JP5650559B2 - Method for producing composite molded body - Google Patents

Method for producing composite molded body Download PDF

Info

Publication number
JP5650559B2
JP5650559B2 JP2011037018A JP2011037018A JP5650559B2 JP 5650559 B2 JP5650559 B2 JP 5650559B2 JP 2011037018 A JP2011037018 A JP 2011037018A JP 2011037018 A JP2011037018 A JP 2011037018A JP 5650559 B2 JP5650559 B2 JP 5650559B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
composite molded
fibers
reinforcing
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011037018A
Other languages
Japanese (ja)
Other versions
JP2012172104A (en
Inventor
裕規 長倉
裕規 長倉
大 佐藤
大 佐藤
杉山 亨
亨 杉山
路治 谷口
路治 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011037018A priority Critical patent/JP5650559B2/en
Publication of JP2012172104A publication Critical patent/JP2012172104A/en
Application granted granted Critical
Publication of JP5650559B2 publication Critical patent/JP5650559B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、強化繊維と熱可塑性樹脂とを含む複合成形体の製造方法であり、立体形状であっても繊維配向の乱れの少ない成形体を量産性に適した方法で得ることのできる複合成形体の製造方法である。   The present invention is a method for producing a composite molded body containing reinforcing fibers and a thermoplastic resin, and a composite molded body capable of obtaining a molded body with little disturbance in fiber orientation even in a three-dimensional shape by a method suitable for mass production. It is a manufacturing method of a body.

熱可塑性樹脂をマトリックスとした繊維強化複合材料は近年、その量産性、リサイクル性の期待から盛んに開発が行なわれている。
熱可塑性樹脂をマトリックスとした繊維強化複合材料の一般的な製造方法として含浸工程で平板を成形し、別工程で賦形を行なうコールドプレス(特許文献1)や熱可塑スタンピング成形(特許文献2)などが提案されている。
In recent years, fiber-reinforced composite materials using a thermoplastic resin as a matrix have been actively developed from the expectation of mass productivity and recyclability.
Cold press (Patent Document 1) and thermoplastic stamping molding (Patent Document 2), in which a flat plate is formed in an impregnation process and shaped in a separate process, as a general method for producing a fiber-reinforced composite material using a thermoplastic resin as a matrix Etc. have been proposed.

前者のコールドプレス成形では熱可塑性樹脂が含浸された平板を加熱炉にて熱可塑性樹脂が非晶性樹脂であるならばガラス転移以上の温度に、熱可塑性樹脂が結晶性樹脂であるならば融点以上の温度に加熱してプレス機まで搬送して賦形する製造方法であり、成形時間が大幅に短縮できる。その一方で金型温度がコールドであるため立体形状の賦形性が難しいことや、平板搬送時に掴みの部分が必要であるため賦形後のトリミングが必要となり工程の煩雑化や材料の無駄が出てしまう問題点があった。   In the former cold press molding, a flat plate impregnated with a thermoplastic resin is heated in a heating furnace to a temperature above the glass transition if the thermoplastic resin is an amorphous resin, or a melting point if the thermoplastic resin is a crystalline resin. It is a manufacturing method in which the material is heated to the above temperature, conveyed to a press machine and shaped, and the molding time can be greatly shortened. On the other hand, since the mold temperature is cold, it is difficult to form a three-dimensional shape, and since a grip portion is required when transporting a flat plate, trimming is necessary after shaping, which complicates the process and wastes materials. There was a problem that came out.

後者の熱可塑性スタンピング成形では熱可塑性樹脂が含浸されたチョップドファイバーを加熱炉で融点以上に加熱し金型へ投入後プレス機にて型締めを行い、型内にて繊維と樹脂を流動させて立体形状の製品を得る製造方法である。この成形では予め樹脂を含浸させた繊維を用いることにより、約1分程度という短い時間で成形体の製造が可能であるが型内を繊維と樹脂を流動させるために、薄肉ものが作れないことや流動させることによる繊維配向の乱れにより物性の制御が困難である等の問題があった。   In the latter thermoplastic stamping molding, a chopped fiber impregnated with a thermoplastic resin is heated to a temperature higher than the melting point in a heating furnace, put into a mold, and then clamped with a press machine to flow the fiber and resin in the mold. This is a manufacturing method for obtaining a three-dimensional product. In this molding, by using fibers pre-impregnated with resin, it is possible to produce a molded product in a short time of about 1 minute. However, because the fiber and resin flow in the mold, a thin-walled product cannot be made. In addition, there is a problem that it is difficult to control physical properties due to disturbance of fiber orientation caused by fluidization.

特公平5−23578号公報Japanese Patent Publication No. 5-23578 特公昭58−34292号公報Japanese Patent Publication No. 58-34292

本発明は、熱可塑性樹脂複合成形体の製造方法では困難であった含浸と賦形を同時に行なって複合成形体を得る方法であり、立体形状であっても繊維配向の乱れの少ない成形体を量産性に適した方法で得ることのできる複合成形体の製造方法である。   The present invention is a method for obtaining a composite molded body by simultaneously performing impregnation and shaping, which has been difficult in the method for producing a thermoplastic resin composite molded body, and a molded body with little disturbance in fiber orientation even in a three-dimensional shape. This is a method for producing a composite molded body that can be obtained by a method suitable for mass productivity.

本発明は繊維長5mm超100mm以下の強化繊維と繊維状および/または粒子状の熱可塑性樹脂とから構成される熱可塑性樹脂が未含浸状態の前駆体(以下前駆体という)をホットプレスすることで、同一の金型内でシワや材料の破断を起すことなく、立体形状であっても繊維のランダム性を維持したまま、含浸工程と立体形状の賦形を一括して施すことが可能な複合成形体の製造方法である。   The present invention hot-presses a precursor (hereinafter referred to as a precursor) that is not impregnated with a thermoplastic resin composed of a reinforcing fiber having a fiber length of more than 5 mm and not more than 100 mm and a fibrous and / or particulate thermoplastic resin. Thus, the impregnation step and the shaping of the three-dimensional shape can be performed collectively while maintaining the randomness of the fibers even in the three-dimensional shape without causing wrinkles or fracture of the material in the same mold. It is a manufacturing method of a composite molded object.

本発明の製造方法により、同一の金型内で、シワの発生や材料の破断を起すことなく、立体形状であっても、前駆体における強化繊維の二次元ランダム性を維持した成形体を提供することができる。本発明の製造方法により、含浸工程と立体形状の賦形が1工程ででき、トリミングなどの後工程も最小限にすることができる。本発明の製造方法により、各種構成部材、例えば自動車の内板(内装パネル等)、外板(ルーフ、ボンネット、バンパー等)、構成部材(ピラー、フロア等)、また各種電気製品の筐体、機械・装置のフレームや筐体といった立体形状の成形体を好ましく得ることができる。   The manufacturing method of the present invention provides a molded body that maintains the two-dimensional randomness of the reinforcing fibers in the precursor, even in a three-dimensional shape, without causing wrinkles or material breakage in the same mold. can do. According to the production method of the present invention, the impregnation step and the solid shape can be formed in one step, and subsequent steps such as trimming can be minimized. According to the manufacturing method of the present invention, various structural members, for example, inner plates (interior panels, etc.) of automobiles, outer plates (roofs, bonnets, bumpers, etc.), structural members (pillars, floors, etc.) A three-dimensional molded body such as a frame or housing of a machine / device can be preferably obtained.

実施例1、2の製品平面図Product plan view of Examples 1 and 2 実施例3の製品平面図Product top view of Example 3 実施例で用いた金型のシェアエッジ部分の模式図Schematic diagram of the shear edge part of the mold used in the example

[前駆体]
本発明の製造方法に用いる熱可塑性樹脂が未含浸状態の前駆体(以下前駆体)は、熱可塑性樹脂と強化繊維を2次元的に配置した複合体であり、熱可塑性樹脂が強化繊維中に分散はしているが含浸はしていない状態である。
前駆体を構成する強化繊維として炭素繊維、ガラス繊維、アラミド繊維を使用することができる。これらは単独または、2種類以上を併用して使用することも可能である。特に軽量性、強度、剛性に効果の大きい炭素繊維が好ましい。
[precursor]
The precursor in which the thermoplastic resin used in the production method of the present invention is not impregnated (hereinafter referred to as precursor) is a composite in which a thermoplastic resin and a reinforcing fiber are two-dimensionally arranged, and the thermoplastic resin is contained in the reinforcing fiber. It is dispersed but not impregnated.
Carbon fibers, glass fibers, and aramid fibers can be used as reinforcing fibers constituting the precursor. These can be used alone or in combination of two or more. In particular, a carbon fiber having a large effect on lightness, strength, and rigidity is preferable.

前駆体における強化繊維の形態は不連続であり、実質的に二次元ランダムもしくは特定の向きに配向している繊維とすることが好ましい。さらに、立体賦形のし易さから実質的に二次元ランダム配向がより好ましい。
強化繊維の平均繊維長は、5mm超100mm以下である。ある程度長い強化繊維を含んで強化機能が発現できることから、好ましくは強化繊維の平均繊維長が10mm超60mm以下が好ましい。
The form of the reinforcing fiber in the precursor is discontinuous, and it is preferable that the fiber is substantially two-dimensional random or oriented in a specific direction. Furthermore, the two-dimensional random orientation is more preferable because of the ease of three-dimensional shaping.
The average fiber length of the reinforcing fibers is more than 5 mm and not more than 100 mm. Since the reinforcing function can be expressed by including a long reinforcing fiber to some extent, the average fiber length of the reinforcing fiber is preferably more than 10 mm and 60 mm or less.

強化繊維が炭素繊維の場合、平均繊維径は好ましくは3〜12μmであり、より好ましくは5〜7μmである。一般的に、炭素繊維は、数千〜数万本のフィラメントが集合した繊維束となっている。特に薄肉のコンポジットを得る場合、炭素繊維を繊維束のまま使用すると、繊維の交絡部が局部的に厚くなり、薄肉のものが得られない。そのため、炭素繊維を開繊して使用することが重要となる。本発明により機械強度に優れた複合成形体を得ようとする場合、熱可塑性樹脂マトリクス中の強化繊維の開繊程度をコントロールし、特定本数以上の強化繊維からなる強化繊維束と、それ以外の開繊された強化繊維を特定の割合で含むことが望ましい。すなわち、前駆体においては、式(1)
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
で定義する臨界単糸数以上で構成される強化繊維束(A)について、繊維全量に対する割合が30Vol%以上90Vol%未満であることが、優れた機械物性を得る目的において好ましい。前駆体中には、強化繊維束(A)以外の強化繊維として、単糸の状態または臨界単糸数未満で構成される繊維束が存在する。機械物性に優れた成形体を得ようとする場合の、強化繊維束(A)の割合はより好ましくは30Vol%以上80Vol%未満である。
When the reinforcing fiber is a carbon fiber, the average fiber diameter is preferably 3 to 12 μm, more preferably 5 to 7 μm. Generally, carbon fiber is a fiber bundle in which thousands to tens of thousands of filaments are gathered. In particular, when a thin-walled composite is obtained, if carbon fibers are used in the form of fiber bundles, the entangled portion of the fibers becomes locally thick, and a thin-walled one cannot be obtained. Therefore, it is important to open and use the carbon fiber. When trying to obtain a composite molded article having excellent mechanical strength according to the present invention, the degree of opening of the reinforcing fibers in the thermoplastic resin matrix is controlled, and a reinforcing fiber bundle composed of reinforcing fibers of a specific number or more, It is desirable to contain the opened reinforcing fibers at a specific ratio. That is, in the precursor, the formula (1)
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
With respect to the reinforcing fiber bundle (A) composed of the number of critical single yarns or more defined in (2), it is preferable for the purpose of obtaining excellent mechanical properties that the ratio to the total amount of fibers is 30 Vol% or more and less than 90 Vol%. In the precursor, there is a fiber bundle composed of a single yarn state or less than the critical number of single yarns as reinforcing fibers other than the reinforcing fiber bundle (A). The ratio of the reinforcing fiber bundle (A) when obtaining a molded article having excellent mechanical properties is more preferably 30 Vol% or more and less than 80 Vol%.

さらに臨界単糸数以上で構成される強化繊維束(A)中の平均繊維数(N)が下記式(2)
0.7×10/D<N<6.0×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
を満たすことが好ましい。
強化繊維束(A)中の平均繊維数(N)が0.7×10/D以下の場合、高い繊維体積含有率(Vf)を得ることが困難となる。また強化繊維束(A)中の平均繊維数(N)が6.0×10/D以上の場合、局部的に厚い部分が生じ、ボイドの原因となりやすい。
Furthermore, the average number of fibers (N) in the reinforcing fiber bundle (A) composed of the number of critical single yarns or more is represented by the following formula (2).
0.7 × 10 4 / D 2 <N <6.0 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
It is preferable to satisfy.
When the average number of fibers (N) in the reinforcing fiber bundle (A) is 0.7 × 10 4 / D 2 or less, it is difficult to obtain a high fiber volume content (Vf). In addition, when the average number of fibers (N) in the reinforcing fiber bundle (A) is 6.0 × 10 4 / D 2 or more, a locally thick portion is generated, which tends to cause voids.

また、前駆体における強化繊維と熱可塑性樹脂の混合割合は強化繊維100重量部に対して熱可塑性樹脂50〜1000重量部であることが好ましい。成形性と成形品外観が良好である割合として熱可塑性樹脂60〜300重量部の範囲であることが好ましい。   Moreover, it is preferable that the mixing ratio of the reinforced fiber and the thermoplastic resin in the precursor is 50 to 1000 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the reinforced fiber. The ratio of 60 to 300 parts by weight of the thermoplastic resin is preferred as the ratio of good moldability and appearance of the molded product.

前駆体における熱可塑性樹脂は、繊維状および/または粒子状の固体形状を有する。熱可塑性樹脂は1つの形態で使用されることに限定されず、2種以上の固体形状の組み合わせでも良い。熱可塑性樹脂が繊維状の場合、繊度100〜5000dtexのもの、より好ましくは繊度1000〜2000dtexものがより好ましく、平均繊維長としては0.5〜50mmが好ましく、より好ましくは平均繊維長1〜10mmである。熱可塑性樹脂が粒子状の場合、球状、細片状、あるいはペレットのような円柱状が好ましく挙げられる。球状の場合は、真円または楕円の回転体、あるいは卵状ような形状が好ましく挙げられる。球とした場合の好ましい平均粒子径は0.01〜1000μmである。より好ましくは平均粒子径0.1〜900μmものがより好ましく、更に好ましくは平均粒子径1〜800μmものがより好ましい。粒子径分布についてはとくに制限はないが、分布シャープなものがより薄い成形体を得る目的としてはより好ましいが、分級等の操作により所望の粒度分布として用いることが出来る。細片状の場合、ペレットのような円柱状や、角柱状、リン片状が好ましい形状として挙げられる。この場合ある程度のアスペクト比を有しても良いが、好ましい長さは上記の繊維状の場合と同程度とする。   The thermoplastic resin in the precursor has a fibrous and / or particulate solid form. The thermoplastic resin is not limited to being used in one form, and may be a combination of two or more solid forms. When the thermoplastic resin is fibrous, a fineness of 100 to 5000 dtex, more preferably a fineness of 1000 to 2000 dtex is more preferred, and an average fiber length of 0.5 to 50 mm is preferred, and an average fiber length of 1 to 10 mm is more preferred. It is. When the thermoplastic resin is in the form of particles, a spherical shape, a fine piece shape, or a cylindrical shape such as a pellet is preferably mentioned. In the case of a spherical shape, a perfect circular or elliptical rotating body or an egg-like shape is preferable. A preferable average particle diameter in the case of a sphere is 0.01 to 1000 μm. More preferably, the average particle size is 0.1 to 900 μm, and still more preferably the average particle size is 1 to 800 μm. The particle size distribution is not particularly limited, but a sharp distribution is more preferable for the purpose of obtaining a thinner molded product, but can be used as a desired particle size distribution by an operation such as classification. In the case of a strip shape, a columnar shape such as a pellet, a prismatic shape, or a flake shape is mentioned as a preferable shape. In this case, it may have a certain aspect ratio, but the preferred length is about the same as that of the above fibrous form.

前駆体を構成する熱可塑性樹脂は成形時の温度におけるゼロせん断溶融粘度が100〜1500pa・secの範囲内にあるものが好ましい。ゼロせん断溶融粘度が低い方が含浸が容易であるが、低すぎると流動が大きく、シェアエッジ部でのバリ発生につながり、それは複合成形体の厚さムラ原因になり、ゼロせん断溶融粘度が高すぎると含浸が困難になることがある。さらには成形時の温度におけるゼロせん断溶融粘度は300〜800pa・secの範囲内にあることが好ましい。   The thermoplastic resin constituting the precursor preferably has a zero shear melt viscosity at a molding temperature in the range of 100 to 1500 pa · sec. The lower the zero shear melt viscosity, the easier the impregnation, but if it is too low, the flow becomes large and burrs are generated at the shear edge, which causes unevenness in the thickness of the composite molded body and the high zero shear melt viscosity. If too much, impregnation may be difficult. Furthermore, the zero shear melt viscosity at the molding temperature is preferably in the range of 300 to 800 pa · sec.

前駆体を構成する熱可塑性樹脂の種類は特に限定は無いが、具体的にはポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ナイロン等のポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレートあるいはポリブチレンテレフタレート等のポリエステル、ポリ乳酸、ポリアセタール、ポリフェニレンスルフィド、ポリ(スチレン−アクリロニトリル−ブタジエン)系共重合体(ABS樹脂)、ポリ(アクリロニトリル−スチレン)系共重合体(AS樹脂)あるいはハイインパクトポリスチレン(HIPS)等のスチレン系樹脂、ポリメチルメタクリレート等のアクリル系樹脂等、または、これらのアロイを挙げることができる。   The type of the thermoplastic resin constituting the precursor is not particularly limited, and specifically, polyolefin such as polypropylene, polyamide such as polyvinyl chloride and nylon, polyester such as polycarbonate, polyethylene terephthalate, polyethylene naphthalate or polybutylene terephthalate. Styrene such as polylactic acid, polyacetal, polyphenylene sulfide, poly (styrene-acrylonitrile-butadiene) copolymer (ABS resin), poly (acrylonitrile-styrene) copolymer (AS resin) or high impact polystyrene (HIPS) And acrylic resins such as polymethyl methacrylate, polymethyl methacrylate, and the like, or alloys thereof.

[前駆体の製造工程]
前駆体は、具体的には以下の工程1〜4を含む方法で、好ましく得ることができる。
1.カッターにて強化繊維をカットする工程、
2.カットされた強化繊維を連続的に管内に導入し、圧力空気を直接繊維に吹き付けることにより、繊維束をバラバラに開繊させる工程、
3.開繊させた強化繊維を拡散させると同時に、繊維状又はパウダー状の熱可塑性樹脂とともに吸引し、開繊装置下部に設けた通気性シート上に強化繊維と熱可塑性樹脂を同時に散布する塗布工程、
4.塗布された強化繊維および熱可塑性樹脂を通気性シート下部よりエアを吸引して繊維定着させる工程。
これらの工程により強化繊維の開繊程度をコントロールすることができる。
[Precursor production process]
Specifically, the precursor can be preferably obtained by a method including the following steps 1 to 4.
1. Cutting the reinforcing fiber with a cutter,
2. A process of opening the fiber bundles apart by continuously introducing the cut reinforcing fibers into the pipe and blowing the pressure air directly on the fibers;
3. An application step of simultaneously spreading the reinforcing fibers and the thermoplastic resin on the breathable sheet provided at the lower part of the opening device, while simultaneously spreading the opened reinforcing fibers and sucking them together with the fibrous or powdery thermoplastic resin.
4). A step of sucking air from the lower part of the breathable sheet to fix the applied reinforcing fiber and thermoplastic resin.
The degree of opening of the reinforcing fiber can be controlled by these steps.

[ホットプレス]
本発明の複合成形体の製造方法は、前駆体を、ホットプレスすることにより、熱可塑性樹脂の含浸工程と成形体の立体賦形工程を同時に行うことを特徴とする。熱可塑性樹脂と強化繊維とが特定の条件で配置されている前駆体を用いることで、ホットプレスにより熱可塑性樹脂の含浸工程と成形体の立体賦形工程を同時に行うといった本発明の製造方法を好ましく実施することができる。
[hot press]
The method for producing a composite molded body of the present invention is characterized in that the precursor is hot pressed to simultaneously perform the thermoplastic resin impregnation step and the three-dimensional shaping step of the molded body. By using a precursor in which a thermoplastic resin and a reinforcing fiber are arranged under specific conditions, the production method of the present invention is such that the impregnation step of the thermoplastic resin and the three-dimensional shaping step of the molded body are simultaneously performed by hot pressing. It can be implemented preferably.

本発明の製造方法によれば、プレス時の強化繊維の流動を最小限に止め、複合成形体を得ることができ、前駆体における強化繊維の二次元的な配向と強化繊維の繊維長を複合成形体中で保つことが可能である。したがって本発明の製造方法により、強化繊維の配向が等方であり、かつ繊維長分布がシャープなものが得ることができ、均質な物性を有する複合成形体を好ましく提供できる。   According to the production method of the present invention, it is possible to obtain a composite molded body by minimizing the flow of reinforcing fibers during pressing, and to combine the two-dimensional orientation of reinforcing fibers in the precursor and the fiber length of reinforcing fibers. It can be kept in the shaped body. Therefore, according to the production method of the present invention, it is possible to obtain a composite molded body having a uniform physical property because it is possible to obtain a reinforcing fiber having an isotropic orientation and a sharp fiber length distribution.

ここでホットプレスとは、金型の温度を、熱可塑性樹脂が結晶性の場合は融点以上の温度まで、非晶性の場合はガラス転移温度以上の温度として成形する方法である。金型の温度は、好ましくは熱可塑性樹脂が結晶性の場合は、融点+10℃以上の温度、さらに好ましくは融点+20℃以上の温度、非晶性の場合はガラス転移温度+100℃以上の温度とする。金型温度の実質的な上限は樹脂の熱分解温度である。   Here, the hot pressing is a method of forming the mold at a temperature up to the melting point or higher when the thermoplastic resin is crystalline, or higher than the glass transition temperature when the thermoplastic resin is amorphous. The mold temperature is preferably a melting point + 10 ° C. or higher when the thermoplastic resin is crystalline, more preferably a melting point + 20 ° C. or higher, a glass transition temperature + 100 ° C. or higher when amorphous. To do. The practical upper limit of the mold temperature is the thermal decomposition temperature of the resin.

本発明の製造方法で使用するプレス用金型はコア側および/またはキャビ側がシェアエッジ構造(食い切り構造)を有しているものが好ましい。シェアエッジ構造のシェアの角度はとくに限定はないが、1°〜3°であることが好ましい。またプレス用金型の、コア側とキャビ側のクリアランスが0.05〜0.2mmであることが好ましい。クリアランスが0.05mm未満であるとコアとキャビがかんでしまい金型の破損につながることがある。クリアランスが0.2mmよりも大きいと成形時にバリの発生の原因となることがある。好ましくはクリアランス0.07〜0.1mmの範囲である。   The press mold used in the production method of the present invention preferably has a shear edge structure (cut-off structure) on the core side and / or the cab side. The shear angle of the shear edge structure is not particularly limited, but is preferably 1 ° to 3 °. Moreover, it is preferable that the clearance of the core side and the cavity side of a press die is 0.05 to 0.2 mm. If the clearance is less than 0.05 mm, the core and the mold may be caught and the mold may be damaged. If the clearance is larger than 0.2 mm, it may cause burrs during molding. The clearance is preferably in the range of 0.07 to 0.1 mm.

本発明の製造方法は、含浸と立体形状の賦形が1工程ででき、トリミングなどの後工程も最小限にすることができるので、量産性が必要な各種構成部材にも適用することができる。量産性が必要な構成部材として、例えば自動車の内板(内装パネル等)、外板(ルーフ、ボンネット、バンパー等)、構成部材(ピラー、フロア等)、また各種電気製品の筐体、機械・装置のフレームや筐体等に用いることができる。   The production method of the present invention can be impregnated and shaped in three dimensions in one step and can minimize the subsequent steps such as trimming, and therefore can be applied to various components that require mass productivity. . Components that require mass productivity include, for example, automobile inner plates (interior panels, etc.), outer plates (roofs, bonnets, bumpers, etc.), components (pillars, floors, etc.), various electrical appliances, It can be used for a frame or a casing of the apparatus.

[前駆体をホットプレスする工程]
前駆体は、具体的には以下の工程1〜4を含む方法で、好ましくホットプレスすることができる。
1.前駆体を熱可塑性樹脂が結晶性の場合は融点以上の温度まで、非晶性の場合はガラス転移温度以上の温度以上に加熱された金型内へセットする工程。
2.型締めをして、圧力を上げていき目標圧力まで上昇させる工程。
3.目標圧力到達後、未含浸状態の前駆体に金型の熱を伝え含浸と賦形を完了させる工程。
4.金型を熱可塑性樹脂の固化温度以下に冷却し、形状を安定化させる工程。
[Process of hot pressing precursor]
Specifically, the precursor can be preferably hot-pressed by a method including the following steps 1 to 4.
1. A step of setting the precursor in a mold heated to a temperature equal to or higher than the melting point when the thermoplastic resin is crystalline, or to a temperature equal to or higher than the glass transition temperature when amorphous.
2. The process of tightening the mold and increasing the pressure to the target pressure.
3. After reaching the target pressure, the heat of the mold is transferred to the unimpregnated precursor to complete the impregnation and shaping.
4). The process of cooling the mold below the solidification temperature of the thermoplastic resin to stabilize the shape.

工程1の金型内へセットする前駆体の大きさは、金型表面積の90%〜100%であることが好ましい。
工程2の目標圧力まで圧力上昇に要する時間はとくに制限はないが、10秒〜60秒かけて徐々に上げていくことが好ましい。
工程3の含浸および賦形に要する時間はとくに制限はないが、60秒〜120秒が好ましい。
工程4の冷却された金型の温度は熱可塑性樹脂の固化温度以下であるが、好ましくは結晶性樹脂の場合結晶化温度−30℃以下であり、非晶性樹脂の場合はガラス転移温度−30℃以下である。上記温度以下まで金型を冷却させることで、金型から成形体を取り出すことができる。金型の冷却方法にとくに限定はなく、冷却媒体を流すなどの方法により適宜冷却すれば良い。
The size of the precursor to be set in the mold of Step 1 is preferably 90% to 100% of the mold surface area.
The time required for the pressure increase to the target pressure in step 2 is not particularly limited, but it is preferable to gradually increase the pressure over 10 to 60 seconds.
The time required for the impregnation and shaping in step 3 is not particularly limited, but is preferably 60 seconds to 120 seconds.
The temperature of the cooled mold in step 4 is not higher than the solidification temperature of the thermoplastic resin, but preferably is a crystallization temperature of −30 ° C. or lower in the case of a crystalline resin, and a glass transition temperature in the case of an amorphous resin. 30 ° C. or lower. The molded body can be taken out from the mold by cooling the mold to the above temperature or lower. The mold cooling method is not particularly limited, and may be appropriately cooled by a method such as flowing a cooling medium.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
1)前駆体における強化繊維束の分析
強化繊維束(A)のマットの繊維全量に対する割合の求め方は、以下の通りである。
前駆体を100mm×100mmに切り出し、厚み(Ta)と重量を測定する(Wa)。
切り出したマットより、繊維束をピンセットで全て取り出し、繊維束を太さ毎に分類する。本実施例では分類は、太さ0.2mm程度単位で分類した。
分類毎に、全ての繊維束の長さ(Li)と重量(Wi)、繊維束数(I)を測定し、記録する。ピンセットにて取り出すことができない程度に繊維束が小さいものについては、まとめて最後に重量を測定する(Wk)。このとき、1/1000gまで測定可能な天秤を用いる。なお、特に強化繊維を炭素繊維とした場合や、繊維長が短い場合には、繊維束の重量が小さく、測定が困難になる。こういった場合には、分類した繊維束を複数本まとめて重量を測定する。
測定後、以下の計算を行う。使用している強化繊維の繊度(F)より、個々の繊維束の繊維本数(Ni)は次式により求められる。
Ni=Wi/(Li×F)。
強化繊維束(A)中の平均繊維数(N)は以下の式により求める。
N=ΣNi/I
また、個々の繊維束の体積(Vi)及び、強化繊維束(A)の繊維全体に対する割合(VR)は、使用した強化繊維の繊維比重(ρ)を用いて次式により求められる。
Vi=Wi/ρ
VR=ΣVi/Va×100
ここで、Vaは切り出したマットの体積であり、Va=100×100×Ta
Examples are shown below, but the present invention is not limited thereto.
1) Analysis of reinforcing fiber bundle in precursor The method for obtaining the ratio of reinforcing fiber bundle (A) to the total amount of fibers in the mat is as follows.
The precursor is cut into 100 mm × 100 mm, and the thickness (Ta) and weight are measured (Wa).
From the cut out mat, all the fiber bundles are taken out with tweezers, and the fiber bundles are classified by thickness. In this embodiment, the classification is performed in units of about 0.2 mm in thickness.
For each classification, the length (Li) and weight (Wi) of all fiber bundles and the number of fiber bundles (I) are measured and recorded. When the fiber bundle is so small that it cannot be taken out with tweezers, the weight is finally measured together (Wk). At this time, a balance capable of measuring up to 1/1000 g is used. In particular, when the reinforcing fiber is a carbon fiber, or when the fiber length is short, the weight of the fiber bundle is small and measurement is difficult. In such a case, a plurality of classified fiber bundles are collected and the weight is measured.
After the measurement, the following calculation is performed. From the fineness (F) of the reinforcing fiber used, the number of fibers (Ni) of each fiber bundle is obtained by the following equation.
Ni = Wi / (Li × F).
The average number of fibers (N) in the reinforcing fiber bundle (A) is determined by the following formula.
N = ΣNi / I
Further, the volume (Vi) of each fiber bundle and the ratio (VR) of the reinforcing fiber bundle (A) to the whole fiber can be obtained by the following equation using the fiber specific gravity (ρ) of the used reinforcing fiber.
Vi = Wi / ρ
VR = ΣVi / Va × 100
Here, Va is the volume of the cut out mat, Va = 100 × 100 × Ta

[実施例1]
強化繊維として、東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40−24KS(平均繊維径7μm、引張強度4000MPa)を使用した。炭素繊維を10mmの長さにカット、散布と同時に、2mmにドライカットしたPA66繊維(旭化成せんい製 T5ナイロン 1400dTex、融点260℃、成形時の温度におけるゼロせん断溶融粘度は530Pa・sec)を炭素繊維の供給量を100重量部に対して、マトリックス樹脂の供給量を270重量部の割合で吹き付け、炭素繊維とポリアミドが混合され、炭素繊維が二次元ランダムに配置された厚み10mm程度の前駆体を得た。炭素繊維の目付け量1000g/mであった。
[Example 1]
Carbon fiber “Tenax” (registered trademark) STS40-24KS (average fiber diameter: 7 μm, tensile strength: 4000 MPa) manufactured by Toho Tenax Co., Ltd. was used as the reinforcing fiber. PA66 fiber (T5 nylon 1400dTex made by Asahi Kasei Fibers, melting point 260 ° C, zero shear melt viscosity at molding temperature is 530 Pa · sec) carbon fiber cut to 10 mm in length and sprayed simultaneously with carbon fiber. A precursor with a thickness of about 10 mm in which the supply amount of the matrix resin is sprayed at a ratio of 270 parts by weight with respect to 100 parts by weight, carbon fibers and polyamide are mixed, and the carbon fibers are randomly arranged two-dimensionally. Obtained. The basis weight of carbon fiber was 1000 g / m 2 .

得られた前駆体について、強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、式(1)で定義される臨界単糸数は86であり、マットの繊維全量に対する割合は86%、強化繊維束(A)中の平均繊維数(N)は900であった。図1に記載の製品形状(最大高さ100mm、最大幅350mm)のものを得る目的で金型表面積に対して95%の割合でこの前駆体を沿わせ、金型温度280℃、10秒かけて2.5MPaまで圧力を上げ、ホットプレスし2分間保持後、冷却媒体を使用して金型を100℃まで冷却し、厚さ3.2mmの当該成形品を取り出した。図3に用いた金型のシェアエッジ部分の模式図を示すが、金型のシェア角度は2度、金型シェアエッジ部のクリアランスは0.1mmであった。成形品は材料の割れやシワの発生が無く、成形前後で炭素繊維の配置の外観は変わらず、表面外観も良好な成形品を得ることが出来た。   When the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) were examined for the obtained precursor, the number of critical single yarns defined by the formula (1) was 86, and the ratio to the total amount of fibers of the mat Was 86%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 900. In order to obtain the product shape shown in FIG. 1 (maximum height 100 mm, maximum width 350 mm), this precursor was placed at a ratio of 95% to the mold surface area, and the mold temperature was 280 ° C., taking 10 seconds. The pressure was increased to 2.5 MPa, hot pressed and held for 2 minutes, and then the mold was cooled to 100 ° C. using a cooling medium, and the molded product having a thickness of 3.2 mm was taken out. FIG. 3 shows a schematic diagram of the shear edge portion of the mold used. The shear angle of the mold is 2 degrees, and the clearance of the mold shear edge portion is 0.1 mm. The molded product was free from material cracking and wrinkling, and the appearance of the carbon fiber arrangement did not change before and after molding, and a molded product with a good surface appearance could be obtained.

[実施例2]
強化繊維として、東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40−24KS(平均繊維径7μm、引張強度4000MPa)を使用した。炭素繊維を20mmの長さにカット、散布と同時に、帝人化成社製のポリカーボネート“パンライト”(登録商標)(ガラス転移温度150℃、成形時の温度におけるゼロせん断溶融粘度は680Pa・sec)を冷凍粉砕し、更に、20メッシュ、及び100メッシュにて分級した粒子を用いた。ポリカーボネートパウダーの平均粒径は約710μmであった。そして、炭素繊維の供給量を100重量部に対して、マトリックス樹脂の供給量を270重量部の割合で吹き付け、炭素繊維と熱可塑性樹脂が混合され、炭素繊維が二次元ランダムに配置された、厚み1mm程度の前駆体を得た。炭素繊維の目付け量は、200g/mであった。
[Example 2]
Carbon fiber “Tenax” (registered trademark) STS40-24KS (average fiber diameter: 7 μm, tensile strength: 4000 MPa) manufactured by Toho Tenax Co., Ltd. was used as the reinforcing fiber. Cut and spread carbon fiber to a length of 20 mm, and simultaneously with Teijin Kasei's polycarbonate “Panlite” (registered trademark) (glass transition temperature 150 ° C., zero shear melt viscosity at molding temperature 680 Pa · sec) Particles that were freeze-ground and further classified with 20 mesh and 100 mesh were used. The average particle size of the polycarbonate powder was about 710 μm. And, with respect to 100 parts by weight of the carbon fiber supply, the matrix resin supply was sprayed at a ratio of 270 parts by weight, the carbon fibers and the thermoplastic resin were mixed, and the carbon fibers were randomly arranged. A precursor having a thickness of about 1 mm was obtained. The basis weight of the carbon fiber was 200 g / m 2 .

得られた前駆体について、強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、式(1)で定義される臨界単糸数は86であり、マットの繊維全量に対する割合は35%、強化繊維束(A)中の平均繊維数(N)は240であった。図1に記載の製品形状(最大高さ100mm、最大幅350mm)のものを得る目的で金型表面積に対して95%の割合でこの前駆体を沿わせ、金型温度280℃、10秒かけて2.5MPaまで圧力を上げ、ホットプレスし、2分間保持後、冷却媒体を使用して金型を100℃まで冷却し、厚さ0.6mmの当該成形品を取り出した。用いた金型のシェアエッジ部分の模式図を示すが、金型のシェア角度は2度、金型シェアエッジ部のクリアランスは0.1mmであった。成形品は材料の割れやシワの発生が無く、成形前後で炭素繊維の配置の外観は変わらず、表面外観も良好な成形品を得ることが出来た。   When the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) were examined for the obtained precursor, the number of critical single yarns defined by the formula (1) was 86, and the ratio to the total amount of fibers of the mat Was 35%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 240. In order to obtain the product shape shown in FIG. 1 (maximum height 100 mm, maximum width 350 mm), this precursor was placed at a ratio of 95% to the mold surface area, and the mold temperature was 280 ° C., taking 10 seconds. The pressure was increased to 2.5 MPa, hot pressing was performed, and after holding for 2 minutes, the mold was cooled to 100 ° C. using a cooling medium, and the molded product having a thickness of 0.6 mm was taken out. A schematic diagram of the shear edge portion of the mold used is shown. The shear angle of the mold is 2 degrees, and the clearance of the shear edge portion of the mold is 0.1 mm. The molded product was free from material cracking and wrinkling, and the appearance of the carbon fiber arrangement did not change before and after molding, and a molded product with a good surface appearance could be obtained.

[実施例3]
強化繊維として、東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40−24KS(平均繊維径7μm、引張強度4000MPa)を使用した。炭素繊維を10mmの長さにカット、散布と同時に、2mmにドライカットしたPA66繊維(旭化成せんい製 T5ナイロン 1400dTex、融点260℃、成形時の温度におけるゼロせん断溶融粘度は530Pa・sec)を炭素繊維の供給量を100重量部に対して、マトリックス樹脂の供給量を270重量部の割合で吹き付け、炭素繊維とポリアミドが混合され、炭素繊維が二次元ランダムに配置された厚み10mm程度の前駆体を得た。炭素繊維の目付け量1000g/mであった。
[Example 3]
Carbon fiber “Tenax” (registered trademark) STS40-24KS (average fiber diameter: 7 μm, tensile strength: 4000 MPa) manufactured by Toho Tenax Co., Ltd. was used as the reinforcing fiber. PA66 fiber (T5 nylon 1400dTex made by Asahi Kasei Fibers, melting point 260 ° C, zero shear melt viscosity at molding temperature is 530 Pa · sec) carbon fiber cut to 10 mm in length and sprayed at the same time as carbon fiber A precursor with a thickness of about 10 mm in which the supply amount of the matrix resin is sprayed at a ratio of 270 parts by weight with respect to 100 parts by weight, carbon fibers and polyamide are mixed, and the carbon fibers are randomly arranged two-dimensionally. Obtained. The basis weight of carbon fiber was 1000 g / m 2 .

得られた前駆体について、強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、式(1)で定義される臨界単糸数は86であり、マットの繊維全量に対する割合は86%、強化繊維束(A)中の平均繊維数(N)は900であった。図2に記載の製品形状(最大高さ50mm、最大幅350mm)のものを得る目的で、金型表面積に対して95%の割合でこの前駆体を沿わせ、金型温度280℃、10秒かけて2.5MPaまで圧力を上げ、ホットプレスし2分間保持後、冷却媒体を使用して金型を100℃まで冷却し、厚さ3.2mmの当該成形品を取り出した。図3に用いた金型のシェアエッジ部分の模式図を示すが、金型のシェア角度は2度、金型シェアエッジ部のクリアランスは0.1mmであった。成形品は材料の割れやシワの発生が無く、成形前後で炭素繊維の配置の外観は変わらず、表面外観も良好な成形品を得ることが出来た。   When the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) were examined for the obtained precursor, the number of critical single yarns defined by the formula (1) was 86, and the ratio to the total amount of fibers of the mat Was 86%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 900. For the purpose of obtaining the product shape shown in FIG. 2 (maximum height 50 mm, maximum width 350 mm), the precursor is placed at a ratio of 95% to the mold surface area, and the mold temperature is 280 ° C., 10 seconds. The pressure was increased to 2.5 MPa, hot pressed and held for 2 minutes, and then the mold was cooled to 100 ° C. using a cooling medium, and the molded product having a thickness of 3.2 mm was taken out. FIG. 3 shows a schematic diagram of the shear edge portion of the mold used. The shear angle of the mold is 2 degrees, and the clearance of the mold shear edge portion is 0.1 mm. The molded product was free from material cracking and wrinkling, and the appearance of the carbon fiber arrangement did not change before and after molding, and a molded product with a good surface appearance could be obtained.

1 製品形状平面図
2 B−B断面図
3 A−A断面図
1 Product shape plan view 2 BB sectional view 3 AA sectional view

Claims (10)

繊維長5mm超100mm以下の強化繊維と、繊維状および/または粒子状の熱可塑性樹脂とから構成される熱可塑性樹脂が未含浸状態の前駆体を、ホットプレスすることにより熱可塑性樹脂の含浸工程と成形体の立体賦形工程を同時に行う、強化繊維と熱可塑性樹脂とを含む複合成形体の製造方法であって、前駆体において強化繊維が実質的に二次元ランダムに配向しており、強化繊維のうち式(1)
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
で定義する臨界単糸数以上で構成される強化繊維束(A)について、繊維全量に対する割合が30Vol%以上90Vol%未満である複合成形体の製造方法。
Thermoplastic resin impregnation step by hot-pressing a precursor which is not impregnated with a thermoplastic resin composed of reinforcing fibers having a fiber length of more than 5 mm and not more than 100 mm and fibrous and / or particulate thermoplastic resins Is a method for producing a composite molded body including a reinforcing fiber and a thermoplastic resin, wherein the three-dimensional shaping process of the molded body is performed at the same time , and the reinforcing fibers are oriented substantially two-dimensionally randomly in the precursor Formula (1) out of fiber
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
A method for producing a composite molded body in which the proportion of the reinforcing fiber bundle (A) composed of the number of critical single yarns defined in (1) or more is 30 Vol% or more and less than 90 Vol%.
強化繊維束(A)中の平均繊維数(N)が下記式(2)
0.7×10 /D <N<6.0×10 /D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
を満たす請求項1に記載の複合成形体の製造方法。
The average number of fibers (N) in the reinforcing fiber bundle (A) is represented by the following formula (2)
0.7 × 10 4 / D 2 <N <6.0 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
The manufacturing method of the composite molded object of Claim 1 which satisfy | fills .
強化繊維が、炭素繊維および/またはガラス繊維である1または2に記載の複合成形体の製造方法。   3. The method for producing a composite molded article according to 1 or 2, wherein the reinforcing fibers are carbon fibers and / or glass fibers. 前駆体において、熱可塑性樹脂の存在量は強化繊維100重量部に対し、50〜1000重量部である1〜3のいずれかに記載の複合成形体の製造方法。   In the precursor, the amount of the thermoplastic resin is 50 to 1000 parts by weight with respect to 100 parts by weight of the reinforcing fiber. プレス時の温度における熱可塑性樹脂のゼロせん断溶融粘度が100〜1500Pa・secの範囲にある1〜4のいずれかに記載の複合成形体の製造方法。   The manufacturing method of the composite molded object in any one of 1-4 whose zero shear melt viscosity of the thermoplastic resin in the temperature at the time of a press exists in the range of 100-1500 Pa.sec. コア側および/またはキャビ側のプレス用金型がシェアエッジ構造を有し、そのシェア角が1°〜3°である1〜5のいずれかに記載の複合成形体の製造方法。 Have a core-side and / or cavity side of the press mold is share edge structure method of producing a composite molded article according to its share angle either 1-5 Ru 1 ° to 3 ° der. シェアエッジ部のクリアランスが0.05〜0.2mmのプレス用金型を用いる請求項1〜6のいずれかに記載の複合成形体の製造方法。   The manufacturing method of the composite molded object in any one of Claims 1-6 using the metal mold | die for press whose clearance of a share edge part is 0.05-0.2 mm. 強化繊維束(A)として、太さ0.2mm単位で分類される異なった太さの強化繊維束(A)を含む請求項1〜7のいずれかに記載の複合成形体の製造方法。The manufacturing method of the composite molded object in any one of Claims 1-7 containing the reinforcing fiber bundle (A) of different thickness classified by the unit of thickness 0.2mm as a reinforcing fiber bundle (A). 熱可塑性樹脂が、平均粒子径0.01〜1000μmの粒子状の熱可塑性樹脂である請求項1〜8のいずれかに記載の複合成形体の製造方法。The method for producing a composite molded body according to any one of claims 1 to 8, wherein the thermoplastic resin is a particulate thermoplastic resin having an average particle diameter of 0.01 to 1000 µm. 粒子状の熱可塑性樹脂が、分級されたものである請求項9に記載の複合成形体の製造方法。The method for producing a composite molded article according to claim 9, wherein the particulate thermoplastic resin is classified.
JP2011037018A 2011-02-23 2011-02-23 Method for producing composite molded body Expired - Fee Related JP5650559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037018A JP5650559B2 (en) 2011-02-23 2011-02-23 Method for producing composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037018A JP5650559B2 (en) 2011-02-23 2011-02-23 Method for producing composite molded body

Publications (2)

Publication Number Publication Date
JP2012172104A JP2012172104A (en) 2012-09-10
JP5650559B2 true JP5650559B2 (en) 2015-01-07

Family

ID=46975308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037018A Expired - Fee Related JP5650559B2 (en) 2011-02-23 2011-02-23 Method for producing composite molded body

Country Status (1)

Country Link
JP (1) JP5650559B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035705A1 (en) * 2011-09-06 2013-03-14 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material
JP2014062143A (en) * 2012-09-19 2014-04-10 Teijin Ltd Fiber-reinforced plastic
JP6148281B2 (en) * 2015-04-28 2017-06-14 株式会社日本製鋼所 Molding method of fiber reinforced molded product
JP7039852B2 (en) * 2017-03-28 2022-03-23 住友ベークライト株式会社 Composite molded body
WO2023132299A1 (en) * 2022-01-07 2023-07-13 株式会社エイ・ティ・エル Frtp molded article production method, frtp molded article production device, resin molded article production method and resin molded article production device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373267A (en) * 1976-12-10 1978-06-29 Toho Beslon Co Molding of blended fiber mat and composite material
JPH0569441A (en) * 1991-09-17 1993-03-23 Kobe Steel Ltd Fiber reinforced thermoplastic resin composite material
JP2007283506A (en) * 2006-04-12 2007-11-01 Dainippon Ink & Chem Inc Mold for compression molding and method for producing separator for fuel cell

Also Published As

Publication number Publication date
JP2012172104A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
EP2716433B1 (en) Method for manufacturing compact with sustained isotropy
JP5735631B2 (en) Molded body made of fiber reinforced composite material
JP6170837B2 (en) Molded product with excellent surface design composed of fiber reinforced composite material
EP2674447B1 (en) Molded object with thickness gradient and process for producing same
JP5576147B2 (en) Carbon fiber composite material
JP2011178890A (en) Carbon fiber composite material
JP5749343B2 (en) Method for producing composite molded body having undercut portion
JP5650559B2 (en) Method for producing composite molded body
TW201241056A (en) Reinforcing fiber composite material
JP5851767B2 (en) Fiber reinforced substrate
JP2011241338A (en) Carbon fiber composite material
JP2013103481A (en) Method for producing composite material molded article
CN108367466B (en) Method for producing press-molded article
JP2012246428A (en) Thermoplastic isotropic prepreg
JP5833385B2 (en) Method for producing molded body made of fiber reinforced composite material
JP5749572B2 (en) Method for producing molded body maintaining isotropic property
JP5801658B2 (en) Thin-walled molded product having uniform thickness and method for producing the same
JP2013049751A (en) Fiber reinforcement substrate
JP6092923B2 (en) Carbon fiber composite material
JP5864166B2 (en) Molded body having smooth surface and uniform thickness, and method for producing the same
JP2014098096A (en) Structural body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141113

R150 Certificate of patent or registration of utility model

Ref document number: 5650559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees