JPH0569441A - Fiber reinforced thermoplastic resin composite material - Google Patents

Fiber reinforced thermoplastic resin composite material

Info

Publication number
JPH0569441A
JPH0569441A JP26729791A JP26729791A JPH0569441A JP H0569441 A JPH0569441 A JP H0569441A JP 26729791 A JP26729791 A JP 26729791A JP 26729791 A JP26729791 A JP 26729791A JP H0569441 A JPH0569441 A JP H0569441A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
granular
fibers
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26729791A
Other languages
Japanese (ja)
Inventor
Yuji Kawase
裕司 川瀬
Toshiaki Okumura
俊明 奥村
Ryosaku Kadowaki
良策 門脇
Kei Takara
圭 高良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26729791A priority Critical patent/JPH0569441A/en
Publication of JPH0569441A publication Critical patent/JPH0569441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To provide a thermally moldable fiber reinforced thermoplastic resin composite material which is a bulky mixture formed using a reinforcing fiber having conductivity like a carbon fiber and ensured in its compositional uniformity. CONSTITUTION:A thermally moldable fiber reinforced thermoplastic resin composite material is a bulky mixture wherein 5-95wt.% of a conductive reinforcing fiber 1 with a diameter of 3-20mum and a length of 1-50mm and 95-5wt.% of a thermoplastic resin fiber 2 with a fineness of 0.5-20 denier and a length of l-50mm are entangled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は通気性を有する熱成形可
能な繊維強化熱可塑性樹脂複合材料に関するものであ
り、特に強化繊維として導電性強化繊維を用いたものに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoformable fiber-reinforced thermoplastic resin composite material having air permeability, and particularly to a material using conductive reinforcing fibers as reinforcing fibers.

【0002】[0002]

【従来の技術】圧縮成形、押出成形或いは射出成形など
の熱成形用の繊維強化熱可塑性樹脂複合材料としては、
強化繊維と粉粒体状熱可塑性樹脂とを混合したもの、又
はこれらに粉粒体状無機充填材や添加剤を混合したもの
が一般に用いられる。
2. Description of the Related Art As a fiber-reinforced thermoplastic resin composite material for thermoforming such as compression molding, extrusion molding or injection molding,
Generally, a mixture of reinforcing fiber and a granular thermoplastic resin, or a mixture of these with a granular inorganic filler or additive is used.

【0003】また、繊維強化熱可塑性樹脂複合材料の混
合形態として、マトリックスとしての熱可塑性樹脂を溶
融し、圧縮後に冷却固化してシート状にしたものと、強
化繊維の絡まりの中に粉粒体状熱可塑性樹脂を保持し通
気性を有するバルク状あるいはシート状にしたとの2種
類がある。
Further, as a mixed form of the fiber-reinforced thermoplastic resin composite material, a thermoplastic resin as a matrix is melted, compressed and cooled to be solidified into a sheet, and a powder and granules are entangled in the entanglement of the reinforcing fibers. There are two types, that is, in the form of a bulk or a sheet that retains the thermoplastic resin and has air permeability.

【0004】溶融後、冷却固化したシート状品は、比較
的均一な組成のものが得られ、取り扱い易い。しかし、
通気性を有するバルク状品に比較して成形時の加熱に時
間を要するため樹脂劣化の一因になり、熱履歴を一回余
分に受けるため樹脂劣化を起こしやすく、成形品の機械
的物性に悪影響を及ぼす場合がある。
The sheet-like product obtained by cooling and solidifying after melting has a relatively uniform composition and is easy to handle. But,
Compared to bulky products that have air permeability, it takes longer to heat during molding, which is a cause of resin deterioration, and because a heat history is received one extra time, resin deterioration is likely to occur, and the mechanical properties of molded products are improved. May have an adverse effect.

【0005】それに対して、通気性を有するバルク状品
は高温ガス等で容易に加熱でき加熱時間が短くなり、製
造プロセスでの熱履歴も少ないので、熱による樹脂劣化
が起こりにくいという長所を有している。しかし、バル
ク状品にも難点がないわけではない。バルク状品は強化
繊維の絡まりの中で粉粒体状熱可塑性樹脂が保持するバ
ルク状であり、粉粒体状熱可塑性樹脂が強化繊維と物理
的及び静電気的な結合力で保持されているため、均一な
組成のものを製造しにくく、仮に均一な組成のものを製
造したとしても、輸送途中に粉粒体状熱可塑性樹脂の分
離が起こり不均一となる恐れがある。
On the other hand, since a bulky product having air permeability can be easily heated by a high temperature gas or the like, the heating time is shortened and the heat history in the manufacturing process is small, so that the resin is less likely to be deteriorated by heat. is doing. However, bulk products are not without their drawbacks. The bulk product is a bulk that is held by the granular thermoplastic resin in the entanglement of the reinforcing fibers, and the granular thermoplastic resin is held by the physical and electrostatic bonding force with the reinforcing fibers. Therefore, it is difficult to manufacture a uniform composition, and even if a uniform composition is manufactured, separation of the granular thermoplastic resin may occur during transportation, resulting in non-uniformity.

【0006】そこで、バルク状品において、粉粒体状熱
可塑性樹脂が強化繊維とを均一に分散させる混合方法と
して、機械的ミキサを用いる方法(特開昭62−208
906号公報参照)又は圧縮空気による乱気流を用いる
方法(特開昭63−135550号公報参照)などが提
案されている。そして、粉粒体状熱可塑性樹脂が強化繊
維との結合力を高めるため、ガラス繊維やアラミド繊維
などのように静電気を帯びる強化繊維を主成分とし、ガ
ラス繊維やアラミド繊維と粉粒体状熱可塑性樹脂との間
の静電気的な結合力で均一性を確保できる組成となって
いた。
Therefore, in a bulk product, a mechanical mixer is used as a mixing method for uniformly dispersing the granular thermoplastic resin and the reinforcing fiber (Japanese Patent Laid-Open No. Sho 62-208).
No. 906) or a method using turbulent flow of compressed air (see Japanese Patent Laid-Open No. 63-135550). And since the granular thermoplastic resin enhances the binding force with the reinforcing fiber, the main component is the reinforcing fiber that is charged with static electricity such as glass fiber or aramid fiber, and the glass fiber or aramid fiber and the granular thermal resin The composition was such that the uniformity could be ensured by the electrostatic binding force with the plastic resin.

【0007】[0007]

【発明が解決しようとする課題】強化繊維としては、ガ
ラス繊維やアラミド繊維などのように静電気を帯びるも
のに限らず、カーボン繊維の如く導電性を有しているた
め、静電気を帯びないものもある。カーボン繊維を強化
繊維として選定した場合、カーボン繊維と粉粒体状熱可
塑性樹脂との間には静電気的な結合力が働かず、粉粒体
状熱可塑性樹脂とカーボン繊維との分離が起こり、不均
一なバルク状混合体しかえられないという問題点を有し
ている。そのため、カーボン繊維の如く導電性を有する
強化繊維を選定してバルク状品を製造することは困難な
ものとされてきた。そして、優れた特徴を有するカーボ
ン繊維を強化繊維として選定したバルク状品から、所望
の機械的特性を保持する成形品を得ることが困難とさ
れ、やむおえずシート状品を使用する場合もあるが、上
述した熱履歴の問題点を有している。
Reinforcing fibers are not limited to those having static electricity such as glass fiber and aramid fiber, but also those which do not have static electricity because they have conductivity such as carbon fiber. is there. When carbon fiber is selected as the reinforcing fiber, the electrostatic binding force does not work between the carbon fiber and the granular thermoplastic resin, separation of the granular thermoplastic resin and the carbon fiber occurs, It has a problem that only a non-uniform bulk mixture can be obtained. Therefore, it has been difficult to manufacture a bulk product by selecting a reinforcing fiber having conductivity such as carbon fiber. Then, it is difficult to obtain a molded product having desired mechanical properties from a bulk product selected from carbon fibers having excellent characteristics as a reinforcing fiber, and in some cases, a sheet product is unavoidably used. However, it has the above-mentioned problem of heat history.

【0008】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、カーボン繊維の如く導電性を有する強化繊維を
選定し、その組成の均一性を確保されたバルク状混合体
であって、熱成形可能な繊維強化熱可塑性樹脂複合材料
を提供しようとするところにある。
The present invention has been made in view of the above problems of the prior art. The object of the present invention is to select a conductive reinforcing fiber such as carbon fiber, and to select its composition. It is an object of the present invention to provide a fiber-reinforced thermoplastic resin composite material which is a bulk-like mixture ensuring homogeneity and which can be thermoformed.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の繊維強化熱可塑性樹脂複合材料は、3〜2
0μm径で1〜50mmに切断された導電性強化繊維5
〜95wt%と、0.5〜20デニールで1〜50mm
に切断された熱可塑性樹脂繊維95〜5wt%とからな
り、導電性強化繊維と熱可塑性樹脂繊維とが絡まったバ
ルク状混合体であって、熱成形可能な繊維強化熱可塑性
樹脂複合材料である。
In order to achieve the above object, the fiber-reinforced thermoplastic resin composite material of the present invention comprises 3 to 2
Conductive reinforcing fiber 5 cut to a diameter of 0 to 1 to 50 mm
~ 95wt%, 0.5 ~ 20 denier 1 ~ 50mm
It is a bulk-like mixture composed of 95 to 5 wt% of thermoplastic resin fibers cut into pieces, and entwined with conductive reinforcing fibers and thermoplastic resin fibers, which is a thermoformable fiber-reinforced thermoplastic resin composite material. ..

【0010】また、本発明の他の繊維強化熱可塑性樹脂
複合材料は、3〜20μm径で1〜50mmに切断され
た導電性強化繊維5〜95wt%と、0.5〜20デニ
ールで1〜50mmに切断された熱可塑性樹脂繊維を少
なくとも5wt%と、粉粒体状充填材とからなり、導電
性強化繊維と熱可塑性樹脂繊維との絡まりの中に粉粒体
状充填材が分散して保持されているバルク状混合体であ
って、熱成形可能な繊維強化熱可塑性樹脂複合材料であ
る。そして、この粉粒体状充填材としては、粉粒体状無
機充填材、上記熱可塑性樹脂繊維と異質の粉粒体状樹脂
充填材、又は上記熱可塑性樹脂繊維と同質の粉粒体状樹
脂充填材のうちから選ばれた1種以上である。
Further, another fiber-reinforced thermoplastic resin composite material of the present invention comprises 5 to 95 wt% of conductive reinforcing fibers cut into 1 to 50 mm with a diameter of 3 to 20 μm and 1 to 0.5 to 20 denier. At least 5 wt% of thermoplastic resin fibers cut into 50 mm and a granular filler are used, and the granular filler is dispersed in the entanglement between the conductive reinforcing fibers and the thermoplastic resin fibers. A retained bulk mixture which is a thermoformable fiber reinforced thermoplastic resin composite. And, as the granular material filler, a granular inorganic filler, a granular resin filler different from the thermoplastic resin fiber, or a granular resin having the same quality as the thermoplastic resin fiber. It is one or more selected from the fillers.

【0011】[0011]

【作用】熱可塑性樹脂を導電性強化繊維と同様の繊維形
状にすることで、両者の間に静電気力が働かなくとも、
繊維同士の絡みによる物理的結合力で均一な組成が確保
される。
[Function] By making the thermoplastic resin into a fiber shape similar to the conductive reinforcing fiber, even if electrostatic force does not work between them,
A uniform composition is secured by the physical binding force due to the entanglement of fibers.

【0012】同様の繊維形状を有する熱可塑性樹脂繊維
と導電性強化繊維の均一な絡み組成を形成し、熱可塑性
樹脂繊維と粉粒体状充填材との間の静電気力で粉粒体状
充填材の均一な分散を確保する。導電性強化繊維と粉粒
体状充填材との間には静電気力が働かないので、全体の
均一性を確保するためには、繊維形態の熱可塑性樹脂繊
維が少なくとも5wt%必要であり、これを下回ると均
一性が損なわれる。
[0012] A uniform entangled composition of thermoplastic resin fibers and conductive reinforcing fibers having the same fiber shape is formed, and the granular filling is performed by the electrostatic force between the thermoplastic resin fiber and the granular filling material. Ensure uniform distribution of material. Since the electrostatic force does not work between the conductive reinforcing fiber and the granular filler, at least 5 wt% of the thermoplastic resin fiber in the form of fiber is required to ensure the overall uniformity. If it is below the range, the uniformity is impaired.

【0013】[0013]

【実施例】以下、図面を参照しつつ本発明例を説明す
る。図1は導電性強化繊維と熱可塑性樹脂繊維とからな
る繊維強化熱可塑性樹脂複合材料の模式図、図2は導電
性強化繊維と熱可塑性樹脂繊維と粉粒体状充填材とから
なる繊維強化熱可塑性樹脂複合材料の模式図である。図
1及び図2において、1は導電性強化繊維、2は熱可塑
性樹脂繊維、3は粉粒体状充填材である。図1は、導電
性強化繊維1と熱可塑性樹脂繊維2が混合され絡み合っ
て嵩高い綿状で通気性を持ち、均一に分散混合されたバ
ルク状となっている。図2は、更に熱可塑性樹脂繊維2
に粉粒体状充填材3が吸引して保持され、均一に分散混
合されたバルク状となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a fiber-reinforced thermoplastic resin composite material composed of electrically conductive reinforcing fibers and thermoplastic resin fibers, and FIG. 2 is a fiber reinforcement composed of electrically conductive reinforcing fibers, thermoplastic resin fibers, and granular fillers. It is a schematic diagram of a thermoplastic resin composite material. In FIGS. 1 and 2, 1 is a conductive reinforcing fiber, 2 is a thermoplastic resin fiber, and 3 is a granular material filler. In FIG. 1, the conductive reinforcing fibers 1 and the thermoplastic resin fibers 2 are mixed and entangled with each other to form a bulky cotton-like material having air permeability and a uniformly dispersed and mixed bulk shape. FIG. 2 further shows a thermoplastic resin fiber 2
The powdery or granular filler 3 is sucked and held therein, and is in a bulk form that is uniformly dispersed and mixed.

【0014】導電性強化繊維1としては、炭素繊維、金
属繊維又はガラス繊維セラミック繊維などの無機繊維、
アラミド繊維などの有機繊維を金属コーティングした繊
維などがあり、これらから1種以上選んで用いることが
できる。また、これらの強化繊維は導電性を有し、静電
気力による結合力が働かないという点で共通している。
つぎに、導電性強化繊維1の形態としては、3〜20μ
m径で、1〜50mmに切断された短繊維が用いられ
る。さらに、導電性強化繊維1の表面にその解維をさま
たげない範囲で接着剤あるいは粘着剤をコーティングす
ることもでき、繊維1,2同士の分散及び充填材3の分
散がより均一になる。
As the conductive reinforcing fiber 1, inorganic fiber such as carbon fiber, metal fiber or glass fiber ceramic fiber,
There are fibers obtained by metal-coating organic fibers such as aramid fibers, and one or more of these can be selected and used. Further, these reinforcing fibers are common in that they have conductivity and the binding force due to electrostatic force does not work.
Next, the form of the conductive reinforcing fiber 1 is 3 to 20 μm.
Short fibers cut with a diameter of 1 to 50 mm are used. Further, the surface of the conductive reinforcing fiber 1 can be coated with an adhesive or a pressure-sensitive adhesive within a range that does not interfere with the fiber, and the dispersion of the fibers 1 and 2 and the dispersion of the filler 3 become more uniform.

【0015】熱可塑性樹脂繊維2としては、公知の熱可
塑性樹脂から選んだ1種あるいは2種以上を用いること
ができる。例えば、ポリエチレン、ポリプロピレンなど
のポリオレフィン、ポリエチレンテレフタレート、ボリ
ブチレンフタレートなどのポリエステル、ナイロン6,
ナイロン6,6、ナイロン6,10、ナイロン6,1
2、ナイロン4,6、ナイロン12、ナイロンMXDな
どのポリアミド、ポリアセタール、ポリフェニレンエー
テル、ポリカーボネート、ポリフェニレンスルフィド、
ポリアミドイミド、ポリイミドエーテル、ポリエーテル
ケトン、ポリエーテルエーテルケトン、ポリサルフォ
ン、ポリエーテルサルフォンおよびこれらの共重合体樹
脂あるいはこれらのブレンド、アロイ樹脂などである。
つぎに、これらの熱可塑性樹脂繊維2の形態としては、
0.5デニール〜20デニールで1〜50mmに切断さ
れたショートカットトウ又はスライバーが用いられ、上
述した導電性強化繊維1の形態と同様となっている。
As the thermoplastic resin fiber 2, one kind or two or more kinds selected from known thermoplastic resins can be used. For example, polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene phthalate, nylon 6,
Nylon 6,6, Nylon 6,10, Nylon 6,1
2, polyamide such as nylon 4,6, nylon 12, nylon MXD, polyacetal, polyphenylene ether, polycarbonate, polyphenylene sulfide,
Polyamide imide, polyimide ether, polyether ketone, polyether ether ketone, polysulfone, polyether sulfone and copolymer resins thereof, blends thereof, alloy resins and the like.
Next, as the form of these thermoplastic resin fibers 2,
A shortcut tow or sliver cut to 1 to 50 mm at 0.5 denier to 20 denier is used, and has the same configuration as the conductive reinforcing fiber 1 described above.

【0016】粉粒体状充填材3としては、成形品の機械
的物性改善のために加える雲母、炭カル、タルク、カオ
リン、ガラスビーズ、カーボンビーズ、カーボン、ミル
ドファイバ(1mm未満)、ウィスカーなどの無機充填
材、熱可塑性樹脂繊維と異質の粉粒体状樹脂充填材、又
は上記熱可塑性樹脂繊維と同質の粉粒体状樹脂充填材な
どがあり、これらから1種または2種以上を任意に選ん
で用いることができる。ここで粉粒体状とは、パウダー
状、フレーク状、ビーズ状を意味する。また、これらの
粉粒体状充填材3は熱可塑性樹脂繊維2の重量%に対し
て、最大で4倍程度まで含有させることができる。すな
わち、熱可塑性樹脂繊維2が最小の5重量%であると、
粉粒体状充填材3を最大で20重量%含ませ、残り75
重量%を導電性強化繊維1とするものがある。なお、こ
れらの粉粒体状充填材3に加えて、酸化防止剤、紫外線
劣化防止のためのカーボンブラック、着色剤などを加え
ることができる。
As the powdery or granular material 3, mica, calcium carbonate, talc, kaolin, glass beads, carbon beads, carbon, milled fiber (less than 1 mm), whiskers, etc. added to improve the mechanical properties of the molded product. Inorganic fillers, powdery resin fillers different from thermoplastic resin fibers, or powdery resin fillers of the same quality as the thermoplastic resin fibers, and the like, one or two or more of which are optional. Can be selected and used. Here, the term "granular material" means powder, flake, or bead. Further, the powdery or granular filler 3 can be contained up to about 4 times as much as the weight% of the thermoplastic resin fiber 2. That is, when the thermoplastic resin fiber 2 is the minimum of 5% by weight,
20% by weight of the granular filler material 3 is contained at the maximum, and the remaining 75
There is one in which the weight% is the conductive reinforcing fiber 1. In addition to these powdery or granular fillers 3, an antioxidant, carbon black for preventing ultraviolet deterioration, a colorant, etc. can be added.

【0017】なお、本発明は強化繊維として、カーボン
ファイバーなどの導電性強化繊維を用いるものに関する
が、この導電性強化繊維に加えて、ガラス繊維を用いる
こともできる。
Although the present invention relates to a reinforcing fiber such as a carbon fiber or the like which uses a conductive reinforcing fiber, glass fiber may be used in addition to the conductive reinforcing fiber.

【0018】つぎに、具体的な本発明例1,2を比較例
1,2と対比しつつ説明する。
Next, concrete examples 1 and 2 of the present invention will be described in comparison with comparative examples 1 and 2.

【0019】−本発明例1− カーボンファイバー(7μm径で12mmのチョップド
ファイバー)90gと、ナイロン6から繊維(3デニー
ルで10mmのチョップドファイバー)210gを3K
gf/cm2 の圧縮空気で30秒間混合し、バルク状の
繊維強化熱可塑性樹脂複合材料を得た。この複合材料を
真空下240℃2分間300Kgf/cm2 の条件でホ
ットプレスした後、冷却し板を成形した。得られた板の
曲げ強度は、25Kgf/mm2 (±1.5Kgf/m
2 )であった。また、板のカーボンファイバー含有率
の分布は29〜31wt%であり、ばらつきが小さかっ
た。
-Inventive Example 1-90 g of carbon fiber (12 mm chopped fiber of 7 μm diameter) and 210 g of nylon 6 fiber (10 mm chopped fiber of 3 denier) 3K
The mixture was mixed with compressed air of gf / cm 2 for 30 seconds to obtain a bulk fiber-reinforced thermoplastic resin composite material. This composite material was hot-pressed under vacuum at 240 ° C. for 2 minutes under the condition of 300 Kgf / cm 2 , and then cooled to form a plate. The bending strength of the obtained plate was 25 Kgf / mm 2 (± 1.5 Kgf / m
m 2 ). The distribution of carbon fiber content of the plate was 29 to 31 wt%, and the variation was small.

【0020】−比較例1− カーボンファイバー(7μm径で12mmのチョップド
ファイバー)90gと、ナイロン6パウダー210gを
用いて本発明例1と同じ操作を行った。得られた板の曲
げ強度は、23Kgf/mm2 (±6Kgf/mm2
であった。また、板のカーボンファイバー含有率の分布
を5点測定すると23〜42wt%であり、ばらつきが
大きかった。
Comparative Example 1 The same operation as in Inventive Example 1 was carried out using 90 g of carbon fiber (chopped fiber having a diameter of 7 μm and 12 mm) and 210 g of nylon 6 powder. The bending strength of the obtained plate is 23 Kgf / mm 2 (± 6 Kgf / mm 2 ).
Met. Further, when the distribution of carbon fiber content of the plate was measured at 5 points, it was 23 to 42 wt%, showing a large variation.

【0021】−本発明例2− カーボンファイバー(7μm径で12mmのチョップド
ファイバー)90gと、ナイロン6繊維(3デニールで
10mmのチョップドファイバー)110gと、ガラス
ビーズ100gとを用いて本発明例1と同様にして板を
成形した。燃焼させることによりガラスビーズ含有率を
板の異なった5ヶ所で測定すると32〜34wt%であ
り、均一に分布していた。
Inventive Example 2 Inventive Example 1 using 90 g of carbon fiber (7 μm diameter and 12 mm chopped fiber), 110 g of nylon 6 fiber (3 denier and 10 mm chopped fiber), and 100 g of glass beads. A plate was formed in the same manner. When the glass bead content was measured at 5 different positions on the plate by burning, it was 32 to 34 wt%, which was uniformly distributed.

【0022】−比較例2− カーボンファイバー(7μm径で12mmのチョップド
ファイバー)90gと、ナイロン6パウダー110gお
よびガラスビーズ100gを用いて本発明例2と同じ操
作を行った。ガラスビーズ含有率は20〜32wt%で
あり、不均一に分布していた。
Comparative Example 2 The same operation as in Inventive Example 2 was carried out using 90 g of carbon fiber (chopped fiber having a diameter of 7 μm and 12 mm), 110 g of nylon 6 powder and 100 g of glass beads. The glass bead content was 20 to 32 wt% and was non-uniformly distributed.

【0023】つぎに、図3により、導電性強化繊維と熱
可塑性樹脂繊維とからなる繊維強化熱可塑性樹脂複合材
料の具体的製法例を説明する。計量器10から導電性強
化繊維1がミキサ13に所定量供給され、計量器11か
ら熱可塑性樹脂繊維2がミキサ13に所定量供給され
る。ミキサ13の中に圧縮空気を導入し、導電性強化繊
維1と熱可塑性樹脂繊維2とを空気中で混合する。そし
て、導電性強化繊維1と熱可塑性樹脂繊維2が均一に絡
まったものが、押出機14に供給される。押出機14は
加熱ゾーン14aと冷却ゾーン14bを左右に配置し、
両ゾーン14a,14bに移動可能なピストン15,1
6を有するものであり、ピストン15,16の先端には
伝熱板15a,16aが張り付けられている。この伝熱
板15a,16aにより、ピストン15,16側の側面
も加熱冷却可能となっている。このピストン15,16
によって、ミキサ13からの混合物を圧縮し、加熱ゾー
ン14bへ圧縮物を移動させ、更に冷却ゾーン14aへ
と移動させて固い外被5を有するものが成形される。そ
して、通気性を持たせるため、外被5に孔6が開口され
る。このように、取り扱いやすいバルク状の繊維強化熱
可塑性樹脂複合材料を得る。なお、その他のバルク状と
しては、筒状のフィルム内にミキサ13からの混合物を
封入したものなどがある。
Next, with reference to FIG. 3, a concrete example of a method for producing a fiber-reinforced thermoplastic resin composite material comprising conductive reinforcing fibers and thermoplastic resin fibers will be described. The metering device 10 supplies the conductive reinforcing fiber 1 to the mixer 13 in a predetermined amount, and the metering device 11 supplies the thermoplastic resin fiber 2 to the mixer 13 in a predetermined amount. Compressed air is introduced into the mixer 13, and the conductive reinforcing fiber 1 and the thermoplastic resin fiber 2 are mixed in the air. Then, the conductive reinforcing fibers 1 and the thermoplastic resin fibers 2 uniformly entangled are supplied to the extruder 14. The extruder 14 has a heating zone 14a and a cooling zone 14b arranged on the left and right,
Pistons 15, 1 movable in both zones 14a, 14b
The heat transfer plates 15a and 16a are attached to the tips of the pistons 15 and 16, respectively. The heat transfer plates 15a and 16a can also heat and cool the side surfaces on the pistons 15 and 16 side. This piston 15, 16
Thereby compresses the mixture from the mixer 13 and moves the compressed material to the heating zone 14b and then to the cooling zone 14a to form a solid jacket 5. Then, a hole 6 is opened in the outer cover 5 in order to provide air permeability. In this way, a bulky fiber-reinforced thermoplastic resin composite material that is easy to handle is obtained. In addition, as another bulk shape, there is one in which the mixture from the mixer 13 is enclosed in a tubular film.

【0024】[0024]

【発明の効果】本発明の繊維強化熱可塑性樹脂複合材料
は、3〜20μm径で1〜50mmに切断された導電性
強化繊維5〜95wt%と、0.5〜20デニールで1
〜50mmに切断された熱可塑性樹脂繊維95〜5wt
%とからなり、導電性強化繊維と熱可塑性樹脂繊維とが
絡まったバルク状混合体であって、熱成形可能な繊維強
化熱可塑性樹脂複合材料であり、繊維同士の絡みによる
物理的結合力で均一な組成を維持するようにしたので、
均一な組成のものを得ることができる。その結果、製造
プロセス上あるいは輸送中の熱可塑性樹脂の分離による
材料の不均質性が改善され均質な材料となるため、成形
した成形品の機械的物性のばらつきが非常に小さくな
る。
The fiber-reinforced thermoplastic resin composite material of the present invention comprises 5 to 95 wt% of conductive reinforcing fibers cut into 1 to 50 mm with a diameter of 3 to 20 μm and 1 to 0.5 to 20 denier.
95 ~ 5wt thermoplastic resin fiber cut to ~ 50mm
% Is a bulk mixture in which conductive reinforcing fibers and thermoplastic resin fibers are entangled with each other, and is a thermoformable fiber reinforced thermoplastic resin composite material. I tried to maintain a uniform composition,
A uniform composition can be obtained. As a result, the inhomogeneity of the material due to the separation of the thermoplastic resin during the manufacturing process or during transportation is improved and the material becomes a homogeneous material, so that the variation in the mechanical properties of the molded product becomes extremely small.

【0025】また、本発明の他の繊維強化熱可塑性樹脂
複合材料は、3〜20μm径で1〜50mmに切断され
た導電性強化繊維5〜95wt%と、0.5〜20デニ
ールで1〜50mmに切断された熱可塑性樹脂繊維を少
なくとも5wt%と、粉粒体状充填材とからなり、導電
性強化繊維と熱可塑性樹脂繊維との絡まりの中に粉粒体
状充填材が分散して保持されているバルク状混合体であ
って、熱成形可能な繊維強化熱可塑性樹脂複合材料であ
り、繊維同士の均一な絡み組成を形成し、熱可塑性樹脂
繊維と粉粒体状充填材との間の静電気力で粉粒体状充填
材の均一な分散を保持するので、全体として均一な組成
のものを得ることができる。特に、粉粒体状充填材の添
加が容易であり、かつ脱離が起こらないため、製造プロ
セス上あるいは輸送中の充填材の分離による材料の不均
質性が改善され均質な材料となるため、成形した成形品
の機械的物性のばらつきが非常に小さくなる。
Further, another fiber-reinforced thermoplastic resin composite material of the present invention comprises 5 to 95 wt% of conductive reinforcing fibers cut into 1 to 50 mm with a diameter of 3 to 20 μm and 1 to 0.5 to 20 denier. At least 5 wt% of thermoplastic resin fibers cut into 50 mm and a granular filler are used, and the granular filler is dispersed in the entanglement between the conductive reinforcing fibers and the thermoplastic resin fibers. A held bulk mixture, which is a thermoformable fiber-reinforced thermoplastic resin composite material, forms a uniform entangled composition of the fibers, and combines the thermoplastic resin fibers and the granular filler. Since the uniform dispersion of the powdery or granular filler is maintained by the electrostatic force between them, it is possible to obtain the one having a uniform composition as a whole. In particular, since it is easy to add the granular filler, and desorption does not occur, the inhomogeneity of the material due to the separation of the filler during the manufacturing process or during transportation is improved, and a homogeneous material is obtained. Variations in mechanical properties of molded articles are extremely small.

【図面の簡単な説明】[Brief description of drawings]

【図1】導電性強化繊維と熱可塑性樹脂繊維とからなる
繊維強化熱可塑性樹脂複合材料の模式図である。
FIG. 1 is a schematic view of a fiber-reinforced thermoplastic resin composite material composed of conductive reinforcing fibers and thermoplastic resin fibers.

【図2】導電性強化繊維と熱可塑性樹脂繊維と粉粒体状
充填材とからなる繊維強化熱可塑性樹脂複合材料の模式
図である。
FIG. 2 is a schematic diagram of a fiber-reinforced thermoplastic resin composite material including conductive reinforcing fibers, thermoplastic resin fibers, and a granular filler.

【図3】導電性強化繊維と熱可塑性樹脂繊維とからなる
繊維強化熱可塑性樹脂複合材料の製法例を示す図であ
る。
FIG. 3 is a diagram showing an example of a method for producing a fiber-reinforced thermoplastic resin composite material composed of conductive reinforcing fibers and thermoplastic resin fibers.

【符号の説明】[Explanation of symbols]

1 導電性強化繊維 2 熱可塑性樹脂繊維 3 粉粒体状充填材 1 Conductive Reinforcing Fiber 2 Thermoplastic Resin Fiber 3 Granular Filler

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 3〜20μm径で1〜50mmに切断さ
れた導電性強化繊維5〜95wt%と、0.5〜20デ
ニールで1〜50mmに切断された熱可塑性樹脂繊維9
5〜5wt%とからなり、導電性強化繊維と熱可塑性樹
脂繊維とが絡まったバルク状混合体であって、熱成形可
能な繊維強化熱可塑性樹脂複合材料。
1. A conductive reinforcing fiber 5 to 95 wt% cut to a diameter of 3 to 20 μm and a length of 1 to 50 mm, and a thermoplastic resin fiber 9 cut to a diameter of 1 to 50 mm and a denier of 0.5 to 20.
A fiber-reinforced thermoplastic resin composite material, which is a bulk mixture in which conductive reinforcing fibers and thermoplastic resin fibers are entangled with each other and is 5 to 5 wt% and which is thermoformable.
【請求項2】 3〜20μm径で1〜50mmに切断さ
れた導電性強化繊維5〜95wt%と、0.5〜20デ
ニールで1〜50mmに切断された熱可塑性樹脂繊維を
少なくとも5wt%と、粉粒体状充填材とからなり、導
電性強化繊維と熱可塑性樹脂繊維との絡まりの中に粉粒
体状充填材が分散して保持されているバルク状混合体で
あって、熱成形可能な繊維強化熱可塑性樹脂複合材料。
2. Conductive reinforcing fibers 5 to 95 wt% cut to a diameter of 3 to 20 μm to 1 to 50 mm, and at least 5 wt% thermoplastic resin fibers cut to a diameter of 1 to 50 mm to 0.5 to 20 denier. A bulk mixture composed of a granular filler material, in which the granular filler material is dispersed and held in the entanglement of conductive reinforcing fibers and thermoplastic resin fibers, and thermoforming Possible fiber reinforced thermoplastic composites.
【請求項3】 請求項2記載の複合材料において、粉粒
体状充填材が、粉粒体状無機充填材、上記熱可塑性樹脂
繊維と異質の粉粒体状樹脂充填材、又は上記熱可塑性樹
脂繊維と同質の粉粒体状樹脂充填材のうちから選ばれた
1種以上である繊維強化熱可塑性樹脂複合材料。
3. The composite material according to claim 2, wherein the granular material filler is a granular inorganic filler material, a granular resin filler material different from the thermoplastic resin fiber, or the thermoplastic material. A fiber-reinforced thermoplastic resin composite material, which is one or more selected from a granular resin filler having the same quality as the resin fiber.
JP26729791A 1991-09-17 1991-09-17 Fiber reinforced thermoplastic resin composite material Pending JPH0569441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26729791A JPH0569441A (en) 1991-09-17 1991-09-17 Fiber reinforced thermoplastic resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26729791A JPH0569441A (en) 1991-09-17 1991-09-17 Fiber reinforced thermoplastic resin composite material

Publications (1)

Publication Number Publication Date
JPH0569441A true JPH0569441A (en) 1993-03-23

Family

ID=17442875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26729791A Pending JPH0569441A (en) 1991-09-17 1991-09-17 Fiber reinforced thermoplastic resin composite material

Country Status (1)

Country Link
JP (1) JPH0569441A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2012172104A (en) * 2011-02-23 2012-09-10 Teijin Ltd Method for producing composite molded article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
US7754323B2 (en) 2006-02-24 2010-07-13 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP5309563B2 (en) * 2006-02-24 2013-10-09 東レ株式会社 Fiber-reinforced thermoplastic resin molded article, molding material, and method for producing the same
TWI414543B (en) * 2006-02-24 2013-11-11 Toray Industries Fiber reinforced thermoplastic resin molded body, molding material, and process for manufacturing the same
KR101409959B1 (en) * 2006-02-24 2014-06-19 도레이 카부시키가이샤 Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2012172104A (en) * 2011-02-23 2012-09-10 Teijin Ltd Method for producing composite molded article

Similar Documents

Publication Publication Date Title
KR100944032B1 (en) Isotropic fiber-reinforced thermoplastic resin sheet, and process for the production and molded plate thereof
EP1007309B1 (en) Method and apparatus of prepregging with resin
US11365336B2 (en) Polymer-polymer fiber composite for high thermal conductivity
CA1326119C (en) Molding material
US20040188883A1 (en) Near net shape prepreg
US5939001A (en) Process for manufacturing objects from fiber-reinforced thermoplasts
JPH01198635A (en) Highly thermostable polyarylene thioether ketone prepreg and molded product thereof
JPH0569441A (en) Fiber reinforced thermoplastic resin composite material
Erkmen et al. Improvement in mechanical, electrical, and shape memory properties of the polystyrene‐based carbon fiber‐reinforced polymer composites containing carbon nanotubes
USH1332H (en) Thermal conductive material
JPH0379663A (en) Polyamide resin composition
JP2000141502A (en) Manufacture of long fiber reinforced thermoplastic resin sheet and long fiber reinforced thermoplastic resin sheet
JPH0267326A (en) Fiber-reinforced thermoplastic resin composition with excellent surface flatness
US6833410B2 (en) Method of rotational molding using a resin blend and the resulting molded objects
JPH0330916A (en) Manufacture of fiber reinforced plastic molded product
JP2989931B2 (en) Method for producing molded articles from thermoplastic long fiber granules
KR20210064459A (en) Manufacturing method of thermally conductive masterbatch based on thermoplastic resin and heat sink composite using the same
JP2783427B2 (en) Carbon fiber / thermoplastic compound
CN113667268B (en) Antistatic wear-resistant polyether-ether-ketone composite material and preparation method thereof
JPH02203901A (en) Production of bundled reinforcing fibers or staple fiber chips
JPH0890571A (en) Cfrtp molded product and production thereof
JPH10219027A (en) Powdery glass fiber-reinforced resin composition
JPH08183878A (en) Thermoplastic resin composition and molding made therefrom
JP2006307001A (en) Pellet material for injection molding and its manufacturing method
JPS58104719A (en) Sheet material for stamping moldings