was produced.
[Comparative Example 1]
 市販の高強度石膏ボード「タイガースーパーハード」9.5mm厚さ(吉野石膏株式会社製)のものを試験に供した。
[比較例2]
A commercially available high-strength gypsum board “Tiger Super Hard” 9.5 mm thick (manufactured by Yoshino Gypsum Co., Ltd.) was used for the test.
[Comparative Example 2]
 エポキシ樹脂EPOLAM2500(アクソン社製)100質量部、アミン硬化剤EPOLAM2501(アクソン社製)18質量部を室温にて均一に混合し、高分子前駆体混合物を作製した。
 アルミ製の平滑面を有する作業台の上に、182×257mm(B5サイズ)のEガラス製ガラスマットMC450A(日東紡績株式会社製)3枚を重ねて配置し、脱泡ローラにて樹脂含浸させた後、乾燥機にて30℃、5時間と50℃1時間の2段階でエポキシ樹脂の硬化を行い、3mm厚さのガラス繊維強化エポキシ成形体の作製を行った。
100 parts by mass of epoxy resin EPOLAM2500 (manufactured by Axon) and 18 parts by mass of amine curing agent EPOLAM2501 (manufactured by Axon) were uniformly mixed at room temperature to prepare a polymer precursor mixture.
Three E-glass glass mats MC450A (Nittobo Co., Ltd.) of 182 x 257 mm (B5 size) are placed on a work surface having a smooth surface made of aluminum, and impregnated with resin with a defoaming roller. After that, the epoxy resin was cured in two stages of 30 ° C., 5 hours, and 50 ° C. for 1 hour in a dryer, and a glass fiber reinforced epoxy molded body having a thickness of 3 mm was produced.
[規則26に基づく補充 19.10.2015] 
<曲げ試験>
 引張・圧縮試験機UTC-5T(株式会社オリエンテック製)を用いて、3点曲げ試験を行い、弾性率と強度を求めた。80mm(長さ)×15mm(幅)×3mm(厚さ)の試験片を用いて、測定スパンは60mm、歪速度は毎分2mmにて測定を行った。測定結果は各材料5本の試験を行い平均値を取った。なお、比較例1の試験片は厚さのみ9.5mmとし、他の条件は同じで行った。
<比重>
 曲げ試験に供した試験片の重量を、寸法から求めた体積で除して求めた。結果は各5本の平均値とした。
<難燃性試験>
 鉄道車両用材料燃焼試験法(鉄道車両用非金属材料)に基づき難燃性を評価した。図4に示すとおりB5判の供試材(182mm×257mm)を45°傾斜に保持し、燃料容器の底の中心が、供試材の下面(燃焼面)中心の垂直下方25.4mm(1インチ)のところにくるように、コルクのような熱伝導率の低い材質の台にのせ、純エチルアルコール0.5ccを入れて着火し、燃料が燃え尽きるまで放置する。
 燃焼判定は、アルコールの燃焼中と燃焼後とに分けて、燃焼中は供試材への 着火、着炎、発煙状態、炎の状態等を観察し、燃焼後は、残炎、残じん、炭化、変形状態を評価した。
 なお、燃焼性判断基準の区分としては、良い順に不燃性、極難燃性、難燃性、緩燃性、可燃性となっており、本規格に従って難燃性を判定した。
 表1に実施例及び比較例の結果を示す。
Figure WO-DOC-TABLE-1
 
 表1に示す結果から、本実施形態に係る3次元織物体に、難燃剤と高分子前駆体混合物を含浸させ、その後、高分子前駆体混合物を固化させることにより得られる成形体[実施例1]及び[実施例2]は難燃性で比重が小さく、弾性率及び強度の高い特性を達成することができる。金属層を含む成形体[実施例3]はさらに強度が向上し、極難燃性を達成した。これに対し、比較例の高強度石膏ボードは不燃性であるものの、比重が大きく強度が低い。また、ガラス繊維強化エポキシ成形体は弾性率及び強度は高いものの、比重が大きく難燃性に劣る。
[Supplement under rule 26 19.10.2015]
<Bending test>
Using a tensile / compression tester UTC-5T (manufactured by Orientec Co., Ltd.), a three-point bending test was performed to determine the elastic modulus and strength. Using a test piece of 80 mm (length) × 15 mm (width) × 3 mm (thickness), the measurement span was 60 mm, and the strain rate was 2 mm / min. As the measurement results, five materials were tested and averaged. In addition, the test piece of the comparative example 1 was only 9.5 mm in thickness, and the other conditions were the same.
<Specific gravity>
It calculated | required by remove | dividing the weight of the test piece used for the bending test by the volume calculated | required from the dimension. The result was an average value of 5 each.
<Flame retardance test>
The flame retardancy was evaluated based on the material combustion test method for railway vehicles (non-metallic materials for railway vehicles). As shown in FIG. 4, a B5-size test material (182 mm × 257 mm) is held at a 45 ° inclination, and the center of the bottom of the fuel container is 25.4 mm (1) vertically below the center of the lower surface (combustion surface) of the test material. Inch, place it on a base made of a material with low thermal conductivity such as cork, put 0.5 cc of pure ethyl alcohol, ignite, and leave it until the fuel is burned out.
Combustion judgment is divided into alcohol combustion and after combustion. During combustion, the ignition, ignition, smoke generation, and flame conditions of the test material are observed. After combustion, afterflame, dust, Carbonization and deformation state were evaluated.
In addition, as a classification of the flammability judgment criteria, in order of goodness, they are nonflammability, extreme flame retardant, flame retardant, slow flammability, and flammable.
Table 1 shows the results of Examples and Comparative Examples.
Figure WO-DOC-TABLE-1

From the results shown in Table 1, a molded article obtained by impregnating a three-dimensional textile body according to this embodiment with a flame retardant and a polymer precursor mixture and then solidifying the polymer precursor mixture [Example 1] ] And [Example 2] are flame retardant, have a low specific gravity, and can achieve high elastic modulus and strength properties. The molded body containing the metal layer [Example 3] was further improved in strength and achieved extremely flame retardancy. On the other hand, the high-strength gypsum board of the comparative example is nonflammable, but has a large specific gravity and low strength. Moreover, although the glass fiber reinforced epoxy molded body has a high elastic modulus and strength, it has a large specific gravity and is inferior in flame retardancy.
10及び10’ 横糸
11及び11’ 縦糸
12 第3の糸
13 高分子前駆体混合物
20及び20’ 他の部材からなる層
100及び102 3次元織物体
101及び103 3次元織物体を用いた難燃性成形体
200及び201 他の部材からなる層を配置した3次元織物体を用いた難燃性成形体
 
10 and 10 'Weft yarn 11 and 11' Warp yarn 12 Third yarn 13 Polymer precursor mixture 20 and 20 ' Layers 100 and 102 made of other members 3D fabric body 101 and 103 Flame retardant using 3D fabric body Flame retardant molded body using a three-dimensional fabric body in which layers made of other members are arranged

Claims (13)

  1.  縦糸と横糸からなる平面または曲面を形成する2枚の織物が、各々の面が対向する形で配置され、当該2枚の織物により形成される間隙を保持する形で2枚の織物を第3の糸で多数箇所連結する構造を持つ3次元織物体に、難燃剤と高分子前駆体混合物を含浸させ、その後、高分子前駆体混合物を固化させることにより得られる3次元織物を用いた難燃性成形体。 Two woven fabrics that form a plane or curved surface composed of warp and weft yarns are arranged in such a manner that their surfaces face each other, and the two woven fabrics are held in a form that maintains a gap formed by the two woven fabrics. Flame retardant using a three-dimensional fabric obtained by impregnating a three-dimensional fabric having a structure connected with a plurality of yarns with a flame retardant and a polymer precursor mixture and then solidifying the polymer precursor mixture Molded product.
  2.  前記第3の糸が前記平面または曲面を形成する織物に対して60度から90度の角度をなすことを特徴とする請求項1記載の3次元織物を用いた難燃性成形体。 The flame-retardant molded article using a three-dimensional fabric according to claim 1, wherein the third yarn forms an angle of 60 to 90 degrees with respect to the fabric forming the flat or curved surface.
  3.  前記第3の糸が1平方メートル当たり45,000~300,000本の密度で前記平面または曲面を形成する2枚の織物を連結する構造を持つ請求項1又は2記載の3次元織物を用いた難燃性成形体。 The three-dimensional woven fabric according to claim 1 or 2, wherein the third yarn has a structure for connecting two woven fabrics forming the plane or curved surface at a density of 45,000 to 300,000 per square meter. Flame retardant molded body.
  4.  前記3次元織物体が無機繊維からなる請求項1~3のいずれか一項に記載の3次元織物を用いた難燃性成形体。 The flame-retardant molded article using the three-dimensional fabric according to any one of claims 1 to 3, wherein the three-dimensional fabric is made of inorganic fibers.
  5.  前記無機繊維がEガラスからなる請求項4記載の3次元織物を用いた難燃性成形体。 The flame-retardant molded article using a three-dimensional fabric according to claim 4, wherein the inorganic fiber is made of E glass.
  6.  前記難燃剤が水酸化アルミニウム化合物及び/または水酸化マグネシウム化合物である請求項1~5のいずれか一項に記載の3次元織物を用いた難燃性成形体。 The flame retardant molded article using the three-dimensional fabric according to any one of claims 1 to 5, wherein the flame retardant is an aluminum hydroxide compound and / or a magnesium hydroxide compound.
  7.  前記難燃剤が有機リン系である請求項1~6のいずれか一項に記載の3次元織物を用いた難燃性成形体。 The flame retardant molded article using a three-dimensional fabric according to any one of claims 1 to 6, wherein the flame retardant is an organic phosphorus type.
  8.  前記高分子前駆体がアクリル酸誘導体及び/またはメタクリル酸誘導体を含む請求項1~7のいずれか一項に記載の3次元織物を用いた難燃性成形体。 The flame-retardant molded article using the three-dimensional fabric according to any one of claims 1 to 7, wherein the polymer precursor includes an acrylic acid derivative and / or a methacrylic acid derivative.
  9.  前記高分子前駆体がポリエステル化合物及び/またはエポキシ化合物を含む請求項1~8のいずれか一項に記載の3次元織物を用いた難燃性成形体。 The flame-retardant molded article using the three-dimensional fabric according to any one of claims 1 to 8, wherein the polymer precursor contains a polyester compound and / or an epoxy compound.
  10.  前記高分子前駆体混合物が固形粒子を含む請求項1~9のいずれか一項に記載の3次元織物を用いた難燃性成形体。 The flame-retardant molded article using the three-dimensional fabric according to any one of claims 1 to 9, wherein the polymer precursor mixture contains solid particles.
  11.  前記固形粒子が硫酸カルシウムを主成分とする石膏である請求項10記載の3次元織物を用いた難燃性成形体。 The flame-retardant molded article using a three-dimensional fabric according to claim 10, wherein the solid particles are gypsum whose main component is calcium sulfate.
  12.  前記3次元織物体を予めシラン化合物で処理を行い、難燃剤と高分子前駆体混合物を含浸させてなる請求項1~11のいずれか一項に記載の3次元織物を用いた難燃性成形体。 The flame-retardant molding using a three-dimensional fabric according to any one of claims 1 to 11, wherein the three-dimensional fabric is pretreated with a silane compound and impregnated with a flame retardant and a polymer precursor mixture. body.
  13.  片面または両面に他の部材から構成される層が配置されてなる請求項1~12のいずれか一項に記載の3次元織物を用いた難燃性成形体。
     
    The flame-retardant molded article using a three-dimensional fabric according to any one of claims 1 to 12, wherein a layer composed of another member is disposed on one side or both sides.
PCT/JP2015/073181 2014-08-25 2015-08-19 Flame-retardant shaped object comprising three-dimensional woven material, and production process WO2016031637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016545452A JPWO2016031637A1 (en) 2014-08-25 2015-08-19 Flame-retardant molded article using three-dimensional fabric and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170384 2014-08-25
JP2014-170384 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031637A1 true WO2016031637A1 (en) 2016-03-03

Family

ID=55399532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073181 WO2016031637A1 (en) 2014-08-25 2015-08-19 Flame-retardant shaped object comprising three-dimensional woven material, and production process

Country Status (2)

Country Link
JP (1) JPWO2016031637A1 (en)
WO (1) WO2016031637A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468159A (en) * 2018-03-16 2018-08-31 西安工程大学 The preparation method of quasi-isotropic suture fabric in a kind of three-dimensional surface
US20190382952A1 (en) * 2017-02-09 2019-12-19 Evonik Degussa Gmbh Method for producing a thermally insulating layer
JP2021147522A (en) * 2020-03-19 2021-09-27 積水化成品工業株式会社 Prepreg and fiber-reinforced plastic
US11920735B2 (en) 2017-06-09 2024-03-05 Evonik Operations Gmbh Method for thermally insulating an evacuable container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658024A (en) * 1979-10-15 1981-05-20 Toray Industries Fiber material for fiber reinforsed resin
JPS61100449A (en) * 1984-10-23 1986-05-19 株式会社日本触媒 Decorative flame-retardant laminated board
JPS62117842A (en) * 1985-11-18 1987-05-29 三菱重工業株式会社 Profile fabric for reinforcing member of composite material or core body thereof
JP2002194235A (en) * 2000-12-25 2002-07-10 Matsushita Electric Works Ltd Resin composition, prepreg and laminates
WO2005075724A1 (en) * 2004-02-09 2005-08-18 Asahi-Schwebel Co., Ltd. Double glass cloth, and prepreg and substrate for printed wiring board using the glass cloth
JP2008291056A (en) * 2007-05-22 2008-12-04 Asahi Kasei Chemicals Corp Epoxy resin composition, prepreg using the same, and metal foil clad laminated plate and printed wiring board using them
JP2011073402A (en) * 2009-10-01 2011-04-14 Toyota Industries Corp Preform of fiber-reinforced composite material and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658024A (en) * 1979-10-15 1981-05-20 Toray Industries Fiber material for fiber reinforsed resin
JPS61100449A (en) * 1984-10-23 1986-05-19 株式会社日本触媒 Decorative flame-retardant laminated board
JPS62117842A (en) * 1985-11-18 1987-05-29 三菱重工業株式会社 Profile fabric for reinforcing member of composite material or core body thereof
JP2002194235A (en) * 2000-12-25 2002-07-10 Matsushita Electric Works Ltd Resin composition, prepreg and laminates
WO2005075724A1 (en) * 2004-02-09 2005-08-18 Asahi-Schwebel Co., Ltd. Double glass cloth, and prepreg and substrate for printed wiring board using the glass cloth
JP2008291056A (en) * 2007-05-22 2008-12-04 Asahi Kasei Chemicals Corp Epoxy resin composition, prepreg using the same, and metal foil clad laminated plate and printed wiring board using them
JP2011073402A (en) * 2009-10-01 2011-04-14 Toyota Industries Corp Preform of fiber-reinforced composite material and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190382952A1 (en) * 2017-02-09 2019-12-19 Evonik Degussa Gmbh Method for producing a thermally insulating layer
US11920735B2 (en) 2017-06-09 2024-03-05 Evonik Operations Gmbh Method for thermally insulating an evacuable container
CN108468159A (en) * 2018-03-16 2018-08-31 西安工程大学 The preparation method of quasi-isotropic suture fabric in a kind of three-dimensional surface
CN108468159B (en) * 2018-03-16 2021-03-02 西安工程大学 Preparation method of quasi-isotropic sewing fabric in three-dimensional plane
JP2021147522A (en) * 2020-03-19 2021-09-27 積水化成品工業株式会社 Prepreg and fiber-reinforced plastic

Also Published As

Publication number Publication date
JPWO2016031637A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
Suh Axiomatic design and fabrication of composite structures: applications in robots, machine tools, and automobiles
JP6663626B2 (en) Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and method for producing these
WO2016031637A1 (en) Flame-retardant shaped object comprising three-dimensional woven material, and production process
TWI353303B (en) Sandwich structure and integrated molding using th
JP6762954B2 (en) Thermoplastic compositions and prepregs, composites made from the prepregs and the use of the composites
CN113544197A (en) Flame-retardant composite material
JP2006198920A (en) Prepreg for honeycomb cocure, honeycomb laminated composite material, and method for producing them
JP3182967B2 (en) Cross prepreg
JP2012214651A (en) Flame-retardant fiber-reinforced composite material, sandwich panel, method of producing them, and elevator car
JP5966969B2 (en) Manufacturing method of prepreg
JP2007231073A (en) Flame-retardant carbon fiber-reinforced composite material and method for producing the same
JP5772325B2 (en) Thermosetting resin composition
JP2000238154A (en) Honeycomb sandwich panel
CN114761191A (en) Sheet molding compound and method for producing molded article
WO2017115749A1 (en) Resin composition for frp, frp sheet and molded body
JP2020069764A (en) Multilayer structure including resin
JPWO2019107276A1 (en) Carbon fiber bundle, prepreg, fiber reinforced composite material
JP2008265160A (en) Frp molding
US20210230356A1 (en) Sheet molding compound and molded article
JP2009073995A (en) Thermosetting resin composition for continuously manufactured copper-clad lamination plate, continuous manufacturing method for copper-clad lamination plate, and copper-clad lamination plate
JP7028389B2 (en) Manufacturing method of sheet molding compound and molded products
JP2006077202A (en) Flame-retardant prepreg
KR102254810B1 (en) Panel for reinforcing structure and reinforcing method using it
JP2019010745A (en) Restrictive damping material and method of manufacturing restrictive damping material
JP2011230408A (en) Carbon fiber reinforced composite material, method for manufacturing the same, and elevator cage using the carbon fiber reinforced composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836951

Country of ref document: EP

Kind code of ref document: A1