KR20210064459A - Manufacturing method of thermally conductive masterbatch based on thermoplastic resin and heat sink composite using the same - Google Patents

Manufacturing method of thermally conductive masterbatch based on thermoplastic resin and heat sink composite using the same Download PDF

Info

Publication number
KR20210064459A
KR20210064459A KR1020190152071A KR20190152071A KR20210064459A KR 20210064459 A KR20210064459 A KR 20210064459A KR 1020190152071 A KR1020190152071 A KR 1020190152071A KR 20190152071 A KR20190152071 A KR 20190152071A KR 20210064459 A KR20210064459 A KR 20210064459A
Authority
KR
South Korea
Prior art keywords
thermoplastic resin
thermally conductive
weight
conductive masterbatch
mixed
Prior art date
Application number
KR1020190152071A
Other languages
Korean (ko)
Other versions
KR102384315B1 (en
Inventor
박영수
허몽영
김원석
한웅
강승범
Original Assignee
재단법인 한국탄소산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원 filed Critical 재단법인 한국탄소산업진흥원
Priority to KR1020190152071A priority Critical patent/KR102384315B1/en
Publication of KR20210064459A publication Critical patent/KR20210064459A/en
Application granted granted Critical
Publication of KR102384315B1 publication Critical patent/KR102384315B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • C08G69/18Anionic polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present invention relates to a manufacturing method of a thermally conductive masterbatch based on a thermoplastic resin and a heat dissipation composite material using the same. The present invention can provide the pellet-shaped heat dissipation composite material made of an extrudate melt-extruded by mixing with a polymer resin without a separate grinding process as the dispersibility of the thermal conductivity filler in the thermoplastic resin is excellent, and a granular particle size that can be injected during a polymerization process is secured by providing the thermally conductive masterbatch based on the thermoplastic resin polymerized in situ by mixing a thermally conductive filler in a monomer polymerization process of the thermoplastic resin.

Description

열가소성수지 기반 열전도성 마스터배치의 제조방법 및 그를 이용한 방열복합소재{MANUFACTURING METHOD OF THERMALLY CONDUCTIVE MASTERBATCH BASED ON THERMOPLASTIC RESIN AND HEAT SINK COMPOSITE USING THE SAME}Manufacturing method of a thermoplastic resin-based thermally conductive masterbatch and heat dissipation composite material using the same {MANUFACTURING METHOD OF THERMALLY CONDUCTIVE MASTERBATCH BASED ON THERMOPLASTIC RESIN AND HEAT SINK COMPOSITE USING THE SAME}

본 발명은 열가소성수지 기반 열전도성 마스터배치의 제조방법 및 그를 이용한 방열복합소재에 관한 것으로서, 더욱 상세하게는 열가소성수지의 단량체 중합공정에 열전도도 필러를 혼합하여 인시츄 중합함으로써, 수지내 고함량의 열전도도 필러가 균일 분산되고 중합공정상에서 사출가능한 그래뉼 타입의 입자크기로 확보할 수 있는 열가소성수지 기반 열전도성 마스터배치를 제조하고, 상기 열가소성수지 기반 열전도성 마스터배치와 고분자 수지를 혼합하여 용융압출된 압출물로 이루어진 펠렛 형상의 방열복합소재에 관한 것이다. The present invention relates to a method for producing a thermoplastic resin-based thermally conductive masterbatch and a heat dissipation composite material using the same, and more particularly, by mixing a thermally conductive filler in a monomer polymerization process of a thermoplastic resin and polymerizing in situ, A thermoplastic resin-based thermally conductive masterbatch is prepared in which the thermally conductive filler is uniformly dispersed and can be secured in a granular particle size that can be injected during the polymerization process, and melt-extruded by mixing the thermoplastic resin-based thermally conductive masterbatch with a polymer resin It relates to a pellet-shaped heat dissipation composite material made of an extrudate.

일반적으로 전자제품 및 자동차 부품에는 사용중에 발생되는 열을 방출하기 위하여 히트싱크(Heat sink)와 같은 방열재가 사용되고 있다. In general, a heat dissipating material such as a heat sink is used in electronic products and automobile parts to dissipate heat generated during use.

방열특성을 갖는 방열재는 LED조명기구, 산업용 인버터, 전기자동차, 로봇기기, 태양광 발전 등 전기전자 부품에 다양하게 사용되고 있다. 특히, 최근 전자제품 기술이 발전하면서 전자제품의 고직접화, 고밀도화, 고성능화에 의하여 사용 중에 발생하는 전자제품 자체의 발열량이 증가됨에 따라 증가된 발열량을 효과적으로 배출하기 위하여 열전도도가 높은 소재가 요구되고 있다. Heat dissipation materials with heat dissipation characteristics are widely used in electric and electronic parts such as LED lighting fixtures, industrial inverters, electric vehicles, robot devices, and photovoltaic power generation. In particular, with the recent development of electronic product technology, as the amount of heat generated by the electronic product itself increases due to high directivity, high density, and high performance of electronic products, a material with high thermal conductivity is required to effectively discharge the increased amount of heat. have.

또한, 방열재는 전자제품의 소형화, 경량화, 최소공간화, 휴대가능성화 추구에 의해 열을 방출하기 위한 공간이 더욱 작아져 전자제품이 사용 중에 발생된 열에 의해 그 성능이 현저하게 저하되거나 고장 날 수 있다는 점에서 방열 소재에 대한 중요성이 더욱 높아지고 있다.In addition, the space for dissipating heat becomes smaller by the pursuit of miniaturization, weight reduction, minimum space, and portability of electronic products, so that the performance of the heat dissipation material may be significantly reduced or malfunction due to the heat generated during use of the electronic product. In this regard, the importance of heat-dissipating materials is increasing.

열가소성수지에 열전도성을 부여하기 위한 방법으로는 일반적으로 열가소성수지는 열전도도 낮기 때문에 열전도성이 높은 탄소재료, 금속분말, 세라믹 분말 등의 필러를 첨가하거나 복합화하여 열전도성을 구현하도록 한다. 이때, 열전도도가 높은 필러는 고함량으로 첨가되어야 하고, 완성된 열가소성수지 복합재는 열이 한쪽에서 다른 한쪽으로 이동을 할 수 있도록 열전달 경로를 만들어야 한다. As a method for imparting thermal conductivity to thermoplastic resins, since thermoplastic resins generally have low thermal conductivity, fillers such as carbon materials, metal powders, and ceramic powders with high thermal conductivity are added or compounded to realize thermal conductivity. At this time, a filler with high thermal conductivity must be added in a high content, and the completed thermoplastic resin composite material must create a heat transfer path so that heat can move from one side to the other.

따라서, 열전도성 필러의 함량과 열가소성수지 복합재의 열전도성과는 밀접한 관계가 있다. Therefore, there is a close relationship between the content of the thermally conductive filler and the thermal conductivity of the thermoplastic resin composite material.

그러나 열가소성수지는 대체로 용융온도(melting point) 이상의 온도에서도 점도가 높아 수만에서 수백만의 점도를 가지고 있어, 고함량의 열전도성 필러를 첨가 또는 복합화가 어렵다는 문제가 있다. However, the thermoplastic resin has a high viscosity even at a temperature above the melting point and has a viscosity of tens to several million, so there is a problem in that it is difficult to add or complex a high content of thermally conductive filler.

또한, 고분자 기반 방열성 복합소재를 제조하기 위해 판상입자가 고충진된 수지를 사출성형에 의해 평판형태로 제작할 경우, 방열성 판상입자가 사출방향의 전단력에 의해 사출방향으로 일축으로 배향됨에 따라 방열성 판상입자의 배열방향으로는 열전도가 잘 이루어지지만(방열이 잘 됨), 다른 방향으로는 열전도가 잘 이루어지지 않아 열전도성의 이방성(방향에 따라 열전도도가 다름) 및 방열성능이 저하되는 문제를 초래한다.In addition, when a resin highly filled with plate-shaped particles is produced in the form of a plate by injection molding to manufacture a polymer-based heat-dissipating composite material, the heat-dissipating plate-shaped particles are uniaxially oriented in the injection direction by shear force in the injection direction. Heat conduction is good in the arrangement direction (heat dissipation is good), but heat conduction is not well done in the other direction, resulting in a problem of thermal conductivity anisotropy (thermal conductivity is different depending on the direction) and heat dissipation performance is deteriorated.

아울러, 기존의 사출성형에 의해 제조되는 고충진 방열 복합소재의 경우에 수지의 높은 흐름성으로 인해 작업성이 저하되고, 충진되는 판상입자가 고가이며 중량이 무거운 문제점이 지적되어 왔다. In addition, in the case of a high-filling heat-dissipating composite material manufactured by conventional injection molding, workability is reduced due to the high flowability of the resin, and the filled plate-shaped particles are expensive and have a heavy weight.

상기한 문제점을 해결하기 위하여, 특허문헌 1은 방열성능을 향상시킬 수 있는 고분자 기반 방열 복합소재로서 주성분으로 고분자 기반의 연속상 수지, 상기 연속상 수지와 화학적 결합이 가능하고, 연속상 수지 상에 혼합 분산되는 방열필러; 및 상기 방열필러와의 상용성이 없어 연속상 수지 및 방열필러와의 혼합시 방열필러와 상분리가 일어나며, 사출시 방열필러의 배열방향을 불규칙하게 하는 분산상 입자;를 포함하고, 방열필러의 랜덤 배향화를 통해 열전도도의 이방성 문제를 해결한다고 기술하고 있다. In order to solve the above problems, Patent Document 1 is a polymer-based heat dissipation composite material that can improve heat dissipation performance, as a main component of a polymer-based continuous phase resin, chemically bonding with the continuous phase resin, and on the continuous phase resin. Mixed and dispersed heat dissipation filler; and dispersed phase particles that are incompatible with the heat dissipation filler and cause phase separation from the heat dissipation filler when mixed with the continuous resin and the heat dissipation filler, and make the arrangement direction of the heat dissipation filler irregular during injection; and random orientation of the heat dissipation filler It is described that the problem of anisotropy of thermal conductivity is solved through the

특허문헌 2는 전지 또는 전자 장치용도의 열도전성 플라스틱 물질의 히트싱크로서, 열 도전성 플라스틱 물질의 전체 중량에 대해 적어도 20중량%의 함량으로 팽창된 그라파이트(expanded graphite)를 포함하는 구성이 개시되어 있다.그러나 상기의 특허문헌 2는 그라파이트가 폴리머에 제대로 분산되지 않는 경우가 발생하고, 비교적 적은 양의 팽창된 그라파이트가 포함되어 원하는 열전도율을 얻는데 다소 어려운 문제점이 있다. Patent Document 2 discloses a heat sink of a thermally conductive plastic material for a battery or electronic device, comprising expanded graphite in an amount of at least 20% by weight based on the total weight of the thermally conductive plastic material. However, in Patent Document 2, the graphite is not properly dispersed in the polymer, and it contains a relatively small amount of expanded graphite, so it is somewhat difficult to obtain a desired thermal conductivity.

또한, 충분한 열전도율을 확보하기 위해서 그라파이트 외에도 다른 열도전성 충진제 및 열 도전성 파이버와 같은 열 도전성 성분이 포함되어 구성되는데, 열전도도를 높이기 위하여 충진제를 많이 충진 시킬수록 점도가 상승하여 흐름성 불량으로 인해, 가공성이 저하되어 제품 생산이 어렵고, 최종제품의 외관 및 물성이 저하되는 문제점이 있다.In addition, in order to secure sufficient thermal conductivity, other thermally conductive fillers and thermally conductive components such as thermally conductive fibers are included in addition to graphite. In order to increase thermal conductivity, the more the filler is filled, the more the viscosity rises due to poor flowability, There are problems in that it is difficult to produce a product due to a decrease in processability, and the appearance and physical properties of the final product are deteriorated.

현재 통용되는 방열소재로서는 알루미늄 다이캐스팅 소재가 대표적이며 그 수요는 해외수입에 의존하고 있는 실정이다. As a heat dissipation material currently in use, aluminum die-casting material is representative, and its demand is dependent on foreign imports.

알루미늄 다이캐스팅 방열소재는 열전도성은 우수하나, 무겁고 성형성이 어려우며, 절연도장 등 환경에 유해한 가공조건들을 가지고 있다.Aluminum die-casting heat dissipation material has excellent thermal conductivity, but it is heavy, difficult to form, and has processing conditions that are harmful to the environment, such as insulation coating.

상기와 같은 단점을 보완하기 위하여 최근에는 열전도성 복합 플라스틱을 이용하여 방열재를 제조함으로써, 금속을 사용하는 경우에 비해 다양한 형상의 구현이 자유로우면서 경량인 방열재가 제조되고 있다. 이와 같은 종래의 열전도성 복합 플라스틱은 열전도성이 우수한 충전재를 사용함으로써 이루어지는데, 높은 열전도성을 위해 질화알루미늄, 질화붕소, 질화규소 등이 충전재로서 사용되고 있다[특허문헌 3]. In order to compensate for the above disadvantages, recently, by manufacturing a heat dissipating material using a thermally conductive composite plastic, a heat dissipating material that is free to implement various shapes and is lightweight compared to the case of using a metal has been manufactured. Such a conventional thermally conductive composite plastic is made by using a filler excellent in thermal conductivity, and aluminum nitride, boron nitride, silicon nitride, etc. are used as fillers for high thermal conductivity [Patent Document 3].

그러나, 이와 같은 소재들은 고가일 뿐만 아니라 거의 대부분 수입에 의존하기 때문에, 이를 사용하여 방열재를 생산할 경우 제조단가가 상승하는 또 다른 문제점이 있다.따라서, 현재 다양한 고분자 수지를 베이스로 탄소계 필러를 분산하여 마스터 배치(중간재) 형태의 방열소재가 개발되고 있으나 방열성, 절연성 및 가격경쟁력 등의 이유들로 하여 알루미늄 다이캐스팅 방열소재를 완전히 대체하지 못하는 실정이다.However, since these materials are not only expensive, but most of them depend on imports, there is another problem in that the manufacturing cost increases when using them to produce heat dissipation materials. Therefore, carbon-based fillers are currently manufactured using various polymer resins as a base. Heat dissipation material in the form of a master batch (intermediate material) is being developed by dispersing it, but due to reasons such as heat dissipation, insulation and price competitiveness, it cannot completely replace the aluminum die-casting heat dissipation material.

이에, 본 발명자들은 종래 문제점을 해소하고자 노력한 결과, 열가소성수지의 단량체 중합공정에서 열전도도 필러를 혼합하여 인시츄 중합함으로써, 수지내 열전도도 필러의 분산성이 우수하고 중합공정상에서 사출가능한 입자크기로 열가소성수지 기반 열전도성 마스터배치를 제조하고, 별도의 분쇄공정없이 상기 열가소성수지 기반 열전도성 마스터배치와 고분자 수지를 혼합하여 용융압출된 압출물로 이루어진 방열복합소재의 물성을 확인함으로써, 본 발명을 완성하였다. Therefore, as a result of the present inventors' efforts to solve the conventional problems, by mixing the thermal conductivity filler in the monomer polymerization process of the thermoplastic resin and polymerizing it in situ, the dispersibility of the thermal conductivity filler in the resin is excellent and the particle size that can be injected during the polymerization process is reduced. The present invention was completed by manufacturing a thermoplastic resin-based thermally conductive masterbatch, and confirming the physical properties of a heat dissipating composite material made of an extrudate melt-extruded by mixing the thermoplastic resin-based thermally conductive masterbatch and a polymer resin without a separate grinding process did.

대한민국공개특허 제2013-0038775호 (2013.04.18 공개)Republic of Korea Patent Publication No. 2013-0038775 (published on April 18, 2013) 대한민국공개특허 제2010-0126415호 (2010.12.01 공개)Republic of Korea Patent Publication No. 2010-0126415 (published on Dec. 1, 2010) 대한민국공개특허 제2019-0120421호 (2019.10.23 공개)Republic of Korea Patent Publication No. 2019-0120421 (published on October 23, 2019)

본 발명의 목적은 열가소성수지의 단량체 중합공정에서 열전도도 필러가 혼합되어 인시츄 중합된, 열가소성수지 기반 열전도성 마스터배치의 제조방법을 제공하는 것이다. It is an object of the present invention to provide a method for preparing a thermoplastic resin-based thermally conductive masterbatch, in which a thermally conductive filler is mixed and polymerized in situ in a monomer polymerization process of a thermoplastic resin.

본 발명의 다른 목적은 상기 열가소성수지 기반 열전도성 마스터배치를 이용한 방열복합소재를 제공하는 것이다. Another object of the present invention is to provide a heat dissipation composite material using the thermoplastic resin-based thermally conductive masterbatch.

상기 목적을 달성하기 위하여, 본 발명은 열가소성수지 단량체 함유용액에 열전도도 필러가 혼합되어 인시츄 중합(In-situ polymerization)된, 열가소성수지 기반 열전도성 마스터배치의 제조방법을 제공한다. In order to achieve the above object, the present invention provides a method for preparing a thermoplastic resin-based thermally conductive masterbatch, in which a thermally conductive filler is mixed with a thermoplastic resin monomer-containing solution and polymerized in situ.

이때, 상기 열가소성수지 단량체 100 중량부에 대하여, 열전도도 필러는 300 내지 800 중량부가 함유된다. At this time, with respect to 100 parts by weight of the thermoplastic resin monomer, 300 to 800 parts by weight of the thermal conductivity filler is contained.

상기에서 열가소성수지 단량체 함유용액으로 바람직한 실시형태는 (A)음이온 카프로락탐 및 (B)나트륨 카프로락타메이트를 포함하는 개시제가 함유된 반응조 및 (A)음이온 카프로락탐 및 (C)헥사메틸렌디카바모일디카프로락탐을 포함한 활성화제가 함유된 반응조가 혼합되어 중합된 것이다. A preferred embodiment of the thermoplastic resin monomer-containing solution is (A) an anionic caprolactam and (B) a reaction tank containing an initiator containing sodium caprolactamate, and (A) anionic caprolactam and (C) hexamethylene dicarbamoyl A reactor containing an activator including dicaprolactam is mixed and polymerized.

이때, 원만한 중합반응이 완료되기 위해서는, 상기 음이온 카프로락탐 중량부에 대하여, (B)개시제 3 내지 5중량부 및 (C)활성화제 2 내지 3중량부가 혼합되어 중합된 것이다. At this time, in order to successfully complete the polymerization reaction, 3 to 5 parts by weight of (B) the initiator and 2 to 3 parts by weight of the (C) activator are mixed and polymerized with respect to the weight part of the anion caprolactam.

본 발명에서 사용되는 열전도도 필러는 흑연, 팽창흑연, 탄소나노튜브(CNT), 그래핀 및 탄소나노섬유(CNF)로 이루어진 군에서 선택된 어느 하나의 탄소소재; 또는 질화붕소(BN), 알루미나(Al2O3), 질화알루미늄(AlN), 세라믹소재, 구리 및 알루미늄으로 이루어진 군에서 선택된 어느 하나의 무기계소재를 사용할 수 있으며 본 발명의 실시예에서는 흑연을 사용하고 있으나 이에 한정되지는 아니할 것이다. The thermal conductivity filler used in the present invention is any one carbon material selected from the group consisting of graphite, expanded graphite, carbon nanotubes (CNT), graphene and carbon nanofibers (CNF); Alternatively, any one inorganic material selected from the group consisting of boron nitride (BN), alumina (Al 2 O 3 ), aluminum nitride (AlN), ceramic material, copper and aluminum may be used, and in the embodiment of the present invention, graphite is used However, it will not be limited thereto.

본 발명의 열가소성수지 기반 열전도성 마스터배치는 500 내지 6mm 입자크기의 그래뉼 타입인 것이다. The thermoplastic resin-based thermally conductive masterbatch of the present invention is a granular type with a particle size of 500 to 6mm.

본 발명은 상기 제조방법으로부터 얻어진 열가소성수지 기반 그래뉼 타입의 열전도성 마스터배치 30 내지 60 중량% 및 고분자 수지 40 내지 70중량%가 혼합 후 압출기를 통해 용융압출된 압출물로 이루어진 펠렛 형상의 방열복합소재를 제공한다. The present invention is a pellet-shaped heat dissipation composite material composed of an extrudate in which 30 to 60 wt% of a thermoplastic resin-based granular-type thermally conductive masterbatch and 40 to 70 wt% of a polymer resin obtained from the above manufacturing method are mixed and melt-extruded through an extruder. provides

본 발명에 따르면, 열가소성수지에 비해 점성이 낮아 흐름성이 높은 열가소성수지의 단량체 중합공정에 열전도도 필러가 혼합되어 인시츄 중합된, 열가소성수지 기반 열전도성 마스터배치를 제공할 수 있다. According to the present invention, it is possible to provide a thermoplastic resin-based thermally conductive masterbatch that is polymerized in situ by mixing a thermal conductivity filler in the monomer polymerization process of a thermoplastic resin having a low viscosity and high flowability compared to a thermoplastic resin.

본 발명의 열가소성수지 기반 열전도성 마스터배치는 고함량의 열전도도 필러가 균일 분산되고, 중합공정상에서 사출가능한 그래뉼 타입의 입자크기로 수득할 수 있다. In the thermoplastic resin-based thermally conductive masterbatch of the present invention, a high content of thermally conductive filler is uniformly dispersed, and can be obtained in a granular particle size that can be injected during the polymerization process.

따라서, 분말 혼합 공정에 적용시 별도의 분쇄공정없이 고분자 수지와 혼합한 압출성형물을 팰랫화하여 사출 가능하게 구성함으로써, 용이한 성형성을 확보하고, 생산성을 높이며, 가격경쟁력이 우수하고, 열전도도가 향상되어 방열특성이 우수한 방열복합소재를 제공할 수 있다.Therefore, when applied to the powder mixing process, the extruded product mixed with the polymer resin is palletized and injected without a separate grinding process, thereby securing easy moldability, increasing productivity, excellent price competitiveness, and thermal conductivity. It is possible to provide a heat dissipation composite material with excellent heat dissipation characteristics.

도 1은 본 발명의 열가소성수지 기반 열전도성 마스터배치를 제조하기 위한 반응기의 모식도이고,
도 2는 본 발명의 열가소성수지 기반 열전도성 마스터배치 사진이다.
1 is a schematic diagram of a reactor for producing a thermoplastic resin-based thermally conductive masterbatch of the present invention;
2 is a photograph of a thermoplastic resin-based thermally conductive masterbatch of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 열가소성수지 단량체 함유용액에 열전도도 필러가 혼합되어 인시츄 중합(In-situ polymerization)된, 열가소성수지 기반 열전도성 마스터배치의 제조방법을 제공한다.The present invention provides a method for preparing a thermoplastic resin-based thermally conductive masterbatch, in which a thermally conductive filler is mixed with a thermoplastic resin monomer-containing solution and polymerized in situ.

구체적으로는 상기 열가소성수지 단량체 함유용액의 바람직한 실시형태는 (A)음이온 카프로락탐 및 (B)나트륨 카프로락타메이트를 포함하는 개시제가 함유된 반응조 및 (A)음이온 카프로락탐 및 (C)헥사메틸렌디카바모일디카프로락탐을 포함한 활성화제가 함유된 반응조가 혼합되어 중합된 것이다. Specifically, a preferred embodiment of the thermoplastic resin monomer-containing solution is (A) an anionic caprolactam and (B) a reactor containing an initiator containing sodium caprolactamate, and (A) anionic caprolactam and (C) hexamethylenedica. A reactor containing an activator including bamoyldicaprolactam is mixed and polymerized.

이에, 도 1은 본 발명의 열가소성수지 기반 열전도성 마스터배치를 제조하기 위한 반응기의 모식도로서, (A)음이온 카프로락탐 및 (B)나트륨 카프로락타메이트를 포함하는 개시제를 혼합한 반응조(10)와 (A)음이온 카프로락탐 및 (C)헥사메틸렌디카바모일디카프로락탐을 포함한 활성화제를 혼합한 반응조(11)가 150∼160℃로 먼저 가열된 중합조(30)에서 혼합되도록 동시에 주입하고 천천히 저어주면서 반응시켜 나일론 중합반응을 완성한다. 이때, 상기 반응조(10), (11)은 성분간 원만한 혼합을 위해 90℃ 온도에서 가열하여 준비한다.Accordingly, FIG. 1 is a schematic diagram of a reactor for manufacturing the thermoplastic resin-based thermally conductive masterbatch of the present invention, and a reaction tank 10 in which an initiator containing (A) anionic caprolactam and (B) sodium caprolactamate is mixed (A) anionic caprolactam and (C) hexamethylene dicarbamoyl dicaprolactam are mixed at the same time so that the reaction tank 11 is mixed in the polymerization tank 30 heated to 150-160 ° C. React with stirring to complete the nylon polymerization reaction. At this time, the reactors 10 and 11 are prepared by heating at a temperature of 90° C. for smooth mixing between the components.

상기 중합조(30)에 열전도도 필러(40)가 포함된다. A thermal conductivity filler 40 is included in the polymerization tank 30 .

상기 열전도도 필러는 탄소소재; 또는 금속 또는 비금속계의 무기소재가 사용될 수 있다. 구체적인 일례로는 상기 탄소소재가 흑연, 팽창흑연, CNT, 그래핀 및 CNF 탄소섬유로 이루어진 군에서 선택된 어느 하나이고, 상기 금속 또는 비금속계의 무기소재가 BN(질화붕소), Al2O3 (알루미나), AlN(질화알루미늄), 세라믹소재, 구리 및 알루미늄으로 이루어진 군에서 선택된 어느 하나를 사용하는 것이다. The thermal conductivity filler is a carbon material; Alternatively, an inorganic material of a metal or non-metal type may be used. As a specific example, the carbon material is any one selected from the group consisting of graphite, expanded graphite, CNT, graphene and CNF carbon fiber, and the metal or non-metal-based inorganic material is BN (boron nitride), Al 2 O 3 ( alumina), AlN (aluminum nitride), a ceramic material, copper and aluminum, any one selected from the group consisting of is used.

본 발명의 실시예에서는 바람직하게는 흑연을 사용하여 설명하고 있으나 이에 한정되지 아니할 것이다. In the embodiment of the present invention, it is preferably described using graphite, but it will not be limited thereto.

또한, 도 1에서 원만한 나일론 중합반응이 완료되기 위해서는, 상기 음이온 카프로락탐 중량부에 대하여, (B)개시제 3 내지 5중량부 및 (C)활성화제 2 내지 3중량부가 혼합되어 중합되도록 한다[표 1]. In addition, in order to complete the smooth nylon polymerization reaction in FIG. 1, (B) 3 to 5 parts by weight of the initiator and 2 to 3 parts by weight of the (C) activator are mixed and polymerized with respect to the parts by weight of the anion caprolactam [ Table] 1 ].

이상으로부터 본 발명은 열가소성수지에 비해 점성이 낮고 그에 따라 흐름성이 높은 열가소성수지 단량체 함유용액에 열전도도 필러가 인시츄 중합되어 복합화됨으로써, 조성간의 열 계면 접촉이 원활하여 분산성의 문제가 해소되는 동시에 고함량으로 함유될 수 있다. 이에, 열가소성수지 단량체 100 중량부에 대하여, 열전도도 필러는 300 내지 800 중량부가 함유된 고함량의 마스터배치를 제공할 수 있다. From the above, in the present invention, the thermal conductivity filler is polymerized in situ in a solution containing a thermoplastic resin monomer having a low viscosity and thus a high flowability compared to the thermoplastic resin, so that the thermal interface contact between the compositions is smooth and the dispersibility problem is solved at the same time. It may be contained in a high content. Accordingly, with respect to 100 parts by weight of the thermoplastic resin monomer, the thermal conductivity filler may provide a high content masterbatch containing 300 to 800 parts by weight.

도 2는 본 발명의 제조방법으로부터 제조된 열가소성수지 기반 열전도성 마스터배치 사진으로서, 중합공정상에서 사출가능한 그래뉼 타입의 입자크기로 수득된다. 2 is a photograph of a thermoplastic resin-based thermally conductive masterbatch prepared by the manufacturing method of the present invention, and is obtained in a granular-type particle size that can be injected during the polymerization process.

구체적으로, 500㎛ 내지 6mm 입자크기의 그래뉼 타입의 열가소성수지 기반 열전도성 마스터배치를 제공함으로써, 분말 혼합 공정에 적용할 때, 별도의 분쇄공정없이 수행할 수 있어, 공정 생략으로 인한 가격경쟁력을 높일 수 있고 분말 작업시 작업자의 건강 및 시설 등의 문제도 근본적으로 해소할 수 있다. Specifically, by providing a granular type thermoplastic resin-based thermally conductive masterbatch having a particle size of 500㎛ to 6mm, when applied to the powder mixing process, it can be performed without a separate grinding process, thereby increasing price competitiveness due to the omission of the process It can also fundamentally solve problems such as worker's health and facilities when working with powder.

나아가, 본 발명은 상기 제조방법으로부터 얻어진 열가소성수지 기반 그래뉼 타입의 열전도성 마스터배치 30 내지 60 중량% 및 고분자 수지 40 내지 70중량%가 혼합 후 압출기를 통해 용융압출된 압출물로 이루어진 펠렛 형상의 방열복합소재를 제공한다. Furthermore, the present invention is a pellet-shaped heat dissipation made of an extrudate in which 30 to 60% by weight of a thermally conductive masterbatch of the thermoplastic resin-based granular type obtained from the above manufacturing method and 40 to 70% by weight of a polymer resin are mixed and then melt-extruded through an extruder. Composite materials are provided.

상기에서 사용되는 고분자 수지는 PP(polypropylene), PA6(Polyamide6), PET(Polyethylene terephthalate), PBT(poly-butylene-terephthalate), PA66(Polyamide66) 등을 포함하고, ABS(acrylonitrile butadiene styrene copolymer), PC(polycarbonate), PA(polyamide)의 경우도 적용할 수 있다.즉, 본 발명은 중합공정상에서 사출가능한 그래뉼 타입의 입자크기로 얻어진 열가소성수지 기반 열전도성 마스터배치를 별도의 분쇄공정없이 고분자 수지와 혼합한 압출성형물을 팰랫화하여 사출 가능하게 구성함으로써, 용이한 성형성을 확보하고, 생산성을 높이며, 가격경쟁력이 우수하고, 열전도도가 향상되어 방열특성이 우수한 방열복합소재를 제공한다.상기 압출 후 열이 식으면서 고분자 수지가 수분을 흡수하기 때문에 수분이 높아지면 사출성형시 특성이 저하될 수 있다.The polymer resin used in the above includes PP (polypropylene), PA6 (Polyamide6), PET (Polyethylene terephthalate), PBT (poly-butylene-terephthalate), PA66 (Polyamide66), etc., ABS (acrylonitrile butadiene styrene copolymer), PC (polycarbonate) and PA (polyamide) can also be applied. That is, in the present invention, a thermoplastic resin-based thermally conductive masterbatch obtained in granular particle size that can be injected during the polymerization process is mixed with a polymer resin without a separate grinding process. By palletizing an extruded product to enable injection, it provides a heat dissipation composite material with excellent heat dissipation properties by securing easy moldability, increasing productivity, excellent price competitiveness, and improved thermal conductivity. After the extrusion As the heat cools, the polymer resin absorbs moisture, so if the moisture increases, the injection molding properties may deteriorate.

따라서, 압출 성형 직후 수분을 흡수하여 함수율이 높아져 있기 때문에, 압출 성형된 팰렛을 제습 건조하는 단계를 더 수행할 수 있다.Therefore, since the moisture content is increased by absorbing moisture immediately after extrusion molding, the step of dehumidifying and drying the extrusion-molded pellets may be further performed.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail through examples.

본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. These examples are for explaining the present invention in more detail, and the scope of the present invention is not limited to these examples.

<제조예 1> <Production Example 1>

음이온 카프로락탐 100g과 개시제인 나트륨카프로락타메이트 6g이 혼합물을 반응기 A에서 90℃에서 혼합하였고, 음이온 카프로락탐 100g과 활성화제인 헥사메틸렌디카바모일디카프로락탐 4g을 반응기 B에서 혼합하였다. 그 후 160℃로 가열되어 있는 반응기 C에, 반응기 A와 B에 있는 개시제 및 활성화제 혼합물을 동시에 주입한 후, 천천히 저어주면서 20분간 반응시켰다. 이후 반응기를 냉각한 후, 꺼내어 반응물의 중합도를 측정하였다.A mixture of 100 g of anion caprolactam and 6 g of sodium caprolactamate as an initiator was mixed in reactor A at 90° C., 100 g of anion caprolactam and 4 g of activator hexamethylene dicarbamoyldicaprolactam were mixed in reactor B. After that, the initiator and activator mixtures in reactors A and B were simultaneously injected into reactor C heated to 160° C., and then reacted for 20 minutes with slow stirring. After cooling the reactor, it was taken out and the degree of polymerization of the reactant was measured.

Figure pat00001
Figure pat00001

<제조예 2> <Preparation Example 2>

음이온 카프로락탐 100g과 개시제인 나트륨카프로락타메이트 8g이 혼합물을 반응기 A에서 90℃에서 혼합하였고, 음이온 카프로락탐 100g과 활성화제인 헥사메틸렌디카바모일디카프로락탐 5g을 반응기 B에서 혼합하였다. 그 후 160℃로 가열되어 있는 반응기 C에 상기 반응기 A와 B에 있는 개시제 및 활성화제 혼합물을 동시에 주입한 후, 천천히 저어주면서 20분간 반응시켰다. 이후 반응기를 냉각한 후, 꺼내어 반응물의 중합도를 측정하였다. A mixture of 100 g of anion caprolactam and 8 g of sodium caprolactamate as an initiator was mixed in reactor A at 90° C., 100 g of anion caprolactam and 5 g of activator hexamethylene dicarbamoyldicaprolactam were mixed in reactor B. Thereafter, the initiator and activator mixtures in reactors A and B were simultaneously injected into reactor C heated to 160° C., and then reacted for 20 minutes with slow stirring. After the reactor was cooled, it was taken out and the degree of polymerization of the reactant was measured.

<비교제조예 1> <Comparative Preparation Example 1>

음이온 카프로락탐(anion carprolactam) 100g과 개시제인 나트륨카프로락타메이트(sodium caprolactamate) 4g을 반응기 A에서 90℃에서 혼합하였고, 음이온 카프로락탐 100g과 활성화제인 헥사메틸렌디카바모일디카프로락탐 3g을 반응기 B에서 혼합하였다. 그 후 160℃로 가열되어 있는 반응기 C에 상기 반응기 A와 B에 있는 개시제 및 활성화제 혼합물을 동시에 주입한 후, 천천히 저어주면서 20분간 반응시켰다. 이후 반응기를 냉각한 후, 꺼내어 반응물의 중합도를 측정하였다. 100 g of anion carprolactam and 4 g of sodium caprolactamate as an initiator were mixed in reactor A at 90°C, 100 g of anion caprolactam and 3 g of activator hexamethylene dicarbamoyl dicaprolactam were mixed in reactor B mixed. Thereafter, the initiator and activator mixtures in reactors A and B were simultaneously injected into reactor C heated to 160° C., and then reacted for 20 minutes with slow stirring. After cooling the reactor, it was taken out and the degree of polymerization of the reactant was measured.

상기 반응 완료된 시편을 일정한 크기로 절단한 다음 무게를 측정하였다. 상기 시편을 24시간 동안 증류수에 함침시키면 미중합된 카프로락탐이 녹아 나온다. 증류수에 충분히 함침 시킨 후, 하루(24시간)동안 건조시키고, 건조 후 시편의 무게를 측정하여, 하기 수학식 1의 중합 전환율에 대입하여 중합 전환율을 산출할 수 있다.The reaction-completed specimen was cut to a predetermined size, and then the weight was measured. When the specimen is immersed in distilled water for 24 hours, unpolymerized caprolactam is dissolved. After sufficiently impregnated in distilled water, it is dried for one day (24 hours), and after drying, the weight of the specimen is measured, and the polymerization conversion rate can be calculated by substituting it for the polymerization conversion rate of Equation 1 below.

수학식 1Equation 1

중합 전환율(%) = (1-(Mmon/Mtot))×100Polymerization conversion (%) = (1-(M mon /M tot ))×100

상기에서 Mmon은 미반응된 카프로락탐 무게이고, Mtot는 반응완료후 전체의 무게이다. In the above, M mon is the weight of unreacted caprolactam, and M tot is the total weight after completion of the reaction.

Figure pat00002
Figure pat00002

<실시예 1> <Example 1>

음이온 카프로락탐 50g과 개시제인 나트륨카프로락타메이트 3g이 혼합물을 반응기 A에서 90℃에서 혼합하였고, 음이온 카프로락탐 50g과 활성화제인 헥사메틸렌디카바모일디카프로락탐 2g을 반응기 B에서 혼합하였다. 그 후 반응기 A와 B에 있는 개시제 및 활성화제 혼합물을 160℃로 가열되어 있고, 흑연 분말 800g이 넣어져 있는 반응기 C에 동시에 주입한 후, 천천히 저어주면서 20분간 반응시켜 그래뉼 타입의 흑연 마스터배치를 제조하였다. 이후 반응기를 냉각한 후, 꺼내어 반응물의 중합도를 측정하였다. A mixture of 50 g anion caprolactam and 3 g sodium caprolactamate as an initiator was mixed in reactor A at 90° C., 50 g anion caprolactam and 2 g activator hexamethylene dicarbamoyldicaprolactam were mixed in reactor B. After that, the initiator and activator mixtures in reactors A and B were heated to 160° C. and simultaneously injected into reactor C containing 800 g of graphite powder, and then reacted for 20 minutes with slow stirring to form a granular graphite masterbatch. prepared. After cooling the reactor, it was taken out and the degree of polymerization of the reactant was measured.

<실시예 2> <Example 2>

상기 실시예 1에서 제조된 그래뉼 타입의 흑연 마스터배치 220g과 폴리아미드 430g을 10L 플라스틱 통에 넣은 후 흔들어 혼합한 후, 200∼260℃로 가열된 이축스크류 압출기를 이용하여 용융압출하여 30중량%의 흑연이 함유된 펠렛 형상의 방열복합소재를 제조하였다. 220 g of the granular graphite masterbatch prepared in Example 1 and 430 g of polyamide were put into a 10L plastic barrel, shaken and mixed, and melt-extruded using a twin-screw extruder heated to 200 to 260 ° C. A pellet-shaped heat dissipation composite material containing graphite was prepared.

<실시예 3> <Example 3>

상기 실시예 1에서 제조된 그래뉼 타입의 흑연 마스터배치 290g과 폴리아미드 360g을 10L 플라스틱 통에 넣은 후 흔들어 혼합한 후, 200∼260℃로 가열된 이축스크류 압출기를 이용하여 용융혼합하여 40% 정도의 흑연이 함유된 펠렛 형상의 방열복합소재를 제조하였다. 290 g of the granular graphite masterbatch prepared in Example 1 and 360 g of polyamide were put in a 10L plastic barrel and mixed by shaking, and then melt-mixed using a twin screw extruder heated to 200 to 260 ° C. A pellet-shaped heat dissipation composite material containing graphite was prepared.

<실시예 4> <Example 4>

상기 실시예 1에서 그래뉼 타입의 흑연 마스터배치 365g과 폴리아미드 285g을 10L 플라스틱 통에 넣은 후 흔들어 혼합한 후, 200∼260℃로 가열된 이축스크류 압출기를 이용하여 용융혼합하여 50% 정도의 흑연이 함유된 펠렛 형상의 방열복합소재를 제조하였다. In Example 1, 365 g of granular graphite masterbatch and 285 g of polyamide were put in a 10L plastic barrel and mixed by shaking, and then melt-mixed using a twin-screw extruder heated to 200 to 260° C. to obtain about 50% of graphite. A heat dissipation composite material in the form of pellets was prepared.

<실시예 5> <Example 5>

상기 실시예 1과 같은 방법으로, 음이온 카프로락탐 50g과 개시제인 나트륨카프로락타메이트 3g이 혼합물을 반응기 A에서 90℃에서 혼합하였고, 음이온 카프로락탐 50g과 활성화제인 헥사메틸렌디카바모일디카프로락탐 2g을 반응기 B에서 혼합하였다. 그 후 반응기 A와 B에 있는 개시제 및 활성화제 혼합물을 160℃로 가열되어 있고, 흑연 800g이 넣어져 있는 반응기 C에 동시에 주입을 한 후, 천천히 저어주면서 20분간 반응시켜 흑연 마스터배치를 제조하였다. 상기 흑연은 반응기 C에 넣기 전에 3중량% 농도의 나일론계 사이징제에 담근 후 130℃에서 건조한 후 사용하였다. 이후 반응기를 냉각한 후, 꺼내어 반응물의 중합도를 측정하였다.In the same manner as in Example 1, a mixture of 50 g of anion caprolactam and 3 g of sodium caprolactamate as an initiator was mixed in reactor A at 90° C., 50 g of anion caprolactam and 2 g of hexamethylene dicarbamoyl dicaprolactam as an activator were mixed. Mix in reactor B. After that, the initiator and activator mixtures in reactors A and B were heated to 160° C. and simultaneously injected into reactor C containing 800 g of graphite, followed by reaction for 20 minutes with slow stirring to prepare a graphite masterbatch. The graphite was immersed in a nylon-based sizing agent of 3% by weight before being put into the reactor C, and then dried at 130° C. and then used. After cooling the reactor, it was taken out and the degree of polymerization of the reactant was measured.

<실시예 6> <Example 6>

상기 실시예 5의 방법에 의해 제조된 흑연 마스터배치 365g과 폴리아미드 285g을 10L 플라스틱 통에 넣은 후 흔들어 혼합한 후, 200∼260℃로 가열된 이축스크류 압출기를 이용하여 용융혼합하여 50% 정도의 흑연이 함유된 펠렛 형상의 방열복합소재를 제조하였다. 365 g of the graphite masterbatch prepared by the method of Example 5 and 285 g of polyamide were put in a 10L plastic barrel and mixed by shaking, and then melt-mixed using a twin screw extruder heated to 200 to 260 ° C. A pellet-shaped heat dissipation composite material containing graphite was prepared.

<비교예 1> <Comparative Example 1>

흑연 분말 195g(30중량%)과 동결 분쇄한 폴리아미드 455g(70중량%)를 10L 플라스틱 통에 넣은 후 흔들어 혼합한 후, 200∼260℃로 가열된 이축스크류 압출기를 이용하여 용융혼합하여 흑연이 함유된 고분자복합재 펠렛을 제조하였다. 195 g (30 wt %) of graphite powder and 455 g (70 wt %) of freeze-pulverized polyamide are put in a 10L plastic barrel, shaken and mixed, and then melt-mixed using a twin screw extruder heated to 200 to 260 ° C to obtain graphite. The contained polymer composite pellets were prepared.

<비교예 2> <Comparative Example 2>

흑연 분말 260g(40중량%)과 동결 분쇄한 폴리아미드 390g(60중량%)를 10L 플라스틱 통에 넣은 후 흔들어 혼합한 후, 200∼260℃로 가열된 이축스크류 압출기를 이용하여 용융혼합하여 흑연이 함유된 고분자복합재 펠렛을 제조하였다. 260 g (40 wt %) of graphite powder and 390 g (60 wt %) of freeze-pulverized polyamide are put in a 10L plastic barrel, shaken and mixed, and then melted and mixed using a twin-screw extruder heated to 200 to 260 ° C to obtain graphite. The contained polymer composite pellets were prepared.

<비교예 3> <Comparative Example 3>

흑연 분말 325g(50중량%) 과 동결 분쇄한 폴리아미드 325g(50중량%)를 10L 플라스틱 통에 넣은 후 흔들어 혼합한 후, 200∼260℃로 가열된 이축스크류 압출기를 이용하여 용융혼합하여 흑연이 함유된 고분자복합재 펠렛을 제조하였다. 325 g (50 wt %) of graphite powder and 325 g (50 wt %) of freeze-pulverized polyamide are put in a 10L plastic barrel, shaken and mixed, and then melted and mixed using a twin-screw extruder heated to 200 to 260 ° C to obtain graphite. The contained polymer composite pellets were prepared.

<실험예 1> 물성평가<Experimental Example 1> Physical property evaluation

상기 실시예 1∼4에서 제조된 흑연이 함유된 고분자복합재 펠렛을 사출성형기를 이용하여 열전도 및 인장시험편으로 사출 성형한다. prepared in Examples 1 to 4 above. Polymer composite pellets containing graphite are injection molded into heat conduction and tensile test pieces using an injection molding machine.

상기 사출성형된 시험편의 열전도도, 전기전도도 및 인장강도에 대한 결과를 하기 표 2에 기재하였다. The results for the thermal conductivity, electrical conductivity and tensile strength of the injection-molded test piece are shown in Table 2 below.

Figure pat00003
Figure pat00003

상기 표 2에서 확인되는 바와 같이, 실시예 2 내지 4에서 제조된 방열복합소재는 통상 분말형태로 적용된 비교예 1 내지 3의 소재대비, 열전도도 전기전도도 및 인장강도가 대등 이상의 물성을 보였다. As can be seen in Table 2, the heat dissipation composite materials prepared in Examples 2 to 4 showed physical properties equal to or greater than that of the materials of Comparative Examples 1 to 3 applied in powder form, in thermal conductivity, electrical conductivity, and tensile strength.

이러한 물성결과는 실시예 1의 그래뉼 타입의 흑연 마스터배치 사용에 의한 것으로, 열가소성수지에 비해 점성이 낮아 흐름성이 높은 열가소성수지의 단량체 중합공정에 흑연 분말이 함침 후 중합되므로 분산성 문제가 해소되었음을 뒷받침한다. This physical property result is due to the use of the granular graphite masterbatch of Example 1, and since graphite powder is impregnated and polymerized in the monomer polymerization process of a thermoplastic resin having a low viscosity and high flowability compared to a thermoplastic resin, the dispersibility problem has been solved. back up

실시예 5 및 6의 결과로부터, 흑연 마스터배치 제조단계에 나일론 사이징제를 추가하여 중합된 경우, 흑연(필러)과 폴리아미드(매트릭스)간의 계면 향상으로 인해 궁극적으로 열전도성 복합소재의 물성의 향상결과를 확인하였다.From the results of Examples 5 and 6, when a nylon sizing agent was added to the graphite masterbatch manufacturing step and polymerized, the improvement of the interface between the graphite (filler) and the polyamide (matrix) ultimately improved the physical properties of the thermally conductive composite material The results were confirmed.

또한, 방열복합소재 제조시 통상 분말 형태가 아닌, 그래뉼 타입의 흑연 마스터배치를 사용함에 따라, 취급성이 우수하고, 특히, 본 발명의 그래뉼 타입의 흑연 마스터배치는 별도의 분쇄공정없이 중합공정상에서 사출가능한 수준으로 입자크기로 확보할 수 있어 작업성이 우수하다.In addition, when the heat dissipation composite material is manufactured, the use of a granular type graphite masterbatch, not a powder form, is used, and thus the handleability is excellent. In particular, the granular type graphite masterbatch of the present invention is used in the polymerization process without a separate grinding process. It has excellent workability because it can be secured with a particle size that can be injected.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.In the above, the present invention has been described in detail only with respect to the described embodiments, but it is apparent to those skilled in the art that various changes and modifications are possible within the scope of the technical spirit of the present invention, and it is natural that such variations and modifications belong to the appended claims.

10, 11: 반응조
20: 가스입구 21: 진공배출구
30: 중합조 40: 열전도도 필러
10, 11: Reactor
20: gas inlet 21: vacuum outlet
30: polymerization tank 40: thermal conductivity filler

Claims (6)

열가소성수지 단량체 함유용액에 열전도도 필러가 혼합되어 인시츄 중합(In-situ polymerization)되되,
상기 열가소성수지 단량체 100 중량부에 대하여, 열전도도 필러는 300 내지 800 중량부가 함유된, 열가소성수지 기반 열전도성 마스터배치의 제조방법.
In-situ polymerization is performed by mixing a thermal conductivity filler with a solution containing a thermoplastic resin monomer.
With respect to 100 parts by weight of the thermoplastic resin monomer, the thermal conductivity filler contains 300 to 800 parts by weight, a method for producing a thermoplastic resin-based thermally conductive masterbatch.
제1항에 있어서, 상기 열가소성수지 단량체 함유용액이
(A)음이온 카프로락탐 및 (B)나트륨 카프로락타메이트를 포함하는 개시제가 함유된 반응조 및
(A)음이온 카프로락탐 및 (C)헥사메틸렌디카바모일디카프로락탐을 포함한 활성화제가 함유된 반응조가 혼합 중합된 것을 특징으로 하는 열가소성수지 기반 열전도성 마스터배치의 제조방법.
The method according to claim 1, wherein the thermoplastic resin monomer-containing solution is
(A) a reactor containing an initiator comprising anionic caprolactam and (B) sodium caprolactamate; and
(A) Anionic caprolactam and (C) a method for producing a thermoplastic resin-based thermally conductive masterbatch, characterized in that the reaction tank containing an activator containing hexamethylene dicarbamoyl dicaprolactam is mixed polymerization.
제2항에 있어서, 상기 음이온 카프로락탐 중량부에 대하여, (B)개시제 3 내지 5중량부 및 (C)활성화제 2 내지 3중량부가 중합된 것을 특징으로 하는 열가소성수지 기반 열전도성 마스터배치의 제조방법.[Claim 3] The preparation of a thermoplastic resin-based thermally conductive masterbatch according to claim 2, wherein 3 to 5 parts by weight of (B) the initiator and 2 to 3 parts by weight of the (C) activator are polymerized based on parts by weight of the anion caprolactam. Way. 제1항에 있어서, 상기 열전도성 필러는 흑연, 팽창흑연, 탄소나노튜브, 그래핀 및 탄소나노섬유로 이루어진 군에서 선택된 어느 하나의 탄소소재; 또는 질화붕소, 알루미나, 질화알루미늄, 세라믹소재, 구리 및 알루미늄 및 철로 이루어진 군에서 선택된 어느 하나의 무기계 소재;인 것을 특징으로 하는 열가소성수지 기반 열전도성 마스터배치의 제조방법. According to claim 1, wherein the thermally conductive filler is any one carbon material selected from the group consisting of graphite, expanded graphite, carbon nanotubes, graphene, and carbon nanofibers; Or boron nitride, alumina, aluminum nitride, ceramic material, any one inorganic material selected from the group consisting of copper, aluminum and iron; Method for producing a thermoplastic resin-based thermally conductive masterbatch, characterized in that. 제1항에 있어서, 상기 열가소성수지 기반 열전도성 마스터배치가 500㎛ 내지 6mm 입자크기의 그래뉼 타입인 것을 특징으로 하는 열가소성수지 기반 열전도성 마스터배치의 제조방법.The method of claim 1, wherein the thermoplastic resin-based thermally conductive masterbatch is a granular type having a particle size of 500㎛ to 6mm. 제1항 내지 제5항 중 어느 한 항으로부터 제조된 열가소성수지 기반 열전도성 마스터배치 30 내지 60 중량% 및 고분자 수지 40 내지 70중량%가 혼합 후 압출기를 통해 용융압출된 압출물로 이루어진 펠렛 형상의 방열복합소재.
Claims 1 to 5, wherein 30 to 60% by weight of the thermoplastic resin-based thermally conductive masterbatch and 40 to 70% by weight of the polymer resin prepared from any one of claims 1 to 5 are mixed and then melt-extruded through an extruder. Heat dissipation composite material.
KR1020190152071A 2019-11-25 2019-11-25 Manufacturing method of thermally conductive masterbatch based on thermoplastic resin and heat sink composite using the same KR102384315B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190152071A KR102384315B1 (en) 2019-11-25 2019-11-25 Manufacturing method of thermally conductive masterbatch based on thermoplastic resin and heat sink composite using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190152071A KR102384315B1 (en) 2019-11-25 2019-11-25 Manufacturing method of thermally conductive masterbatch based on thermoplastic resin and heat sink composite using the same

Publications (2)

Publication Number Publication Date
KR20210064459A true KR20210064459A (en) 2021-06-03
KR102384315B1 KR102384315B1 (en) 2022-04-07

Family

ID=76396478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190152071A KR102384315B1 (en) 2019-11-25 2019-11-25 Manufacturing method of thermally conductive masterbatch based on thermoplastic resin and heat sink composite using the same

Country Status (1)

Country Link
KR (1) KR102384315B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260486A (en) * 2022-08-02 2022-11-01 河北科技大学 In-situ polymerized nylon-based master batch and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126415A (en) 2008-03-20 2010-12-01 디에스엠 아이피 어셋츠 비.브이. Heatsinks of thermally conductive plastic materials
KR20130038775A (en) 2011-10-10 2013-04-18 현대자동차주식회사 Polymer-based heat releasing composite and manufacturing method for the same
KR20150028698A (en) * 2013-09-06 2015-03-16 한국과학기술연구원 Composites of filler and polymer resin and method for preparing the same
KR20150119252A (en) * 2013-02-13 2015-10-23 바스프 에스이 Polyamide composites containing graphene
KR20180054708A (en) * 2015-09-16 2018-05-24 바스프 에스이 Anionic polymerization of lactam
KR101952932B1 (en) * 2017-11-29 2019-02-27 울산과학기술원 Method of manufacturing carbon fiber-polymer resin composite
KR20190120421A (en) 2016-01-26 2019-10-23 데쿠세리아루즈 가부시키가이샤 Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126415A (en) 2008-03-20 2010-12-01 디에스엠 아이피 어셋츠 비.브이. Heatsinks of thermally conductive plastic materials
KR20130038775A (en) 2011-10-10 2013-04-18 현대자동차주식회사 Polymer-based heat releasing composite and manufacturing method for the same
KR20150119252A (en) * 2013-02-13 2015-10-23 바스프 에스이 Polyamide composites containing graphene
KR20150028698A (en) * 2013-09-06 2015-03-16 한국과학기술연구원 Composites of filler and polymer resin and method for preparing the same
KR20180054708A (en) * 2015-09-16 2018-05-24 바스프 에스이 Anionic polymerization of lactam
KR20190120421A (en) 2016-01-26 2019-10-23 데쿠세리아루즈 가부시키가이샤 Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device
KR101952932B1 (en) * 2017-11-29 2019-02-27 울산과학기술원 Method of manufacturing carbon fiber-polymer resin composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260486A (en) * 2022-08-02 2022-11-01 河北科技大学 In-situ polymerized nylon-based master batch and preparation method thereof

Also Published As

Publication number Publication date
KR102384315B1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Quill et al. Thermal and mechanical properties of 3D printed boron nitride–ABS composites
KR101457016B1 (en) Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
EP2195374B1 (en) Heat-processable thermally conductive polymer composition
CN108250747B (en) Thermoplastic polyetherimide insulating and heat-conducting composite material and preparation method thereof
CN101568599B (en) Heat-conductive resin composition and plastic article
CN104151805A (en) Carbon fiber reinforced thermoplastic resin composite material with superior heat dissipation performance and preparation method
KR102365467B1 (en) Manufacturing method of thermally polymeric composite and composite for heat sink using the same
CN107383615A (en) A kind of modified polypropylene material and preparation method thereof
KR102384315B1 (en) Manufacturing method of thermally conductive masterbatch based on thermoplastic resin and heat sink composite using the same
KR20180045746A (en) A method for manufacturing high heat-radiating filament for three dimensional printing
KR101257693B1 (en) Electrically insulated high thermal conductive polymer composition
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
KR102280275B1 (en) Heat sink material using carbon composite and manufacturing method thereof
JP2003049081A (en) Thermoplastic resin composition excellent in heat radiation property
JPH09255871A (en) Thermoplastic resin composition and its molding product
KR102136601B1 (en) Method of Manufacturing Carbonnanotube Pellet and Carbonnanotube Pellet Manufactured there by
JP2007302822A (en) Polyphenylene sulfide resin composition
KR20140126907A (en) Heat radiating macromolecular resin material, heat radiating resin composition, plastic heat radiating material, and method for preparing thereof
CN115803368B (en) Method for suppressing burrs of polyarylene sulfide resin composition
KR102213536B1 (en) Long fiber reinforced thermoplastic resin composition having excellent thermal conductivity and EMI shielding property and molded article comprising the same
KR20140080115A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
KR102175062B1 (en) Long fiber reinforced thermoplastic resin composition having excellent weatherability and molded article produced therefrom
CN115551951A (en) Thermally conductive resin composition and molded body made of same
US20060135655A1 (en) Method for improving filler dispersal and reducing tensile modulus in a thermally conductive polymer composition
CN114621581A (en) High-thermal-conductivity nylon and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant