JP2783427B2 - Carbon fiber / thermoplastic compound - Google Patents

Carbon fiber / thermoplastic compound

Info

Publication number
JP2783427B2
JP2783427B2 JP19338189A JP19338189A JP2783427B2 JP 2783427 B2 JP2783427 B2 JP 2783427B2 JP 19338189 A JP19338189 A JP 19338189A JP 19338189 A JP19338189 A JP 19338189A JP 2783427 B2 JP2783427 B2 JP 2783427B2
Authority
JP
Japan
Prior art keywords
carbon fiber
compound
fiber
thermoplastic resin
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19338189A
Other languages
Japanese (ja)
Other versions
JPH0356566A (en
Inventor
宏 大王
真志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP19338189A priority Critical patent/JP2783427B2/en
Publication of JPH0356566A publication Critical patent/JPH0356566A/en
Application granted granted Critical
Publication of JP2783427B2 publication Critical patent/JP2783427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は射出成形等に用いられる炭素繊維/熱可塑性
樹脂コンパウンドに関し,特に添加した繊維の補強性,
導電性他の特性を充分に引き出すことのできるコンパウ
ンドに関するものである。
Description: TECHNICAL FIELD The present invention relates to a carbon fiber / thermoplastic resin compound used for injection molding and the like, and particularly to a reinforcing property of added fiber,
The present invention relates to a compound that can sufficiently bring out other properties such as conductivity.

〔従来の技術〕[Conventional technology]

炭素繊維/熱可塑性樹脂複合材(以下CFRP)の作製
は,あらかじめ適当な充填量加えた炭素繊維と樹脂を混
練・押し出ししたコンパウンドと呼ばれるペレット状物
を作製し,それを射出成形機により所望の形状に成形す
るのが一般的である。コンパウンドの作製工程では,炭
素繊維と所望の樹脂を単軸あるいは2軸混練機により樹
脂の軟化温度以上で混練・押し出したものを冷却しなが
ら適当な長さに切断しペレットを得る。
Carbon fiber / thermoplastic resin composite (hereinafter referred to as CFRP) is prepared by kneading and extruding a resin filled with carbon fiber and resin in an appropriate amount in advance into pellets called a compound. It is common to shape it into a shape. In the compound production process, carbon fibers and a desired resin are kneaded and extruded by a uniaxial or biaxial kneader at a temperature higher than the softening temperature of the resin, and then cut to an appropriate length while cooling to obtain pellets.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記コンパウンドの作製工程では,混練機中でのせん
断力等により炭素繊維の破壊が起こることが知られてい
る。特に粘性の高いABS樹脂などでは繊維にかかるせん
断力が大きく破壊の低度も著しい。CFRP成形に用いるコ
ンパウンド中の炭素繊維が破壊されることは,すなわち
成形したCFRPの特性(補強性,導電性など)を低下させ
る原因となり,炭素繊維添加により期待されたほどの特
性とならないCFRPとなる恐れがある。
It is known that carbon fibers are destroyed by the shearing force or the like in a kneader in the compound manufacturing process. Particularly, in the case of highly viscous ABS resin, etc., the shearing force applied to the fibers is large, and the degree of breakage is remarkable. The destruction of the carbon fibers in the compound used for CFRP molding means that the properties (reinforcement, conductivity, etc.) of the molded CFRP are degraded. There is a risk of becoming.

CFRPの射出成形段階では,コンパウンドは成形機のス
リューにより混練されるため,この工程での繊維の破壊
はある程度やむを得ないが,コンパウンド作製段階で繊
維が受けるせん断力を排除あるいは低減することは,ト
ータルの繊維の破壊を低く抑えるのに有効である。繊維
の破壊は混練機を通つた回数にともなつて大きくなると
いう現象は,文献等で既知である(参考文献 長野県工
業試験場 研究報告 第6巻 p.9)。
In the CFRP injection molding stage, the compound is kneaded by the screw of the molding machine, so fiber destruction in this process is unavoidable to some extent. However, eliminating or reducing the shearing force applied to the fiber in the compound production stage is a total This is effective in keeping the fiber breakage low. The phenomenon that fiber destruction increases with the number of passes through a kneader is known in the literature (Reference: Nagano Industrial Research Institute, Research Report, Vol. 6, p. 9).

そこで,本発明はCFRPの射出成形に必要なコンパウン
ドを作製する際に,添加した炭素繊維をなるべく破壊す
る事のないコンパウンドを得ることを目的とする。
Therefore, an object of the present invention is to obtain a compound which does not destroy the added carbon fiber as much as possible when producing a compound necessary for injection molding of CFRP.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の要旨はあらかじめ炭素繊維のみを適当な大き
さに造粒または成形し,その造粒物または成型体に熱可
塑性樹脂を融点以上の温度で含浸した後,必要により含
浸品を適当な大きさに粉砕して炭素繊維/熱可塑性樹脂
コンパウンドとしたものである。これは特に,造粒,成
形による繊維の破壊の比較的少ない微小繊維である気相
法炭素繊維を用いたコンパウンドに有効な手段である。
The gist of the present invention is that the carbon fiber alone is granulated or molded to an appropriate size in advance, and the granulated product or molded product is impregnated with a thermoplastic resin at a temperature equal to or higher than the melting point. It is crushed into a carbon fiber / thermoplastic resin compound. This is an effective means especially for a compound using vapor-grown carbon fiber, which is a microfiber with relatively little fiber breakage due to granulation and molding.

熱硬化性樹脂はその硬化前の液状物を繊維集合体に含
浸することが容易であるが熱可塑性樹脂は溶融しても粘
度が高く、含浸がむずかしいので従来含浸法は行なわれ
ていない。
The thermosetting resin can easily impregnate the liquid material before hardening into the fiber assembly, but the thermoplastic resin has a high viscosity even if it is melted, and is difficult to impregnate.

炭素繊維,特に気相法炭素繊維の造粒には,転造造粒
機,押し出し造粒機などを使用する。これは,まず繊維
に水,エタノール等の液体を噴霧するかまたは滴下し,
繊維と液体を混合または凝集体を作り,これを転動造粒
機の場合は中で転動させて凝集体を成長させ造粒する。
押し出し造粒機の場合は押出し後切断してペレット状に
するものである。その他プレス成形等種々の方法で成形
することができる。造粒物又は成形体は樹脂含浸後適当
な大きさに破砕できるので、その大きさには特に制限な
い。液体を混合する際に,デンプン,糖蜜など一般によ
く使用されるバインダーを添加すると,造粒体の形成が
容易となるが,できあがったコンパウンド中に炭素繊維
以外の物質の混入を招く恐れがあるので,これが外乱要
因になる場合は造粒後にバインダーを加熱除去または加
熱炭化してやる必要が生じてくる。
For granulation of carbon fiber, particularly vapor-grown carbon fiber, a rolling granulator or an extrusion granulator is used. This is done by first spraying or dripping a liquid such as water or ethanol on the fiber,
The fiber and the liquid are mixed or agglomerates are formed, and in the case of a tumbling granulator, they are tumbled in a rolling granulator to grow and agglomerate the agglomerates.
In the case of an extrusion granulator, it is extruded and cut into pellets. In addition, it can be formed by various methods such as press molding. Since the granulated product or the molded product can be crushed to an appropriate size after impregnation with the resin, the size is not particularly limited. Addition of commonly used binders such as starch and molasses when mixing liquids facilitates the formation of granules, but may result in the incorporation of substances other than carbon fibers into the resulting compound. When this causes disturbance, it is necessary to remove or heat carbonize the binder after granulation.

この煩雑さを回避するためには,目的とするコンパウ
ンド用の熱可塑性樹脂とよく馴染み,特性に影響しない
もの,例えば,目的樹脂がポリプロピレン,ポリエチレ
ン等のポリオレフインの場合は,パラフイン類,目的樹
脂がナイロン等のポリアミドの場合は,エポキシ類とい
うようにバインダーを選択することにより造粒,成形後
の後処理を簡略化できる。
In order to avoid this complication, it is well known that the thermoplastic resin for the target compound does not affect the properties. For example, when the target resin is polyolefin such as polypropylene or polyethylene, paraffins and the target resin are used. In the case of polyamide such as nylon, the post-treatment after granulation and molding can be simplified by selecting a binder such as epoxy.

以上のようにしてできた炭素繊維,特に気相法炭素繊
維の造粒物または成形体に,乾燥(必要な場合は焼成処
理後)、減圧脱気後オートクレーブ等の加圧充填容器の
中で所望の熱可塑性樹脂含浸を行う。含浸は樹脂をその
融点とそれよりも100℃位高い温度の範囲で溶融し、加
圧して行なう。加圧の圧力は1〜10Kg/cm2が適当であ
る。この段階で,コンパウンドへの炭素繊維の添加量を
造粒物または成形体の密度,含浸する樹脂量を調節する
ことにより任意に変えることができるが、通常炭素繊維
が5〜50重量%含まれるものが適する。
The granulated or formed carbon fiber, especially the vapor-grown carbon fiber formed as described above, is dried (after baking if necessary), degassed under reduced pressure, and placed in a pressure-filled container such as an autoclave. Perform the desired thermoplastic resin impregnation. The impregnation is performed by melting the resin at a temperature in the range of its melting point and about 100 ° C. higher than the melting point and applying pressure. Appropriate pressure for pressurization is 1 to 10 kg / cm 2 . At this stage, the amount of carbon fiber to be added to the compound can be arbitrarily changed by adjusting the density of the granulated product or molded product and the amount of resin impregnated, but usually contains 5 to 50% by weight of carbon fiber. Things are suitable.

含浸後,容器から取り出し冷却して複合体を得る。造
粒物を使用したものはそのままコンパウンドとして使用
できるが,成形体を使用したものあるいは造粒物でも大
きさの不揃いなものは軽く粉砕して適当な大きさに揃え
る。コンパウンドの粒径がせいぜい2〜3mmのペレット
であることから考えて,元の繊維長,とりわけ微小な気
相法炭素繊維の繊維長にこの粉砕が影響することは少な
く,コンパウンド中の炭素繊維の繊維長は作製前とほと
んど変わらないものとなっている。
After impregnation, remove from the container and cool to obtain a composite. The product using the granulated material can be used as it is as a compound, but the product using a molded product or the granulated product having irregular sizes is lightly pulverized to a suitable size. Considering that the compound has a particle diameter of at most 2-3 mm, this pulverization has little effect on the original fiber length, especially the fiber length of minute vapor-grown carbon fiber, and the carbon fiber in the compound The fiber length is almost the same as before production.

炭素繊維は一般の短繊維を用いることができるが、特
に本発明に適するものは気相法の炭素繊維で径0.01〜1
μm程度、長さが1〜100μm程度のものである。
As the carbon fibers, general short fibers can be used, but those particularly suitable for the present invention are carbon fibers produced by a vapor phase method and having a diameter of 0.01 to 1 mm.
It is about μm in length and about 1 to 100 μm in length.

〔作用〕[Action]

上記のような方法で作製した炭素繊維/熱可塑性樹脂
のコンパウンドを用いて適当な金型を使ってCFRP成形体
を作製すると,従来の単軸あるいは2軸混練機を通して
得られたコンパウンドを用いた場合に比べ,機械的特性
(強度,耐衝撃性等),電気的特性(電気伝導性,電磁
波遮蔽性等),熱的特性(熱伝導率等)において優れた
特性を有するCFRPとなる。これは,成形体内の炭素繊維
の破壊の程度が少なく従来より長繊維化しているため補
強性の向上,電気,熱の伝達性の向上という硬化が現れ
たことによるものである。
When a CFRP molded body was produced using the carbon fiber / thermoplastic resin compound produced by the above method and using an appropriate mold, the compound obtained through a conventional single-screw or twin-screw kneader was used. CFRP has excellent mechanical properties (strength, impact resistance, etc.), electrical properties (electrical conductivity, electromagnetic wave shielding properties, etc.) and thermal properties (thermal conductivity, etc.) as compared to the case. This is due to the fact that the degree of breakage of the carbon fibers in the molded body is small and the fibers are made longer than before, so that hardening such as improvement of the reinforcing property and improvement of the electric and heat transfer properties has appeared.

(実施例 1) 平均繊維長10μm,繊維径0.3μmの微小な気相法炭素
繊維(焼成品,黒鉛化品2種)350gにエタノール100cc
を添加混練後、径150mm、厚さ100mmの大きさにプレス成
形した。乾燥後の成形体の嵩密度は約0.4g/cm3であっ
た。
(Example 1) 100 g of ethanol was added to 350 g of fine vapor-grown carbon fiber (calcined product and 2 types of graphitized product) having an average fiber length of 10 μm and a fiber diameter of 0.3 μm.
Was kneaded and press-molded to a size of 150 mm in diameter and 100 mm in thickness. The bulk density of the dried compact was about 0.4 g / cm 3 .

上記成形体とポリプロピレン(エースポリプロMA41
0)のペレット約1000gをオートクレーブ内に入れ,容器
内を油回転ポンプで減圧脱気した後,ヒーターによりポ
リプロピレンの融点以上の220℃に加熱し窒素加圧5kg/c
m2で加圧含浸を行った。
The above molded product and polypropylene (ACE Polypro MA41
About 1,000 g of the pellet from 0) is placed in an autoclave, and the inside of the container is degassed under reduced pressure using an oil rotary pump. Then, the container is heated to 220 ° C, which is higher than the melting point of polypropylene, with a nitrogen pressurization of 5 kg / c.
Pressure impregnation was performed at m 2 .

気相法炭素繊維の成形体は構成する繊維が微小なこと
から成形体内部の気孔サイズも微小で保液性に優れてい
る。そのため,ポリプロピレンを効率良く含浸すること
ができる。含浸後の成形体の嵩密度はいずれも0.65g/cm
3であり,実際に含浸した樹脂と繊維の重量比から求め
ると気相法炭素繊維の含有率が約30重量%となってい
た。
Since the formed fiber of the vapor-grown carbon fiber has minute fibers, the inside of the formed body has a small pore size and is excellent in liquid retention. Therefore, the polypropylene can be impregnated efficiently. The bulk density of the compact after impregnation is 0.65 g / cm
It was 3 , and the content of vapor grown carbon fiber was about 30% by weight, as determined from the weight ratio of the resin and the fiber actually impregnated.

以上のようにして作製した気相法炭素繊維/ポリプロ
ピレンの複合体をミキサーで軽く粉砕し平均粒径2mmの
ペレットとした。このペレットを射出成形機(日精樹脂
工業(株) NC−8000)により引っ張り試験,比抵抗測
定用等の試験片に成形して各種物性を評価した。
The vapor-grown carbon fiber / polypropylene composite produced as described above was lightly pulverized with a mixer to obtain pellets having an average particle diameter of 2 mm. The pellets were molded into test pieces for tensile test, specific resistance measurement, and the like by an injection molding machine (Nissei Plastics Industry Co., Ltd. NC-8000), and various physical properties were evaluated.

(比較例 1) 実施例1と同じ配合,すなわち気相法炭素繊維(焼成
品,黒鉛化品2種)700gとポリプロピレン1600gを2軸
混練機(塚田樹機(株)RT35−2S形)により230℃設定
で混練・押し出して炭素繊維添加率30%のコンパウンド
を作製した。このコンパウンドを実施例1と同様に射出
成形して試験片の物性を実施例1と比較した。
(Comparative Example 1) The same composition as in Example 1, that is, 700 g of vapor-grown carbon fiber (calcined product and two types of graphitized product) and 1600 g of polypropylene were mixed with a twin-screw kneader (Model RT35-2S, Tsukada Juki Co., Ltd.). The compound was kneaded and extruded at 230 ° C. to prepare a compound having a carbon fiber addition rate of 30%. This compound was injection-molded in the same manner as in Example 1, and the physical properties of the test pieces were compared with those in Example 1.

実施例1と比較例1の物性値を表−1に示す。 Table 1 shows the physical property values of Example 1 and Comparative Example 1.

(実施例 2) 気相法炭素繊維(焼成品,黒鉛化品2種)1kgに水500
gを添加しヘンシェルミキサーで混練した後,押し出し
造粒機(不二パウダル(株) F−20形)で径3mm×長
さ4mmのペレット状に造粒した。乾燥後の造粒物の嵩密
度は0.35g/cm3であった。
(Example 2) Vapor-grown carbon fiber (calcined product, 2 types of graphitized products) 1 kg of water 500
g was added and the mixture was kneaded with a Henschel mixer, and then granulated into a pellet having a diameter of 3 mm and a length of 4 mm with an extrusion granulator (F-20, Fuji Paudal Co., Ltd.). The bulk density of the dried granules was 0.35 g / cm 3 .

上記造粒物800gを実施例1と同様にオートクレーブに
入れ,樹脂としてナイロン6,6ペレット(テクニールA21
6)を2.5kg入れ265℃に加熱し加圧含浸を行った。含浸
後の造粒体は約25%の炭素繊維含有率のコンパウンドと
なった。
800 g of the above granulated material was placed in an autoclave in the same manner as in Example 1, and nylon 6,6 pellets (Technyl A21
6) 2.5 kg was heated at 265 ° C. to perform pressure impregnation. The granules after impregnation became a compound having a carbon fiber content of about 25%.

以上のようにしてできたコンパウンドを用いて試験片
を射出成形し物性測定を実施した。
A test piece was injection-molded using the compound prepared as described above, and physical properties were measured.

(比較例 2) 気相法炭素繊維1kgとナイロン6,6を3kg用いて設定260
〜270℃の2軸混練機によるコンパウンド作製を実施し
た。得られたコンパウンドを射出成形して試験片を作
製,物性測定を行った。
(Comparative Example 2) Set using 1 kg of vapor grown carbon fiber and 3 kg of nylon 6,6 260
Compound production was performed using a twin-screw kneader at ~ 270 ° C. A test piece was prepared by injection molding of the obtained compound, and physical properties were measured.

実施例2と比較例2の物性値を表−2に示す。 Table 2 shows the physical property values of Example 2 and Comparative Example 2.

(実施例 3) 実施例1(及び比較例1)で作製した気相法炭素繊維
(焼成品)/ポリプロピレン系のコンパウンド及び射出
成形品から炭素繊維のみを抽出し,繊維長を測定した。
(Example 3) Only carbon fibers were extracted from the vapor-grown carbon fiber (fired product) / polypropylene-based compound and the injection molded product produced in Example 1 (and Comparative Example 1), and the fiber length was measured.

炭素繊維の抽出には,140℃に加熱したデカリンにより
ポリプロピレンを溶解する方法を用いた。抽出した炭素
繊維をスライドガラス上に乗せ、少量の顕微鏡用油浸オ
イルで繊維を分散させた上にカバーガラスをかぶせて繊
維長測定用サンプルとした。
For the extraction of carbon fiber, a method of dissolving polypropylene with decalin heated to 140 ° C was used. The extracted carbon fiber was placed on a slide glass, and the fiber was dispersed with a small amount of oil for microscope use, and then covered with a cover glass to obtain a fiber length measurement sample.

繊維長の測定はNIRECO(株) LUZEX−5000により光
学顕微鏡から画像入力することで行った。得られた平均
繊維長,標準偏差を表−3に示す。実施例1と比較例1
を比べた場合,前者の方が繊維の破壊の程度が少なく,
結果的に物性向上につながったことが確認された。
The fiber length was measured by inputting an image from an optical microscope using NIRECO Corporation LUZEX-5000. Table 3 shows the obtained average fiber length and standard deviation. Example 1 and Comparative Example 1
When the former is compared, the former has less degree of fiber destruction,
As a result, it was confirmed that the physical properties were improved.

〔発明の効果〕 本発明により作製した炭素繊維/熱可塑性樹脂コンパ
ウンドは,添加剤としての炭素繊維の破壊が少ないた
め,その特徴を充分に発揮し,補強性,電気伝導性,熱
伝達性等に優れたCFRPを射出成形で作製するのに適した
コンパウンドとして期待できる。
[Effect of the Invention] The carbon fiber / thermoplastic resin compound produced according to the present invention exhibits its characteristics sufficiently because the carbon fiber as an additive is hardly destroyed, and exhibits sufficient properties, such as reinforcement, electric conductivity, and heat transfer. It can be expected as a compound suitable for producing CFRP excellent in injection molding by injection molding.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維造粒体あるいは成型体に熱可塑性
樹脂を含浸してなる炭素繊維/熱可塑性樹脂コンパウン
ド。
1. A carbon fiber / thermoplastic resin compound obtained by impregnating a thermoplastic resin into a carbon fiber granulated or molded article.
【請求項2】炭素繊維が気相法炭素繊維である請求項1
記載の炭素繊維/熱可塑性樹脂コンパウンド。
2. The carbon fiber according to claim 1, wherein the carbon fiber is a vapor grown carbon fiber.
A carbon fiber / thermoplastic resin compound as described.
【請求項3】炭素繊維の含有量が5〜50重量%である請
求項1又は2記載の炭素繊維/熱可塑性樹脂コンパウン
ド。
3. The carbon fiber / thermoplastic resin compound according to claim 1, wherein the content of the carbon fiber is 5 to 50% by weight.
JP19338189A 1989-07-26 1989-07-26 Carbon fiber / thermoplastic compound Expired - Fee Related JP2783427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19338189A JP2783427B2 (en) 1989-07-26 1989-07-26 Carbon fiber / thermoplastic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19338189A JP2783427B2 (en) 1989-07-26 1989-07-26 Carbon fiber / thermoplastic compound

Publications (2)

Publication Number Publication Date
JPH0356566A JPH0356566A (en) 1991-03-12
JP2783427B2 true JP2783427B2 (en) 1998-08-06

Family

ID=16306980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19338189A Expired - Fee Related JP2783427B2 (en) 1989-07-26 1989-07-26 Carbon fiber / thermoplastic compound

Country Status (1)

Country Link
JP (1) JP2783427B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639807A (en) * 1994-08-05 1997-06-17 Akzo Nobel Nv Process for manufacturing carbon fiber pellets, the high density, streamlined pellets resulting therefrom and process for producing reinforced thermoplastic resins employing the pellets
JP5162921B2 (en) * 2006-03-23 2013-03-13 住友化学株式会社 Granular material and heat conductive resin composition using the same
EP2767508B1 (en) 2011-10-12 2018-03-21 Asahi Kasei Kabushiki Kaisha Carbon nanofiber aggregate, thermoplastic resin composition, and method for producing thermoplastic resin composition

Also Published As

Publication number Publication date
JPH0356566A (en) 1991-03-12

Similar Documents

Publication Publication Date Title
US5433906A (en) Composite of small carbon fibers and thermoplastics and method for making same
US11365336B2 (en) Polymer-polymer fiber composite for high thermal conductivity
KR101211134B1 (en) A method for preparing carbon nano material/polymer composites
KR102365467B1 (en) Manufacturing method of thermally polymeric composite and composite for heat sink using the same
US20060247352A1 (en) EMI shielding material
EP1318902B1 (en) Method for producing a granulated intermediate product that is to be subjected to a subsequent processing in order to form plastic shaped bodies
GB2112796A (en) Plastics materials containing electrically conductive fibers
CN108587166A (en) High intensity heat conduction antistatic polyphenyl thioether composite material and preparation method thereof
JP2783427B2 (en) Carbon fiber / thermoplastic compound
JP2514875B2 (en) Pellet for molding plastic and its manufacturing method
JP4732185B2 (en) Method for producing biodegradable polyester resin composite material
CN104327446A (en) Waste ABS/PP (acrylonitrile butadiene styrene/polypropylene) composite material and preparation method thereof
USH1332H (en) Thermal conductive material
CN101942137B (en) Method for preparing conductivity-enhanced polymer/carbon nano tube composite material by vibration injection molding device
Kuriger et al. Extrusion conditions and properties of vapor grown carbon fiber reinforced polypropylene
CN107841090A (en) A kind of impact resistance PEEK composites
JPH0560780B2 (en)
Mahyoedin et al. Effect of graphite sizes and carbon black content on flowability of the injection molded conductive composite material
JP5971795B2 (en) Carbon fiber composite resin beads, carbon fiber reinforced composite material, and method for producing the same
WO2019069134A1 (en) Carbon fiber reinforced polypropylene and polyethylene composite materials
RU2592795C1 (en) Method of producing reinforced polymer granules press-material and device therefor
WO2019069141A9 (en) Electrically conductive polypropylene and polyethylene composite materials and method of making thereof
KR20140073866A (en) Carbon nano-material solids and a method for solidifying the powder of carbon nano-material
US4444958A (en) Filled nylons
JP2611299B2 (en) Functionality imparting agent for resin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees