JP5749587B2 - Lightweight molded body having an upright part and method for producing the same - Google Patents

Lightweight molded body having an upright part and method for producing the same Download PDF

Info

Publication number
JP5749587B2
JP5749587B2 JP2011144424A JP2011144424A JP5749587B2 JP 5749587 B2 JP5749587 B2 JP 5749587B2 JP 2011144424 A JP2011144424 A JP 2011144424A JP 2011144424 A JP2011144424 A JP 2011144424A JP 5749587 B2 JP5749587 B2 JP 5749587B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
molded body
thermoplastic resin
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011144424A
Other languages
Japanese (ja)
Other versions
JP2013010254A (en
Inventor
源臣 荒川
源臣 荒川
近藤 豊
豊 近藤
路治 谷口
路治 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011144424A priority Critical patent/JP5749587B2/en
Publication of JP2013010254A publication Critical patent/JP2013010254A/en
Application granted granted Critical
Publication of JP5749587B2 publication Critical patent/JP5749587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は強化繊維と熱可塑性樹脂を含む繊維強化複合材料からなり、リブおよび/またはボスといった水平部に対して縦方向に伸びた立上部を有する軽量な成形体に関する。さらには、電気・電子機器用筐体、自動車用部品、医療機器用部品、航空機部品、建材、一般産業用部品などの用途に好ましく用いられる成形体に関する。さらには、該成形体の製造方法に関する。   The present invention relates to a lightweight molded article made of a fiber-reinforced composite material containing reinforcing fibers and a thermoplastic resin, and having an upright portion extending in a longitudinal direction with respect to a horizontal portion such as a rib and / or a boss. Furthermore, it is related with the molded object preferably used for uses, such as a housing | casing for electrical / electronic devices, parts for motor vehicles, parts for medical devices, aircraft parts, building materials, and general industrial parts. Furthermore, it is related with the manufacturing method of this molded object.

近年、電気・電子機器、自動車、医療機器、航空機、建材、一般産業用部品などの様々な分野で軽量化に関する要望が高まっており、それらに用いられる筐体や部材などについても軽量・高剛性化が求められるようになってきた。そのような薄肉・高剛性の筐体や部材としては、アルミニウム合金やマグネシウム合金の圧延板をプレス加工した成形体、あるいはダイカストモールド成形した成形体が用いられてきており、また、ガラス繊維や炭素繊維を充填した繊維強化複合材料を射出成形した成形体や、繊維強化複合材料板に熱可塑性樹脂を射出成形で一体化した成形体なども用いられてきた。   In recent years, there has been an increasing demand for weight reduction in various fields such as electrical and electronic equipment, automobiles, medical equipment, aircraft, building materials, and general industrial parts. It has come to be required. As such a thin-walled and highly rigid housing or member, a molded body obtained by press-working a rolled plate of an aluminum alloy or a magnesium alloy, or a molded body formed by die-cast molding has been used, and glass fiber or carbon is used. A molded body in which a fiber-reinforced composite material filled with fibers is injection-molded or a molded body in which a thermoplastic resin is integrated with a fiber-reinforced composite material plate by injection molding has been used.

アルミニウム合金やマグネシウム合金は強度や剛性に優れる反面、形状賦形性に限界があり、複雑な形状を単体で成形するのは難しい。また、金属部材(特にマグネシウム合金)は耐食性が劣るという問題があり、大気中の水分や使用者の汗に含まれる水分や塩分で表面が腐食し、外観不良の問題が発生する。そこで特許文献1には、マグネシウム合金からなる部材全体を樹脂層で被覆する被覆ステップと、該部材と樹脂製の部品とを一体成形する成形ステップを有する筐体の製造方法が提案されている。これにより、複雑な形状の形成と耐食性の付与を行なうことが可能であるが、工程が複雑になる上、アルミニウム合金やマグネシウム合金、および樹脂の比強度は鉄に対しては高いものの、後述する繊維強化複合材料と比べれば低くなるため、達成できる軽量化には限界がある。   Aluminum alloys and magnesium alloys are excellent in strength and rigidity, but have limited shape shaping properties, and it is difficult to form a complex shape by itself. In addition, metal members (especially magnesium alloys) have a problem that the corrosion resistance is inferior, and the surface is corroded by moisture or salt contained in the moisture in the atmosphere or the user's sweat, resulting in a problem of poor appearance. Therefore, Patent Document 1 proposes a method of manufacturing a housing having a covering step of covering the entire member made of a magnesium alloy with a resin layer and a forming step of integrally forming the member and a resin component. This makes it possible to form a complicated shape and impart corrosion resistance, but the process is complicated and the specific strength of aluminum alloy, magnesium alloy, and resin is high for iron, but will be described later. Since it is lower than the fiber reinforced composite material, there is a limit to the weight reduction that can be achieved.

繊維強化複合材料は比強度、比剛性に優れ、かつ耐食性にも優れることから、上述の用途に広範囲に用いられている。とくにガラス繊維や炭素繊維を充填した繊維強化複合材料を射出成形した成形体は、その形状自由度の高さや生産性の高さから多用されているが、成形品に残存する繊維長が短くなるため、高い強度や剛性を要求される用途においては課題が残されている。一方、連続繊維で強化された繊維強化複合材料は、特に比強度、比剛性に優れることから、高い強度や剛性が要求される用途を中心に用いられてきた。しかしながら、樹脂や射出成形による繊維強化複合材料と比較すると形状自由度が低く、複雑な形状を単体で成形するのは困難であった。また、織物形態にした強化繊維を複数枚数積層するなどして製造するため、生産性が低いのも問題であった。特許文献2には、強化繊維、特に連続繊維を含むシートから構成された板状部材の外縁に樹脂部材を接合した複合成形品が提案されている。これにより、複雑な形状を有する成形品を実現することが可能であるが、複数工程を経て製造されるため、生産性が高いとは言い難い。また、連続繊維を用いた繊維強化複合材料は、通常は予め強化繊維基材に熱硬化性樹脂を含浸させたプリプレグと呼ばれる材料を、オートクレーブを用いて2時間以上加熱・加圧する事により得られる。近年、樹脂を含浸させていない強化繊維基材を金型内にセットした後、熱硬化性樹脂を流し入れるRTM成形方法が提案され、成形時間は大幅に短縮された。しかしながら、RTM成形方法を用いた場合でも、1つの部品を成形するまでに10分以上必要となり、生産性が向上しない。   The fiber reinforced composite material is excellent in specific strength, specific rigidity, and excellent in corrosion resistance. Therefore, the fiber reinforced composite material is widely used in the above-mentioned applications. In particular, molded products made by injection molding of fiber reinforced composite materials filled with glass fiber or carbon fiber are widely used due to their high degree of freedom in shape and high productivity, but the fiber length remaining in the molded product is shortened. Therefore, problems remain in applications that require high strength and rigidity. On the other hand, fiber reinforced composite materials reinforced with continuous fibers are particularly excellent in specific strength and specific rigidity, and thus have been used mainly for applications that require high strength and rigidity. However, the degree of freedom in shape is low as compared with resin and fiber-reinforced composite materials by injection molding, and it has been difficult to form a complex shape alone. In addition, since it is manufactured by laminating a plurality of reinforcing fibers in a woven form, there is a problem that productivity is low. Patent Document 2 proposes a composite molded product in which a resin member is bonded to the outer edge of a plate-like member made of a sheet containing reinforcing fibers, particularly continuous fibers. As a result, it is possible to realize a molded product having a complicated shape, but it is difficult to say that productivity is high because it is manufactured through a plurality of processes. In addition, a fiber-reinforced composite material using continuous fibers is usually obtained by heating and pressurizing a material called a prepreg in which a reinforcing fiber base is impregnated with a thermosetting resin for 2 hours or more using an autoclave. . In recent years, an RTM molding method in which a thermosetting resin is poured after a reinforcing fiber base not impregnated with resin is set in a mold has been proposed, and the molding time has been greatly reduced. However, even when the RTM molding method is used, it takes 10 minutes or more to mold one part, and productivity is not improved.

そのため、従来の熱硬化性樹脂に代わり、熱可塑性樹脂をマトリックスに用いた繊維強化複合材料が注目されている。しかしながら、熱可塑性樹脂は、一般的に熱硬化性樹脂と比較して成形温度での粘度が高く、そのため、繊維基材に樹脂を含浸させる時間が長く、結果として成形までのタクトが長くなるという問題があった。   Therefore, a fiber reinforced composite material using a thermoplastic resin as a matrix instead of a conventional thermosetting resin has attracted attention. However, the thermoplastic resin generally has a higher viscosity at the molding temperature than the thermosetting resin, and therefore, it takes a longer time to impregnate the fiber base material with the resin, resulting in a longer tact until molding. There was a problem.

これらの問題を解決する手法として、熱可塑スタンピング成形(TP−SMC)と呼ばれる手法が提案されている。これは、予め熱可塑性樹脂を含浸させたチョップドファイバーを融点又は流動可能な温度以上に加熱し、これを金型内の一部に投入した後、直ちに型を閉め、型内にて繊維と樹脂を流動させる事により製品形状を得、冷却・成形するという成形方法である。この手法では、予め樹脂を含浸させた繊維を用いる事により、約1分程度という短い時間で成形が可能である。チョップド繊維束および成形材料の製造方法についての特許文献3および4があるが、これらはSMCやスタンパブルシートと呼ばれるような成形材料とする方法であって、かかる熱可塑スタンピング成形では、型内を繊維と樹脂を流動させるために、薄肉のものが作れない、繊維配向が乱れ、制御が困難である等の問題があった。   As a technique for solving these problems, a technique called thermoplastic stamping molding (TP-SMC) has been proposed. This is because the chopped fiber pre-impregnated with thermoplastic resin is heated to a melting point or flowable temperature or more, and after this is put into a part of the mold, the mold is immediately closed, and the fiber and resin in the mold. This is a molding method in which the product shape is obtained by allowing the product to flow, and then cooled and molded. In this method, molding can be performed in a short time of about 1 minute by using a fiber impregnated with a resin in advance. There are Patent Documents 3 and 4 relating to a method of manufacturing a chopped fiber bundle and a molding material, and these are methods for forming a molding material called SMC or a stampable sheet. In such thermoplastic stamping molding, In order to flow the fiber and the resin, there are problems such that a thin-walled one cannot be made, fiber orientation is disturbed, and control is difficult.

特開2010−147376号公報JP 2010-147376 A 特開2010−141804号公報JP 2010-141804 A 特開2009−114611号公報JP 2009-114611 A 特開2009−114612号公報JP 2009-114612 A

本発明の目的は、強化繊維と熱可塑製樹脂とから構成される複合材料からなり、リブやボスなど、水平部に対して縦方向に伸びた立上部を有し、複雑な3次元形状を有する成形体を提供することである。さらには立上部においても繊維の等方性の維持が可能であり、さらに各部位で一定の繊維長および繊維含有率を維持できる成形体を提供することにある。本発明のさらなる目的は、複雑な形状へも形状追随性良く成形することができ、短時間成形可能であるとともに、製品形状へのトリミングが不要な成形体の製造方法を提供することにある。   An object of the present invention is a composite material composed of reinforcing fibers and a thermoplastic resin, and has a raised portion extending in a vertical direction with respect to a horizontal portion, such as a rib or a boss, and has a complicated three-dimensional shape It is providing the molded object which has. Further, another object of the present invention is to provide a molded body that can maintain the isotropy of fibers even in the upright portion, and can maintain a constant fiber length and fiber content at each portion. It is a further object of the present invention to provide a method for producing a molded body that can be molded into a complicated shape with good shape followability, can be molded in a short time, and does not require trimming into a product shape.

本発明者らは特定の開繊条件を満たす繊維束を含むランダム状の強化繊維と熱可塑性樹脂からなるランダムマットを用い、金型形状に対し低チャージでプレス成形することで、リブやボスといった水平部に対して縦方向に伸びた立上部を有し、さらには複雑な3次元形状を有していても繊維の等方性が維持されている成形体が提供できることを見出した。   The present inventors use a random mat composed of a thermoplastic fiber and a random reinforcing fiber including a fiber bundle that satisfies a specific opening condition, and press-molds the mold shape with a low charge, such as a rib or a boss. It has been found that a molded body having an upright portion extending in the vertical direction with respect to the horizontal portion and maintaining the isotropy of the fiber even when having a complicated three-dimensional shape can be provided.

すなわち本発明は、平均繊維長10〜100mmの強化繊維と熱可塑性樹脂とから構成されるランダムマットについて、以下の工程A−1)〜A−3)を含んで含浸〜成形を行う、繊維強化複合材料からなる水平部に対して縦方向に伸びた立上部を有する成形体の製造方法である。
A−1)ランダムマットを、熱可塑性樹脂が結晶性の場合は融点以上分解温度未満、非晶性の場合はガラス転移温度以上分解温度未満に加温し、加圧して熱可塑性樹脂を強化繊維束内に含浸させプリプレグを得る工程
A−2)A−1)で得られたプリプレグを、熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に温度調節された金型に、下記式(3)で表されるチャージ率5〜100%以下となるように配置し、加圧する工程
A−3)熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に金型温度を調節することにより成形を完結させる工
チャージ率(%)=100×基材面積(mm2)/金型キャビティ投影面積(mm2)(3)
(ここで基材面積とは配置した全てのランダムマットまたはプリプレグの抜き方向への投影面積であり、金型キャビティ投影面積とは抜き方向への投影面積である)
ランダムマットは、強化繊維が25〜3000g/mの目付けにて実質的に2次元ランダムに配向しており、式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)について、マットの繊維全量に対する割合が30Vol%以上90Vol%未満であり、かつ強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことを特徴とする。
That is, the present invention provides for a random mat composed of a reinforcing fiber and a thermoplastic resin having an average fiber length of 10 to 100 mm, cormorants row impregnation-molding comprises the following steps A-1) ~A-3) , the fibers It is a manufacturing method of the molded object which has an upright part extended to the vertical direction with respect to the horizontal part which consists of a reinforced composite material.
A-1) When the thermoplastic resin is crystalline, the random mat is heated above the melting point and below the decomposition temperature, and when amorphous, it is heated above the glass transition temperature and below the decomposition temperature, and pressurized to reinforce the thermoplastic resin. Step A-2) Obtaining a prepreg by impregnating the bundle The temperature of the prepreg obtained in A-1) is adjusted below the melting point when the thermoplastic resin is crystalline, and below the glass transition temperature when the thermoplastic resin is amorphous. Step A-3) in which the charging rate is 5 to 100% or less represented by the following formula (3) and pressurization is performed on the mold, and when the thermoplastic resin is crystalline, the melting point or less is amorphous. as engineering to complete the molding by adjusting the mold temperature to below the glass transition temperature in the case of
Charge rate (%) = 100 × base material area (mm 2 ) / mold cavity projected area (mm 2 ) (3)
(Here, the substrate area is the projected area in the extraction direction of all the arranged random mats or prepregs, and the mold cavity projected area is the projected area in the extraction direction.)
The random mat has reinforcing fiber bundles (A) in which the reinforcing fibers are oriented substantially two-dimensionally at a basis weight of 25 to 3000 g / m 2 and are composed of the number of critical single yarns or more defined by the formula (1). ), The ratio of the mat to the total amount of fibers is 30 Vol% or more and less than 90 Vol%, and the average number of fibers (N) in the reinforcing fiber bundle (A) satisfies the following formula (2).

臨界単糸数=600/D (1)
0.7×10/D<N<6×10/D(2)
(ここでDは強化繊維の平均繊維径(μm)である)
さらに本発明は熱可塑性樹脂中に不連続の強化繊維がランダム配向して存在する強化繊維100重量部に対し、熱可塑性樹脂50〜1000重量部の繊維強化複合材料からなり、水平部に対して縦方向に伸びた立上部を有する成形体であって、立上部における強化繊維の長さが10〜100mmであり、繊維体積含有率(Vf)が5〜80%である成形体である。
Critical number of single yarns = 600 / D (1)
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
Furthermore, the present invention comprises a fiber reinforced composite material of 50 to 1000 parts by weight of a thermoplastic resin with respect to 100 parts by weight of a reinforcing fiber in which discontinuous reinforcing fibers are present in a random orientation in the thermoplastic resin. A molded body having an upright portion extending in the longitudinal direction, wherein the length of the reinforcing fiber in the upright portion is 10 to 100 mm, and the fiber volume content (Vf) is 5 to 80%.

本発明により、リブやボスなどの水平部に対して縦方向に伸びた立上部を有し、さらに複雑な3次元形状を有していても、繊維の等方性を維持した成形体を提供することができる。本発明により、薄肉、軽量、高剛性で意匠性に優れ、複雑な3次元形状を有する成形体を提供することができる。本発明により各部位で一定の繊維長および繊維含有率の維持が可能な成形体を提供することができる。   According to the present invention, there is provided a molded body having an upright portion extending in a vertical direction with respect to a horizontal portion such as a rib or a boss, and maintaining the isotropy of the fiber even when having a complicated three-dimensional shape. can do. According to the present invention, it is possible to provide a molded product having a complicated three-dimensional shape that is thin, lightweight, highly rigid, excellent in design. According to the present invention, it is possible to provide a molded body capable of maintaining a constant fiber length and fiber content at each part.

また本発明により複雑な形状へも形状追随性良く成形体を得ることができ、高い生産性で成形体を製造可能である。また、必要最小限の材料を用いて製品形状を成形することができ、トリム工程がなくなることによる廃棄材料の大幅な削減、それに伴うコストの削減ができる。
本発明により電気・電子機器用筐体、自動車用部品、一般産業用部品が好ましく提供できる。
Further, according to the present invention, it is possible to obtain a molded body with a good shape following even to a complicated shape, and it is possible to manufacture the molded body with high productivity. In addition, the product shape can be molded using the minimum necessary material, and the waste material can be significantly reduced due to the elimination of the trimming process, and the costs associated therewith can be reduced.
According to the present invention, a casing for electric / electronic equipment, a part for automobile, and a part for general industry can be preferably provided.

本発明の一実施形態の斜視図The perspective view of one Embodiment of this invention 本発明の一実施形態の3面図(断面図)3 side view (sectional view) of one embodiment of the present invention

以下に、本発明の実施の形態について順次説明するが、本発明はこれらに制限されるものではない。
本発明は、平均繊維長10〜100mmの強化繊維と熱可塑性樹脂とから構成されるランダムマットについて、以下の工程A−1)〜A−3)を含んで含浸〜成形を行うか、工程B−1)〜B−4)を含んで含浸〜成形を行う、繊維強化複合材料からなる水平部に対して縦方向に伸びた立上部を有する成形体の製造方法である。
A−1)ランダムマットを、熱可塑性樹脂が結晶性の場合は融点以上分解温度未満、非晶性の場合はガラス転移温度以上分解温度未満に加温し、加圧して熱可塑性樹脂を強化繊維束内に含浸させプリプレグを得る工程
A−2) A−1)で得られたプリプレグを、熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に温度調節された金型に、下記式(3)で表されるチャージ率5〜100%以下となるように配置し、加圧する工程
A−3)熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に金型温度を調節することにより成形を完結させる工程
B-1)ランダムマットを下記式(3)で表されるチャージ率5〜100%以下となるように金型に配置する工程
B-2)金型を熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度まで昇温しつつ、加圧する工程(第1プレス工程)
B−3)1段以上であり、最終段の圧力が第1プレス工程の圧力の1.2倍〜100倍となるように加圧する工程(第2プレス工程)
B−4)熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に金型温度を調節することにより成形を完結させる工程
チャージ率(%)=100×基材面積(mm2)/金型キャビティ投影面積(mm2)(3) (ここで基材面積とは配置した全てのランダムマットまたはプリプレグの抜き方向への投影面積であり、金型キャビティ投影面積とは抜き方向への投影面積である)
ランダムマットは、強化繊維が25〜3000g/mの目付けにて実質的に2次元ランダムに配向しており、式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)について、マットの繊維全量に対する割合が30Vol%以上90Vol%未満であり、かつ強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことを特徴とする。
Hereinafter, embodiments of the present invention will be described in order, but the present invention is not limited thereto.
In the present invention, a random mat composed of a reinforcing fiber having an average fiber length of 10 to 100 mm and a thermoplastic resin is impregnated or molded including the following steps A-1) to A-3), or a step B It is a manufacturing method of the molded object which has an upright part extended in the vertical direction with respect to the horizontal part which consists of a fiber reinforced composite material which impregnates-shaping | molding including -1)-B-4).
A-1) When the thermoplastic resin is crystalline, the random mat is heated above the melting point and below the decomposition temperature, and when amorphous, it is heated above the glass transition temperature and below the decomposition temperature, and pressurized to reinforce the thermoplastic resin. Step A-2) Obtaining Prepreg by Impregnation into Bundle The temperature of the prepreg obtained in A-1) is adjusted to below the melting point when the thermoplastic resin is crystalline, and below the glass transition temperature when amorphous. Step A-3) in which the charging rate is 5 to 100% or less represented by the following formula (3) and pressurization is performed on the mold, and when the thermoplastic resin is crystalline, the melting point or less is amorphous. In the case of step B-1, the molding is completed by adjusting the mold temperature to be equal to or lower than the glass transition temperature. B-1) The mold is such that the random mat has a charge rate of 5 to 100% or less represented by the following formula (3). Step B-2) Place the mold on the thermoplastic resin In the case of the property of the thermoplastic resin up to a temperature not lower than the thermal decomposition temperature, and in the case of an amorphous material, the pressure is increased while raising the temperature to a temperature higher than the glass transition temperature of the thermoplastic resin and lower than the thermal decomposition temperature (first Pressing process)
B-3) A step of pressurizing so that the pressure in the final step is 1.2 to 100 times the pressure in the first press step (second press step).
B-4) Step of completing molding by adjusting the mold temperature to below the melting point when the thermoplastic resin is crystalline or below the glass transition temperature when amorphous, the charge rate (%) = 100 × base material Area (mm 2 ) / Mold cavity projected area (mm 2 ) (3) (Here, the substrate area is the projected area of all the random mats or prepregs that are placed in the pulling direction. Is the projected area in the removal direction)
The random mat has reinforcing fiber bundles (A) in which the reinforcing fibers are oriented substantially two-dimensionally at a basis weight of 25 to 3000 g / m 2 and are composed of the number of critical single yarns or more defined by the formula (1). ), The ratio of the mat to the total amount of fibers is 30 Vol% or more and less than 90 Vol%, and the average number of fibers (N) in the reinforcing fiber bundle (A) satisfies the following formula (2).

臨界単糸数=600/D (1)
0.7×10/D<N<6×10/D(2)
(ここでDは強化繊維の平均繊維径(μm)である)
Critical number of single yarns = 600 / D (1)
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)

[立上部を有する成形体]
本発明における成形体は、強化繊維と熱可塑性樹脂を含む繊維強化複合材料からなり、水平部に対して縦方向に伸びた立上部を有するものである。水平部とは、実質的に面状で立上部の基礎となる部位のことを言い、筐体もしくはパネル状部材の天井部又は底壁部が一例として挙げられる。
[Molded body with raised part]
The molded body in the present invention is made of a fiber-reinforced composite material containing reinforcing fibers and a thermoplastic resin, and has a raised portion extending in the vertical direction with respect to the horizontal portion. The horizontal portion refers to a portion that is substantially planar and serves as the foundation of the upright portion, and examples include a ceiling portion or a bottom wall portion of a housing or a panel-like member.

[水平部]
成形体において水平部とは、実質的に面状で立上部の基礎となる部位のことを言い、立上部の基礎となる部位である。ボスやリブなどの立上部は水平部に対し、片面でも両面でも自由に配置することができる。水平部は実質的に面状で、筐体もしくはパネル状部材の天井部又は底壁部が一例として挙げられる。水平部は完全に面状である必要はなく、部分的な凹凸やビードを有していても良い。凹凸やビードの高さや幅に特に制限はないが、高さは基礎となる水平部板厚の0.5〜10倍とすることが望ましい。通気、ボルト締結、配線などのための貫通口を有しても良い。この場合、成形体の成形と同時に型内でシャーなどを用いて開孔させてもよく、後加工としてドリル、打ち抜き、切削加工などで開孔させても良い。
[Horizontal part]
In the molded body, the horizontal portion refers to a portion that is substantially planar and serves as the foundation of the raised portion, and is a portion that serves as the foundation of the raised portion. Upright portions such as bosses and ribs can be freely arranged on one side or both sides with respect to the horizontal portion. The horizontal portion is substantially planar, and a ceiling portion or a bottom wall portion of a housing or a panel-like member is an example. The horizontal portion does not have to be completely planar, and may have partial unevenness and beads. The height and width of the unevenness and the beads are not particularly limited, but the height is preferably 0.5 to 10 times the base horizontal plate thickness. You may have a through-hole for ventilation, bolt fastening, wiring, etc. In this case, a hole may be opened using a shear or the like in the mold at the same time as forming the molded body, or may be opened by drilling, punching, cutting, or the like as post-processing.

水平部の板厚は特に制限はないが、0.2〜10mmが好ましく使用され、1〜3mmがさらに好ましく使用される。水平部の板厚は均一である必要はなく、局所的に増減させることも可能である。この場合、板厚の増減幅に特に制限はないが、基礎となる水平部板厚の30〜300%が好ましく用いられ、50〜200%がさらに好ましく用いられる。板厚は段階的に変化させることも可能であり、テーパーや曲率を持たせて連続的に変化させることも可能であるが、応力集中を回避するという観点から連続的に変化させるのが好ましい。本発明における成形体は薄肉とすることが可能である。   The plate thickness of the horizontal portion is not particularly limited, but 0.2 to 10 mm is preferably used, and 1 to 3 mm is more preferably used. The plate thickness of the horizontal portion does not need to be uniform, and can be locally increased or decreased. In this case, although there is no restriction | limiting in particular in the increase / decrease width | variety of board thickness, 30 to 300% of the horizontal part board thickness used as a foundation is used preferably, and 50 to 200% is used more preferably. The plate thickness can be changed stepwise, and can be continuously changed with a taper or a curvature, but it is preferably changed continuously from the viewpoint of avoiding stress concentration. The molded body in the present invention can be thin.

[立上部]
本発明の成形体において、立上部とは、前述の水平部に対して縦方向に伸びた部位のことを言い、筐体もしくはパネル状部材の側壁、リブ、ボス、マウント、ヒンジが一例として挙げられる。立上部の高さは特に制限はないが、1〜300mmが好ましく用いられ、5〜100mmが更に好ましく用いられる。立上部の高さは均一である必要はなく、局所的に増減させることも可能である。立上部高さの増減幅に特に制限はなく、最大高さの10〜90%が好ましく用いられ、20〜80%がさらに好ましく用いられる。立上部の板厚に特に制限は無く、水平部と同じであってもよく、異なっていても良い。立上部は水平部と比較して、より複雑な形状を求められることが多いことから、立上部の板厚は0.2〜100mmが好ましく使用され、1〜50mmがさらに好ましく使用される。立上部の板厚は均一である必要はなく、局所的に増減させることも可能である。この場合、増減幅に特に制限はないが、基礎となる立上板厚の20〜500%が好ましく用いられ、50〜200%がさらに好ましく用いられる。板厚は段階的に変化させることも可能であり、テーパーや曲率を持たせて連続的に変化させることも可能であるが、応力集中を回避するという観点から連続的に変化させるのが好ましい。
[Upper part]
In the molded body of the present invention, the upright portion refers to a portion extending in the longitudinal direction with respect to the horizontal portion described above, and examples of the side walls, ribs, bosses, mounts, and hinges of the housing or panel-like member are given. It is done. The height of the upright portion is not particularly limited, but 1 to 300 mm is preferably used, and 5 to 100 mm is more preferably used. The height of the upright portion does not need to be uniform and can be increased or decreased locally. There is no restriction | limiting in particular in the increase / decrease width | variety of standing | upper part height, 10 to 90% of maximum height is used preferably, and 20 to 80% is used more preferably. There is no restriction | limiting in particular in the plate | board thickness of an upright part, It may be the same as a horizontal part, and may differ. Since the upright portion is often required to have a more complicated shape than the horizontal portion, the plate thickness of the upright portion is preferably 0.2 to 100 mm, and more preferably 1 to 50 mm. The plate thickness of the upright portion does not need to be uniform, and can be locally increased or decreased. In this case, although there is no restriction | limiting in particular in the increase / decrease width, 20 to 500% of the standup board thickness used as a foundation is used preferably, and 50 to 200% is used more preferably. The plate thickness can be changed stepwise, and can be continuously changed with a taper or a curvature, but it is preferably changed continuously from the viewpoint of avoiding stress concentration.

立上部は成形体の水平部から任意の角度で縦方向に伸びており、水平部からの立ち上がり角度は30〜90度が好ましく、40〜85度がより好ましい。立上部の水平部からの角度が30度より小さくなると金型からの離型には有利であるが、より多くの材料が必要となる。また、立上部には、本発明の意図を損なわない程度に任意の面取りや曲率を加えることも可能である。面取りや曲率の寸法に特に制限はないが、面取りの場合はC0.2〜10mm、曲率の場合はR0.2〜10mmが好ましく使用される。また、立上部には本発明の意図を損なわない範囲で、金型の抜き勾配を確保するための角度を設けることが好ましい。金型の抜き勾配は1〜45度が好ましく用いされ、5〜10度がさらに好ましく用いられる。立上部は部分的な凹凸やビードを有していても良いが、この場合は金型の抜き勾配が確保できることに留意する必要がある。   The upright portion extends in the vertical direction at an arbitrary angle from the horizontal portion of the molded body, and the rising angle from the horizontal portion is preferably 30 to 90 degrees, and more preferably 40 to 85 degrees. If the angle from the horizontal portion of the upright portion is smaller than 30 degrees, it is advantageous for releasing from the mold, but more material is required. Moreover, it is also possible to add arbitrary chamfering and curvature to the upright part to such an extent that the intention of the present invention is not impaired. Although there is no restriction | limiting in particular in the dimension of a chamfer or curvature, C0.2-10mm is preferable in the case of a chamfer, and R0.2-10mm is preferable in the case of a curvature. Moreover, it is preferable to provide an angle for ensuring the draft angle of the mold within the range where the intention of the present invention is not impaired. The draft angle of the mold is preferably 1 to 45 degrees, more preferably 5 to 10 degrees. The upright portion may have partial unevenness and beads, but in this case, it should be noted that the draft angle of the mold can be secured.

リブとは成形体、例えば電子・電気機器用筐体の縁や側壁などで肉厚を厚くせずに成形体の強度や剛性を高める目的、または広い平面を有する成形体の反りやねじれなどの変形を防止、低減する目的で施される突起状の補強部位を指す。また、ボスとは、成形体内の穴の周囲を補強する目的、他の成形体や部品と組み合わせる際の嵌め込み代、成形体の座りを安定化する目的など、成形体の一部を高くしたい時に設ける突起部分を指す。本発明の実施例において具体的に開示したのは、立上部としてリブおよび/またはボス部を有する成形体であるが、本発明はこれには限定されない。   Ribs are used to increase the strength and rigidity of molded products without increasing the thickness of the molded product, for example, the edges and side walls of electronic and electrical equipment casings, or to warp or twist the molded product with a wide flat surface. This refers to a projecting reinforcing portion applied for the purpose of preventing or reducing deformation. The boss is used to reinforce a part of the molded body, such as to reinforce the periphery of the hole in the molded body, the fitting allowance when combined with other molded bodies or parts, and the purpose of stabilizing the sitting of the molded body. The protrusion part to provide is pointed out. Although what was specifically disclosed in the Example of this invention is a molded object which has a rib and / or a boss | hub part as an upright part, this invention is not limited to this.

立上部がリブの場合、リブの形状、長さ、高さには特に限定はなく、目的に合わせて適宜設定することができる。例えば、成形体の縁や側壁の補強の場合には、補強したい部位に直方体や三角柱などの形状で、数mmから数百mmの長さや高さで設置する。高さは、通常は1〜300mmが好ましく、5〜100mmがより好ましい。高さが低すぎると補強効果が得られにくい場合がある。また、成形体の反りやねじれを防止する場合には、成形体の一方の端から他方の端まで連続したリブを設置しても良い。この場合、高さは一定でも良く、途中で増減させても良い。増減させる場合の増減幅は最大高さの10〜90%が好ましく、20〜80%がより好ましい。リブの厚みには特に制限はなく、水平部と同じであっても良く、異なっていても良い。リブは水平部より複雑な形状であることから、厚みは0.2〜100mmが好ましく、1〜50mmがより好ましい。厚みが0.2mmより薄くなると十分な補強効果が発現しない場合がある。逆に50mmより厚くなると経済性や軽量化の面で好ましくない。また、リブの厚みは均一である必要はなく、局所的に増減させることも可能である。この場合、増減幅に特に制限はないが、基礎となる厚みの20〜500%が好ましく、50〜200%がより好ましい。厚みは段階的に変化させることも可能であり、テーパーや曲率を持たせて連続的に変化させることも可能であるが、負荷が掛かった場合の応力集中を回避するという観点からは連続的に変化させることが好ましい。リブの形状、長さ、高さ、厚みは成形体の補強や変形防止にそれぞれ影響し、リブは大きく、長く、高く、厚い方がより補強効果が高い。しかし、そうすることにより、より多くの材料が必要となることから経済性や軽量化の面では不利となる。そのため、必要な補強、変形防止レベルに合わせてバランスよく、形状やそれぞれのサイズを設定する。また、リブは通気などのための貫通口を有していても良く、成形時に型内でシャーなどを用いて開孔させてもよく、後加工としてドリル、打ち抜き、切削加工などで開孔させても良い。   When the upright portion is a rib, the shape, length, and height of the rib are not particularly limited, and can be appropriately set according to the purpose. For example, in the case of reinforcing the edge or the side wall of the molded body, it is installed in a shape such as a rectangular parallelepiped or a triangular prism at a portion to be reinforced, with a length or height of several mm to several hundred mm. The height is usually preferably 1 to 300 mm, more preferably 5 to 100 mm. If the height is too low, it may be difficult to obtain a reinforcing effect. Further, in order to prevent warping or twisting of the molded body, a continuous rib from one end to the other end of the molded body may be provided. In this case, the height may be constant or may be increased or decreased along the way. The increase / decrease width when increasing / decreasing is preferably 10 to 90% of the maximum height, and more preferably 20 to 80%. There is no restriction | limiting in particular in the thickness of a rib, It may be the same as a horizontal part, and may differ. Since the rib has a more complicated shape than the horizontal portion, the thickness is preferably 0.2 to 100 mm, and more preferably 1 to 50 mm. If the thickness is less than 0.2 mm, a sufficient reinforcing effect may not be exhibited. On the contrary, if it is thicker than 50 mm, it is not preferable in terms of economy and weight reduction. The rib thickness need not be uniform, and can be locally increased or decreased. In this case, although there is no restriction | limiting in particular in the increase / decrease width, 20 to 500% of the base thickness is preferable, and 50 to 200% is more preferable. The thickness can be changed in stages, and can be continuously changed with a taper or curvature, but from the viewpoint of avoiding stress concentration when a load is applied. It is preferable to change. The shape, length, height, and thickness of the rib influence the reinforcement and deformation prevention of the molded body, respectively. The rib is larger, longer, taller, and thicker, and the reinforcing effect is higher. However, doing so is disadvantageous in terms of economy and weight reduction because more materials are required. Therefore, the shape and each size are set in a well-balanced manner according to the required reinforcement and deformation prevention level. Further, the rib may have a through-hole for ventilation, etc., and may be opened with a shear or the like in the mold at the time of molding, and may be opened by drilling, punching or cutting as post-processing. May be.

立上部がボスの場合、ボスの形状には特に限定はなく、角柱や円柱などどのような形状でも良いが、補強効果の面で円柱がより好ましい。高さは成形体のサイズによるが0.1〜300mmが好ましく、より好ましくは0.2〜100mmである。高さが0.1mmより低くなると補強効果が得られにくく、300mmより高くなると多くの材料が必要となり、経済性や軽量化の面で不利となる。厚みは目的の補強レベルに合わせて適宜設定し、水平部と同じであっても良く、異なっていても良い。ボスは水平部より複雑な形状であることから、ボスを設置する目的が成形体の座りを安定化させる場合などで形状を中実とする場合には0.5〜100mmが好ましく、1〜50mmがより好ましい。また、ネジや軸を通す穴を補強する場合などは中空の形状とし、この場合の肉厚は0.2〜50mmが好ましく、1〜20mmがより好ましい。中実体の場合の厚みや中空体の場合の肉厚が薄過ぎると補強効果が得られにくい場合がある。厚すぎるとより多くの材料を必要とし、経済性や軽量化の面で不利となる。また、ボスの厚みや肉厚は均一である必要はなく、局所的に増減させることも可能である。この場合、増減幅に特に制限はないが、最も厚い部位と最も薄い部位の差が5倍以内であることが好ましく、2倍以内であることがより好ましい。厚みは段階的に変化させることも可能であり、テーパーや曲率を持たせて連続的に変化させることも可能であるが、負荷が掛かった場合の応力集中を回避するという観点からは連続的に変化させることが好ましい。また、ボスは内部にナットサートなどの金属部品をインサート成形していてもよい。   When the upright portion is a boss, the shape of the boss is not particularly limited, and any shape such as a prism or a cylinder may be used, but a cylinder is more preferable in terms of reinforcing effect. The height is preferably 0.1 to 300 mm, more preferably 0.2 to 100 mm, depending on the size of the molded body. When the height is lower than 0.1 mm, it is difficult to obtain a reinforcing effect. When the height is higher than 300 mm, many materials are required, which is disadvantageous in terms of economy and weight reduction. The thickness is appropriately set according to the target reinforcement level, and may be the same as or different from the horizontal portion. Since the boss has a more complicated shape than the horizontal part, when the purpose of installing the boss is to stabilize the sitting of the molded body, the thickness is preferably 0.5 to 100 mm, preferably 1 to 50 mm. Is more preferable. Moreover, when reinforcing the hole which passes a screw | thread or a shaft, it is set as a hollow shape, 0.2-50 mm is preferable in this case, and 1-20 mm is more preferable. If the thickness in the case of a solid body or the thickness in the case of a hollow body is too thin, it may be difficult to obtain a reinforcing effect. If it is too thick, more materials are required, which is disadvantageous in terms of economy and weight reduction. Further, the thickness and thickness of the boss need not be uniform, and can be locally increased or decreased. In this case, the increase / decrease width is not particularly limited, but the difference between the thickest part and the thinnest part is preferably within 5 times, more preferably within 2 times. The thickness can be changed in stages, and can be continuously changed with a taper or curvature, but from the viewpoint of avoiding stress concentration when a load is applied. It is preferable to change. The boss may be insert-molded with a metal part such as a nutsert inside.

[成形体を構成する複合材料]
成形体に含まれる強化繊維は不連続である。強化繊維の平均繊維長は10〜100mmである。後述する本発明の成形体の好ましい製造方法により、このように適当な繊維長を有する強化繊維を含んだ繊維強化複合材料からなる成形体が提供できる。これによって、静的な強度・剛性だけでなく、衝撃的な荷重や長期の疲労荷重に対しても高い物性を発現するとともに、複雑な形状を有する成形体を成形する場合においても、強化繊維の配向が崩れにくく、成形体内部の強化繊維の面内2次元ランダム配向を保つことが可能となる。
[Composite material constituting the compact]
The reinforcing fibers contained in the molded body are discontinuous. The average fiber length of the reinforcing fibers is 10 to 100 mm. By a preferable production method of the molded article of the present invention described later, a molded article made of a fiber-reinforced composite material containing reinforcing fibers having an appropriate fiber length can be provided. As a result, not only static strength and rigidity, but also high physical properties are expressed against shock loads and long-term fatigue loads, and even when molding molded bodies with complex shapes, The orientation is not easily broken, and the in-plane two-dimensional random orientation of the reinforcing fibers inside the molded body can be maintained.

通常、成形体の構成成分が熱可塑性樹脂だけの場合、成形条件を厳しくすると樹脂の溶融粘度が下がるため、リブやボスなどの立上部はより高く、薄くすることが可能となる。また、複雑な形状に賦形することも可能となり、より少ない材料でより大きな補強効果を付与できる。しかし、複合材料の場合、補強材が流動性を阻害しやすい。特に、繊維強化複合材料では強化繊維のアスペクト比が大きいため、材料の流動性は著しく低下する傾向がある。強化繊維の長さを短くし、アスペクト比を小さくすれば材料の流動性は増すが、補強効果は低下する。また、従来は流動性が高い複合材料の場合、補強材が流動方向に配向する傾向が高く、材料の流れ方向では高強度でも、流れと直交する方向は強度が上がらず、成形体の物性が異方的であった。このようなことから、複合材料を構成成分とする成形体の物性を等方的とするためには、成形体の厚みを肉厚とする必要があり、リブやボスなどの立上部では、厚みだけでなく、高さもさほど高く出来なかった。それに対し、本発明の成形体は、等方的に高流動するランダムマットを構成成分とすることから、立上部をより形成しやすい。しかも、より複雑な形状をより薄く、高く形成できることから、少ない材料で補強効果を付与することが出来る。   Usually, when the molding component is only a thermoplastic resin, if the molding conditions are strict, the melt viscosity of the resin decreases, so that the upright portions such as ribs and bosses are higher and can be made thinner. Moreover, it becomes possible to shape in a complicated shape, and a greater reinforcement effect can be imparted with less material. However, in the case of a composite material, the reinforcing material tends to hinder fluidity. In particular, in the fiber reinforced composite material, the fluidity of the material tends to be remarkably lowered because the aspect ratio of the reinforcing fiber is large. If the length of the reinforcing fiber is shortened and the aspect ratio is reduced, the fluidity of the material is increased, but the reinforcing effect is lowered. Further, in the case of a composite material having high fluidity in the past, the reinforcing material has a high tendency to be oriented in the flow direction, and even if the strength is high in the flow direction of the material, the strength does not increase in the direction orthogonal to the flow, and the physical properties of the molded body are low. It was anisotropic. For this reason, in order to make the physical properties of a molded body comprising a composite material isotropic, the thickness of the molded body needs to be increased. Not only was the height too high. On the other hand, since the molded body of the present invention uses a random mat that is isotropically highly fluidized as a constituent component, it is easier to form an upright part. In addition, since a more complicated shape can be formed thinner and higher, a reinforcing effect can be imparted with less material.

強化繊維の平均繊維長は15〜100mmがより好ましく、15〜80mmが更に好ましい。強化繊維の平均繊維長は20〜60mmであることが最も好ましい。   The average fiber length of the reinforcing fibers is more preferably 15 to 100 mm, still more preferably 15 to 80 mm. The average fiber length of the reinforcing fibers is most preferably 20 to 60 mm.

本発明における成形体は、面内2次元ランダム配向する層を有し、実質的に等方性を示す。(ここで実質的等方性とは、複合材料を成形した後、成形板の任意の方向、及びこれと直交する方向を基準とする引張試験を行い、引張弾性率を測定し、測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)が1.3以下であることとする。)
本発明の成形体は、繊維長10〜100mmの不連続の強化繊維と熱可塑性樹脂とから構成され、繊維強化複合材料における熱可塑性樹脂の存在量は、好ましくは強化繊維100重量部に対し、50〜1000重量部、より好ましくは50〜500重量部である。更に好ましくは、強化繊維100重量部に対し、熱可塑性樹脂60〜300重量部である。強化繊維100重量部に対する熱可塑性樹脂の割合が50重量部より少ないと複合材料中にボイドが発生しやすくなり、強度や剛性が低くなる虞がある。逆に、熱可塑性樹脂の割合が1000重量部より多くなると強化繊維の補強効果が発現しにくい可能性がある。
The molded body in the present invention has a layer which is in-plane two-dimensional random orientation and is substantially isotropic. (Substantially isotropic here means that after forming a composite material, a tensile test based on an arbitrary direction of the molded plate and a direction orthogonal thereto is performed, the tensile modulus is measured, and the measured tensile force is measured. (The ratio (Eδ) obtained by dividing the larger elastic modulus value by the smaller elastic modulus value is 1.3 or less.)
The molded body of the present invention is composed of discontinuous reinforcing fibers having a fiber length of 10 to 100 mm and a thermoplastic resin, and the amount of the thermoplastic resin in the fiber-reinforced composite material is preferably 100 parts by weight of the reinforcing fibers, 50 to 1000 parts by weight, more preferably 50 to 500 parts by weight. More preferably, it is 60 to 300 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the reinforcing fiber. If the ratio of the thermoplastic resin to 100 parts by weight of the reinforcing fiber is less than 50 parts by weight, voids are likely to be generated in the composite material, and the strength and rigidity may be lowered. On the other hand, if the ratio of the thermoplastic resin is more than 1000 parts by weight, the reinforcing effect of the reinforcing fiber may be difficult to express.

繊維体積含有率(Vf)で言い換えると、本発明の成形体および繊維強化複合材料において、繊維体積含有率は5〜80%であり、20〜60%がより好ましい。強化繊維の繊維体積含有率が5%より低くなると、補強効果が十分に発現しない虞がある。また、80%を超えると複合材料中にボイドが発生しやすくなり、成形体の物性が低下する可能性がある。   In other words, in terms of fiber volume content (Vf), in the molded body and fiber reinforced composite material of the present invention, the fiber volume content is 5 to 80%, more preferably 20 to 60%. If the fiber volume content of the reinforcing fiber is lower than 5%, the reinforcing effect may not be sufficiently exhibited. If it exceeds 80%, voids are likely to occur in the composite material, and the physical properties of the molded article may be lowered.

本発明の成形体は、厚みの異なる各部位においても繊維体積含有率(Vf)がほぼ等しいものを得ることも、炭素繊維含有量も傾斜させることも可能であり、得ようとする成形体の用途に合わせ適宜選択できる。厚みの異なる各部位においても一定の繊維強化効果を実現する目的で、Vfは他の部位とほぼ同一とすることが好ましい。各部位におけるVfがほぼ同一とは、具体的には大きい方の値を小さい方の値で割った比が1.0〜1.2となることをいう。   In the molded body of the present invention, it is possible to obtain a fiber volume content (Vf) that is substantially equal in each part having different thicknesses, and also to incline the carbon fiber content. It can be selected appropriately according to the application. In order to achieve a certain fiber reinforcing effect in each part having different thicknesses, it is preferable that Vf is substantially the same as other parts. The fact that Vf in each part is almost the same means that the ratio of the larger value divided by the smaller value is 1.0 to 1.2.

本発明の成形体は水平部に対して縦方向に伸びた立上部においても各部位で一定の繊維長および繊維含有率の維持が可能であることが本発明の特徴の1つである。本発明は熱可塑性樹脂中に不連続の強化繊維がランダム配向して存在する繊維強化複合材料から構成され、水平部に対して縦方向に伸びた立上部を有する成形体であって、立上部における繊維体積含有率(Vf)が5〜80%である成形体を包含する。繊維体積含有率は20〜60%がより好ましい。立上部における強化繊維は、水平部から立上部に渡って連続して存在することが好ましい。立上部における強化繊維の平均繊維長は、立上部の形状にもよるが、5〜100mmであり、好ましくは5〜80mmである。   It is one of the features of the present invention that the molded body of the present invention can maintain a constant fiber length and fiber content at each portion even in the upright portion extending in the vertical direction with respect to the horizontal portion. The present invention is a molded body composed of a fiber reinforced composite material in which discontinuous reinforcing fibers are present in a thermoplastic resin in a random orientation, and has an upright portion extending in a vertical direction with respect to a horizontal portion. A molded body having a fiber volume content (Vf) of 5 to 80% is included. The fiber volume content is more preferably 20 to 60%. It is preferable that the reinforcing fiber in the upright portion is continuously present from the horizontal portion to the upright portion. The average fiber length of the reinforcing fibers in the upright portion is 5 to 100 mm, preferably 5 to 80 mm, although it depends on the shape of the upright portion.

水平部に対して縦方向に伸びた立上部とそれ以外の部位における繊維体積含有率(Vf)は、それぞれほぼ同一とすることもでき、また部位により適宜変化させることもできる。立上部においても繊維強化の目的で、Vfは他の部位とほぼ同一とすることが好ましい。各部位におけるVfがほぼ同一とは、具体的には大きい方の値を小さい方の値で割った比が1.0〜1.2となることをいう。   The fiber volume content (Vf) in the upright portion extending in the vertical direction with respect to the horizontal portion and the other portions can be substantially the same, or can be appropriately changed depending on the portions. It is preferable that Vf is substantially the same as the other parts in the upright part for the purpose of fiber reinforcement. The fact that Vf in each part is almost the same means that the ratio of the larger value divided by the smaller value is 1.0 to 1.2.

複合材料および成形体における強化繊維と熱可塑性樹脂の割合は、溶解性の違いを利用して評価することが出来る。この場合、1cmから10cmの試料の重量を秤量し、繊維または樹脂のいずれか一方を溶解、または分解する薬品を使用して溶解成分を抽出すればよい。その後、残渣を洗浄および乾燥後に秤量し、残渣と溶解成分の重量、および繊維と樹脂の比重から、繊維と樹脂の体積分率を算出する。例えば、熱可塑性樹脂がポリプロピレンの場合、加熱したトルエンまたはキシレンを用いることにより、ポリプロピレンのみを溶解することができる。熱可塑性樹脂がポリアミドの場合は、加熱したギ酸によりポリアミドを分解することができる。樹脂がポリカーボネートの場合には加熱した塩素化炭化水素を用いることにより、ポリカーボネートを溶解することができる。また、強化繊維が炭素繊維やガラス繊維などの無機繊維の場合には、樹脂を燃焼除去することによってもそれぞれの重量および体積分率を算出できる。この場合、よく乾燥させた試料の重量を秤量後、電気炉等を用いて500〜700℃で5〜60分処理して樹脂成分を燃焼する。乾燥雰囲気で残留した繊維を放冷後、秤量することにより各成分の重量を算出することが出来る。 The ratio of the reinforcing fiber and the thermoplastic resin in the composite material and the molded body can be evaluated using the difference in solubility. In this case, the weighed weight from 1 cm 2 of 10 cm 2 sample, may be extracted dissolved components either fibers or a resin dissolved or using decompose chemicals. Thereafter, the residue is weighed after washing and drying, and the volume fraction of the fiber and the resin is calculated from the weight of the residue and the dissolved component and the specific gravity of the fiber and the resin. For example, when the thermoplastic resin is polypropylene, only the polypropylene can be dissolved by using heated toluene or xylene. When the thermoplastic resin is polyamide, the polyamide can be decomposed by heated formic acid. When the resin is polycarbonate, the polycarbonate can be dissolved by using heated chlorinated hydrocarbon. When the reinforcing fiber is an inorganic fiber such as carbon fiber or glass fiber, the weight and volume fraction can be calculated by burning and removing the resin. In this case, after weighing the well-dried sample, the resin component is burned by treatment at 500 to 700 ° C. for 5 to 60 minutes using an electric furnace or the like. The weight of each component can be calculated by weighing the fibers remaining in a dry atmosphere after cooling.

繊維強化複合材料を構成する強化繊維は特に制限はなく、炭素繊維、ガラス繊維、ステンレス繊維、アルミナ繊維、鉱物繊維などの無機繊維、ポリエーテルエーテルケトン繊維、ポリフェニレンサルファイド繊維、ポリエーテルスルホン繊維、アラミド繊維、ポリベンゾオキサゾール繊維、ポリアリレート繊維、ポリケトン繊維、ポリエステル繊維、ポリアミド繊維、ポリビニルアルコール繊維などの有機繊維が例示される。なかでも成形体に強度や剛性が求められる用途において炭素繊維、アラミド繊維、およびガラス繊維からなる群から選ばれる少なくとも一種であることが好ましい。導電性が必要な用途においては、炭素繊維が好ましく、ニッケルなどの金属を被覆した炭素繊維がより好ましい。電磁波透過性が必要な用途においては、ガラス繊維や有機繊維が好ましく、電磁波透過性と強度のバランスからアラミド繊維とガラス繊維がより好ましい。耐衝撃性が必要な用途においては有機繊維が好ましく、コスト面を考慮するとポリアミド繊維とポリエステル繊維がより好ましい。なかでも炭素繊維が、軽量でありながら強度に優れた複合材料が提供できる点で好ましい。   The reinforcing fiber constituting the fiber reinforced composite material is not particularly limited, and is an inorganic fiber such as carbon fiber, glass fiber, stainless steel fiber, alumina fiber, mineral fiber, polyether ether ketone fiber, polyphenylene sulfide fiber, polyether sulfone fiber, aramid. Examples thereof include organic fibers such as fibers, polybenzoxazole fibers, polyarylate fibers, polyketone fibers, polyester fibers, polyamide fibers, and polyvinyl alcohol fibers. Among these, in applications where the molded body is required to have strength and rigidity, it is preferably at least one selected from the group consisting of carbon fibers, aramid fibers, and glass fibers. For applications that require electrical conductivity, carbon fibers are preferred, and carbon fibers coated with a metal such as nickel are more preferred. In applications that require electromagnetic wave transparency, glass fibers and organic fibers are preferred, and aramid fibers and glass fibers are more preferred from the balance of electromagnetic wave permeability and strength. In applications where impact resistance is required, organic fibers are preferable, and polyamide fibers and polyester fibers are more preferable in consideration of cost. Among these, carbon fiber is preferable in that it can provide a composite material that is lightweight but has excellent strength.

強化繊維の平均繊維径には特に限定はないが、例えば、炭素繊維の場合、好ましい平均繊維径は3〜12μmであり、より好ましくは5〜7μmである。ポリエステル繊維の場合は、好ましい平均繊維径は10〜50μmであり、より好ましくは15〜35μmである。
強化繊維の平均繊維径には特に限定はないが、例えば、炭素繊維の場合、好ましい平均繊維径は3〜12μmであり、より好ましくは5〜7μmである。ポリエステル繊維の場合は、好ましい平均繊維径は10〜50μmであり、より好ましくは15〜35μmである。
The average fiber diameter of the reinforcing fibers is not particularly limited. For example, in the case of carbon fibers, the preferable average fiber diameter is 3 to 12 μm, and more preferably 5 to 7 μm. In the case of polyester fibers, the preferred average fiber diameter is 10 to 50 μm, more preferably 15 to 35 μm.
The average fiber diameter of the reinforcing fibers is not particularly limited. For example, in the case of carbon fibers, the preferable average fiber diameter is 3 to 12 μm, and more preferably 5 to 7 μm. In the case of polyester fibers, the preferred average fiber diameter is 10 to 50 μm, more preferably 15 to 35 μm.

これらは併用することもでき、成形体の部位によって強化繊維の種類を使い分けることも可能であり、異なる強化繊維を用いた複合材料を全体または部分的に積層させた状態で成形体を作製することも可能である。   These can also be used in combination, and the type of reinforcing fiber can be properly used depending on the part of the molded body, and a molded body is produced in a state where composite materials using different reinforcing fibers are laminated in whole or in part. Is also possible.

本発明の成形体は、後述のランダムマットから構成される繊維強化複合材料を成形することにより得られる。複合材料において、強化繊維の繊維束内および単糸間には熱可塑性樹脂が含浸していることが好ましく、その含浸度は90%以上であることがより好ましい。強化繊維への樹脂の含浸度は95%以上であることが更に好ましい。含浸度が低いと複合材料および成形体の物性が求められるレベルに到達しない虞がある。繊維強化複合材料からなる成形体においても強化繊維の強化繊維の繊維長、および束と単糸の割合はランダムマット中における状態を保っている。   The molded body of the present invention can be obtained by molding a fiber-reinforced composite material composed of a random mat described later. In the composite material, it is preferable that the thermoplastic resin is impregnated in the fiber bundles of the reinforcing fibers and between the single yarns, and the impregnation degree is more preferably 90% or more. More preferably, the impregnation degree of the resin into the reinforcing fibers is 95% or more. If the degree of impregnation is low, there is a possibility that the physical properties of the composite material and the molded body may not reach the required level. Even in a molded body made of a fiber-reinforced composite material, the fiber length of the reinforcing fiber of the reinforcing fiber and the ratio of the bundle to the single yarn are maintained in the state in the random mat.

繊維強化複合材料を構成する熱可塑性樹脂の種類としては例えば塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリ乳酸樹脂などが挙げられる。   Examples of the thermoplastic resin constituting the fiber reinforced composite material include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin ( ABS resin), acrylic resin, methacrylic resin, polyethylene resin, polypropylene resin, polyamide 6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, Polyethylene naphthalate resin, Boribylene terephthalate resin, Polyarylate resin, Polyphenylene ether resin, Polyphenylene sulfide resin, Polysulfur Down resins, polyether sulfone resins, polyether ether ketone resins, such as polylactic acid resins.

なお、本発明の目的を損なわない範囲で、繊維強化複合材料に機能性の充填材や添加剤を含有させても良い。例えば、有機/無機フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤などが挙げられるが、この限りではない。特に電子・電気機器用途や自動車用途においては、高い難燃性が要求されることがあるため、熱可塑性樹脂に難燃剤を含有させることが好ましい。難燃剤の例としては、公知のものが使用でき、本発明の熱可塑性組成物に難燃性を付与できる物であれば特に限定はされない。具体的には、リン系難燃剤、窒素系難燃剤、シリコーン化合物、有機アルカリ金属塩、有機アルカリ土類金属塩、臭素系難燃剤等を挙げることができ、これらの難燃剤は単独で使用しても良いし、複数を併用して用いても良い。難燃剤の含有量は、物性、成形性、難燃性のバランスから樹脂100質量部に対して1〜40質量部とすることが好ましく、1〜20質量部とすることがさらに好ましい。   In addition, you may make a fiber reinforced composite material contain a functional filler and additive in the range which does not impair the objective of this invention. Examples include organic / inorganic fillers, flame retardants, UV-resistant agents, pigments, mold release agents, softeners, plasticizers, surfactants, and the like, but are not limited thereto. Particularly in electronic / electric equipment applications and automotive applications, high flame retardancy may be required, so it is preferable to include a flame retardant in the thermoplastic resin. As an example of a flame retardant, a well-known thing can be used, and if it can give a flame retardance to the thermoplastic composition of this invention, it will not specifically limit. Specific examples include phosphorus flame retardants, nitrogen flame retardants, silicone compounds, organic alkali metal salts, organic alkaline earth metal salts, bromine flame retardants, etc. These flame retardants can be used alone. Alternatively, a plurality of them may be used in combination. The content of the flame retardant is preferably 1 to 40 parts by mass and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin from the balance of physical properties, moldability, and flame retardancy.

[ランダムマット]
本発明の成形体を構成するランダムマットは、繊維長10〜100mmの強化繊維と熱可塑性樹脂とから構成され、強化繊維が25〜3000g/mの目付けにて実質的に2次元ランダムに配向しており、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)について、マットの繊維全量に対する割合が30Vol%以上90Vol%未満であり、かつ強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たす。
臨界単糸数=600/D (1)
0.7×10/D<N<6×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
ここで「実質的に2次元ランダム」とは、ランダムマットおよび複合材料を構成する強化繊維が、複合材料の接表面内に繊維軸の主配向方向があり、かつその面内において互いに直行する二方向に測定した引張弾性率の値のうち大きいものを小さいもので割った比が2を超えないことを言う。
[Random mat]
The random mat constituting the molded body of the present invention is composed of reinforcing fibers having a fiber length of 10 to 100 mm and a thermoplastic resin, and the reinforcing fibers are oriented substantially two-dimensionally at a basis weight of 25 to 3000 g / m 2. In the reinforcing fiber bundle (A) constituted by the number of critical single yarns defined by the following formula (1), the ratio of the mat to the total amount of fibers is 30 Vol% or more and less than 90 Vol%, and the reinforcing fiber bundle ( The average number of fibers (N) in A) satisfies the following formula (2).
Critical number of single yarns = 600 / D (1)
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
Here, “substantially two-dimensional random” means that the reinforcing fibers constituting the random mat and the composite material have the main orientation direction of the fiber axis in the contact surface of the composite material and are orthogonal to each other in the plane. It means that the ratio obtained by dividing the value of the tensile elastic modulus measured in the direction by the smaller one does not exceed 2.

本発明の成形体を構成するランダムマットには、強化繊維束(A)以外の強化繊維として、単糸の状態または臨界単糸数未満で構成される繊維束が存在する。すなわち本発明で用いられるランダムマットには、平均繊維径に依存して定義される臨界単糸数以上で構成される強化繊維束の存在量を30Vol%以上90Vol%未満とする、強化繊維の開繊程度がコントロールされた特定本数以上の強化繊維からなる強化繊維束と、それ以外の開繊された強化繊維を特定の比率で含むことを特徴とする。強化繊維全量に対する強化繊維束(A)の割合が30Vol%未満になると、表面品位に優れる成形体が得られるという利点はあるものの、機械物性に優れた成形体が得にくくなる。強化繊維束(A)の割合が90Vol%以上になると、繊維の交絡部が局部的に厚くなり、薄肉のものが得られにくくなる。   In the random mat constituting the molded body of the present invention, there is a fiber bundle composed of a single yarn state or less than the critical single yarn number as reinforcing fibers other than the reinforcing fiber bundle (A). That is, in the random mat used in the present invention, the opening of the reinforcing fibers is such that the abundance of reinforcing fiber bundles composed of the number of critical single yarns or more defined depending on the average fiber diameter is 30 Vol% or more and less than 90 Vol%. It is characterized by including a reinforcing fiber bundle composed of reinforcing fibers of a specific number or more whose degree is controlled and other opened reinforcing fibers in a specific ratio. When the ratio of the reinforcing fiber bundle (A) to the total amount of reinforcing fibers is less than 30 Vol%, there is an advantage that a molded article having excellent surface quality can be obtained, but it becomes difficult to obtain a molded article having excellent mechanical properties. When the ratio of the reinforcing fiber bundle (A) is 90 Vol% or more, the entangled portion of the fibers becomes locally thick, and it becomes difficult to obtain a thin-walled one.

また本発明で用いられるランダムマットでは、臨界単糸数以上で構成される強化繊維束(A)中の平均繊維数(N)が上記式(2)を満たすことを特徴とする。   In addition, the random mat used in the present invention is characterized in that the average number of fibers (N) in the reinforcing fiber bundle (A) composed of the critical number of single yarns satisfies the above formula (2).

具体的には、複合材料の強化繊維が炭素繊維であり、炭素繊維の平均繊維径が5〜7μmである場合、臨界単糸数は86〜120本となり、炭素繊維の平均繊維径が5μmである場合、繊維束中の平均繊維数は280〜2000本の範囲となるが、なかでも600〜1600本であることが好ましい。炭素繊維の平均繊維径が7μmの場合、繊維束中の平均繊維数は142〜1020本の範囲となるが、なかでも300〜800本であることが好ましい。   Specifically, when the reinforcing fiber of the composite material is carbon fiber and the average fiber diameter of the carbon fiber is 5 to 7 μm, the critical single yarn number is 86 to 120, and the average fiber diameter of the carbon fiber is 5 μm. In this case, the average number of fibers in the fiber bundle is in the range of 280 to 2000, and 600 to 1600 is particularly preferable. When the average fiber diameter of the carbon fibers is 7 μm, the average number of fibers in the fiber bundle is in the range of 142 to 1020, preferably 300 to 800.

強化繊維束(A)中の平均繊維数(N)が0.7×10/D未満の場合、高い繊維体積含有率(Vf)を得る事が困難となる。また強化繊維束(A)中の平均繊維数(N)が6×10/D以上の場合、局部的に厚い部分が生じ、ボイドの原因となりやすい。1mm以下の薄肉な成形体を得ようとした場合、単純に分繊しただけの繊維を用いたのでは、疎密が大きく、良好な物性が得られない。又、全ての繊維を開繊した場合には、より薄いものを得る事は容易になるが、繊維の交絡が多くなり、繊維体積含有率の高いものが得られない。式(1)で定義される臨界単糸以上の強化繊維束(A)と、単糸の状態又は臨界単糸数未満の強化繊維(B)を成形体内に同時に存在させることにより、薄肉であり、物性発現率の高い成形体を実現することが可能である。本発明の成形体は、各種の厚みとすることが可能であるが、厚みが0.2〜1mm程度の薄肉品も好適に得ることができる。 When the average number of fibers (N) in the reinforcing fiber bundle (A) is less than 0.7 × 10 4 / D 2 , it is difficult to obtain a high fiber volume content (Vf). In addition, when the average number of fibers (N) in the reinforcing fiber bundle (A) is 6 × 10 4 / D 2 or more, a locally thick portion is generated, which tends to cause voids. When trying to obtain a thin molded body having a thickness of 1 mm or less, the use of a fiber that has been simply split is large in density, and good physical properties cannot be obtained. Further, when all the fibers are opened, it becomes easy to obtain a thinner one, but the fiber entanglement increases, and a fiber having a high fiber volume content cannot be obtained. By making the reinforcing fiber bundle (A) equal to or higher than the critical single yarn defined by the formula (1) and the reinforcing fiber (B) having a single yarn state or less than the critical single yarn number simultaneously exist in the molded body, it is thin. It is possible to realize a molded body having a high physical property expression rate. The molded body of the present invention can have various thicknesses, but a thin product having a thickness of about 0.2 to 1 mm can also be suitably obtained.

ランダムマットの厚さにとくに制限はなく、1〜100mm厚みのものを得ることができる。本発明のランダムマットより薄肉の成形体が得られるという本発明の効果を発揮する点では2〜50mm厚みとすることが好ましい。
ランダムマット中の強化繊維と熱可塑性樹脂の割合は、ランダムマット製造時の各成分の仕込量により規定できる。しかし、繊維と樹脂の割合をより正確に評価したい場合には、次の方法で確認できる。例えば、構成成分の溶解性の違いを利用した方法として、1cmから10cmの試料の重量を秤量する。繊維または樹脂のいずれか一方を溶解、または分解する薬品を使用して溶解成分を抽出する。次に、残渣を洗浄および乾燥後に秤量する。残渣と溶解成分の重量、および繊維と樹脂の比重から、繊維と樹脂の体積分率を算出する。例えば、樹脂がポリプロピレンの場合、加熱したトルエンまたはキシレンを用いることにより、ポリプロピレンのみを溶解することができる。樹脂がポリアミドの場合は、加熱したギ酸によりポリアミドを分解することができる。樹脂がポリカーボネートの場合には加熱した塩素化炭化水素を用いることにより、ポリカーボネートを溶解することができる。また、強化繊維が炭素繊維やガラス繊維などの無機繊維の場合には、樹脂を燃焼除去することによってもそれぞれの重量および体積分率を算出できる。この場合、よく乾燥させた試料の重量を秤量後、電気炉等を用いて500〜700℃で5〜60分処理して樹脂成分を燃焼する。乾燥雰囲気で残留した繊維を放冷後、秤量することにより各成分の重量を算出することが出来る。
There is no restriction | limiting in particular in the thickness of a random mat, The thing of 1-100 mm thickness can be obtained. The thickness is preferably 2 to 50 mm from the standpoint of exhibiting the effect of the present invention in that a molded article having a thinner thickness than that of the random mat of the present invention can be obtained.
The ratio of the reinforcing fiber and the thermoplastic resin in the random mat can be defined by the amount of each component charged during the production of the random mat. However, when it is desired to more accurately evaluate the ratio of fiber to resin, it can be confirmed by the following method. For example, as a method using the difference in solubility of constituent components, the weight of a sample of 1 cm 2 to 10 cm 2 is weighed. The dissolved component is extracted using a chemical that dissolves or decomposes either the fiber or the resin. The residue is then weighed after washing and drying. The volume fraction of the fiber and the resin is calculated from the weight of the residue and the dissolved component and the specific gravity of the fiber and the resin. For example, when the resin is polypropylene, only the polypropylene can be dissolved by using heated toluene or xylene. When the resin is polyamide, the polyamide can be decomposed by heated formic acid. When the resin is polycarbonate, the polycarbonate can be dissolved by using heated chlorinated hydrocarbon. When the reinforcing fiber is an inorganic fiber such as carbon fiber or glass fiber, the weight and volume fraction can be calculated by burning and removing the resin. In this case, after weighing the well-dried sample, the resin component is burned by treatment at 500 to 700 ° C. for 5 to 60 minutes using an electric furnace or the like. The weight of each component can be calculated by weighing the fibers remaining in a dry atmosphere after cooling.

本発明の成形体の製造方法に用いられるランダムマットは、強化繊維と熱可塑性樹脂を含むものである。用いられる強化繊維および熱可塑性樹脂の種類は上記の成形体の項に記載したものと同様である。
ランダムマットを構成する強化繊維は不連続であり、平均繊維長10〜100mm以下である。本発明のランダムマットはある程度長い強化繊維を含んで強化機能が発現できる事を特徴とし、好ましくは強化繊維の平均繊維長が15mm以上100mm以下であり、より好ましくは15mm以上80mm以下である。更には20mm以上60mm以下が好ましい。
The random mat used in the method for producing a molded article of the present invention contains reinforcing fibers and a thermoplastic resin. The types of reinforcing fiber and thermoplastic resin used are the same as those described in the section of the molded article.
The reinforcing fibers constituting the random mat are discontinuous and have an average fiber length of 10 to 100 mm. The random mat of the present invention is characterized in that it contains reinforcing fibers that are somewhat long and can exhibit a reinforcing function. The average fiber length of the reinforcing fibers is preferably 15 mm or more and 100 mm or less, more preferably 15 mm or more and 80 mm or less. Furthermore, 20 mm or more and 60 mm or less are preferable.

本発明の成形体の原料となるランダムマットは固体の熱可塑性樹脂を含み、繊維強化複合材料を得るためのプリフォームとなる。ランダムマットにおいては、熱可塑性樹脂が、繊維状および/または粒子状で存在することが好ましい。強化繊維と繊維状および/または粒子状の熱可塑性樹脂が混合して存在していることにより、含浸工程の型内で繊維と樹脂を大きく流動させる必要がなく、熱可塑性樹脂を容易に含浸できることを特徴とする。相溶可能なものであれば熱可塑性樹脂の種類を2種以上とすることもでき、また繊維状と粒子状のものを併用してもよい。   The random mat used as the raw material of the molded article of the present invention contains a solid thermoplastic resin and becomes a preform for obtaining a fiber-reinforced composite material. In the random mat, the thermoplastic resin is preferably present in the form of fibers and / or particles. The presence of a mixture of reinforcing fibers and fibrous and / or particulate thermoplastic resins eliminates the need for large flow of fibers and resins in the mold of the impregnation step, and allows easy impregnation of thermoplastic resins. It is characterized by. Two or more types of thermoplastic resins can be used as long as they are compatible with each other, and fibrous and particulate materials may be used in combination.

繊維状の場合、繊度100〜5000dtexのもの、より好ましくは繊度1000〜2000dtexものがより好ましく、平均繊維長としては0.5〜50mmが好ましく、より好ましくは平均繊維長1〜10mmである。   In the case of a fiber, a fineness of 100 to 5000 dtex, more preferably 1000 to 2000 dtex is more preferred, and an average fiber length of 0.5 to 50 mm is preferred, and an average fiber length of 1 to 10 mm is more preferred.

粒子状の場合、球状、細片状、あるいはペレットのような円柱状が好ましく挙げられる。球状の場合は、真円または楕円の回転体、あるいは卵状ような形状が好ましく挙げられる。球とした場合の好ましい平均粒子径は0.01〜1000μmである。より好ましくは平均粒子径0.1〜900μmものがより好ましく、更に好ましくは平均粒子径1〜800μmものがより好ましい。粒子径分布についてはとくに制限はないが、分布シャープなものがより薄い成形体を得る目的としてはより好ましいが、分級等の操作により所望の粒度分布として用いる事が出来る。   In the case of particles, a spherical shape, a strip shape, or a columnar shape such as a pellet is preferable. In the case of a spherical shape, a perfect circular or elliptical rotating body or an egg-like shape is preferable. A preferable average particle diameter in the case of a sphere is 0.01 to 1000 μm. More preferably, the average particle size is 0.1 to 900 μm, and still more preferably the average particle size is 1 to 800 μm. The particle size distribution is not particularly limited, but a sharp distribution is more preferable for the purpose of obtaining a thinner molded product, but can be used as a desired particle size distribution by an operation such as classification.

細片状の場合、ペレットのような円柱状や、角柱状、リン片状が好ましい形状として挙げられる。この場合ある程度のアスペクト比を有しても良いが、好ましい長さは上記の繊維状の場合と同程度とする。   In the case of a strip shape, a columnar shape such as a pellet, a prismatic shape, or a flake shape is mentioned as a preferable shape. In this case, it may have a certain aspect ratio, but the preferred length is about the same as that of the above fibrous form.

[成形体の層構成]
成形体の水平部と水平部に対して縦方向に伸びた立上部がそれぞれ、強化繊維が実質的に面内2次元ランダム配向する層(X)を有することが、本発明の目的である薄肉、軽量、高剛性で意匠性に優れた成形体を得るためには好ましい。ここで「実質的に面内2次元ランダム配向」とは、繊維強化複合材料を構成する強化繊維が、繊維強化複合材料の接表面内に繊維軸の主配向方向があり、かつその面内において互いに直行する二方向に測定した引張弾性率の値のうち大きいものを小さいもので割った比が1.3を超えないことを言う。
[Layer structure of molded body]
The thin part which is the object of the present invention is that the horizontal part of the molded body and the upright part extending in the longitudinal direction with respect to the horizontal part have layers (X) in which the reinforcing fibers are substantially in-plane two-dimensional random orientation. It is preferable for obtaining a molded article that is lightweight, highly rigid and excellent in design. Here, “substantially in-plane two-dimensional random orientation” means that the reinforcing fiber constituting the fiber-reinforced composite material has the main orientation direction of the fiber axis in the contact surface of the fiber-reinforced composite material, and in that plane. It means that the ratio obtained by dividing the value of the tensile modulus measured in two directions perpendicular to each other by the smaller one does not exceed 1.3.

水平部と立上部の合流部に、強化繊維が実質的に面内2次元ランダム配向する層(X)と、強化繊維が水平部と立上部に連続的に配向する層(Y)と、強化繊維が実質的に面内2次元配向しておらず、かつ水平部と立上部に連続的に配向していない層(Z)からなる群の中から少なくとも2種を有することがさらに好ましい。それぞれの層の割合に特に制限はないが、形状が薄物で単純形状の場合には、(X)と(Y)の割合は高くなり、(Z)の割合は低くなる。形状が厚物で複雑形状の場合には、(X)と(Y)の割合は低くなり、(Z)の割合は高くなる。前者の場合、水平部の板厚に占める(X)と(Y)の割合はそれぞれ1〜45%が好ましく用いられ、後者の場合、水平部の板厚に占める(X)と(Y)の割合は1〜30%が好ましく用いられる。これにより、水平部と立上部の合流部分の強度を確保できるだけでなく、薄肉部では軽量性と高剛性を実現し、厚肉部では面内2次元ランダム配向する層(X)を最低限確保しつつ、3次元の複雑形状にも対応可能な繊維流動を実現することが可能となる。上記の(X)、(Y)、(Z)層の割合を成形体内部に実現するためには、該成形体に含まれる強化繊維が、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)について、該成形体中の強化繊維全量に対する割合が30Vol%以上90Vol%未満であり、かつ強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことが重要である。また、平均繊維長は10〜100mmとすることが、複雑な形状を有する成形体においても実質的に面内2次元ランダム配向する層を確保する上で、より好ましい。
臨界単糸数=600/D (1)
0.7×10/D<N<6×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
成形体の用途が、筐体またはパネル状部材など製品の外板機能を有する場合は、リブやボスなどの複数の立上部が水平部の同一面側にあることが好ましい。このような成形体においては、水平部における立上部と相対する面に、強化繊維が実質的に面内2次元配向する層(X)が連続的に存在することが好ましい。これにより、薄肉、軽量、高剛性な成形体が得られるだけでなく、製品の外板に該当する部分の意匠性を高めることが出来る。このような層構成は、成形条件の制御により好ましく実現することが可能である。
A layer (X) in which the reinforcing fibers are substantially two-dimensionally randomly oriented in the plane, and a layer (Y) in which the reinforcing fibers are continuously oriented in the horizontal part and the upright part at the joining part of the horizontal part and the upright part, and the reinforcement It is more preferable that the fibers have at least two kinds selected from the group consisting of layers (Z) that are not substantially two-dimensionally oriented in the plane and are not continuously oriented in the horizontal part and the upright part. The ratio of each layer is not particularly limited, but when the shape is thin and simple, the ratio of (X) and (Y) is high and the ratio of (Z) is low. When the shape is thick and complex, the ratio of (X) and (Y) is low, and the ratio of (Z) is high. In the former case, the ratio of (X) and (Y) to the plate thickness of the horizontal part is preferably 1 to 45%, and in the latter case, the ratio of (X) and (Y) to the plate thickness of the horizontal part is preferably used. A proportion of 1 to 30% is preferably used. As a result, not only can the strength of the confluence of the horizontal part and the upright part be ensured, but also light weight and high rigidity are realized in the thin part, and a layer (X) that is randomly oriented in two planes in the plane is secured at the thick part. However, it is possible to realize fiber flow that can cope with a three-dimensional complicated shape. In order to realize the ratio of the (X), (Y), (Z) layers in the molded body, the reinforcing fibers contained in the molded body have a critical single yarn number or more defined by the following formula (1). In the reinforcing fiber bundle (A) constituted by the following, the ratio to the total amount of reinforcing fibers in the molded body is 30 Vol% or more and less than 90 Vol%, and the average number of fibers (N) in the reinforcing fiber bundle (A) is represented by the following formula: It is important to satisfy (2). In addition, it is more preferable that the average fiber length is 10 to 100 mm in order to secure a layer that is substantially in-plane two-dimensional random orientation even in a molded body having a complicated shape.
Critical number of single yarns = 600 / D (1)
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
When the usage of the molded body has a function of the outer plate of a product such as a housing or a panel-like member, it is preferable that a plurality of raised portions such as ribs and bosses are on the same surface side of the horizontal portion. In such a molded body, it is preferable that the layer (X) in which the reinforcing fibers are substantially two-dimensionally oriented in the plane is continuously present on the surface of the horizontal portion facing the upright portion. Thereby, not only a thin, lightweight, and highly rigid molded body can be obtained, but also the designability of the portion corresponding to the outer plate of the product can be enhanced. Such a layer structure can be preferably realized by controlling the molding conditions.

成形体の意匠性を高めるため、水平部および/もしくは立上部の外表面側に、加飾用のフィルムを貼り付けることも可能である。加飾フィルムの種類としては、ベースフィルム上に、文字や図形、模様等、所望の加飾パターンが形成されてなる転写箔や絵付ラベル、絵付フィルム等があり、成形体の表面に、この加飾フィルムの加飾パターンを転写し、或いは加飾フィルム自体を融着あるいは接着する方法が一般的に知られている。この場合、加飾フィルムと成形体の間に成形体の表面凹凸を埋めるための層が形成されていても良い。加飾フィルムは、後加工として貼り付けても良く、プレス用金型内に予めセットし、繊維強化複合材料と一括成形することも可能である。   In order to enhance the design of the molded body, it is possible to attach a decorative film to the outer surface side of the horizontal portion and / or the upright portion. The decorative film includes a transfer foil, a label with a picture, a film with a picture, etc. on which a desired decoration pattern such as letters, figures and patterns is formed on a base film. A method of transferring a decoration pattern of a decorative film or fusing or adhering the decorative film itself is generally known. In this case, a layer for filling surface irregularities of the molded body may be formed between the decorative film and the molded body. The decorative film may be affixed as a post-processing, and may be set in advance in a press mold and molded together with a fiber-reinforced composite material.

成形体に大きな荷重が作用する場合は、水平部および/もしくは立上部の一部を一方向材で補強することも可能である。この場合、成形体の外表面に一方向材を配置することが好ましく、裏表両側に配置してサンドイッチ構造とすることが成形時の反りを抑制する観点からさらに好ましい。一方向材の厚みは特に制限はないが、ランダムマットを成形した繊維強化複合材料の厚みの5〜100%が好ましく、10〜50%がさらに好ましい。   When a large load acts on the molded body, it is possible to reinforce the horizontal portion and / or part of the upright portion with a unidirectional material. In this case, it is preferable to arrange a unidirectional material on the outer surface of the molded body, and it is more preferable to arrange it on both sides of the back and front to make a sandwich structure from the viewpoint of suppressing warpage during molding. Although there is no restriction | limiting in particular in the thickness of a unidirectional material, 5 to 100% of the thickness of the fiber reinforced composite material which shape | molded the random mat is preferable, and 10 to 50% is more preferable.

なお成形体に含まれる強化繊維の上記の繊維束や平均繊維長などの規定は、一方向材などの部分を除く、主要部分についての規定である。なお平均繊維長とは成形体に含まれる強化繊維を無作為に取り出し、それらの繊維長の平均値で表されるものである。一方向材とは、長さ100mm以上の連続した強化繊維が熱可塑性樹脂(ランダム層に含まれる熱可塑性樹脂と同じものでも異なるものでも良い)中に一方向にそろえて配置されているものを言う。本発明において用いられる一方向材としては、複数の連続強化繊維を積層したものであっても良く、連続強化繊維の束をシート状にして角度を変えて積層したもの(多軸織物基材)を、ナイロン糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチしたような多軸織物であっても良い。一方向材においては、熱可塑性樹脂の存在量が、強化繊維100重量部に対し、50〜1000重量部であることが好ましい。より好ましくは、強化繊維100重量部に対し、熱可塑性樹脂55〜500重量部、更に好ましくは、強化繊維100重量部に対し、熱可塑性樹脂60〜300重量部である。   The above-mentioned provisions such as the above-mentioned fiber bundle and average fiber length of the reinforcing fibers contained in the molded body are the provisions on the main part excluding the part such as the unidirectional material. The average fiber length is represented by an average value of the fiber lengths obtained by randomly taking out the reinforcing fibers contained in the molded body. A unidirectional material is a material in which continuous reinforcing fibers having a length of 100 mm or more are arranged in one direction in a thermoplastic resin (which may be the same as or different from the thermoplastic resin contained in the random layer). say. The unidirectional material used in the present invention may be a laminate of a plurality of continuous reinforcing fibers, or a laminate of continuous reinforcing fibers formed in a sheet shape and laminated at different angles (multiaxial fabric base material). Nylon yarn, polyester yarn, glass fiber yarn, and other stitch yarns that pass through the laminate in the thickness direction and are stitched by reciprocating between the front and back surfaces of the laminate along the surface direction. A shaft fabric may be used. In the unidirectional material, the abundance of the thermoplastic resin is preferably 50 to 1000 parts by weight with respect to 100 parts by weight of the reinforcing fibers. More preferably, it is 55 to 500 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the reinforcing fiber, and more preferably 60 to 300 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the reinforcing fiber.

[成形体の製造方法]
本発明の成形体は、以下の工程A−1)〜A−3)を含んで含浸〜成形を行うか、工程B−1)〜B−4)を含んで含浸〜成形を行う、繊維強化複合材料からなる水平部に対して縦方向に伸びた立上部を有する成形体の製造方法であって、
A−1)ランダムマットを、熱可塑性樹脂が結晶性の場合は融点以上分解温度未満、非晶性の場合はガラス転移温度以上分解温度未満に加温し、加圧して熱可塑性樹脂を強化繊維束内に含浸させプリプレグを得る工程
A−2) A−1)で得られたプリプレグを、熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に温度調節された金型に、下記式(3)で表されるチャージ率5〜100%以下となるように配置し、加圧する工程
A−3)熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に金型温度を調節することにより成形を完結させる工程
B-1)ランダムマットを下記式(3)で表されるチャージ率5〜100%以下となるように金型に配置する工程
B-2)金型を熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度まで昇温しつつ、加圧する工程(第1プレス工程)
B−3)1段以上であり、最終段の圧力が第1プレス工程の圧力の1.2倍〜100倍となるように加圧する工程(第2プレス工程)
B−4)熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に金型温度を調節することにより成形を完結させる工程により好ましく製造できる。
[Method for producing molded article]
The molded body of the present invention includes the following steps A-1) to A-3) to perform impregnation to molding, or includes steps B-1) to B-4) to perform impregnation to molding. A method for producing a molded body having an upright portion extending in a longitudinal direction with respect to a horizontal portion made of a composite material,
A-1) When the thermoplastic resin is crystalline, the random mat is heated above the melting point and below the decomposition temperature, and when amorphous, it is heated above the glass transition temperature and below the decomposition temperature, and pressurized to reinforce the thermoplastic resin. Step A-2) Obtaining Prepreg by Impregnation into Bundle The temperature of the prepreg obtained in A-1) is adjusted to below the melting point when the thermoplastic resin is crystalline, and below the glass transition temperature when amorphous. Step A-3) in which the charging rate is 5 to 100% or less represented by the following formula (3) and pressurization is performed on the mold, and when the thermoplastic resin is crystalline, the melting point or less is amorphous. In the case of step B-1, the molding is completed by adjusting the mold temperature to be equal to or lower than the glass transition temperature. B-1) The mold is such that the random mat has a charge rate of 5 to 100% or less represented by the following formula (3). Step B-2) Place the mold on the thermoplastic resin In the case of the property of the thermoplastic resin up to a temperature not lower than the thermal decomposition temperature, and in the case of an amorphous material, the pressure is increased while raising the temperature to a temperature higher than the glass transition temperature of the thermoplastic resin and lower than the thermal decomposition temperature (first Pressing process)
B-3) A step of pressurizing so that the pressure in the final step is 1.2 to 100 times the pressure in the first press step (second press step).
B-4) When the thermoplastic resin is crystalline, it can be preferably produced by a step of completing molding by adjusting the mold temperature to below the melting point, and when it is amorphous, below the glass transition temperature.

工程A−1)〜A−3)を含んで含浸〜成形を行う方法は、いわゆるコールドプレス法である。工程B−1)〜B−4)を含んで含浸〜成形を行う方法は、いわゆるホットプレス法である。本発明の成形体には双方のプレス成形が適用可能であるが、成形時間をより短縮できる観点では、コールドプレス法がより好ましく用いられる。   The method of impregnating to forming including steps A-1) to A-3) is a so-called cold press method. The method of impregnation to molding including the steps B-1) to B-4) is a so-called hot press method. Although both press moldings can be applied to the molded body of the present invention, the cold press method is more preferably used from the viewpoint of further shortening the molding time.

以上の工程はランダムマットの製造工程に引き続き連続的に行うこともできるし、いったんランダムマットを得た後、個別に行ってもよい。   The above process can be performed continuously following the manufacturing process of the random mat, or may be performed individually after obtaining the random mat.

また、本発明においては、金型形状に対し低チャージで配置し、加圧することで基材を流動させることを特徴とする。そうすることにより、基材が複雑な形状に充填されやすくなる。通常、繊維強化複合材料を流動させると流動方向に強化繊維が配向する傾向があり、物性に異方性が生じる可能性があったが、本発明では、前述したランダムマットを用いることにより、強化繊維の等方性を保持したまま複雑な形状が得られる。基材のチャージ率は下記式(3)で5〜100%が好ましく、20〜95%がより好ましい。更に好ましい基材のチャージ率は50〜90%である。   Moreover, in this invention, it arrange | positions with a low charge with respect to a metal mold | die shape, and makes a base material flow by pressurizing. By doing so, the base material is easily filled into a complicated shape. Usually, when a fiber reinforced composite material is flowed, the reinforcing fibers tend to be oriented in the flow direction, and anisotropy may occur in the physical properties. A complicated shape can be obtained while maintaining the isotropy of the fiber. The charge rate of the base material is preferably 5 to 100%, more preferably 20 to 95% in the following formula (3). A more preferable base material charge rate is 50 to 90%.

チャージ率=100×基材面積(mm)/金型キャビティ投影面積(mm)(3)
(ここで基材面積とは配置した全てのランダムマットまたはプリプレグの抜き方向への投影面積であり金型キャビティ投影面積とは抜き方向への投影面積である)
基材のチャージ率が5%より低いと、成形時に流動する過程で基材が冷えてしまい、所望の厚みを有する成形体が得られない虞がある。逆に、基材のチャージ率が100%を越すと、ある程度流動させて成形するという本発明の特徴が具現されない。さらに基材のチャージ率が100%を越すと基材のロスが増すばかりでなく、トリミング等の後加工が必要となり、生産性やコスト面で不利となる。
Charge rate = 100 × base material area (mm 2 ) / mold cavity projected area (mm 2 ) (3)
(Here, the base material area is the projected area of all the arranged random mats or prepregs in the removal direction, and the mold cavity projected area is the projected area in the removal direction.)
If the charge rate of the base material is lower than 5%, the base material may be cooled in the process of flowing during molding, and a molded product having a desired thickness may not be obtained. On the contrary, when the charge rate of the base material exceeds 100%, the feature of the present invention that the material is made to flow to some extent is not realized. Further, if the charge rate of the base material exceeds 100%, not only the loss of the base material is increased, but also post-processing such as trimming is required, which is disadvantageous in terms of productivity and cost.

[プリプレグ]
本発明において、工程A−1)〜A−3)を含んで含浸〜成形を行う場合、ランダムマットを熱可塑性樹脂が結晶性の場合は融点以上熱分解温度未満の温度まで、非晶性の場合はガラス転移温度以上熱分解温度未満の温度まで加熱することで、熱可塑性樹脂を含浸させプリプレグを得て成形に用いる。プリプレグにおける強化繊維の形態はランダムマット中における状態を保っている。すなわち、プリプレグ中の強化繊維はランダムマットにおける繊維長や等方性、開繊程度を維持しており、上記のランダムマットに記載したものと同様である。
[Prepreg]
In the present invention, when impregnation to molding is performed including the steps A-1) to A-3), the random mat is amorphous up to a temperature not lower than the melting point and lower than the thermal decomposition temperature when the thermoplastic resin is crystalline. In this case, by heating to a temperature not lower than the glass transition temperature and lower than the thermal decomposition temperature, a thermoplastic resin is impregnated to obtain a prepreg and used for molding. The form of the reinforcing fiber in the prepreg is kept in the random mat. That is, the reinforcing fibers in the prepreg maintain the fiber length, isotropy, and degree of opening in the random mat, and are the same as those described in the random mat.

プリプレグにおいては、冷却することなくそのままA−2)の工程を行ってもよいし、熱可塑性樹脂を一旦含浸し固化するという工程を経てからA−2)の工程に進めてもよい。プリプレグにおいては、熱可塑性樹脂は部分的に溶けて溶着されていても良いが、繊維状および/または粒子状で存在することが好ましい。強化繊維と繊維状および/または粒子状の熱可塑性樹脂が混合して強化繊維の近傍に存在していることにより、成形時に熱可塑性樹脂を容易に含浸できることを特徴とする。上述のとおりランダムマットは強化繊維と繊維状または粒子状の熱可塑性樹脂が混合して存在しているので、熱可塑性樹脂を容易に含浸できることを特徴とする。プリプレグは得ようとする成形体の厚みの1〜10倍、好ましくは1〜5倍であることが好ましい。厚みの限定はないが、好ましくは0.1mm以上であり、上限は金型に配置して成形可能であればよく、実質30mm程度である。   In the prepreg, the step A-2) may be performed as it is without cooling, or the step of A-2) may be performed after the step of once impregnating and solidifying the thermoplastic resin. In the prepreg, the thermoplastic resin may be partially melted and welded, but is preferably present in the form of fibers and / or particles. The reinforcing fiber and the fibrous and / or particulate thermoplastic resin are mixed and exist in the vicinity of the reinforcing fiber, so that the thermoplastic resin can be easily impregnated at the time of molding. As described above, the random mat is characterized in that it can be easily impregnated with the thermoplastic resin because the reinforcing fiber and the fibrous or particulate thermoplastic resin are mixed. The prepreg is preferably 1 to 10 times, preferably 1 to 5 times the thickness of the molded product to be obtained. Although there is no limitation on the thickness, it is preferably 0.1 mm or more, and the upper limit may be about 30 mm as long as it can be placed in a mold and molded.

また、プリプレグは成形時の樹脂の含浸不良を極力抑えるために、ボイド率が0〜30%であることが好ましい。プリプレグのボイド率は、プリプレグの断面を光学顕微鏡で観察し、ボイドの存在面積を観察基材の断面積で除して算出する。観察は1つのプリプレグあたりn=5とし、その平均値をボイド率とする。   The prepreg preferably has a void ratio of 0 to 30% in order to suppress the impregnation failure of the resin during molding as much as possible. The void ratio of the prepreg is calculated by observing the cross section of the prepreg with an optical microscope and dividing the existing area of the void by the cross sectional area of the observation substrate. In the observation, n = 5 per prepreg, and the average value is defined as the void ratio.

[コールドプレス法]
工程A−1)〜A−3)を含んで含浸〜成形を行う場合(コールドプレス法の場合)について具体的に述べる。上記のとおり工程A−1)でA−1)ランダムマットを、熱可塑性樹脂が結晶性の場合は融点以上分解温度未満、非晶性の場合はガラス転移温度以上分解温度未満に加温し、加圧して熱可塑性樹脂を強化繊維束内に含浸させプリプレグを得る。得られたプリプレグは、熱可塑性樹脂が結晶性の場合は融点以上熱分解温度未満の温度まで、非晶性の場合はガラス転移温度以上熱分解温度未満の温度に保つ、または再加熱して次の工程A−2)に用いる。プリプレグの温度は例えばプリプレグ表面にKタイプの熱電対を貼付け加熱炉外に設置した計測機により測定を行うことができる。
[Cold press method]
The case where impregnation and molding are performed including the steps A-1) to A-3) (in the case of the cold press method) will be specifically described. As described above, in step A-1), A-1) the random mat is heated to a melting point or higher and lower than the decomposition temperature when the thermoplastic resin is crystalline, and when amorphous, it is heated to a glass transition temperature or higher and lower than the decomposition temperature. A prepreg is obtained by applying pressure and impregnating the thermoplastic resin into the reinforcing fiber bundle. The obtained prepreg is maintained at a temperature not lower than the melting point and lower than the thermal decomposition temperature when the thermoplastic resin is crystalline, or maintained at a temperature not lower than the glass transition temperature and lower than the thermal decomposition temperature in the case of amorphous, or is reheated. Used in step A-2). The temperature of the prepreg can be measured by, for example, a measuring instrument in which a K-type thermocouple is attached to the prepreg surface and installed outside the heating furnace.

工程A−2)で、プリプレグを熱可塑性樹脂の結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に温度調節された金型内に配置し、プレス成形を行い成形させる。金型の温度は、熱可塑性樹脂の結晶性の場合は融点−200℃以上融点−10℃以下、非晶性の場合はガラス転移温度−200℃以上ガラス転移温度−10℃以下とすることが好ましい。プリプレグを金型中で冷却させ成形体を得た後、金型から成形体を取り出すことができる。金型の冷却方法にとくに限定はなく、金型内温調回路に冷却媒体を流すなどの方法により適宜冷却すれば良い。
プリプレグは下記式(3)で表されるチャージ率が5%以上100%以下となるように金型に配置する。
In step A-2), the prepreg is placed in a mold whose temperature is adjusted below the melting point when the thermoplastic resin is crystalline, and below the glass transition temperature when amorphous, and is molded by press molding. The temperature of the mold may be a melting point of −200 ° C. or higher and a melting point of −10 ° C. or lower when the thermoplastic resin is crystalline, and a glass transition temperature of −200 ° C. or higher and a glass transition temperature of −10 ° C. or lower when amorphous. preferable. After the prepreg is cooled in the mold to obtain a molded body, the molded body can be taken out from the mold. There is no particular limitation on the mold cooling method, and the mold may be appropriately cooled by a method of flowing a cooling medium through the mold temperature control circuit.
The prepreg is arranged in the mold so that the charge rate represented by the following formula (3) is 5% or more and 100% or less.

チャージ率(%)=100×基材面積(mm2)/金型キャビティ投影面積(mm2)(3) (ここで基材面積とは配置した全てのプリプレグの抜き方向への投影面積であり、金型キャビティ投影面積とは抜き方向への投影面積である)
例えば、1枚または2〜10枚の重ね合わせたプリプレグを金型キャビティへ配置することができる。重ね合わせる場合、得ようとする成形体に応じて一部、または全体を重ね合わせて用いる。ここでプリプレグ端部の一部または全ての面が、金型キャビティエッジ部と接しないことが望ましい。また重ね合わせる場合、プリプレグは全て同一の形状である必要はなく、それぞれ一部または全部が重ね合わされば良い。
Charge rate (%) = 100 × base material area (mm 2 ) / mold cavity projection area (mm 2 ) (3) (Here, the base material area is the projected area in the drawing direction of all the prepregs arranged. The mold cavity projected area is the projected area in the punching direction)
For example, one or 2 to 10 superposed prepregs can be placed in the mold cavity. In the case of superposing, a part or the whole is superposed and used according to the molded product to be obtained. Here, it is desirable that a part or all of the prepreg end portion does not contact the mold cavity edge portion. In the case of overlapping, the prepregs need not all have the same shape, but may be partially or entirely overlapped.

工程A−3)では、型締めを行い加熱したプリプレグを目標圧力まで加圧し、賦形を完了させる。目標圧力に達するまでの時間は1〜10秒であることが望ましい。目標圧力は0.3MPa〜100MPa、好ましくは5MPa〜40MPaである。目標圧力到達後、金型との熱交換により熱可塑性樹脂の結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下まで冷却された後に型を開き、成形体を得る。   In step A-3), the mold is clamped and the heated prepreg is pressurized to the target pressure to complete the shaping. The time to reach the target pressure is preferably 1 to 10 seconds. The target pressure is 0.3 MPa to 100 MPa, preferably 5 MPa to 40 MPa. After reaching the target pressure, the mold is opened after cooling to the melting point or lower in the case of crystallinity of the thermoplastic resin and below the glass transition temperature in the case of amorphousness by heat exchange with the mold to obtain a molded body.

チャージ率が5%未満の場合、成形体に割れやシワの発生、反りがなく金型末端まで繊維が充填されている成形体を得ることができるが、水平部で実質的に面内2次元ランダム配向する層が確保できない領域が増える為、物性発現率や意匠性が低下する傾向にある。   When the charge rate is less than 5%, it is possible to obtain a molded body in which the molded body is filled with fibers up to the end of the mold without generation of cracks, wrinkles, and warpage. Since a region where a randomly oriented layer cannot be secured increases, the physical property expression rate and the design property tend to be lowered.

チャージ率が100%を超え金型がオープンキャビティ構造を有する場合、金型末端まで繊維が充填されている成形体を得ることができるが、複雑形状を有した製品を成形する際には材料の絞りや引張により製品設計厚みに対して肉厚が変化してしまい制御が難しく特に端面は薄くなる傾向にある。偏肉形状を有する製品ではより制御が困難となる。また、成形体の端部にバリが発生してしまい、後加工での機械加工などによるトリミングが必要となるため、プロセスが複雑になるだけでなく、材料ロスが発生してしまう。   When the charge rate exceeds 100% and the mold has an open cavity structure, it is possible to obtain a molded body filled with fibers up to the end of the mold, but when molding a product having a complicated shape, Thickness changes with respect to the product design thickness due to drawing or tension, making control difficult and particularly the end face tend to be thin. Control is more difficult with a product having an uneven shape. In addition, burrs are generated at the end of the molded body, and trimming by machining or the like in post-processing is necessary, which not only complicates the process but also causes material loss.

チャージ率が100%を超え金型がクローズドキャビティ構造を有する場合、材料の割れやシワの発生はなく、表面外観も良好で、製品に反りがなく、実質的等方性を維持し、金型末端まで繊維が充填されている成形体を得ることができるが、製品端面部を金型のシェアエッジにてトリミングすることになる為、シェアエッジ部に損傷が引き起こされるので、長期間の連続の利用には適さない。また、製品形状が複雑な場合は、賦形時にシェアエッジ部が最初にプリプレグへ接触し、金型への追従を妨げる為、製品肉厚の制御が困難となる。
チャージ率5%以上100%未満とすることにより、強化繊維が実質的に面内2次元配向する層を確保しつつ、材料ロスやトリミングの手間を発生させることなく、軽量な成形体を高い生産性で製造することが可能となる。
When the charge rate exceeds 100% and the mold has a closed cavity structure, there is no material cracking or wrinkling, the surface appearance is good, the product is not warped, and the mold is maintained substantially isotropic, A molded product filled with fibers up to the end can be obtained, but since the end face of the product is trimmed at the shear edge of the mold, damage is caused to the shear edge, so long-term continuous Not suitable for use. In addition, when the product shape is complicated, the shear edge portion first contacts the prepreg at the time of shaping, and the follow-up to the mold is hindered, making it difficult to control the product thickness.
By setting the charge rate to 5% or more and less than 100%, a lightweight molded body can be produced at a high level without generating material loss and trimming while ensuring a layer in which reinforcing fibers are substantially two-dimensionally aligned in the plane. It becomes possible to manufacture with the property.

金型中でのプリプレグの厚みは得ようとする形状の厚みに合わせて適宜選択できる。但し、金型への基材のチャージ率が5%以上80%以下の時は、流動を適切に行う為に、プリプレグの厚みまたはプリプレグを積層した厚みの総和が1.0mm以上であることが好ましい。   The thickness of the prepreg in the mold can be appropriately selected according to the thickness of the shape to be obtained. However, when the charging rate of the base material to the mold is 5% or more and 80% or less, the total thickness of the prepreg or the laminated thickness of the prepreg may be 1.0 mm or more in order to appropriately flow. preferable.

[ホットプレス成形]
工程B−1)〜B−4)を含んで含浸〜成形を行う場合について具体的に述べる。
B-1)で、ランダムマットを下記式(3)で表されるチャージ率が5%以上100%未満となるように金型に配置する。
チャージ率(%)=100×基材面積(mm2)/金型キャビティ投影面積(mm2)(3) (ここで基材面積とは配置した全てのランダムマットの抜き方向への投影面積であり、金型キャビティ投影面積とは抜き方向への投影面積である)
金型へのランダムマットの配置は例えば図1に示す通り、1枚または2〜10枚の重ね合わせたランダムマットを金型キャビティへ配置する。重ね合わせる場合、得ようとする成形体に応じて一部または全体を重ね合わせて用いる。ここでランダムマット端部の一部または全ての面が、金型キャビティエッジ部と接しないことが望ましい。また重ね合わせる場合、ランダムマットは全て同一の形状である必要はなく、それぞれ一部または全部が重ね合わされば良い。
[Hot press molding]
The case where impregnation-molding including the steps B-1) to B-4) is specifically described.
In B-1), the random mat is placed in the mold so that the charge rate represented by the following formula (3) is 5% or more and less than 100%.
Charge rate (%) = 100 × base material area (mm 2 ) / mold cavity projected area (mm 2 ) (3) (Here, the base material area is the projected area in the removal direction of all the arranged random mats. Yes, the mold cavity projected area is the projected area in the punching direction)
For example, as shown in FIG. 1, one or two to ten random mats are arranged in the mold cavity. When superposing, a part or the whole is superposed and used depending on the molded product to be obtained. Here, it is desirable that part or all of the surface of the end portion of the random mat is not in contact with the mold cavity edge portion. In the case of overlapping, the random mats need not all have the same shape, and may be partially or entirely overlapped.

ついでB-2)工程では、金型を熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度まで昇温しつつ、加圧する(第1プレス工程)。   Next, in step B-2), when the thermoplastic resin is crystalline, the mold is thermally decomposed to a temperature not lower than the melting point of the thermoplastic resin and lower than the thermal decomposition temperature, and in the case of amorphous, not lower than the glass transition temperature of the thermoplastic resin. Pressurization is performed while raising the temperature to below the temperature (first pressing step).

次いでB-3)工程では、1段以上であり、最終段の圧力が第1プレス工程の圧力の1.2倍〜100倍となるような第2プレス工程を行う。   Next, in step B-3), a second pressing step is performed in which the number of steps is one or more and the pressure in the final step is 1.2 to 100 times the pressure in the first pressing step.

第1プレス工程は、ランダムマットを第1目標圧力まで加圧し、好ましくは0.5〜20分保持して、熱可塑性樹脂を熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度まで暖める。次いで、第2プレス工程に移る間の時間は成形機の性能により適宜選択できるが、成形する時間を短縮する為、1〜10秒であることが望ましい。   In the first pressing step, the random mat is pressurized to the first target pressure, and is preferably held for 0.5 to 20 minutes. If the thermoplastic resin is crystalline, the thermoplastic resin is thermally decomposed to a temperature equal to or higher than the melting point of the thermoplastic resin. When it is amorphous, it is warmed to a temperature that is not lower than the glass transition temperature of the thermoplastic resin and lower than the thermal decomposition temperature. Next, the time during which the process proceeds to the second pressing step can be appropriately selected depending on the performance of the molding machine, but is preferably 1 to 10 seconds in order to reduce the molding time.

第2プレス工程は、1段または多段の加圧を行う工程であるが、成形の簡略化の目的では1段であることが好ましい。第2プレス工程の金型温度は、第1プレス工程における金型温度と同じでも、1℃以上熱分解温度未満まで昇温させても良い。第2プレス工程が多段である場合は後段ほど昇温させてもあるいは冷却させても良く、昇温と冷却を交互に施しても良い。   The second pressing step is a step of performing one-stage or multi-stage pressurization, but it is preferably one stage for the purpose of simplifying the molding. The mold temperature in the second pressing step may be the same as the mold temperature in the first pressing step or may be raised to 1 ° C. or higher and lower than the thermal decomposition temperature. When the second pressing step is multistage, the temperature may be raised or cooled as the latter stage, and the temperature raising and cooling may be performed alternately.

第2プレス工程の合計のプレス時間は特に限定はないが、成形時間の短縮の観点から0.5〜10分であることが好ましい。   The total pressing time in the second pressing step is not particularly limited, but is preferably 0.5 to 10 minutes from the viewpoint of shortening the molding time.

また第1プレス工程の目標圧力は0.3MPa〜1.0MPa、好ましくは0.5MPa〜0.7MPaである。第2プレス工程の最終目標圧力は成形機の性能により適宜選択できるが、好ましくは1〜100MPaであり、より好ましくは2〜10MPa、より好ましくは2〜5MPaである。第2プレス工程の最終目標圧力は第1プレス工程の1.2〜100倍の圧力である。すなわちB−2〜B−3における成形圧力が0.3MPa〜100MPaであることが好ましい。   The target pressure in the first pressing step is 0.3 MPa to 1.0 MPa, preferably 0.5 MPa to 0.7 MPa. Although the final target pressure in the second pressing step can be appropriately selected depending on the performance of the molding machine, it is preferably 1 to 100 MPa, more preferably 2 to 10 MPa, and more preferably 2 to 5 MPa. The final target pressure in the second pressing step is 1.2 to 100 times that in the first pressing step. That is, it is preferable that the molding pressure in B-2 to B-3 is 0.3 MPa to 100 MPa.

第2プレス工程後、B−4)工程で、冷却媒体を使用して金型を熱可塑性樹脂の結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下まで冷却し成形体を得る。冷却後の温度は、熱可塑性樹脂の結晶性の場合は融点−200℃以上融点−10℃以下、非晶性の場合はガラス転移温度−200℃以上、ガラス転移温度−10℃以下とすることが好ましい。冷却工程に要する時間は冷却条件等により適宜コントロールできるが、成形時間の短縮の観点から0.5〜5分であることが好ましい。   After the second pressing step, in step B-4), using a cooling medium, the mold is cooled to the melting point or lower when the thermoplastic resin is crystalline, and to the glass transition temperature or lower when the thermoplastic resin is amorphous. obtain. The temperature after cooling should be a melting point of −200 ° C. or higher and a melting point of −10 ° C. or lower when the thermoplastic resin is crystalline, and a glass transition temperature of −200 ° C. or higher and a glass transition temperature of −10 ° C. or lower when amorphous. Is preferred. The time required for the cooling step can be appropriately controlled depending on the cooling conditions and the like, but is preferably 0.5 to 5 minutes from the viewpoint of shortening the molding time.

金型の冷却方法にとくに限定はなく、金型内温調回路に冷却媒体を流すなどの方法により適宜冷却すれば良い。   There is no particular limitation on the mold cooling method, and the mold may be appropriately cooled by a method of flowing a cooling medium through the mold temperature control circuit.

チャージ率が5%未満の場合、成形体に割れやシワの発生、反りがなく金型末端まで繊維が充填されている成形体を得ることができるが、水平部で実質的に面内2次元ランダム配向する層が確保できない領域が増える為、物性発現率や意匠性が低下する傾向にある。   When the charge rate is less than 5%, it is possible to obtain a molded body in which the molded body is filled with fibers up to the end of the mold without generation of cracks, wrinkles, and warpage. Since a region where a randomly oriented layer cannot be secured increases, the physical property expression rate and the design property tend to be lowered.

金型中でのランダムマットの厚みは得ようとする形状の厚みに合わせて適宜選択できる。但し、流動を適切に行う為に、ランダムマットの厚みまたはランダムマットを積層した厚みの総和が0.5mm以上であることが好ましい。   The thickness of the random mat in the mold can be appropriately selected according to the thickness of the shape to be obtained. However, in order to appropriately flow, it is preferable that the thickness of the random mat or the total thickness of the stacked random mats is 0.5 mm or more.

以下、本発明を実施例を用いて具体的に説明するが、本発明はこれらに限定されるものではない。
1)ランダムマットにおける強化繊維束の分析
強化繊維束(A)のマットの繊維全量に対する割合の求め方は、以下の通りである。
ランダムマットを100mm×100mmに切り出し、厚み(Ta)と重量を測定する(Wa)。
切り出したマットより、繊維束をピンセットで全て取り出し、繊維束を太さ毎に分類する。本実施例では分類は、太さ0.2mm程度単位で分類した。
分類毎に、全ての繊維束の長さ(Li)と重量(Wi)、繊維束数(I)を測定し、記録する。ピンセットにて取り出す事ができない程度に繊維束が小さいものについては、まとめて最後に重量を測定する(Wk)。このとき、1/1000gまで測定可能な天秤を用いる。なお、特に強化繊維を炭素繊維とした場合や、繊維長が短い場合には、繊維束の重量が小さく、測定が困難になる。こういった場合には、分類した繊維束を複数本まとめて重量を測定する。
測定後、以下の計算を行う。使用している強化繊維の繊度(F)より、個々の繊維束の繊維本数(Ni)は次式により求めた。
Ni=Wi/(Li×F)。
強化繊維束(A)中の平均繊維数(N)は以下の式により求める。
N=ΣNi/I
また、個々の繊維束の体積(Vi)及び、強化繊維束(A)の繊維全体に対する割合(VR)は、使用した強化繊維の繊維比重(ρ)を用いて次式により求めた。
Vi=Wi/ρ
VR=ΣVi/Va×100
ここで、Vaは切り出したマットの体積であり、Va=100×100×Ta
EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these.
1) Analysis of reinforcing fiber bundle in random mat The method for obtaining the ratio of reinforcing fiber bundle (A) to the total amount of fibers in the mat is as follows.
A random mat is cut into 100 mm × 100 mm, and the thickness (Ta) and weight are measured (Wa).
From the cut out mat, all the fiber bundles are taken out with tweezers, and the fiber bundles are classified by thickness. In this embodiment, the classification is performed in units of about 0.2 mm in thickness.
For each classification, the length (Li) and weight (Wi) of all fiber bundles and the number of fiber bundles (I) are measured and recorded. When the fiber bundle is so small that it cannot be taken out by tweezers, the weight is finally measured together (Wk). At this time, a balance capable of measuring up to 1/1000 g is used. In particular, when the reinforcing fiber is a carbon fiber, or when the fiber length is short, the weight of the fiber bundle is small and measurement is difficult. In such a case, a plurality of classified fiber bundles are collected and the weight is measured.
After the measurement, the following calculation is performed. From the fineness (F) of the reinforcing fiber used, the number of fibers (Ni) of each fiber bundle was obtained by the following equation.
Ni = Wi / (Li × F).
The average number of fibers (N) in the reinforcing fiber bundle (A) is determined by the following formula.
N = ΣNi / I
Moreover, the volume (Vi) of each fiber bundle and the ratio (VR) of the reinforcing fiber bundle (A) to the whole fiber were obtained by the following formula using the fiber specific gravity (ρ) of the used reinforcing fiber.
Vi = Wi / ρ
VR = ΣVi / Va × 100
Here, Va is the volume of the cut out mat, Va = 100 × 100 × Ta

2)成形体における強化繊維束分析
成形体については、500℃×1時間、炉内にて樹脂を燃焼除去した後、上記のランダムマットにおける方法と同様にして測定した。
2) Reinforcing fiber bundle analysis in molded body The molded body was measured in the same manner as in the above random mat after the resin was burned and removed in a furnace at 500 ° C for 1 hour.

3)成形体における繊維配向の分析
複合材料を成形した後、繊維の等方性は、成形板の任意の方向、及びこれと直行する方向を基準とする引張り試験を行い、引張弾性率を測定し、測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)を測定する事で確認した。弾性率の比が1に近いほど、等方性に優れる材料である。
3) Analysis of fiber orientation in the molded body After molding the composite material, the fiber isotropy is measured by conducting a tensile test based on any direction of the molded plate and the direction orthogonal thereto, and measuring the tensile modulus. It was confirmed by measuring a ratio (Eδ) obtained by dividing a larger value of the measured tensile modulus by a smaller value. The closer the modulus ratio is to 1, the better the material is.

4)成形体に含まれる強化繊維の平均繊維長の分析
得られた成形体に含まれる強化繊維平均繊維長は、500℃×1時間程度、炉内にて樹脂を除去した後、無作為に抽出した強化繊維100本の長さをルーペで1mm単位まで測定して記録し、測定した全ての強化繊維の長さ(Li)から、次式により平均繊維長(La)を求めた。
La=ΣLi/100
4) Analysis of the average fiber length of the reinforcing fibers contained in the molded body The average fiber length of the reinforcing fibers contained in the obtained molded body was randomly determined after removing the resin in the furnace for about 500 ° C x 1 hour. The length of 100 extracted reinforcing fibers was measured and recorded to the 1 mm unit with a magnifying glass, and the average fiber length (La) was determined from the measured lengths (Li) of all the reinforcing fibers by the following formula.
La = ΣLi / 100

5)成形体における繊維体積含有率の分析
成形体を500℃×1時間、炉内にて樹脂を燃焼除去し、処理前後の試料の重量を秤量することによって繊維分と樹脂分の重量を算出した。次に、各成分の比重を用いて、繊維体積含有率を算出した。
5) Analysis of fiber volume content in the molded body The molded body was subjected to combustion removal in the furnace at 500 ° C. for 1 hour, and the weight of the fiber and the resin was calculated by weighing the sample before and after the treatment. did. Next, the fiber volume content was calculated using the specific gravity of each component.

6)充填性評価
ランダムマットおよび複合材料の流動性や成形性を評価する目的で、成形体の外観、特にリブやボスの端部を目視評価した。リブやボスの端部まで材料が充填され、成形体に欠陥が見られない場合を○、わずかに欠陥が見られる場合を△、充填が不十分で成形体に明らかな欠陥がある場合を×とした。
6) Fillability evaluation For the purpose of evaluating the fluidity and moldability of the random mat and the composite material, the appearance of the molded body, particularly the ends of ribs and bosses, was visually evaluated. ○ When the material is filled up to the end of the rib or boss and there are no defects in the molded body, △ when there is a slight defect △, when the filling is insufficient and there are obvious defects in the molded body × It was.

7)寸法安定性の評価
寸法安定性の尺度として反りの有無を評価した。成形後、十分に放置して室温まで降温した成形体を表面が平らな台の上において反りを確認した。反りが1mm未満を○、1〜5mmを△、5mm以上を×とした。
7) Evaluation of dimensional stability As a measure of dimensional stability, the presence or absence of warpage was evaluated. After molding, the molded body, which was sufficiently left to cool to room temperature, was checked for warpage on a flat surface. A warp of less than 1 mm was indicated by ◯, 1-5 mm by Δ, and 5 mm or more by x.

[参考例1]
炭素繊維(東邦テナックス社製:テナックスSTS40−24KS(繊維径7μm、繊維幅10mm))を20mm幅に開繊しながら、繊維長10mmにカットし、炭素繊維の供給量を301g/minでテーパー管内に導入し、テーパー管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布した。またマトリックス樹脂として、平均粒径が約710μmに冷凍粉砕したポリカーボネート樹脂(帝人化成社製のポリカーボネート:パンライトL−1225L ガラス転移温度145〜150℃、熱分解温度350℃)を480g/minでテーパー管内に供給し、炭素繊維と同時に散布することで、平均繊維長10mmの炭素繊維とポリカーボネートが混合された、厚み1mm程度のランダムマットを得た。得られたランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長(La)は10mm、式(3)で定義される臨界単糸数は86であり、強化繊維束(A)について、マットの繊維全量に対する割合は35%、強化繊維束(A)中の平均繊維数(N)は240であった。
[Reference Example 1]
While opening carbon fiber (manufactured by Toho Tenax Co., Ltd .: Tenax STS40-24KS (fiber diameter 7 μm, fiber width 10 mm)) to a width of 20 mm, the fiber length is cut to 10 mm, and the supply amount of carbon fiber is 301 g / min in a tapered tube The air was blown onto the carbon fiber in the taper tube, and the fiber bundle was partially opened to spread on the table installed at the lower part of the taper tube outlet. Further, as a matrix resin, a polycarbonate resin (polycarbonate manufactured by Teijin Kasei Co., Ltd .: Panlite L-1225L, glass transition temperature 145 to 150 ° C., thermal decomposition temperature 350 ° C.) tapered to an average particle size of about 710 μm is tapered at 480 g / min. A random mat having a thickness of about 1 mm, in which carbon fibers having an average fiber length of 10 mm and polycarbonate were mixed, was obtained by being supplied into the tube and sprayed simultaneously with the carbon fibers. When the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) of the obtained random mat were examined, the average fiber length (La) was defined as 10 mm and the formula (3). The number of critical single yarns was 86, and with respect to the reinforcing fiber bundle (A), the ratio of the mat to the total amount of fibers was 35%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 240.

[参考例2]
炭素繊維(東邦テナックス社製:テナックスIMS60−12K(平均繊維径5μm、繊維幅6mm))を長さ20mmにカットし、炭素繊維の供給量を1222g/minでテーパー管内に導入し、テーパー管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布した。またマトリックス樹脂として、2mmにドライカットしたPA66繊維(旭化成せんい製のポリアミド66繊維:T5ナイロン(繊度1400dtex)融点260℃、熱分解温度約310℃)を3000g/minでテーパー管内に供給し、炭素繊維と同時に散布することで、平均繊維長20mmの炭素繊維とポリアミド66が混合された、厚み10mm程度のランダムマットを得た。得られたランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長は20mm、式(3)で定義される臨界単糸数は120であり、強化繊維束(A)について、マットの繊維全量に対する割合は86%、強化繊維束(A)中の平均繊維数(N)は900であった。
[Reference Example 2]
Carbon fiber (manufactured by Toho Tenax Co., Ltd .: Tenax IMS60-12K (average fiber diameter 5 μm, fiber width 6 mm)) is cut to a length of 20 mm, and the carbon fiber supply rate is introduced into the tapered tube at 1222 g / min. The air was blown onto the carbon fiber, and the fiber bundle was partially opened while being spread on a table installed at the lower part of the tapered tube outlet. Further, as a matrix resin, PA66 fiber (polyamide 66 fiber manufactured by Asahi Kasei Fiber: T5 nylon (fineness: 1400 dtex) melting point: 260 ° C., thermal decomposition temperature: about 310 ° C.) supplied to the taper tube at 3000 g / min is supplied into the tapered tube as carbon resin. By dispersing simultaneously with the fibers, a random mat having a thickness of about 10 mm in which carbon fibers having an average fiber length of 20 mm and polyamide 66 were mixed was obtained. When the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) of the obtained random mat were examined, the average fiber length was 20 mm and the critical unit defined by the formula (3) was used. The number of yarns was 120. Regarding the reinforcing fiber bundle (A), the ratio of the mat to the total amount of fibers was 86%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 900.

[参考例3]
ガラス繊維(日本電気硝子社製:EX−2500(平均繊維径15μm、繊維幅9mm)を長さ50mmにカットし、ガラス繊維の供給量を412g/minでテーパー管内に導入し、テーパー管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布した。またマトリックス樹脂として、平均粒径が約1mmに冷凍粉砕したポリプロピレン樹脂(プライムポリマー製のポリプロピレン:プライムポリプロJ108M 融点170℃、熱分解温度約280℃)を600g/minでテーパー管内に供給し、ガラス繊維と同時に散布することで、平均繊維長50mmのガラス繊維とPPが混合された、厚み1mm程度のランダムマットを得た。得られたランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長(La)は50mm、式(3)で定義される臨界単糸数は40であり、強化繊維束(A)について、マットの繊維全量に対する割合は68%、強化繊維束(A)中の平均繊維数(N)は60であった。
[Reference Example 3]
Glass fiber (manufactured by Nippon Electric Glass Co., Ltd .: EX-2500 (average fiber diameter 15 μm, fiber width 9 mm) is cut into a length of 50 mm, the glass fiber supply rate is 412 g / min, introduced into the taper tube, and the air in the taper tube The fiber bundle was sprayed onto a carbon fiber and partially spread to spread it on a table installed at the bottom of the taper tube outlet, and as a matrix resin, a polypropylene resin (prime) freeze-ground to an average particle size of about 1 mm was used. Polymer polypropylene: Prime Polypro J108M Melting point 170 ° C., thermal decomposition temperature 280 ° C.) is fed into the tapered tube at 600 g / min and sprayed simultaneously with the glass fibers to mix glass fibers with an average fiber length of 50 mm and PP. A random mat having a thickness of about 1 mm was obtained, and the average fiber length (L ) And the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N), the average fiber length (La) is 50 mm, the critical single yarn number defined by the formula (3) is 40, and the reinforcing fibers Regarding the bundle (A), the ratio of the mat to the total amount of fibers was 68%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 60.

[参考例4]
炭素繊維(東邦テナックス社製:テナックスSTS40−24KS(繊維径7μm、繊維幅10mm))を20mm幅に開繊しながら、繊維長10mmにカットし、炭素繊維の供給量を301g/minでテーパー管内に導入し、テーパー管内では空気を炭素繊維に吹き付けず、テーパー管出口の下部に設置したテーブル上に散布した。またマトリックス樹脂として、平均粒径が約710μmに冷凍粉砕したポリカーボネート樹脂(帝人化成製のポリカーボネート:パンライトL−1225L ガラス転移温度145〜150℃、熱分解温度350℃)を480g/minでテーパー管内に供給し、炭素繊維と同時に散布することで、平均繊維長10mmの炭素繊維とポリカーボネートが混合された、厚み1mm程度のランダムマットを得た。得られたランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長(La)は10mm、式(3)で定義される臨界単糸数は86であり、強化繊維束(A)について、マットの繊維全量に対する割合は100%、強化繊維束(A)中の平均繊維数(N)は24000であった。
[Reference Example 4]
While opening carbon fiber (manufactured by Toho Tenax Co., Ltd .: Tenax STS40-24KS (fiber diameter 7 μm, fiber width 10 mm)) to a width of 20 mm, the fiber length is cut to 10 mm, and the supply amount of carbon fiber is 301 g / min in a tapered tube In the taper tube, air was not sprayed on the carbon fiber, but was sprayed on a table installed at the lower part of the taper tube outlet. Further, as a matrix resin, a polycarbonate resin (polycarbonate manufactured by Teijin Chemicals: Panlite L-1225L, glass transition temperature 145 to 150 ° C., thermal decomposition temperature 350 ° C.) frozen and pulverized to an average particle size of about 710 μm in a tapered tube at 480 g / min. And a random mat having a thickness of about 1 mm, in which carbon fibers having an average fiber length of 10 mm and polycarbonate were mixed, was obtained. When the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) of the obtained random mat were examined, the average fiber length (La) was defined as 10 mm and the formula (3). The number of critical single yarns was 86, and with respect to the reinforcing fiber bundle (A), the ratio of the mat to the total amount of fibers was 100%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 24000.

参考例1〜4で作製したランダムマットを川崎油工製の500t油圧式プレス機を用いて含浸、成形した。成形用金型は図1、2に示す金型を用いた。   The random mats produced in Reference Examples 1 to 4 were impregnated and molded using a 500-ton hydraulic press manufactured by Kawasaki Oil Works. The mold shown in FIGS. 1 and 2 was used as the mold for molding.

[実施例1]
参考例1で作製したランダムマットを、含浸用の平板金型をセットした川崎油工製プレス機を用いて300℃、4MPaで5分間ホットプレスした後、50℃まで冷却して、樹脂含浸度99%、厚み0.6mm、繊維体積含有率30%の複合材料基材を得た。
次に、得られた複合材料基材をNGKキルンテック製のIRオーブンを用いて300℃に加熱したものを4枚重ね、金型温度を120℃に設定した図1の金型の水平部に、チャージ率80%となる様に配置して10MPaの圧力で60秒間コールドプレスした。
得られた成形体は、側壁および、それぞれのリブとボスの末端まで複合材料が充填されていた(○)。成形体の水平部、側壁、およびリブ部の引張弾性率を測定したところ、互いに直行する二方向の引張弾性率の比は1.04〜1.05であり、等方性を保持していることが確認された。成形体の水平部、およびボス部の繊維体積含有率を測定した結果、共に30%で差はなかった。また、成形体の反りは1mm以下であり、良好な寸法安定性を示した(○)。
[Example 1]
The random mat produced in Reference Example 1 was hot-pressed at 300 ° C. and 4 MPa for 5 minutes using a press machine manufactured by Kawasaki Yoko Co., Ltd. in which a flat plate mold for impregnation was set, and then cooled to 50 ° C. A composite material base material of 99%, a thickness of 0.6 mm, and a fiber volume content of 30% was obtained.
Next, the obtained composite material base material was heated to 300 ° C. using an IR oven made by NGK Kilntech, and four layers were stacked. On the horizontal part of the mold shown in FIG. The battery was placed at a charge rate of 80% and cold pressed at a pressure of 10 MPa for 60 seconds.
The obtained molded body was filled with the composite material up to the side walls and the ends of the respective ribs and bosses (◯). When the tensile elastic modulus of the horizontal part, the side wall, and the rib part of the molded body was measured, the ratio of the tensile elastic modulus in two directions perpendicular to each other was 1.04 to 1.05, and the isotropic property was maintained. It was confirmed. As a result of measuring the fiber volume content of the horizontal part of the molded body and the boss part, both were 30% and there was no difference. Further, the warpage of the molded body was 1 mm or less, and good dimensional stability was shown (◯).

[実施例2]
参考例2で作製したランダムマットを、含浸用の平板金型をセットした川崎油工製プレス機を用いて280℃、3MPaで5分間ホットプレスした後、50℃まで冷却して、樹脂含浸度99%、厚み3.2mm、繊維体積含有率20%の複合材料基材を得た。
次に、得られた複合材料基材をNGKキルンテック製のIRオーブンを用いて280℃に加熱したものを、金型温度を100℃に設定した図1の金型の水平部に、チャージ率60%となる様に配置して10MPaの圧力で60秒間コールドプレスした。
得られた成形体は、側壁および、それぞれのリブとボスの末端まで複合材料が充填されていた(○)。成形体の水平部、側壁、およびリブ部の引張弾性率を測定したところ、互いに直行する二方向の引張弾性率の比は1.09〜1.10であり、等方性を保持していることが確認された。成形体の水平部、およびボス部の繊維体積含有率を測定した結果、共に20%で差はなかった。また、成形体の反りは1mm以下であり、良好な寸法安定性を示した(○)。
[Example 2]
The random mat produced in Reference Example 2 was hot-pressed at 280 ° C. and 3 MPa for 5 minutes using a press machine manufactured by Kawasaki Yoko Co., Ltd. in which a flat plate mold for impregnation was set, and then cooled to 50 ° C. A composite material base material of 99%, a thickness of 3.2 mm, and a fiber volume content of 20% was obtained.
Next, the obtained composite material base material was heated to 280 ° C. using an IR oven made by NGK Kiln Tech, and the charge rate of 60 was applied to the horizontal part of the mold shown in FIG. % Was cold pressed for 60 seconds at a pressure of 10 MPa.
The obtained molded body was filled with the composite material up to the side walls and the ends of the respective ribs and bosses (◯). When the tensile elastic modulus of the horizontal part, the side wall, and the rib part of the molded body was measured, the ratio of the tensile elastic modulus in two directions perpendicular to each other was 1.09 to 1.10. It was confirmed. As a result of measuring the fiber volume content of the horizontal part of the molded body and the boss part, both were 20% and there was no difference. Further, the warpage of the molded body was 1 mm or less, and good dimensional stability was shown (◯).

[実施例3]
参考例3で作製したランダムマットを、含浸用の平板金型をセットした川崎油工製プレス機を用いて220℃、3MPaで5分間ホットプレスした後、50℃まで冷却して、樹脂含浸度99%、厚み0.6mm、繊維体積含有率20%の複合材料基材を得た。
次に、得られた複合材料基材をNGKキルンテック製のIRオーブンを用いて220℃に加熱したものを4枚重ね、金型温度を100℃に設定した図1の金型の水平部に、チャージ率80%となる様に配置して10MPaの圧力で60秒間コールドプレスした。
得られた成形体は、側壁および、それぞれのリブとボスの末端まで複合材料が充填されていた(○)。成形体の水平部、側壁、およびリブ部の引張弾性率を測定したところ、互いに直行する二方向の引張弾性率の比は1.07〜1.08であり、等方性を保持していることが確認された。成形体の水平部、およびボス部の繊維体積含有率を測定した結果、共に20%で差はなかった。また、成形体の反りは1mm以下であり、良好な寸法安定性を示した(○)。
[Example 3]
The random mat produced in Reference Example 3 was hot-pressed at 220 ° C. and 3 MPa for 5 minutes using a press machine manufactured by Kawasaki Yoko Co., Ltd. in which a flat plate mold for impregnation was set, then cooled to 50 ° C., and the degree of resin impregnation A composite material base material of 99%, a thickness of 0.6 mm, and a fiber volume content of 20% was obtained.
Next, the obtained composite material base material was heated up to 220 ° C. using an IR oven made by NGK Kiln Tech, 4 sheets were stacked, and the mold temperature was set to 100 ° C. on the horizontal part of the mold in FIG. The battery was placed at a charge rate of 80% and cold pressed at a pressure of 10 MPa for 60 seconds.
The obtained molded body was filled with the composite material up to the side walls and the ends of the respective ribs and bosses (◯). When the tensile elastic modulus of the horizontal part, the side wall, and the rib part of the molded body was measured, the ratio of the tensile elastic modulus in two directions perpendicular to each other was 1.07 to 1.08, and the isotropic property was maintained. It was confirmed. As a result of measuring the fiber volume content of the horizontal part of the molded body and the boss part, both were 20% and there was no difference. Further, the warpage of the molded body was 1 mm or less, and good dimensional stability was shown (◯).

[実施例4]
参考例1で作製したランダムマットを4枚重ね、図1の金型をセットした川崎油工製プレス機の金型水平部にチャージ率80%となるように配置して、300℃、10MPaで7分間ホットプレスした後、50℃まで冷却して、樹脂含浸度99%、厚み2.0mm、繊維体積含有率30%の成形体を得た。
得られた成形体は、側壁および、それぞれのリブとボスの末端まで複合材料が充填されていた(○)。成形体の水平部、側壁、およびリブ部の引張弾性率を測定したところ、互いに直行する二方向の引張弾性率の比は1.12〜1.13であり、等方性を保持していることが確認された。成形体の水平部、およびボス部の繊維体積含有率を測定した結果、共に30%で差はなかった。また、成形体の反りは約3mmであり、比較的良好な寸法安定性を示した(△)。
[Example 4]
Four random mats produced in Reference Example 1 were stacked and placed at a mold horizontal part of a Kawasaki Yoko press machine set with the mold of FIG. 1 at a charge rate of 80% at 300 ° C. and 10 MPa. After hot pressing for 7 minutes, the product was cooled to 50 ° C. to obtain a molded article having a resin impregnation degree of 99%, a thickness of 2.0 mm, and a fiber volume content of 30%.
The obtained molded body was filled with the composite material up to the side walls and the ends of the respective ribs and bosses (◯). When the tensile elastic modulus of the horizontal part, the side wall, and the rib part of the molded body was measured, the ratio of the tensile elastic modulus in two directions perpendicular to each other was 1.12 to 1.13, and the isotropic property was maintained. It was confirmed. As a result of measuring the fiber volume content of the horizontal part of the molded body and the boss part, both were 30% and there was no difference. Further, the warpage of the molded body was about 3 mm, and relatively good dimensional stability was shown (Δ).

[比較例1]
参考例4で作製したランダムマットを、含浸用の平板金型をセットした川崎油工製プレス機を用いて300℃、4MPaで5分間ホットプレスした後、50℃まで冷却して、樹脂含浸度99%、厚み0.6mm、繊維体積含有率30%の複合材料基材を得た。
次に、得られた複合材料基材をNGKキルンテック製のIRオーブンを用いて300℃に加熱したものを4枚重ね、金型温度を120℃に設定した図1の金型の水平部に、チャージ率80%となる様に配置して10MPaの圧力で60秒間コールドプレスした。
得られた成形体は、側壁、リブ、ボスの端部に未充填化所が確認された(×)。成形体の水平部、側壁、およびリブ部の引張弾性率を測定したところ、互いに直行する二方向の引張弾性率の比は2.05〜2.35であり、異方性であった。成形体の水平部、およびボス部の繊維体積含有率を測定した結果、水平部30%に対し、ボスは24%で差が見られた。また、成形体の反りが約10mmあり、寸法安定性に問題があった。(×)。
[Comparative Example 1]
The random mat produced in Reference Example 4 was hot-pressed at 300 ° C. and 4 MPa for 5 minutes using a press machine manufactured by Kawasaki Yoko Co., Ltd. in which a flat plate mold for impregnation was set, then cooled to 50 ° C., and the degree of resin impregnation A composite material base material of 99%, a thickness of 0.6 mm, and a fiber volume content of 30% was obtained.
Next, the obtained composite material base material was heated to 300 ° C. using an IR oven made by NGK Kilntech, and four layers were stacked. On the horizontal part of the mold shown in FIG. The battery was placed at a charge rate of 80% and cold pressed at a pressure of 10 MPa for 60 seconds.
As for the obtained molded object, the unfilling place was confirmed in the edge part of a side wall, a rib, and a boss | hub (x). When the tensile elastic modulus of the horizontal part, the side wall, and the rib part of the molded body was measured, the ratio of the tensile elastic modulus in two directions perpendicular to each other was 2.05 to 2.35, which was anisotropic. As a result of measuring the fiber volume content of the horizontal part of the molded body and the boss part, a difference was seen at 24% for the boss with respect to 30% for the horizontal part. Further, the warpage of the molded body was about 10 mm, and there was a problem in dimensional stability. (X).

Figure 0005749587
Figure 0005749587

1 水平部 長さ400mm、幅200mm、厚み2mm
2 側壁 高さ30mm、厚み2mm
3A リブ1 高さ30mm、厚み2mm
3B リブ2 高さ10〜30mm、厚み2mm
3C リブ3 高さ10〜30mm、厚み1mm
4A ボス1 高さ30mm、中空部径5mm、肉厚2mm
4B ボス2 高さ15mm、中空部径5mm、肉厚2mm
4C ボス3 高さ30mm、中空部径5mm、肉厚1mm
4D ボス4 高さ15mm、中空部径5mm、肉厚1mm
1 Horizontal part Length 400mm, width 200mm, thickness 2mm
2 Side wall height 30mm, thickness 2mm
3A Rib 1 Height 30mm, thickness 2mm
3B Rib 2 Height 10-30mm, thickness 2mm
3C Rib 3 Height 10-30mm, thickness 1mm
4A Boss 1 Height 30mm, Hollow part diameter 5mm, Wall thickness 2mm
4B Boss 2 Height 15mm, Hollow part diameter 5mm, Wall thickness 2mm
4C boss 3 height 30mm, hollow part diameter 5mm, wall thickness 1mm
4D boss 4 height 15mm, hollow part diameter 5mm, wall thickness 1mm

Claims (5)

平均繊維長10〜100mmの強化繊維と熱可塑性樹脂とから構成されるランダムマットについて、以下の工程A−1)〜A−3)を含んで含浸〜成形を行う、繊維強化複合材料からなる水平部に対して縦方向に伸びた立上部を有する成形体の製造方法であって、
A−1)ランダムマットを、熱可塑性樹脂が結晶性の場合は融点以上分解温度未満、非晶性の場合はガラス転移温度以上分解温度未満に加温し、加圧して熱可塑性樹脂を強化繊維束内に含浸させプリプレグを得る工程
A−2)A−1)で得られたプリプレグを、熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に温度調節された金型に、下記式(3)で表されるチャージ率5〜100%以下となるように配置し、加圧する工程
A−3)熱可塑性樹脂が結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下に金型温度を調節することにより成形を完結させる工
ンダムマットは、強化繊維が25〜3000g/mの目付けにて実質的に2次元ランダムに配向しており、式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)について、マットの繊維全量に対する割合が30Vol%以上90Vol%未満であり、かつ強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことを特徴とする繊維強化複合材料からなる水平部に対して縦方向に伸びた立上部を有する成形体の製造方法。
臨界単糸数=600/D (1)
0.7×10/D<N<6×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
チャージ率(%)=100×基材面積(mm2)/金型キャビティ投影面積(mm2)(3)
(ここで基材面積とは配置した全てのランダムマットまたはプリプレグの抜き方向への投影面積であり、金型キャビティ投影面積とは抜き方向への投影面積である)
For a random mat composed of a reinforcing fiber and a thermoplastic resin having an average fiber length of 10 to 100 mm, cormorants row impregnation-molding comprises the following steps A-1) ~A-3) , made of fiber-reinforced composite material A method for producing a molded body having an upright portion extending in a vertical direction with respect to a horizontal portion,
A-1) When the thermoplastic resin is crystalline, the random mat is heated above the melting point and below the decomposition temperature, and when amorphous, it is heated above the glass transition temperature and below the decomposition temperature, and pressurized to reinforce the thermoplastic resin. Step A-2) Obtaining a prepreg by impregnating the bundle The temperature of the prepreg obtained in A-1) is adjusted below the melting point when the thermoplastic resin is crystalline, and below the glass transition temperature when the thermoplastic resin is amorphous. Step A-3) in which the charging rate is 5 to 100% or less represented by the following formula (3) and pressurization is performed on the mold, and when the thermoplastic resin is crystalline, the melting point or less is amorphous. as engineering to complete the molding by adjusting the mold temperature to below the glass transition temperature in the case of
La Ndamumatto are oriented substantially two dimensional random in reinforced fiber is 25~3000g / m 2 basis weight, the reinforcing fiber bundle composed of a critical single yarn number or more as defined in the formula (1) (A ), The ratio of the mat to the total amount of fibers is 30 vol% or more and less than 90 vol%, and the average number of fibers (N) in the reinforcing fiber bundle (A) satisfies the following formula (2): The manufacturing method of the molded object which has an upright part extended to the vertical direction with respect to the horizontal part which consists of material.
Critical number of single yarns = 600 / D (1)
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
Charge rate (%) = 100 × base material area (mm 2 ) / mold cavity projected area (mm 2 ) (3)
(Here, the substrate area is the projected area in the extraction direction of all the arranged random mats or prepregs, and the mold cavity projected area is the projected area in the extraction direction.)
式(3)におけるチャージ率が50%以上90%以下である請求項1に記載の成形体の製造方法。   The manufacturing method of the molded object of Claim 1 whose charge rate in Formula (3) is 50% or more and 90% or less. 水平部に対して縦方向に伸びた立上部が、リブおよび/またはボス部である請求項1または2に記載の成形体の製造方法。   The method for producing a molded body according to claim 1 or 2, wherein the upright portions extending in the vertical direction with respect to the horizontal portion are ribs and / or boss portions. 強化繊維100重量部に対し、熱可塑性樹脂50〜1000重量部の繊維強化複合材料からなり、立上部とそれ以外の部位における繊維体積含有率(Vf)の大きいほうの値を小さい方の値で割った比が1.0〜1.2となる、請求項1〜3のいずれかに記載の製造方法で得られる成形体。   A fiber reinforced composite material of 50 to 1000 parts by weight of a thermoplastic resin with respect to 100 parts by weight of the reinforced fiber, and the smaller value of the fiber volume content (Vf) in the upright part and other parts. The molded object obtained by the manufacturing method in any one of Claims 1-3 used as the divided ratio 1.0-1.2. 水平部に対して縦方向に伸びた立上部を有する成形体であって、立上部のれぞれ任意の方向、及びこれと直交する方向についての引張弾性率の大きい方の値を小さい方の値で割った比(Eδ)が1.0から1.3となる、請求項4に記載の成形体A molded article having a raised portion extending longitudinally with respect to the horizontal portion, the raised portion of their respective arbitrary direction, and the smaller the larger of the tensile modulus in the direction perpendicular thereto The molded product according to claim 4, wherein the ratio (Eδ) divided by the value of 1.0 is from 1.3 to 1.3.
JP2011144424A 2011-06-29 2011-06-29 Lightweight molded body having an upright part and method for producing the same Active JP5749587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144424A JP5749587B2 (en) 2011-06-29 2011-06-29 Lightweight molded body having an upright part and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144424A JP5749587B2 (en) 2011-06-29 2011-06-29 Lightweight molded body having an upright part and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013010254A JP2013010254A (en) 2013-01-17
JP5749587B2 true JP5749587B2 (en) 2015-07-15

Family

ID=47684589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144424A Active JP5749587B2 (en) 2011-06-29 2011-06-29 Lightweight molded body having an upright part and method for producing the same

Country Status (1)

Country Link
JP (1) JP5749587B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136381B2 (en) * 2013-03-07 2017-05-31 東レ株式会社 Method for producing fiber-reinforced thermoplastic resin molded body
JP2014183246A (en) * 2013-03-21 2014-09-29 Panasonic Corp Electronic apparatus and automobile mounted therewith
JP2016533279A (en) * 2013-09-20 2016-10-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing shaped bodies
US9533437B2 (en) * 2014-06-20 2017-01-03 Teijin Limited Method for producing shaped product with opening, and shaped product
JP5853083B1 (en) * 2014-10-16 2016-02-09 翁慶隆 Manufacturing mold and manufacturing method for composite material ornaments
WO2017043186A1 (en) * 2015-09-08 2017-03-16 帝人株式会社 Molded article having hole, and method for producing same
CN110382195A (en) * 2017-03-01 2019-10-25 日产自动车株式会社 The manufacturing method of carbon-fiber reinforced resins formed body and the carbon-fiber reinforced resins formed body
WO2020081577A1 (en) * 2018-10-15 2020-04-23 Arris Composites Inc. Method and apparatus for composite rib and rib-and-sheet molding
JP7301289B2 (en) * 2019-08-29 2023-07-03 国立大学法人東海国立大学機構 Molded product manufacturing method
JP7472480B2 (en) 2019-12-10 2024-04-23 東レ株式会社 Manufacturing method of fiber reinforced plastic
JP7145472B1 (en) 2022-03-08 2022-10-03 株式会社河村機械工業所 Method for manufacturing molded article using fiber-reinforced thermoplastic resin composite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414543B (en) * 2006-02-24 2013-11-11 Toray Industries Fiber reinforced thermoplastic resin molded body, molding material, and process for manufacturing the same
JP2009191392A (en) * 2008-02-13 2009-08-27 Teijin Ltd Pitch-based carbon fiber filer and molded article using the same
JP4862913B2 (en) * 2009-03-31 2012-01-25 東レ株式会社 Prepregs and preforms
JP5564839B2 (en) * 2009-06-30 2014-08-06 東洋紡株式会社 Stamping molded products

Also Published As

Publication number Publication date
JP2013010254A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5749587B2 (en) Lightweight molded body having an upright part and method for producing the same
JP5735631B2 (en) Molded body made of fiber reinforced composite material
JP6170837B2 (en) Molded product with excellent surface design composed of fiber reinforced composite material
Erden et al. Fiber reinforced composites
JP5578290B1 (en) Molded body having hollow structure and method for producing the same
JP4862913B2 (en) Prepregs and preforms
JP6782582B2 (en) Fiber reinforced composite molded article and its manufacturing method
WO2013031860A1 (en) Molded body having rising surface, and method for producing same
WO2013080975A1 (en) Impact resistant member
JP4807477B2 (en) Manufacturing method of press-molded products
CN108431098B (en) Structural body
JP5749343B2 (en) Method for producing composite molded body having undercut portion
Prajapati et al. An experimental study on mechanical, thermal and flame-retardant properties of 3D-printed glass-fiber-reinforced polymer composites
JP2013056976A (en) Method of manufacturing molding composed of fiber-reinforced composite material
JP5801658B2 (en) Thin-walled molded product having uniform thickness and method for producing the same
JP5650559B2 (en) Method for producing composite molded body
JP5749572B2 (en) Method for producing molded body maintaining isotropic property
JP2013049150A (en) Method of manufacturing molding from random mat base material
JP7267466B2 (en) COLD-PRESS MOLDED PRODUCT CONTAINING CARBON FIBER AND GLASS FIBER, AND METHOD FOR MANUFACTURING THE SAME
JP5864166B2 (en) Molded body having smooth surface and uniform thickness, and method for producing the same
Prame Fracture properties of thermoplastic composites manufactured using additive manufacturing
JP5801661B2 (en) A lean manufacturing method for a molded body made of a fiber-reinforced composite material
JP2014098096A (en) Structural body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150