JP6243312B2 - Battery electrolyte membrane and method for producing the same - Google Patents
Battery electrolyte membrane and method for producing the same Download PDFInfo
- Publication number
- JP6243312B2 JP6243312B2 JP2014205227A JP2014205227A JP6243312B2 JP 6243312 B2 JP6243312 B2 JP 6243312B2 JP 2014205227 A JP2014205227 A JP 2014205227A JP 2014205227 A JP2014205227 A JP 2014205227A JP 6243312 B2 JP6243312 B2 JP 6243312B2
- Authority
- JP
- Japan
- Prior art keywords
- porous membrane
- membrane
- organic
- inorganic hybrid
- electrolyte membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims description 393
- 239000003792 electrolyte Substances 0.000 title claims description 105
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 229920000642 polymer Polymers 0.000 claims description 86
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 72
- 239000002245 particle Substances 0.000 claims description 63
- 239000011148 porous material Substances 0.000 claims description 43
- 150000001450 anions Chemical class 0.000 claims description 32
- 239000004020 conductor Substances 0.000 claims description 28
- 238000011049 filling Methods 0.000 claims description 27
- 239000000178 monomer Substances 0.000 claims description 27
- 229910021645 metal ion Inorganic materials 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 23
- 238000000151 deposition Methods 0.000 claims description 19
- 238000002360 preparation method Methods 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 229920000620 organic polymer Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 125000000129 anionic group Chemical group 0.000 claims description 5
- 238000001523 electrospinning Methods 0.000 claims description 5
- 230000000379 polymerizing effect Effects 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims 1
- 239000000047 product Substances 0.000 description 161
- 230000000052 comparative effect Effects 0.000 description 68
- 239000002033 PVDF binder Substances 0.000 description 65
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 65
- 239000000243 solution Substances 0.000 description 50
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 29
- 238000002474 experimental method Methods 0.000 description 24
- 150000002500 ions Chemical class 0.000 description 24
- -1 aluminum ions Chemical class 0.000 description 18
- 239000000446 fuel Substances 0.000 description 17
- 230000008021 deposition Effects 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 239000011777 magnesium Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- 239000004202 carbamide Substances 0.000 description 12
- 238000001556 precipitation Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 238000005349 anion exchange Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 229910001425 magnesium ion Inorganic materials 0.000 description 5
- 229920005597 polymer membrane Polymers 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 239000003011 anion exchange membrane Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 description 4
- 238000000411 transmission spectrum Methods 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000005429 filling process Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 125000001425 triazolyl group Chemical group 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-N 1H-imidazole Chemical group C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910001429 cobalt ion Inorganic materials 0.000 description 2
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 2
- 239000002322 conducting polymer Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910001437 manganese ion Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 1
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- VJOWMORERYNYON-UHFFFAOYSA-N 5-ethenyl-2-methylpyridine Chemical compound CC1=CC=C(C=C)C=N1 VJOWMORERYNYON-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920006369 KF polymer Polymers 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000000656 azaniumyl group Chemical group [H][N+]([H])([H])[*] 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-O guanidinium Chemical group NC(N)=[NH2+] ZRALSGWEFCBTJO-UHFFFAOYSA-O 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical group [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229920006112 polar polymer Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- YGSFNCRAZOCNDJ-UHFFFAOYSA-N propan-2-one Chemical compound CC(C)=O.CC(C)=O YGSFNCRAZOCNDJ-UHFFFAOYSA-N 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Description
本発明は、比較的高いイオン伝導性および機械的強度を共に有する電池用電解質膜、およびその製造方法に関する。 The present invention relates to a battery electrolyte membrane having both relatively high ion conductivity and mechanical strength, and a method for producing the same.
例えば特許文献1および特許文献2に示すように、燃料電池用の電解質膜では、たとえばその電解質膜を取り扱う際に必要な強度を持たせるために、有機質のポリマー多孔質膜を基材(フレーム)として使用し、プロトンのイオン伝導性高分子であるイオン交換ポリマーがそのポリマー多孔質膜の細孔の中に充填されることによって燃料電池用の電解質膜が作製される。 For example, as shown in Patent Document 1 and Patent Document 2, in an electrolyte membrane for a fuel cell, for example, an organic polymer porous membrane is used as a base material (frame) in order to give strength necessary for handling the electrolyte membrane. The electrolyte membrane for a fuel cell is produced by filling the pores of the polymer porous membrane with an ion exchange polymer that is an ion conductive polymer of proton.
ところで、上記のようなポリマー多孔質膜を基材として用いる電解質膜では、ポリマー多孔質膜自体にはイオン伝導性がないため、それを用いて作製した電解質膜のイオン伝導性が比較的低くなるという問題があった。 By the way, in the electrolyte membrane using the polymer porous membrane as described above as the base material, the polymer porous membrane itself has no ionic conductivity, so that the ionic conductivity of the electrolyte membrane produced using the polymer membrane is relatively low. There was a problem.
これに対して、例えば特許文献3では、上記ポリマー多孔質膜を使用せずに無機質の層状複水酸化物(Layered Double Hydroxide)を用いて燃料電池の電解質膜を作製することが提案されている。このような電解質膜は、電解質膜がイオン伝導材料である層状複水酸化物から構成されているので、その電解質膜のイオン伝導性が、ポリマー多孔質膜を電解質膜の基材として用いるものに比べて高くなる。しかしながら、上記のような層状複水酸化物から構成される電解質膜は、柔軟性がないため、たとえば電解質膜を製造する際や電解質の膨張時などにおいて機械的強度が不足するという問題があった。 On the other hand, for example, Patent Document 3 proposes that an electrolyte membrane of a fuel cell is produced using an inorganic layered double hydroxide without using the polymer porous membrane. . Since such an electrolyte membrane is composed of a layered double hydroxide, which is an ion conductive material, the ionic conductivity of the electrolyte membrane is such that the polymer porous membrane is used as a base material for the electrolyte membrane. Compared to higher. However, since the electrolyte membrane composed of the layered double hydroxide as described above is not flexible, there is a problem that the mechanical strength is insufficient, for example, when the electrolyte membrane is manufactured or when the electrolyte is expanded. .
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、比較的高いイオン伝導性および機械的強度を共に有する電池用電解質膜、およびその製造方法を提供することにある。 The present invention has been made in the background of the above circumstances, and its object is to provide a battery electrolyte membrane having both relatively high ion conductivity and mechanical strength, and a method for producing the same. It is in.
本発明者は種々の解析や検討を重ねた結果、以下に示す事実に到達した。すなわち、有機質のポリマー多孔質膜の表面にアニオン伝導性がある層状複水酸化物をコーティングすると、その層状複水酸化物が表面にコーティングされたポリマー多孔質膜自体に陰イオン伝導性が実質的に生じるという意外な事実を見いだした。そして、このような層状複水酸化物が表面にコーティングされたポリマー多孔質膜の細孔内にアニオン伝導材料を、モノマー充填後に細孔内で重合することにより、或いは重合したポリマーを細孔内に入れることにより充填すると、比較的高いイオン伝導性および機械的強度を共に有する電解質膜すなわちアニオン交換膜が得られるという事実をも見出した。本発明はこのような知見に基づいて為されたものである。なお、上記層状複水酸化物が表面にコーティングされたポリマー多孔質膜は、有機系のポリマー多孔質膜の細孔内の表面に層状複水酸化物が表面にコーティングされたものであるから、有機無機ハイブリッド多孔質膜と称され得る。 As a result of various analyzes and examinations, the present inventor has reached the facts shown below. That is, when a layered double hydroxide with anion conductivity is coated on the surface of an organic polymer porous membrane, the polymer porous membrane itself coated with the layered double hydroxide has substantially anionic conductivity. I found the unexpected fact that Then, the anionic conductive material is polymerized in the pores of the porous polymer membrane whose surface is coated with such a layered double hydroxide, and the polymer is polymerized in the pores after filling with the monomer. It has also been found that the fact that an electrolyte membrane having both relatively high ionic conductivity and mechanical strength, that is, an anion exchange membrane, can be obtained when filled by being placed in a container. The present invention has been made based on such findings. In addition, since the polymer porous membrane coated on the surface with the layered double hydroxide is a layered double hydroxide coated on the surface of the pores of the organic polymer porous membrane, It can be referred to as an organic-inorganic hybrid porous membrane.
前記目的を達成するための第1発明の電池用電解質膜の要旨とするところは、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子で表面がコーティングされたイオン伝導性を有する有機質のポリマー多孔質膜の細孔内に、アニオン伝導材料が充填されていることにある。 In order to achieve the above object, the gist of the electrolyte membrane for a battery of the first invention is an ion whose surface is coated with inorganic layered double hydroxide particles composed of two or more kinds of metal ions having different valences. This is because the anionic conductive material is filled in the pores of the organic polymer porous membrane having conductivity.
本発明の電池用電解質膜によれば、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子で表面がコーティングされたポリマー多孔質膜自体にイオン伝導性があることから、そのポリマー多孔質膜の細孔内にアニオン伝導材料が充填されることで構成された電解質膜は、イオン伝導性のないポリマー多孔質膜を用いた場合に比べて、電解質膜のイオン伝導性が大幅に高くなる。また、ポリマー多孔質膜は有機系であることから、それを基材として用いることによって、電解質膜の機械的強度を向上させることができる。すなわち、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子で表面がコーティングされたポリマー多孔質膜を用いることにより、比較的高いイオン伝導性および機械的強度を共に有する電解質膜を得ることができる。 According to the battery electrolyte membrane of the present invention, the polymer porous membrane itself coated with inorganic layered double hydroxide particles composed of two or more kinds of metal ions having different valences has ion conductivity. Therefore, the electrolyte membrane constructed by filling the pores of the polymer porous membrane with the anion conducting material is more ionic than the polymer porous membrane having no ion conductivity. The sex is greatly increased. Moreover, since the polymer porous membrane is organic, the mechanical strength of the electrolyte membrane can be improved by using it as a base material. That is, by using a porous polymer membrane whose surface is coated with inorganic layered double hydroxide particles composed of two or more kinds of metal ions having different valences, both relatively high ionic conductivity and mechanical strength are achieved. An electrolyte membrane having the same can be obtained.
第2発明の要旨とするところは、第1発明において、前記ポリマー多孔質膜は、エレクトロスピニング法により繊維化された繊維状樹脂が相互に絡み合った状態で膜状に成形されたものである。このようにすれば、高い気孔率が得られるため、アニオン伝導材料の充填率が高められるので、電池用電解質膜の性能が得られるとともに、柔軟性が得られるので、電解質の膨張や取り扱いに対して機械的強度が向上した電池用電解質膜が得られる。 The gist of the second invention is that, in the first invention, the polymer porous membrane is formed into a membrane shape in a state where fibrous resins fibrillated by an electrospinning method are intertwined with each other. In this way, since a high porosity can be obtained, the filling rate of the anion conductive material can be increased, so that the performance of the electrolyte membrane for the battery can be obtained and the flexibility can be obtained. Thus, an electrolyte membrane for a battery having improved mechanical strength can be obtained.
第3発明の要旨とするところは、第1発明または第2発明の電池用電解質膜を製造するための電池用電解質膜の製造方法であって、前記アニオン伝導材料は、前記ポリマー多孔質膜に含浸された該アニオン伝導材料のモノマー溶液中の溶媒の蒸発に応じて該モノマー溶液を補充して濃度を高めた後、前記ポリマー多孔質膜中のモノマーを重合させる処理により、前記ポリマー多孔質膜の細孔内に充填される。このようにすれば、アニオン伝導材料の充填率が一層高められるので、電池用電解質膜の性能が得られる。 The gist of the third invention is a method for producing a battery electrolyte membrane for producing the battery electrolyte membrane of the first invention or the second invention , wherein the anion conducting material is formed on the polymer porous membrane. The polymer porous membrane is treated by polymerizing the monomer in the polymer porous membrane after replenishing the monomer solution in accordance with the evaporation of the solvent in the monomer solution of the impregnated anion conducting material and increasing the concentration. Are filled in the pores. In this way, since the filling rate of the anion conductive material is further increased, the performance of the battery electrolyte membrane can be obtained.
第4発明の要旨とするところは、第1発明または第2発明の電池用電解質膜を製造するための電池用電解質膜の製造方法、または、第3発明の電池用電解質膜の製造方法であって、上記電池用電解質膜は、(a)複数種類の金属塩が溶解された溶液を作製する溶液作製工程と、(b)前記溶液中において前記ポリマー多孔質膜を入れそのポリマー多孔質膜の表面に小片状の層状複水酸化物を析出させ、該表面を該層状複水酸化物でコーティングする析出工程と、(c)前記層状複水酸化物により表面がコーティングされた前記ポリマー多孔質膜の細孔内に、アニオン伝導材料を充填する充填工程とを、含む製造方法により製造される。この製造方法によれば、前記溶液作製工程において複数の金属塩が溶解された溶液が作製され、前記析出工程において前記溶液中において前記ポリマー多孔質膜を入れそのポリマー多孔質膜の表面に小片状の層状複水酸化物が析出されることで、ポリマー多孔質膜の表面が層状複水酸化物の粒子でコーティングされたイオン伝導性を有する有機無機ハイブリッド多孔質膜が得られ、その有機無機ハイブリッド多孔質膜を例えば電解質膜の基材として用いることによって、比較的高いイオン伝導性および強度を有する電解質膜を製造することができる。 The gist of the fourth invention is the method for producing the battery electrolyte membrane for producing the battery electrolyte membrane of the first invention or the second invention, or the method for producing the battery electrolyte membrane of the third invention. Te, the cell electrolyte membrane, (a) a solution preparation step of preparing a plurality of types of metal salt is dissolved solution, (b) of the polymer porous membrane was placed the polymer porous membrane in the solution A precipitation step of depositing a small piece of layered double hydroxide on the surface and coating the surface with the layered double hydroxide; and (c) the polymer porous surface coated with the layered double hydroxide. It is manufactured by a manufacturing method including a filling step of filling an anion conductive material in the pores of the membrane. According to this manufacturing method, a solution in which a plurality of metal salts is dissolved is prepared in the solution preparation step, and the polymer porous membrane is placed in the solution in the precipitation step, and small pieces are formed on the surface of the polymer porous membrane. By depositing the layered layered double hydroxide, an organic-inorganic hybrid porous membrane having ion conductivity in which the surface of the polymer porous membrane is coated with the layered double hydroxide particles is obtained. By using the hybrid porous membrane as a base material of an electrolyte membrane, for example, an electrolyte membrane having relatively high ion conductivity and strength can be produced.
ここで、好適には、前記ポリマー多孔質膜は、平均細孔径が2μm、気孔率が86%程度のポリフッ化ビニリデン(PVDF)膜である。また、好適には、ポリマー多孔質膜は、たとえば、PVC、PVDC、塩素化ポリエーテルなどの塩素系樹脂、PVF、PVDFなどのフッ素樹脂、PS、ABS、ACS、AESなどのポリスチレンやその共重合体などの樹脂からも構成される。また、PE、PP、PB、PMPは極性ポリマーと混合されることで、エレクトロスピニングが可能となる。 Here, the polymer porous membrane is preferably a polyvinylidene fluoride (PVDF) membrane having an average pore diameter of 2 μm and a porosity of about 86%. Preferably, the polymer porous film is made of, for example, a chlorinated resin such as PVC, PVDC, or chlorinated polyether, a fluororesin such as PVF or PVDF, a polystyrene such as PS, ABS, ACS, or AES, It is also composed of resin such as coalescence. Moreover, PE, PP, PB, and PMP can be electrospun by mixing with a polar polymer.
また、好適には、前記ポリマー多孔質膜の表面をコーティングする層状複水酸化物は、無機質であり、例えば、基本層[M2+ 1−xM3+ x(OH)2]x+と中間層[An− x/n・yH2O]x−とが層状に積み重ねられたものであり、共通化学式[M2+ 1−xM3+ x(OH)2]x+[An− x/n・yH2O]x−にて表される。ここで、M2+は2価の金属イオンを示し、M3+は3価の金属イオンを示し、An−は1価又は2価の陰イオンを示し、xは0.1〜0.8の範囲内にある数を示し、yは実数である。 Preferably, the layered double hydroxide coating the surface of the porous polymer membrane is inorganic, for example, a basic layer [M 2 + 1-x M 3+ x (OH) 2 ] x + and an intermediate layer [ A n− x / n · yH 2 O] x− are stacked in layers, and the common chemical formula [M 2 + 1−x M 3+ x (OH) 2 ] x + [A n− x / n · yH 2 O] x- . Here, M 2+ is a divalent metal ion, M 3+ is a trivalent metal ion, A n-represents a monovalent or divalent anion, x is 0.1 to 0.8 Indicates a number within range, y is a real number.
また、好適には、前記層状複水酸化物の基本層は、好適には、マグネシウムイオン(Mg2+)およびアルミニウムイオン(Al3+)を有するものであるが、そのマグネシウムイオンに代えてマグネシウムイオン以外の2価の金属イオン例えば鉄イオン(Fe2+)、亜鉛イオン(Zn2+)、カルシウムイオン(Ca2+)、マンガンイオン(Mn2+)、ニッケルイオン(Ni2+)、コバルトイオン(Co2+)、銅イオン(Cu2+)等や、そのアルミニウムイオンに代えてアルミニウムイオン以外の3価の金属イオン例えば鉄イオン(Fe3+)、マンガンイオン(Mn3+)、コバルトイオン(Co3+)等が用いられても良い。更に、層状複水酸化物の基本層は、2価の金属イオンおよび3価の金属イオンを1種類ずつ有するものだけに限定されるものではない。例えば、1価の金属イオンおよび2価の金属イオンを1種類ずつ有するものであってもよいし、2価の金属イオンを1種類および4価の金属イオンを2種類有するものであってもよい。すなわち、互いに価数の異なる金属イオンを1種類以上ずつ有していればよい。なお、価数が互いに異なれば、同じ元素の金属イオンを含んでいてもよい。すなわち、本発明の層状複水酸化物は、価数の異なる2種類以上の金属イオンから成るものであれば良い。 Preferably, the base layer of the layered double hydroxide preferably has magnesium ions (Mg 2+ ) and aluminum ions (Al 3+ ), but other than magnesium ions instead of the magnesium ions. Divalent metal ions such as iron ion (Fe 2+ ), zinc ion (Zn 2+ ), calcium ion (Ca 2+ ), manganese ion (Mn 2+ ), nickel ion (Ni 2+ ), cobalt ion (Co 2+ ), copper Even if ions (Cu 2+ ) or the like or trivalent metal ions other than aluminum ions such as iron ions (Fe 3+ ), manganese ions (Mn 3+ ), cobalt ions (Co 3+ ), etc. are used instead of the aluminum ions. good. Further, the basic layer of the layered double hydroxide is not limited to one having one kind of divalent metal ion and one kind of trivalent metal ion. For example, it may have one type of monovalent metal ion and one type of divalent metal ion, or one type of bivalent metal ion and two types of tetravalent metal ion. . That is, it is only necessary to have one or more types of metal ions having different valences. Note that metal ions of the same element may be included as long as the valences are different from each other. That is, the layered double hydroxide of the present invention only needs to be composed of two or more kinds of metal ions having different valences.
また、好適には、前記層状複水酸化物の中間層に炭酸イオン(CO3 2−)を有していたが、炭酸イオン以外の陰イオン例えば硝酸イオン(NO3 −)、水酸化物イオン(OH−)、塩化物イオン(Cl−)、臭化物イオン(Br−)等が用いられても良い。 Preferably, the intermediate layer of the layered double hydroxide has carbonate ions (CO 3 2− ), but anions other than carbonate ions such as nitrate ions (NO 3 − ), hydroxide ions (OH − ), chloride ion (Cl − ), bromide ion (Br − ) and the like may be used.
また、好適には、前記アニオン伝導材料は、アニオン(陰イオン)交換基を有する各種のイオン伝導性樹脂(ポリマー)であればよい。たとえば、4級アンモニオ基(quaternary ammonium group)、グアニジオ基(guanidinium)、ホスホニオ基(phosphonium)、スルホニオ基(sulfonium group)、イミダゾリウム基(imidazolium group)、ピリジニウム基(pyridinium group)、トリアゾリウム基(triazolium group)などのアニオン交換基を含むポリマーであればよい。モノマーとして使用可能なものは、たとえば化1、化2、化3に例示する構造を持つものが挙げられる。それら化1、化2、化3において、Xは、構造中に4級アンモニオ基、グアニジオ基、ホスホニオ基、スルホニオ基、イミダゾリウム基、ピリジニウム基、トリアゾリウム基などのアニオン交換基が含まれるものである。
具体的には、上記アニオン伝導材料としては、たとえば、4級アンモニウム化処理したポリ−4−ビニルピリジン、ポリ−2−ビニルピリジン、ポリ−2−メチル−5−ビニルピリジン、ポリ−1−ピリジン−4−イルカルボニロキシエチレン等が挙げられる。または、ポリスチレン系材料に陰イオン交換基を導入した陰イオン交換樹脂や、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリベンズイミダソール系等ポリマーに必要に応じ種々の官能基を導入した陰イオン交換樹脂が挙げられる。 Specifically, examples of the anion conductive material include poly-4-vinylpyridine, poly-2-vinylpyridine, poly-2-methyl-5-vinylpyridine, poly-1-pyridine treated with quaternary ammonium. Examples include -4-ylcarbonyloxyethylene. Alternatively, an anion exchange resin in which an anion exchange group is introduced into a polystyrene-based material, or an anion in which various functional groups are introduced into a polymer such as polysulfone, polyetherketone, polyetheretherketone, polybenzimidazole, or the like as necessary. An ion exchange resin is mentioned.
以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確には描かれていない。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.
図1は、本発明の一実施例の電解質膜12を備える燃料電池14の構成を模式的に示す断面図である。図1において、燃料電池14は、例えば白金や遷移金属等を担持する触媒担持カーボンを電解質膜12側の一面全体に支持したカーボンクロスから成り、導電性およびガス透過性を有するアノード(燃料極)16およびカソード(空気極)18が、電解質膜12を介して対向した構造を有している。また、燃料電池14には、アノード16の電解質膜12と接していない側に燃料室20と、カソード18の電解質膜12と接していない側に酸化剤ガス室22とが配置させられており、燃料室20には例えば水素ガス(H2)等が供給され、酸化剤ガス室22には例えば酸素(O2)を含む気体(空気)等が供給されている。このように構成された燃料電池14では、燃料電池14に電流を印加すると、カソード18において酸素含有ガス中の酸素と水(H2O)とが還元反応して水酸化物イオン(OH−)が生成され、その生成された水酸化物イオンがカソード18から電解質膜12を介してアノード16に供給される。そして、アノード16において、水酸化物イオン(OH−)が燃料と反応して水を生成し電子(e−)を放出することにより発電が行われる。なお、燃料電池14は、カソード18での還元反応により生成された水酸化物イオン(OH−)が電解質膜12であるアニオン交換膜(アルカリ電解質膜)を介してアノード16へ移動し、燃料との酸化還元反応により発電するアニオン交換膜型燃料電池である。 FIG. 1 is a cross-sectional view schematically showing a configuration of a fuel cell 14 including an electrolyte membrane 12 according to an embodiment of the present invention. In FIG. 1, a fuel cell 14 is composed of a carbon cloth in which, for example, a catalyst-carrying carbon carrying platinum or a transition metal is supported on the entire surface on the electrolyte membrane 12 side, and is an anode (fuel electrode) having conductivity and gas permeability. 16 and a cathode (air electrode) 18 are opposed to each other with the electrolyte membrane 12 in between. The fuel cell 14 includes a fuel chamber 20 on the side of the anode 16 not in contact with the electrolyte membrane 12 and an oxidant gas chamber 22 on the side of the cathode 18 not in contact with the electrolyte membrane 12. For example, hydrogen gas (H 2 ) or the like is supplied to the fuel chamber 20, and gas (air) containing oxygen (O 2 ) or the like is supplied to the oxidant gas chamber 22. In the fuel cell 14 configured as described above, when current is applied to the fuel cell 14, oxygen in the oxygen-containing gas and water (H 2 O) undergo a reduction reaction at the cathode 18 to generate hydroxide ions (OH − ). Is generated, and the generated hydroxide ions are supplied from the cathode 18 to the anode 16 through the electrolyte membrane 12. Then, at the anode 16, hydroxide ions (OH − ) react with the fuel to generate water and release electrons (e − ) to generate power. In the fuel cell 14, hydroxide ions (OH − ) generated by the reduction reaction at the cathode 18 move to the anode 16 through the anion exchange membrane (alkaline electrolyte membrane) which is the electrolyte membrane 12, It is an anion exchange membrane type fuel cell which generates electric power by oxidation-reduction reaction.
電解質膜12は、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子で表面がコーティングされたポリマー多孔質膜である有機無機ハイブリッド多孔質膜10を基材とし、この有機無機ハイブリッド多孔質膜10の連通気孔である細孔内に、アニオン伝導材料が充填されたものである。図2は、電解質膜12にその基材(骨材)として含まれる有機無機ハイブリッド多孔質膜10の表面を示す概念図である。図2に示すように、有機無機ハイブリッド多孔質膜10は、たとえばマイクロスピニング法により繊維化された繊維状ポリマーが絡み合った状態で層状に成形されることにより、例えばPVDF(ポリフッ化ビニリデン、Poly Vinylidene DiFluoride)膜等の比較的高いガス透過性を有する有機質のポリマー多孔質膜24の表面に、例えばマグネシウムイオン(Mg2+)等の2価の金属イオンと例えばアルミニウムイオン(Al3+)等の3価の金属イオンとから成る無機質の層状複水酸化物LDHの粒子がコーティングされている。なお、PVDF膜は、50nm〜5μm程度の平均細孔径と、30〜90%程度の気孔率とを有する。 The electrolyte membrane 12 is based on an organic-inorganic hybrid porous membrane 10 which is a polymer porous membrane whose surface is coated with inorganic layered double hydroxide particles composed of two or more kinds of metal ions having different valences, The organic inorganic hybrid porous membrane 10 is filled with an anion conductive material in the pores that are continuous ventilation holes. FIG. 2 is a conceptual diagram showing the surface of the organic-inorganic hybrid porous membrane 10 included in the electrolyte membrane 12 as a base material (aggregate). As shown in FIG. 2, the organic-inorganic hybrid porous membrane 10 is formed into a layered state in which fibrous polymers fibrillated by, for example, a microspinning method are intertwined, so that, for example, PVDF (polyvinylidene fluoride, Poly Vinylidene A divalent metal ion such as magnesium ion (Mg 2+ ) and a trivalent metal such as aluminum ion (Al 3+ ) are formed on the surface of an organic polymer porous film 24 having a relatively high gas permeability such as a DiFluoride film. Particles of inorganic layered double hydroxide LDH consisting of the metal ions are coated. The PVDF membrane has an average pore diameter of about 50 nm to 5 μm and a porosity of about 30 to 90%.
電解質膜12は、アニオン伝導材料、たとえば陰イオン伝導ポリマー例えばクロロメチル(CM)基と4級アンモニウム基(QA)とを連鎖上に有する芳香族系アニオン交換ポリマーや、芳香族環を持つ非架橋のブロック共重合体等が、有機無機ハイブリッド多孔質膜10の連通する細孔10a内に、ガス漏れが生じないように緻密に充填されることにより作製されたものである。なお、有機無機ハイブリッド多孔質膜10の細孔10aに上記陰イオン伝導ポリマーを充填させる方法としては、例えば、有機無機ハイブリッド多孔質膜10を電解質モノマー溶液に浸漬し真空引きをして細孔10a内にその電解質モノマー溶液を含浸させた後、その電解質モノマー溶液のモノマーを重合させる方法でもよいが、後述の細孔フィリングプロセスが好適に用いられる。 The electrolyte membrane 12 is made of an anion conducting material such as an anion conducting polymer such as an aromatic anion exchange polymer having a chloromethyl (CM) group and a quaternary ammonium group (QA) on the chain, or a non-crosslinked polymer having an aromatic ring. The block copolymer is prepared by densely filling the pores 10a of the organic / inorganic hybrid porous membrane 10 so as not to cause gas leakage. As a method for filling the pores 10a of the organic-inorganic hybrid porous membrane 10 with the anion conducting polymer, for example, the organic-inorganic hybrid porous membrane 10 is immersed in an electrolyte monomer solution and evacuated to obtain pores 10a. A method of polymerizing the monomer of the electrolyte monomer solution after impregnating the electrolyte monomer solution therein may be used, but a pore filling process described later is preferably used.
図3は、有機無機ハイブリッド多孔質膜10においてポリマー多孔質膜24の表面にコーティングされた層状複水酸化物LDHの構造を模式的に示す図である。その図3に示すように、層状複水酸化物LDHは、ランダムに存在する二価または三価の金属イオン例えばマグネシウムイオン(Mg2+)、アルミニウムイオン(Al3+)等が水酸化物イオン(OH−)に囲まれた複数層の基本層26と、それら複数層の基本層26との間の層間に存在する例えば炭酸イオン(CO3 2−)等の陰イオン28および図示しない水分子から成る中間層30とから構成されている。なお、本実施例の無機質の層状複水酸化物LDHは、上記基本層26と中間層30との層状構造が規則的に積み重ねられており、例えば、基本層26が[Mg2+ 1−xAl3+ x(OH)2]x+で表され、中間層30が[CO3 2− x・yH2O]x−で表される。 FIG. 3 is a diagram schematically showing the structure of the layered double hydroxide LDH coated on the surface of the polymer porous membrane 24 in the organic-inorganic hybrid porous membrane 10. As shown in FIG. 3, the layered double hydroxide LDH includes divalent or trivalent metal ions such as magnesium ions (Mg 2+ ), aluminum ions (Al 3+ ) and the like that are present at random. -) and the base layer 26 of a plurality of layers surrounded by consist water molecules present example the carbonate ion (CO 3 2-) not anionic 28 and shown such interlayer between the base layer 26 of the plurality layers The intermediate layer 30 is configured. In the inorganic layered double hydroxide LDH of this example, the layered structure of the basic layer 26 and the intermediate layer 30 is regularly stacked. For example, the basic layer 26 is [Mg 2+ 1-x Al 3+ x (OH) 2 ] x + , and the intermediate layer 30 is represented by [CO 3 2− x · yH 2 O] x− .
図4は、前述した有機無機ハイブリッド多孔質膜10の製造工程SA1乃至SA4を説明する工程図である。図4に示すように、先ず、溶液作製工程SA1において、硝酸マグネシウム6水和物(Mg(NO3)2・6H2O)を例えば0.030molと、硝酸アルミニウム9水和物(Al(NO3)3・9H2O)を例えば0.015molと、尿素(Urea、CO(NH2)2)を例えば0.420molとを精製水に溶かして、複数の金属塩例えば硝酸マグネシウムおよび硝酸アルミニウムが溶解された溶液が作製される。なお、上記溶液において、尿素と硝酸イオンとのモル比すなわちUrea/[NO3]は、4.0である。 FIG. 4 is a process diagram for explaining the manufacturing processes SA1 to SA4 of the organic-inorganic hybrid porous membrane 10 described above. As shown in FIG. 4, first, in the solution preparation step SA1, magnesium nitrate hexahydrate (Mg (NO 3 ) 2 .6H 2 O), for example, 0.030 mol and aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O), for example, 0.015 mol, urea (urea, CO (NH 2) 2) , for example, by dissolving and 0.420mol in purified water, a plurality of metal salts such as magnesium nitrate and aluminum nitrate A dissolved solution is made. In the above solution, the molar ratio of urea and nitrate ions, that is, Urea / [NO 3 ] is 4.0.
次に、析出工程SA2において、溶液作製工程SA1で得られた溶液をポリ−テトラ−フルオロ−エチレンの容器に移し、その容器内の溶液中において比較的高い疎水性があるポリマー多孔質膜24例えばPVDF膜等を入れ、上記容器を密封してオーブンに入れて例えば95℃で12時間保持させる。これにより、上記溶液中のポリマー多孔質膜24の表面に小片状の層状複水酸化物LDHが析出させられる。なお、析出工程SA2で使用されるポリマー多孔質膜24であるPVDF膜は比較的高い疎水性があるため、例えば上記溶液がPVDF膜に浸透しない場合には、そのPVDF膜を例えばエタノールで濡らしてから上記溶液に入れる。なお、上記PVDF膜は、例えば以下のPVDF膜作製表条件で作製されたものであり、高分子(PVDF)が溶媒に溶解された高分子溶液に高電圧を印加することで繊維化するエレクトロスピニング法により得られた繊維を例えば図2に示すように相互に絡みあった状態で膜状に成形或いは積層したものである。 Next, in the precipitation step SA2, the solution obtained in the solution preparation step SA1 is transferred to a poly-tetra-fluoro-ethylene container, and the polymer porous membrane 24 having a relatively high hydrophobicity in the solution in the container, for example, A PVDF membrane or the like is placed, the container is sealed, placed in an oven, and held at, for example, 95 ° C. for 12 hours. As a result, a small piece of layered double hydroxide LDH is deposited on the surface of the polymer porous membrane 24 in the solution. Since the PVDF membrane, which is the polymer porous membrane 24 used in the deposition step SA2, has a relatively high hydrophobicity, for example, when the above solution does not penetrate the PVDF membrane, the PVDF membrane is wetted with, for example, ethanol. Into the above solution. In addition, the said PVDF film | membrane is produced, for example on the following PVDF film | membrane preparation table conditions, The electrospinning which fiberizes by applying a high voltage to the polymer solution in which the polymer (PVDF) was melt | dissolved in the solvent. For example, the fibers obtained by the method are formed or laminated into a film shape in a state of being entangled with each other as shown in FIG.
[PVDF膜作製条件]
・高分子溶液
ポリマー: PVDF(株式会社クレハ、KFポリマー W♯1100)
溶媒: Acetone(アセトン)/DMF(N,N−ジメチルホルムアミド)
重量比3:7
濃度: 20wt.%
・エレクトロスピニング条件
装置: NANON(株式会社メック)
電圧: 20kV
流量: 1ml/hr
ノズル: 27G(テルモ注射針)
距離(ノズルからコレクター):15cm
膜厚み: 5〜20μm
[PVDF film production conditions]
Polymer solution Polymer: PVDF (Kureha Corporation, KF Polymer W # 1100)
Solvent: Acetone (acetone) / DMF (N, N-dimethylformamide)
Weight ratio 3: 7
Concentration: 20 wt. %
・ Electrospinning conditions Equipment: NANON (MEC Co., Ltd.)
Voltage: 20kV
Flow rate: 1ml / hr
Nozzle: 27G (Terumo needle)
Distance (nozzle to collector): 15cm
Film thickness: 5-20 μm
次に、洗浄工程SA3において、析出工程SA2によって表面に層状複水酸化物LDHの粒子がコーティングされたポリマー多孔質膜24すなわち有機無機ハイブリッド多孔質膜10が精製水で洗浄される。次に、乾燥工程SA4において、洗浄工程SA3で洗浄された有機無機ハイブリッド多孔質膜10が例えば80度で乾燥される。これにより、有機無機ハイブリッド多孔質膜10が得られる。 Next, in the cleaning step SA3, the polymer porous membrane 24, that is, the organic / inorganic hybrid porous membrane 10 whose surface is coated with the particles of the layered double hydroxide LDH in the precipitation step SA2, is washed with purified water. Next, in the drying step SA4, the organic-inorganic hybrid porous membrane 10 washed in the washing step SA3 is dried at, for example, 80 degrees. Thereby, the organic-inorganic hybrid porous membrane 10 is obtained.
[実験I]
ここで、本発明者等が行った実験Iを説明する。なお、この実験Iは、前述した析出工程SA2によって、ポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子がコーティングされることを検証するための実験である。
[Experiment I]
Here, Experiment I conducted by the present inventors will be described. The experiment I is an experiment for verifying that the surface of the polymer porous film 24 is coated with the layered double hydroxide LDH particles by the above-described precipitation step SA2.
この実験Iでは、先ず、溶液作製工程SA1乃至乾燥工程SA4を経て図5に示す実施例品1乃至実施例品5の有機無機ハイブリッド多孔質膜10を製造した。そして、製造された実施例品1乃至実施例品5の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜の表面に粒子が析出されたかを、FE−SEM(電界放射型走査型電子顕微鏡、Field Emission Scanning Electron Microscope)によるFESEM写真を用いて判定した。更に、PVDF膜の表面に析出された粒子が、層状複水酸化物LDHであるか否かをEDX(エネルギー分散型X線分光法)およびX線回折(X−ray diffraction)により判定した。なお、図5に示すように、実施例品1の有機無機ハイブリッド多孔質膜10は、前述した溶液作製工程SA1乃至乾燥工程SA4を経て製造されたものである。また、実施例品2の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して析出工程SA2で保温時間が12時間から24時間に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。また、実施例品3の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して析出工程SA2で保温時間が12時間から48時間に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。また、実施例品4の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して析出工程SA2で保温温度が95℃から120℃に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。また、実施例品5の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して、析出工程SA2で保温温度が95℃から120℃に変更され且つ保温時間が12時間から24時間に変更された点で異なり、それ以外は同様に製造されたものである。 In this experiment I, first, the organic-inorganic hybrid porous membrane 10 of Example product 1 to Example product 5 shown in FIG. 5 was manufactured through solution preparation step SA1 to drying step SA4. Then, in the manufactured organic-inorganic hybrid porous membrane 10 of Example Product 1 to Example Product 5, whether or not particles were deposited on the surface of the PVDF membrane, which is the polymer porous membrane 24, was measured using an FE-SEM (field emission type). The determination was made using a FESEM photograph obtained by a scanning electron microscope (Field Emission Scanning Electron Microscope). Further, whether or not the particles deposited on the surface of the PVDF film is a layered double hydroxide LDH was determined by EDX (energy dispersive X-ray spectroscopy) and X-ray diffraction (X-ray diffraction). As shown in FIG. 5, the organic-inorganic hybrid porous membrane 10 of Example Product 1 is manufactured through the above-described solution preparation process SA1 to drying process SA4. Moreover, the organic-inorganic hybrid porous membrane 10 of Example Product 2 is different from the organic-inorganic hybrid porous membrane 10 of Example Product 1 in that the heat retention time was changed from 12 hours to 24 hours in the deposition step SA2. Otherwise, it was manufactured in the same manner as the organic-inorganic hybrid porous membrane 10 of Example Product 1. Further, the organic-inorganic hybrid porous membrane 10 of Example Product 3 is different from the organic-inorganic hybrid porous membrane 10 of Example Product 1 in that the heat retention time was changed from 12 hours to 48 hours in the deposition step SA2. Otherwise, it was manufactured in the same manner as the organic-inorganic hybrid porous membrane 10 of Example Product 1. In addition, the organic-inorganic hybrid porous membrane 10 of Example Product 4 is different from the organic-inorganic hybrid porous membrane 10 of Example Product 1 in that the heat retention temperature was changed from 95 ° C. to 120 ° C. in the precipitation step SA2. Otherwise, it was manufactured in the same manner as the organic-inorganic hybrid porous membrane 10 of Example Product 1. Further, the organic-inorganic hybrid porous membrane 10 of Example Product 5 has a heat retention temperature changed from 95 ° C. to 120 ° C. in the precipitation step SA2 with respect to the organic-inorganic hybrid porous membrane 10 of Example Product 1 described above, and is kept warm. It differs in that the time was changed from 12 hours to 24 hours, and the others were manufactured similarly.
更に、上記実験Iでは、図5に示す比較例品1乃至比較例品4の有機無機ハイブリッド多孔質膜10を製造し、上記と同様に、製造された比較例品1乃至比較例品4の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜の表面に粒子が析出されたかを、FE−SEMによるFESEM写真を用いて判定した。なお、図5に示すように、比較例品1の有機無機ハイブリッド多孔質膜10は、前述した析出工程SA2で処理される前のポリマー多孔質膜24すなわちPVDF膜である。また、比較例品2の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して溶液作製工程SA1で作製された溶液において溶かされた尿素(Urea)が0.420molから0.210molに変更すなわち上記溶液中のUrea/[NO3]のモル比が4.0から2.0に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。また、比較例品3の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して溶液作製工程SA1で作製された溶液において溶かされた尿素(Urea)が0.420molから0.315molに変更すなわち上記溶液中のUrea/[NO3]のモル比が4.0から3.0に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。また、比較例品4の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して析出工程SA2で保温時間が12時間から6時間に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。 Furthermore, in Experiment I, the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 1 to Comparative Example Product 4 shown in FIG. 5 was manufactured, and the manufactured Comparative Example Product 1 to Comparative Example Product 4 were similar to the above. In the organic-inorganic hybrid porous membrane 10, whether or not particles were deposited on the surface of the PVDF membrane, which is the polymer porous membrane 24, was determined using a FESEM photograph by FE-SEM. As shown in FIG. 5, the organic-inorganic hybrid porous membrane 10 of the comparative product 1 is the polymer porous membrane 24, that is, the PVDF membrane before being processed in the above-described deposition step SA2. Further, the organic-inorganic hybrid porous membrane 10 of the comparative example product 2 has urea (Urea) dissolved in the solution prepared in the solution preparation step SA1 with respect to the organic-inorganic hybrid porous membrane 10 of the example product 1 described above. It differs from 0.420 mol to 0.210 mol, that is, the molar ratio of Urea / [NO 3 ] in the above solution is changed from 4.0 to 2.0. It is manufactured in the same manner as the membrane 10. Moreover, the organic-inorganic hybrid porous membrane 10 of the comparative example product 3 has urea (Urea) dissolved in the solution prepared in the solution preparation step SA1 with respect to the organic-inorganic hybrid porous membrane 10 of the example product 1 described above. It differs from 0.420 mol to 0.315 mol, that is, the molar ratio of Urea / [NO 3 ] in the above solution is changed from 4.0 to 3.0. It is manufactured in the same manner as the membrane 10. Moreover, the organic-inorganic hybrid porous membrane 10 of the comparative example product 4 is different from the organic-inorganic hybrid porous membrane 10 of the example product 1 in that the heat retention time was changed from 12 hours to 6 hours in the deposition step SA2. Otherwise, it was manufactured in the same manner as the organic-inorganic hybrid porous membrane 10 of Example Product 1.
以下、図6乃至図13を用いて実験Iの評価結果の要点を説明する。図6の比較例品1の有機無機ハイブリッド多孔質膜10すなわちポリマー多孔質膜24のFESEM写真に示すように、析出工程SA2の処理前のPVDF膜においてファイバーの表面は滑らかであった。また、図7の比較例品2の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、比較例品2の有機無機ハイブリッド多孔質膜10の表面は、図6に示す析出工程SA2の処理前のPVDF膜と略同じであり、比較例品2の有機無機ハイブリッド多孔質膜10では、ポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子が析出しなかった。また、図8の比較例品3の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、比較例品3の有機無機ハイブリッド多孔質膜10の表面は、図6に示す析出工程SA2の処理前のPVDF膜と略同じであり、比較例品3の有機無機ハイブリッド多孔質膜10では、ポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子が析出しなかった。また、図9の比較例品4の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、比較例品4の有機無機ハイブリッド多孔質膜10の表面は、図6に示す析出工程SA2の処理前のPVDF膜と略同じであり、比較例品4の有機無機ハイブリッド多孔質膜10では、ポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子が析出しなかった。 Hereinafter, the main points of the evaluation results of Experiment I will be described with reference to FIGS. As shown in the FESEM photograph of the organic-inorganic hybrid porous film 10 of the comparative example product 1 in FIG. 6, that is, the polymer porous film 24, the surface of the fiber was smooth in the PVDF film before the treatment in the deposition step SA2. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 2 in FIG. 7, the surface of the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 2 is treated in the deposition step SA2 shown in FIG. In the organic / inorganic hybrid porous membrane 10 of Comparative Example Product 2, the layered double hydroxide LDH particles did not precipitate on the surface of the polymer porous membrane 24, which was substantially the same as the previous PVDF membrane. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the comparative example product 3 in FIG. 8, the surface of the organic-inorganic hybrid porous membrane 10 of the comparative example product 3 is treated in the deposition step SA2 shown in FIG. In the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 3, the layered double hydroxide LDH particles did not precipitate on the surface of the polymer porous membrane 24, which was substantially the same as the previous PVDF membrane. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the comparative example product 4 in FIG. 9, the surface of the organic-inorganic hybrid porous membrane 10 of the comparative example product 4 is treated in the deposition step SA2 shown in FIG. In the organic / inorganic hybrid porous membrane 10 of Comparative Example 4 which is substantially the same as the previous PVDF membrane, the layered double hydroxide LDH particles did not precipitate on the surface of the polymer porous membrane 24.
また、図10の実施例品1の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、実施例品1の有機無機ハイブリッド多孔質膜10の表面には、図6に示す析出工程SA2処理前のPVDF膜に比べると、鱗片状(小片状)の粒子が略均一に析出されていた。また、図11の実施例品2の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、実施例品2の有機無機ハイブリッド多孔質膜10の表面には、図6に示す析出工程SA2処理前のPVDF膜に比べると、鱗片状の粒子が略均一に析出されていた。なお、実施例品1の有機無機ハイブリッド多孔質膜10に析出された鱗片状の粒子は、実施例品2の有機無機ハイブリッド多孔質膜10に析出された鱗片状の粒子より小さい。また、図12の実施例品3の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、実施例品3の有機無機ハイブリッド多孔質膜10の表面には、図6に示す析出工程SA2処理前のPVDF膜に比べると、鱗片状の粒子が略均一に析出されていた。また、図13の実施例品4の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、実施例品4の有機無機ハイブリッド多孔質膜10の表面には、図6に示す析出工程SA2処理前のPVDF膜に比べると、鱗片状の粒子が略均一に析出されていた。 Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the example product 1 in FIG. 10, the deposition step SA2 treatment shown in FIG. Compared to the previous PVDF membrane, scaly (small) particles were deposited almost uniformly. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the example product 2 in FIG. 11, the deposition step SA2 treatment shown in FIG. Compared to the previous PVDF membrane, scaly particles were deposited almost uniformly. The scale-like particles deposited on the organic-inorganic hybrid porous membrane 10 of Example Product 1 are smaller than the scale-like particles deposited on the organic-inorganic hybrid porous membrane 10 of Example Product 2. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the example product 3 in FIG. 12, the surface of the organic-inorganic hybrid porous membrane 10 of the example product 3 is treated with the deposition step SA2 shown in FIG. Compared to the previous PVDF membrane, scaly particles were deposited almost uniformly. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the example product 4 in FIG. 13, the surface of the organic-inorganic hybrid porous membrane 10 of the example product 4 is treated with the deposition step SA2 shown in FIG. Compared to the previous PVDF membrane, scaly particles were deposited almost uniformly.
図14および図19は、実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10のFESEM写真を示す図である。また、図15および図20は、図14、図19で示された実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10に含まれる元素Mg、Alの原子比(At.%)を示す図である。図16および図21は、図14、図19で示された実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10に存在するMg元素の分布を示す図である。図17および図22は、図14、図19で示された実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10に存在するAl元素の分布を示す図である。図18および図23は、図14、図19で示された実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10に存在する複数の元素の強度(カウント数)を示す図である。なお、図14乃至図19、図20乃至図23は、図14、図19に示す実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10を、EDX(エネルギー分散型X線分光法)によって元素分析や組成分析したものである。 FIGS. 14 and 19 are FESEM photographs of the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2. FIG. 15 and 20 show the elements Mg and Al contained in the organic-inorganic hybrid porous film 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 shown in FIGS. It is a figure which shows atomic ratio (At.%). FIGS. 16 and 21 show the distribution of Mg elements present in the organic-inorganic hybrid porous membrane 10 of the example product 1 and the organic-inorganic hybrid porous membrane 10 of the example product 2 shown in FIGS. 14 and 19. FIG. 17 and 22 show the distribution of Al elements present in the organic-inorganic hybrid porous membrane 10 of the example product 1 and the organic-inorganic hybrid porous membrane 10 of the example product 2 shown in FIGS. FIG. 18 and 23 show the strengths of a plurality of elements present in the organic-inorganic hybrid porous membrane 10 of the example product 1 and the organic-inorganic hybrid porous membrane 10 of the example product 2 shown in FIGS. FIG. FIGS. 14 to 19 and FIGS. 20 to 23 show the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 shown in FIGS. Elemental analysis and composition analysis are performed by (energy dispersive X-ray spectroscopy).
図14乃至図19に示すように、実施例品1の有機無機ハイブリッド多孔質膜10において、PVDF膜であるポリマー多孔質膜24の表面に析出された鱗片状の粒子の主な成分は、層状複水酸化物LDHに含まれるMgおよびAlであることが分かった。また、図16および図17に示すように、実施例品1の有機無機ハイブリッド多孔質膜10において、MgとAlとの二種類の元素がPVDF膜のファイバー全体に均一に分散していることが観察された。また、図19乃至図23に示すように、実施例品2の有機無機ハイブリッド多孔質膜10において、PVDF膜であるポリマー多孔質膜24の表面に析出された鱗片状の粒子の主な成分は、層状複水酸化物LDHに含まれるMgおよびAlであることが分かった。また、図21および図22に示すように、実施例品2の有機無機ハイブリッド多孔質膜10において、MgとAlとの二種類の元素がPVDF膜のファイバー全体に均一に分散していることが観察された。 As shown in FIGS. 14 to 19, in the organic-inorganic hybrid porous membrane 10 of Example Product 1, the main components of the scaly particles deposited on the surface of the polymer porous membrane 24, which is a PVDF membrane, are layered It was found to be Mg and Al contained in the double hydroxide LDH. Moreover, as shown in FIGS. 16 and 17, in the organic-inorganic hybrid porous membrane 10 of Example Product 1, two kinds of elements of Mg and Al are uniformly dispersed throughout the fiber of the PVDF membrane. Observed. Further, as shown in FIGS. 19 to 23, in the organic-inorganic hybrid porous membrane 10 of Example Product 2, the main components of the scaly particles deposited on the surface of the polymer porous membrane 24 that is a PVDF membrane are as follows. It was found to be Mg and Al contained in the layered double hydroxide LDH. Further, as shown in FIGS. 21 and 22, in the organic-inorganic hybrid porous membrane 10 of Example Product 2, two kinds of elements of Mg and Al are uniformly dispersed throughout the fiber of the PVDF membrane. Observed.
図24に示すように、比較例品1の析出工程SA2が行われていないPVDF膜のXRDパターンは、20度付近に2箇所回折ピークが観測されており、層状複水酸化物LDHのXRDパターンは、10度付近、24度付近、35度付近、40度付近、48度付近に回折ピークが観測されている。また、実施例品1の有機無機ハイブリッド多孔質膜10のXRDパターンは、10度付近、20度付近に2箇所、24度付近、35度付近、40度付近、48度付近に回折ピークが観測されており、PVDF膜由来の回折ピーク以外に、層状複水酸化物LDHに帰属する回折ピークが観測された。このため、実施例品1の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜のファイバーの表面に均一に成長した鱗片状の粒子は、層状複水酸化物LDHから成る粒子であることが分かった。また、実施例品2の有機無機ハイブリッド多孔質膜10のXRDパターンは、実施例品1の有機無機ハイブリッド多孔質膜10と同様に、10度付近、20度付近に2箇所、24度付近、35度付近、40度付近、48度付近に回折ピークが観測されており、PVDF膜由来の回折ピーク以外に、層状複水酸化物LDHに帰属する回折ピークが観測された。このため、実施例品2の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜のファイバーの表面に均一に成長した鱗片状の粒子は、層状複水酸化物LDHから成る粒子であることが分かった。なお、図示していないが、実施例品1、実施例品2の有機無機ハイブリッド多孔質膜10と同様に、前述したEDX(エネルギー分散型X線分光法)およびX線回折(X−ray diffraction)から、実施例品3および実施例品4の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜のファイバーの表面に均一に成長した鱗片状の粒子は、層状複水酸化物LDHから成る粒子であった。 As shown in FIG. 24, in the XRD pattern of the PVDF film in which the precipitation step SA2 of Comparative Example Product 1 was not performed, two diffraction peaks were observed in the vicinity of 20 degrees, and the XRD pattern of the layered double hydroxide LDH Have diffraction peaks observed at around 10 degrees, around 24 degrees, around 35 degrees, around 40 degrees, and around 48 degrees. In addition, the XRD pattern of the organic-inorganic hybrid porous membrane 10 of Example Product 1 shows diffraction peaks at around 10 degrees, around 2 degrees, around 24 degrees, around 35 degrees, around 40 degrees, and around 48 degrees. In addition to the diffraction peak derived from the PVDF film, a diffraction peak attributed to the layered double hydroxide LDH was observed. Therefore, in the organic-inorganic hybrid porous membrane 10 of Example Product 1, the scale-like particles uniformly grown on the surface of the PVDF membrane fiber, which is the polymer porous membrane 24, are particles composed of layered double hydroxide LDH. It turns out that. Further, the XRD pattern of the organic-inorganic hybrid porous membrane 10 of Example Product 2 is similar to that of the organic-inorganic hybrid porous membrane 10 of Example Product 1 at around 10 degrees, two locations around 20 degrees, around 24 degrees, Diffraction peaks were observed at around 35 degrees, around 40 degrees, and around 48 degrees. In addition to the diffraction peaks derived from the PVDF film, diffraction peaks attributed to the layered double hydroxide LDH were observed. Therefore, in the organic-inorganic hybrid porous membrane 10 of Example Product 2, the scale-like particles uniformly grown on the surface of the PVDF membrane fiber that is the polymer porous membrane 24 are particles composed of layered double hydroxide LDH. It turns out that. Although not shown in the drawing, the EDX (energy dispersive X-ray spectroscopy) and the X-ray diffraction (X-ray diffraction) described above are the same as in the organic / inorganic hybrid porous membrane 10 of Examples 1 and 2. From the organic inorganic hybrid porous membrane 10 of Example Product 3 and Example Product 4, the scaly particles uniformly grown on the surface of the PVDF membrane fiber, which is the polymer porous membrane 24, are layered double hydroxide. The particles were composed of the product LDH.
図6乃至図24の上記実験Iの結果によれば、比較例品1乃至比較例品4の有機無機ハイブリッド多孔質膜10では、そのPVDF膜であるポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子がコーティングされなかったが、実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10では、そのPVDF膜であるポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子がコーティングされた。このため、析出工程SA2によって、ポリマー多孔質膜24の表面に鱗片状の層状複水酸化物LDHが析出されたと考えられる。 According to the results of Experiment I in FIGS. 6 to 24, in the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 1 to Comparative Example Product 4, layered double water is formed on the surface of the polymer porous membrane 24 that is the PVDF membrane. Although the particles of the oxide LDH were not coated, in the organic-inorganic hybrid porous membrane 10 of Examples 1 to 4, the layered double hydroxide LDH was formed on the surface of the polymer porous membrane 24 as the PVDF membrane. Of particles were coated. For this reason, it is considered that the scaly layered double hydroxide LDH was deposited on the surface of the polymer porous membrane 24 by the deposition step SA2.
また、図6乃至図24の上記実験Iの結果によれば、比較例品2、比較例品3の有機無機ハイブリッド多孔質膜10では、PVDF膜の表面に層状複水酸化物LDHの粒子がコーティングされなかったが、実施例品1の有機無機ハイブリッド多孔質膜10では、PVDF膜の表面に層状複水酸化物LDHの粒子がコーティングされた。このため、析出工程SA2において、PVDF膜を入れる溶液に溶かされた尿素を0.420mol以上またはその溶液中のUrea/[NO3]のモル比を4.0以上にすることによって、好適にPVDF膜の表面に層状複水酸化物LDHをコーティングさせることができると考えられる。 Further, according to the results of Experiment I in FIGS. 6 to 24, in the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 2 and Comparative Example Product 3, the layered double hydroxide LDH particles are formed on the surface of the PVDF membrane. Although not coated, in the organic-inorganic hybrid porous membrane 10 of Example Product 1, the surface of the PVDF membrane was coated with particles of layered double hydroxide LDH. Therefore, in the precipitation step SA2, the urea dissolved in the solution containing the PVDF membrane is 0.420 mol or more, or the urea / [NO 3 ] molar ratio in the solution is preferably set to 4.0 or more. It is considered that the layered double hydroxide LDH can be coated on the surface of the film.
また、図6乃至図24の上記実験Iの結果によれば、比較例品4の有機無機ハイブリッド多孔質膜10では、PVDF膜の表面に層状複水酸化物LDHの粒子がコーティングされなかったが、実施例品1の有機無機ハイブリッド多孔質膜10では、PVDF膜の表面に層状複水酸化物LDHの粒子がコーティングされた。このため、析出工程SA2において、保持時間を12時間以上にすることによって、好適にPVDF膜の表面に層状複水酸化物LDHをコーティングさせることができると考えられる。 Further, according to the result of Experiment I in FIGS. 6 to 24, in the organic-inorganic hybrid porous membrane 10 of Comparative Example 4, the surface of the PVDF membrane was not coated with particles of the layered double hydroxide LDH. In the organic-inorganic hybrid porous membrane 10 of Example Product 1, the surface of the PVDF membrane was coated with particles of layered double hydroxide LDH. For this reason, in precipitation process SA2, it is thought that the layered double hydroxide LDH can be suitably coated on the surface of the PVDF film by setting the holding time to 12 hours or longer.
[実験II]
次に、本発明者等が行った実験IIを説明する。なお、この実験IIは、PVDF膜であるポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子がコーティングされた有機無機ハイブリッド多孔質膜10が、イオン伝導性を有することを検証するための実験である。
[Experiment II]
Next, Experiment II conducted by the present inventors will be described. This experiment II is for verifying that the organic-inorganic hybrid porous membrane 10 in which the surface of the polymer porous membrane 24, which is a PVDF membrane, is coated with particles of layered double hydroxide LDH has ion conductivity. This is an experiment.
この実験IIでは、先ず、前述した実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10をそれぞれ用いて、図25に示すように、一対の金電極32および34をその有機無機ハイブリッド多孔質膜10の両面に取り付けた。そして、交流インピーダンスアナライザー法で、環境温度80℃における相対湿度80%の時の上記実施例品1の有機無機ハイブリッド多孔質膜10および実施例品2の有機無機ハイブリッド多孔質膜10のイオン伝導率をそれぞれ測定した。なお、上記実験IIにおいて、上記有機無機ハイブリッド多孔質膜10の環境制御は、ESPEC社製(Japan)SH−221の小型環境試験器を使用し、上記有機無機ハイブリッド多孔質膜10のイオン伝導率の測定は、Solartron Analytical社製(UK)Solartron 1260 lmpedance/gain−phase analyzerの電気特性評価装置を使用した。 In this experiment II, first, as shown in FIG. 25, a pair of gold electrodes was used by using the organic-inorganic hybrid porous membrane 10 of Example product 1 and the organic-inorganic hybrid porous membrane 10 of Example product 2 described above. 32 and 34 were attached to both sides of the organic-inorganic hybrid porous membrane 10. The ionic conductivity of the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 when the relative humidity is 80% at an environmental temperature of 80 ° C. by the AC impedance analyzer method. Was measured respectively. In the experiment II, the environmental control of the organic-inorganic hybrid porous membrane 10 is performed using a small environmental tester manufactured by ESPEC (Japan) SH-221, and the ionic conductivity of the organic-inorganic hybrid porous membrane 10 is controlled. The measurement of was performed using an electrical property evaluation apparatus of Solartron Analytical (UK) Solartron 1260 lmpedance / gain-phase analyzer.
以下、図26を用いて上記実験IIの結果を示す。図26に示すように、実施例品1の有機無機ハイブリッド多孔質膜10のイオン伝導率は、1.2×10−6[S/cm]であり、実施例品1の有機無機ハイブリッド多孔質膜10自体にイオン伝導性を有していることが分かった。また、実施例品2の有機無機ハイブリッド多孔質膜10のイオン伝導率は、1.1×10−8[S/cm]であり、実施例品2の有機無機ハイブリッド多孔質膜10自体にイオン伝導性を有していることが分かった。なお、図示していないが、実施例品3の有機無機ハイブリッド多孔質膜10および実施例品4の有機無機ハイブリッド多孔質膜10自体にも、実施例品1の有機無機ハイブリッド多孔質膜10および実施例品2の有機無機ハイブリッド多孔質膜10と同様に、イオン伝導性を有していた。 Hereinafter, the results of Experiment II will be described with reference to FIG. As shown in FIG. 26, the ionic conductivity of the organic-inorganic hybrid porous membrane 10 of Example Product 1 is 1.2 × 10 −6 [S / cm], and the organic-inorganic hybrid porous material of Example Product 1 It was found that the membrane 10 itself has ionic conductivity. In addition, the ionic conductivity of the organic-inorganic hybrid porous membrane 10 of Example Product 2 is 1.1 × 10 −8 [S / cm], and the organic-inorganic hybrid porous membrane 10 of Example Product 2 has an ionic conductivity. It was found to have conductivity. Although not shown, the organic-inorganic hybrid porous membrane 10 of Example Product 3 and the organic-inorganic hybrid porous membrane 10 of Example Product 4 are also included in the organic-inorganic hybrid porous membrane 10 of Example Product 1 and Similar to the organic-inorganic hybrid porous membrane 10 of Example Product 2, it had ion conductivity.
図26の上記実験IIの結果によれば、実施例品1の有機無機ハイブリッド多孔質膜10および実施例品2の有機無機ハイブリッド多孔質膜10は、イオン伝導性を有していた。このため、PVDF膜であるポリマー多孔質膜24の表面が、層状複水酸化物LDHの粒子でコーティングされることによって、そのポリマー多孔質膜24の表面が層状複水酸化物LDHの粒子でコーティングされた有機無機ハイブリッド多孔質膜10は、イオン伝導性を有すると考えられる。 According to the result of Experiment II in FIG. 26, the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 had ionic conductivity. For this reason, the surface of the polymer porous film 24 which is a PVDF film is coated with particles of the layered double hydroxide LDH, so that the surface of the polymer porous film 24 is coated with the particles of the layered double hydroxide LDH. The formed organic-inorganic hybrid porous membrane 10 is considered to have ionic conductivity.
図26の上記実験IIの結果によれば、実施例品1の有機無機ハイブリッド多孔質膜10のイオン伝導率は、実施例品2の有機無機ハイブリッド多孔質膜のイオン伝導率より高かった。また、前述したように図10乃至図11から実施例品1の有機無機ハイブリッド多孔質膜10においてPVDF膜の表面にコーティングされた層状複水酸化物LDHの粒子の大きさは、実施例品2の有機無機ハイブリッド多孔質膜10における層状複水酸化物LDHの粒子に比べて小さかった。このため、PVDF膜の表面にコーティングされた層状複水酸化物LDHの粒子の大きさが小さい程、有機無機ハイブリッド多孔質膜10のイオン伝導率が高くなると考えられる。 According to the result of Experiment II in FIG. 26, the ionic conductivity of the organic-inorganic hybrid porous membrane 10 of Example Product 1 was higher than the ionic conductivity of the organic-inorganic hybrid porous membrane of Example Product 2. Further, as described above, the size of the layered double hydroxide LDH particles coated on the surface of the PVDF membrane in the organic-inorganic hybrid porous membrane 10 of Example Product 1 from FIGS. It was smaller than the particles of the layered double hydroxide LDH in the organic / inorganic hybrid porous membrane 10. For this reason, it is considered that the ionic conductivity of the organic-inorganic hybrid porous membrane 10 increases as the size of the layered double hydroxide LDH particles coated on the surface of the PVDF membrane decreases.
図27は、電解質膜12の基材として有機無機ハイブリッド多孔質膜10を用い、その細孔10a中にアニオン伝導材料を緻密に充填して電解質膜12を製造する製造工程を説明する工程図である。図27において、プレス工程SB1では、LDHコーティングされた有機無機ハイブリッド多孔質膜10に、たとえばプレス荷重7×103N/8×10−3m2で1分間のプレスが行われる。次いで、溶媒浸漬工程SB2では、有機無機ハイブリッド多孔質膜10が、たとえば超音波中で30分間、エタノールに浸漬される。モノマー溶液作製工程SB3では、VBTACのモノマーとイニシエータ(重合開始剤)とがエタノールに溶解されることによりモノマー溶液が作製される。このイニシエータとしては、たとえば、2,2’−Azobis(2−methylpropionamidine)dihydrochloride(V50)水溶液が加えられる。 FIG. 27 is a process diagram for explaining a manufacturing process for manufacturing the electrolyte membrane 12 by using the organic-inorganic hybrid porous membrane 10 as a base material of the electrolyte membrane 12 and densely filling the pores 10a with the anion conductive material. is there. In FIG. 27, in the pressing step SB1, the LDH-coated organic-inorganic hybrid porous membrane 10 is pressed for 1 minute, for example, with a press load of 7 × 10 3 N / 8 × 10 −3 m 2 . Next, in the solvent immersion step SB2, the organic-inorganic hybrid porous membrane 10 is immersed in ethanol for 30 minutes, for example, in an ultrasonic wave. In the monomer solution preparation step SB3, a monomer solution is prepared by dissolving a VBTAC monomer and an initiator (polymerization initiator) in ethanol. As this initiator, for example, a 2,2′-Azobis (2-methylpropionamidine) dihydrochloride (V50) aqueous solution is added.
モノマー溶液浸漬工程SB4では、有機無機ハイブリッド多孔質膜10が、たとえば4℃に冷却されたモノマー溶液中に2時間浸漬される。次いで、溶媒除去工程SB5では、有機無機ハイブリッド多孔質膜10に含浸されたモノマー溶液中からエタノールを除去するために、モノマー溶液が含浸されている有機無機ハイブリッド多孔質膜10をテフロン(登録商標)シート上に室温で載置してエタノールを徐々に蒸発させつつ、その有機無機ハイブリッド多孔質膜10上にモノマー溶液を滴下し、モノマーが飽和状態となるまでの時間継続する。 In the monomer solution immersion step SB4, the organic-inorganic hybrid porous membrane 10 is immersed in a monomer solution cooled to, for example, 4 ° C. for 2 hours. Next, in the solvent removal step SB5, in order to remove ethanol from the monomer solution impregnated in the organic-inorganic hybrid porous membrane 10, the organic-inorganic hybrid porous membrane 10 impregnated with the monomer solution is removed from Teflon (registered trademark). The monomer solution is dropped onto the organic-inorganic hybrid porous membrane 10 while being placed on a sheet at room temperature to gradually evaporate ethanol, and the time is continued until the monomer is saturated.
次に、重合工程SB6では、有機無機ハイブリッド多孔質膜10をテフロン(登録商標)シートを介してガラス板で挟持した状態で、オーブン中において、60℃程度の温度で重合を進行させる。これにより、有機無機ハイブリッド多孔質膜10中に含浸されたVBTACのモノマーがポリマー化され、有機無機ハイブリッド多孔質膜10中にVBTACが緻密に充填された電解質膜12が得られる。次いで、洗浄工程SB7では電解質膜12が精製水で水洗され、乾燥工程SB8では電解質膜12が約80℃で乾燥される。上記モノマー溶液浸漬工程SB4、溶媒除去工程SB5、および重合工程SB6は、有機無機ハイブリッド多孔質膜10の細孔10a内にアニオン伝導材料を緻密に充填するマイクロフィリング工程すなわち充填工程に対応している。 Next, in the polymerization step SB6, polymerization is allowed to proceed at a temperature of about 60 ° C. in an oven in a state where the organic-inorganic hybrid porous membrane 10 is sandwiched between glass plates via a Teflon (registered trademark) sheet. Thereby, the VBTAC monomer impregnated in the organic-inorganic hybrid porous membrane 10 is polymerized, and the electrolyte membrane 12 in which the VBTAC is densely filled in the organic-inorganic hybrid porous membrane 10 is obtained. Next, in the cleaning step SB7, the electrolyte membrane 12 is washed with purified water, and in the drying step SB8, the electrolyte membrane 12 is dried at about 80 ° C. The monomer solution immersion step SB4, the solvent removal step SB5, and the polymerization step SB6 correspond to a microfilling step, that is, a filling step, in which the anion conductive material is densely filled in the pores 10a of the organic-inorganic hybrid porous membrane 10. .
[実験III]
次に、本発明者等が行った実験IIIを説明する。この実験IIIは、PVDF膜であるポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子がコーティングされた有機無機ハイブリッド多孔質膜10の細孔10a内に、アニオン伝導材料を緻密に充填した電解質膜12の、形状安定性、イオン伝導率などの性能や、膜の表面状態および膜構造を検証するための実験である。
[Experiment III]
Next, Experiment III conducted by the present inventors will be described. In this experiment III, the anion conducting material is densely filled in the pores 10a of the organic-inorganic hybrid porous membrane 10 in which the surface of the polymer porous membrane 24, which is a PVDF membrane, is coated with particles of layered double hydroxide LDH. This is an experiment for verifying the performance of the electrolyte membrane 12 such as shape stability and ionic conductivity, the surface state of the membrane, and the membrane structure.
この実験IIIでは、先ず、図27の工程図に示されたものと同じ工程に従って、前述した実施例品5をプレスした有機無機ハイブリッド多孔質膜10の細孔内にVBTACを緻密に充填して作製された電解質膜(実施例品1)と、無機質の層状複水酸化物LDHの粒子がコーティングされないPVDF(ポリマー多孔質)膜の細孔内にVBTACを緻密に充填して作製された電解質膜(比較例品1)と、前述の実施例品5のプレスなしの有機無機ハイブリッド多孔質膜10の細孔内にVBTACを緻密に充填して作製された電解質膜(比較例品2)とをそれぞれ複数個作製し、それら2種類或いは3種類の電解質膜の評価を行なった。 In this experiment III, first, according to the same process as that shown in the process diagram of FIG. 27, VBTAC is densely filled in the pores of the organic-inorganic hybrid porous film 10 obtained by pressing the above-described example product 5. The produced electrolyte membrane (Example product 1) and the electrolyte membrane produced by densely filling VBTAC into the pores of a PVDF (polymer porous) membrane that is not coated with inorganic layered double hydroxide LDH particles (Comparative Example Product 1) and the electrolyte membrane (Comparative Example Product 2) prepared by densely filling VBTAC into the pores of the organic inorganic hybrid porous membrane 10 without pressing of Example Product 5 described above. A plurality of each was prepared, and two or three types of electrolyte membranes were evaluated.
図28は、実施例品1の電解質膜と比較例品1の電解質膜と比較例品2の電解質膜との各1個の形状安定性の評価結果を示す図表である。図28において、LDHの粒子がコーティングされないプレス後のPVDF膜の細孔内にVBTACが充填された電解質膜(比較例品1)は、VBTACの充填前に対してVBTACの充填後では52%の膨張が観察された。しかし、LDHの粒子がコーティングされたプレス後のPVDF膜の細孔内にVBTACが充填された電解質膜(実施例品1)は、VBTACの充填前に対してVBTACの充填後では20%の収縮が見られ、形状が安定していることが確認された。また、LDHの粒子がコーティングされたプレスされないPVDF膜の細孔内にVBTACが充填された電解質膜(比較例品2)は、VBTACの充填前に対してVBTACの充填後では12%の収縮が見られ、形状が安定していることが確認された。 FIG. 28 is a chart showing the evaluation results of the shape stability of each of the electrolyte membrane of Example Product 1, the electrolyte membrane of Comparative Example Product 1, and the electrolyte membrane of Comparative Example Product 2. In FIG. 28, the electrolyte membrane (Comparative Example Product 1) filled with VBTAC in the pores of the PVDF membrane after pressing that is not coated with LDH particles is 52% after filling with VBTAC, compared with before filling with VBTAC. Swelling was observed. However, the electrolyte membrane in which VBTAC was filled in the pores of the PVDF membrane after pressing coated with LDH particles (Example product 1) was 20% shrinkage after filling with VBTAC compared to before filling with VBTAC. It was confirmed that the shape was stable. In addition, the electrolyte membrane (Comparative Example 2) filled with VBTAC in the pores of the PVDF membrane that is not pressed and coated with LDH particles has a shrinkage of 12% after filling with VBTAC compared to before filling with VBTAC. It was confirmed that the shape was stable.
図29および図30は、電解質膜(実施例品1)に関し、LDHの粒子がコーティングされたPVDF膜の細孔内にVBTACが充填される前および充填された後のFESEM写真を示している。また、図31および図32は、電解質膜(比較例品1)に関し、LDHの粒子がコーティングされたPVDF膜の細孔内にVBTACが充填される前および充填された後のFESEM写真を示している。また、図29および図31を比較すると、実施例品1ではPVDF膜を構成する繊維の表面にLDHの粒子のコーティングが確認されるが、比較例品1ではLDHの粒子のコーティングがない。図30および図32を比較すると、図30の実施例品1では、PVDF膜の細孔内にVBTACが緻密に充填されているのに対して、図32の比較例品1では、膨潤に起因すると推定される亀裂の発生が明確に認識できる。このような亀裂は、ガス漏れの原因となる。 29 and 30 show FESEM photographs of the electrolyte membrane (Example product 1) before and after VBTAC is filled in the pores of the PVDF membrane coated with the LDH particles. FIGS. 31 and 32 show FESEM photographs of the electrolyte membrane (Comparative Example 1) before and after VBTAC is filled in the pores of the PVDF membrane coated with LDH particles. Yes. 29 and 31, in Example Product 1, LDH particle coating is confirmed on the surface of the fibers constituting the PVDF membrane, but in Comparative Product 1, there is no LDH particle coating. 30 and FIG. 32, in the example product 1 of FIG. 30, VBTAC is densely filled in the pores of the PVDF membrane, whereas in the comparative product 1 of FIG. Then, it is possible to clearly recognize the occurrence of cracks estimated. Such cracks cause gas leakage.
図33および図34は、電解質膜(実施例品1)および電解質膜(比較例品1)に充填されたVBTACの官能基(アニオン交換基)の存在を確認するためのATRスペクトル(全反射測定法による反射(透過)スペクトル)を示している。図33の上段は、実施例品1においてLDHの粒子がコーティングされたPVDF膜の細孔内にVBTACが充填された後の透過スペクトルを示し、下段は、実施例品1においてLDHの粒子がコーティングされたPVDF膜の細孔内にVBTACが充填される前の透過スペクトルを示している。図33の上段に示すスペクトルでは、破線で示すようにVBTACの官能基固有の吸収帯に対応する波数3000〜2800(cm−1)、波数2200(cm−1)、および波数1600(cm−1)における局所的な低下が観測されるので、そのVBTACの官能基の存在が確認できるが、図33の下段に示すスペクトルではそのような局所的な低下が見られない。また、図34の上段は、比較例品1においてLDHの粒子がコーティングされていないポリマー多孔質膜内にVBTACが充填された後の透過スペクトルを示し、下段は、比較例品1においてLDHの粒子がコーティングされていないポリマー多孔質膜内にVBTACが充填される前の透過スペクトルを示している。図34の上段に示すスペクトルでは、破線で示すようにVBTACの官能基固有の吸収帯に対応する波数3000〜2800(cm−1)、波数2200(cm−1)、および波数1600(cm−1)における局所的な低下が観測されるので、そのVBTACの官能基の存在が確認できるが、図34の下段に示すスペクトルではそのような局所的な低下が見られない。 FIGS. 33 and 34 show ATR spectra (total reflection measurement) for confirming the presence of VBTAC functional groups (anion exchange groups) filled in the electrolyte membrane (Example product 1) and the electrolyte membrane (Comparative Example product 1). The reflection (transmission) spectrum by the method is shown. The upper part of FIG. 33 shows a transmission spectrum after VBTAC is filled in the pores of the PVDF membrane coated with LDH particles in Example product 1, and the lower part is coated with LDH particles in Example product 1. The transmission spectrum before VBTAC is filled in the pores of the formed PVDF membrane is shown. In the spectrum shown in the upper part of FIG. 33, wave numbers 3000 to 2800 (cm −1 ), wave numbers 2200 (cm −1 ), and wave numbers 1600 (cm −1 ) corresponding to the absorption band specific to the functional group of VBTAC as shown by the broken line. ) Is observed, the presence of the functional group of the VBTAC can be confirmed, but such a local decrease is not observed in the spectrum shown in the lower part of FIG. 34 shows the transmission spectrum after VBTAC is filled in the porous polymer membrane that is not coated with LDH particles in Comparative Example Product 1, and the lower part shows LDH particles in Comparative Example Product 1. Shows a transmission spectrum before VBTAC is filled in a polymer porous membrane which is not coated with VBTAC. In the spectrum shown in the upper part of FIG. 34, as indicated by a broken line, wave numbers 3000 to 2800 (cm −1 ), wave numbers 2200 (cm −1 ), and wave numbers 1600 (cm −1 ) corresponding to the absorption bands specific to the functional group of VBTAC. ) Is observed, the presence of the functional group of the VBTAC can be confirmed, but such a local decrease is not observed in the spectrum shown in the lower part of FIG.
次に、図30の実施例品1、図32の比較例品1、および比較例品2を用いて、相対湿度RHが98%および50%における、温度(℃)に対するイオン伝導率(ms/cm)の変化特性を確認するために、各相対湿度および各測定温度におけるイオン伝導率を、図35に示す方法で測定した。図35において、測定対象のアニオン交換膜は、2cm×1cmの矩形とされた試料TPの表裏に、面方向の間隔が1cmとされた互いに並行な一対の白金電極PEを用いて2端子法によりイオン伝導率が測定された。表1および表2は、高相対湿度環境におけるイオン伝導率および低相対湿度環境におけるイオン伝導率の測定結果をそれぞれ示している。また、図36および図37は、高相対湿度環境(RH:98%)および低相対湿度環境(RH:50%)において、実施例品1、比較例品1、比較例品2の各測定温度におけるイオン伝導率の測定結果をそれぞれ示すグラフである。 Next, using the example product 1 of FIG. 30, the comparative product 1 of FIG. 32, and the comparative product 2, the ionic conductivity (ms / ms) relative to the temperature (° C.) when the relative humidity RH is 98% and 50%. cm), the ion conductivity at each relative humidity and each measurement temperature was measured by the method shown in FIG. In FIG. 35, the anion exchange membrane to be measured is a two-terminal method using a pair of parallel platinum electrodes PE with a 1 cm spacing in the plane direction on the front and back of a sample TP having a 2 cm × 1 cm rectangle. Ionic conductivity was measured. Tables 1 and 2 show measurement results of ionic conductivity in a high relative humidity environment and ionic conductivity in a low relative humidity environment, respectively. 36 and 37 show the measured temperatures of Example Product 1, Comparative Product 1 and Comparative Product 2 in a high relative humidity environment (RH: 98%) and a low relative humidity environment (RH: 50%). It is a graph which shows the measurement result of the ionic conductivity in each.
[表1]
相対湿度RH:98%環境におけるイオン伝導率(mS/cm)
測定温度(℃)30 40 50 60 70 80
実施例品1 35 45 58 69 82 95
比較例品1 27 − 40 45 53 64
比較例品2 − 38 46 56 − 75
[Table 1]
Relative humidity RH: 98% ion conductivity in the environment (mS / cm)
Measurement temperature (° C) 30 40 50 60 70 80
Example product 1 35 45 58 69 82 95
Comparative Example Product 1 27-40 45 53 64
Comparative product 2-38 46 56-75
[表2]
相対湿度RH:50%環境におけるイオン伝導率(mS/cm)
測定温度(℃) 40 50 60 70 80
実施例品1 4.9 7.0 10.1 13.5 18.0
比較例品1 − 0.2 0.3 − 0.6
比較例品2 3.5 5.2 7.0 9.9 13.2
[Table 2]
Relative humidity RH: Ion conductivity in 50% environment (mS / cm)
Measurement temperature (° C) 40 50 60 70 80
Example product 1 4.9 7.0 10.1 13.5 18.0
Comparative product 1-0.2 0.3-0.6
Comparative Example Product 2 3.5 5.2 7.0 9.9 13.2
表1、表2および図36、図37から明らかなように、相対湿度RHに関して、実施例品1、比較例品1、および比較例品2のイオン伝導率は相対湿度RHが高い程高いイオン伝導率が得られる。また、実施例品1は、比較例品1および比較例品2に比較して、相対湿度RHの低下に拘わらずイオン伝導率の低下割合が少ない。実用環境では低湿度での性能も重視されるので、この実施例品1の特性は有利である。次に、表1および図36、或いは表2および図37から明らかなように、同じ相対湿度環境において、実施例品1は、比較例品1および比較例品2に比較して、イオン伝導率が大幅に高い。有機無機ハイブリッド多孔質膜10において、層状複水酸化物の粒子で表面がコーティングされたポリマー多孔質膜自体にイオン伝導性が生じて、電解質膜全体のイオン伝導性が大幅に高くなったからである。また、図36において、比較例品1は比較例品2よりイオン伝導率が高い。 As is apparent from Tables 1 and 2 and FIGS. 36 and 37, the ion conductivity of Example Product 1, Comparative Product 1 and Comparative Product 2 is higher when the relative humidity RH is higher. Conductivity is obtained. In addition, compared with Comparative Example Product 1 and Comparative Example Product 2, Example Product 1 has a lower rate of decrease in ionic conductivity regardless of the decrease in relative humidity RH. Since performance at low humidity is also important in a practical environment, the characteristics of this example product 1 are advantageous. Next, as is clear from Table 1 and FIG. 36 or Table 2 and FIG. 37, in the same relative humidity environment, Example Product 1 is more ionic conductivity than Comparative Product 1 and Comparative Product 2. Is significantly higher. This is because, in the organic / inorganic hybrid porous membrane 10, ion conductivity is generated in the polymer porous membrane itself, the surface of which is coated with layered double hydroxide particles, and the ionic conductivity of the entire electrolyte membrane is significantly increased. . In FIG. 36, Comparative Example Product 1 has higher ionic conductivity than Comparative Example Product 2.
上述のように、本実施例の電解質膜12によれば、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物LDHの粒子で表面がコーティングされたポリマー多孔質膜24自体にイオン伝導性があることから、そのポリマー多孔質膜24の細孔10a内にアニオン伝導材料(VBTAC)が充填されることで構成された電解質膜12は、イオン伝導性のないポリマー多孔質膜を用いた場合に比べて、電解質膜12のイオン伝導性が大幅に高くなる。また、ポリマー多孔質膜24は有機系であることから、それが基材として用いることによって、電解質膜12の機械的強度を向上させることができる。すなわち、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物LDHの粒子で表面がコーティングされたポリマー多孔質膜24すなわち有機無機ハイブリッド多孔質膜10を用いることにより、比較的高いイオン伝導性および機械的強度を共に有する電解質膜12を得ることができる。 As described above, according to the electrolyte membrane 12 of this example, the polymer porous membrane 24 itself coated on the surface with particles of inorganic layered double hydroxide LDH composed of two or more kinds of metal ions having different valences. Therefore, the electrolyte membrane 12 formed by filling the pores 10a of the polymer porous membrane 24 with the anion conductive material (VBTAC) is a polymer porous membrane having no ion conductivity. Compared with the case where is used, the ionic conductivity of the electrolyte membrane 12 is significantly increased. Moreover, since the polymer porous membrane 24 is an organic type, the mechanical strength of the electrolyte membrane 12 can be improved by using it as a base material. That is, by using the polymer porous membrane 24 whose surface is coated with particles of inorganic layered double hydroxide LDH composed of two or more kinds of metal ions having different valences, that is, the organic-inorganic hybrid porous membrane 10, The electrolyte membrane 12 having both high ionic conductivity and mechanical strength can be obtained.
また、本実施例の電解質膜12によれば、ポリマー多孔質膜24は、エレクトロスピニング法により繊維化された繊維状樹脂が相互に絡み合った状態で膜状に成形されたものである。これにより、高い気孔率が得られるため、アニオン伝導材料(VBTAC)の充填率が高められるので、電解質膜12の性能が得られるとともに、柔軟性が得られるので、電解質の膨張や取り扱いに対して機械的強度が向上した電解質膜12が得られる。 Further, according to the electrolyte membrane 12 of this example, the polymer porous membrane 24 is formed into a membrane shape in a state where the fibrous resins fibrillated by the electrospinning method are intertwined with each other. Thereby, since a high porosity is obtained, the filling rate of the anion conducting material (VBTAC) is increased, so that the performance of the electrolyte membrane 12 can be obtained and flexibility can be obtained. The electrolyte membrane 12 with improved mechanical strength is obtained.
また、本実施例の電解質膜12によれば、アニオン伝導材料(VBTAC)は、ポリマー多孔質膜24に含浸された該アニオン伝導材料のモノマー溶液中の溶媒の蒸発に応じて該モノマー溶液を補充して濃度を高めた後、前記ポリマー多孔質膜中のモノマーを重合させる処理により、ポリマー多孔質膜24の細孔内に充填される。このようにすれば、アニオン伝導材料の充填率が一層高められるので、電解質膜12の性能が得られる。 Further, according to the electrolyte membrane 12 of this example, the anion conducting material (VBTAC) is replenished with the monomer solution according to the evaporation of the solvent in the monomer solution of the anion conducting material impregnated in the polymer porous membrane 24. After the concentration is increased, the pores of the polymer porous film 24 are filled by a process of polymerizing the monomer in the polymer porous film. In this way, the filling rate of the anion conductive material can be further increased, so that the performance of the electrolyte membrane 12 can be obtained.
また、本実施例の電解質膜12の基材である有機無機ハイブリッド多孔質膜10は、(a)複数種類の金属塩例えば硝酸マグネシウムおよび硝酸アルミニウムが溶解された溶液を作製する溶液作製工程SA1と、(b)前記溶液中においてPVDF膜であるポリマー多孔質膜24を入れそのポリマー多孔質膜の表面に小片状の層状複水酸化物LDHを析出させ、該表面を該層状複水酸化物LDHでコーティングする析出工程SA2と、(c)ポリマー多孔質膜24の細孔内に、アニオン伝導材料を充填する充填工程(SB4−SB6)とを、含む製造方法により製造される。この製造方法によれば、溶液作製工程SA1において複数の金属塩が溶解された溶液が作製され、析出工程SA2において前記溶液中においてポリマー多孔質膜24を入れそのポリマー多孔質膜24の表面に小片状の層状複水酸化物が析出されることで、ポリマー多孔質膜24の表面が層状複水酸化物の粒子でコーティングされたイオン伝導性を有する有機無機ハイブリッド多孔質膜10が得られ、その有機無機ハイブリッド多孔質膜10を電解質膜12の基材として用いることによって、比較的高いイオン伝導性および強度を有する電解質膜12を製造することができる。 In addition, the organic-inorganic hybrid porous membrane 10 that is the base material of the electrolyte membrane 12 of this example includes (a) a solution preparation step SA1 for preparing a solution in which a plurality of types of metal salts such as magnesium nitrate and aluminum nitrate are dissolved; (B) The polymer porous membrane 24, which is a PVDF membrane, is placed in the solution, and a small piece of layered double hydroxide LDH is deposited on the surface of the polymer porous membrane, and the surface of the layered double hydroxide is deposited on the surface. It is manufactured by a manufacturing method including a deposition step SA2 for coating with LDH and (c) a filling step (SB4-SB6) for filling the pores of the polymer porous membrane 24 with an anion conductive material. According to this manufacturing method, a solution in which a plurality of metal salts is dissolved is prepared in the solution preparation step SA1, and the polymer porous membrane 24 is placed in the solution in the precipitation step SA2, and a small amount is formed on the surface of the polymer porous membrane 24. By depositing the lamellar layered double hydroxide, an organic-inorganic hybrid porous membrane 10 having ion conductivity in which the surface of the polymer porous membrane 24 is coated with the layered double hydroxide particles is obtained, By using the organic / inorganic hybrid porous membrane 10 as the base material of the electrolyte membrane 12, the electrolyte membrane 12 having relatively high ion conductivity and strength can be produced.
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。 As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.
たとえば、前述の実施例において、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物LDHの粒子で表面がコーティングされたポリマー多孔質膜24すなわち有機無機ハイブリッド多孔質膜10の細孔内にアニオン伝導材料(VBTAC)が充填された電解質膜12は、燃料電池14に用いられていたが、二次電池にも用いられる。 For example, in the embodiment described above, the polymer porous membrane 24, ie, the organic / inorganic hybrid porous membrane 10 whose surface is coated with particles of inorganic layered double hydroxide LDH composed of two or more kinds of metal ions having different valences. The electrolyte membrane 12 in which the pores are filled with an anion conducting material (VBTAC) has been used in the fuel cell 14, but is also used in the secondary battery.
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.
10:有機無機ハイブリッド多孔質膜
10a:細孔
12:電解質膜
14:燃料電池
24:ポリマー多孔質膜
LDH:層状複水酸化物
SA1:溶液作製工程
SA2:析出工程
SB4:モノマー溶液浸漬工程(充填工程、マイクロフィリング工程)
SB5:溶媒除去工程(充填工程、マイクロフィリング工程)
SB6:重合工程(充填工程、マイクロフィリング工程)
10: organic / inorganic hybrid porous membrane 10a: pore 12: electrolyte membrane 14: fuel cell 24: polymer porous membrane LDH: layered double hydroxide SA1: solution preparation step SA2: precipitation step SB4: monomer solution immersion step (filling Process, microfilling process)
SB5: solvent removal step (filling step, microfilling step)
SB6: Polymerization process (filling process, microfilling process)
Claims (4)
前記アニオン伝導材料は、前記ポリマー多孔質膜に含浸された該アニオン伝導材料のモノマー溶液中の溶媒の蒸発に応じて該モノマー溶液を補充して濃度を高めた後、前記ポリマー多孔質膜中のモノマーを重合させる処理により、前記ポリマー多孔質膜の細孔内に充填されることを特徴とする電池用電解質膜の製造方法。 A method for producing a battery electrolyte membrane for producing the battery electrolyte membrane according to claim 1 or 2, comprising:
The anion conducting material is replenished with the monomer solution in accordance with the evaporation of the solvent in the monomer solution of the anion conducting material impregnated in the polymer porous membrane, and then the concentration is increased. A method for producing an electrolyte membrane for a battery , wherein the pores of the polymer porous membrane are filled by a process of polymerizing a monomer.
複数種類の金属塩が溶解された溶液を作製する溶液作製工程と、
前記溶液中において前記ポリマー多孔質膜を入れそのポリマー多孔質膜の表面に小片状の層状複水酸化物を析出させ、該表面を該層状複水酸化物でコーティングする析出工程と、
前記層状複水酸化物により表面がコーティングされた前記ポリマー多孔質膜の細孔内に、アニオン伝導材料を充填する充填工程とを、
含むことを特徴とする電池用電解質膜の製造方法。 A method for producing a battery electrolyte membrane for producing the battery electrolyte membrane according to claim 1 or 2, or a method for producing a battery electrolyte membrane according to claim 3 ,
A solution preparation step for preparing a solution in which a plurality of types of metal salts are dissolved;
Depositing the polymer porous membrane in the solution, precipitating a small piece of layered double hydroxide on the surface of the polymer porous membrane, and coating the surface with the layered double hydroxide;
Filling the anionic conductive material into the pores of the polymer porous membrane whose surface is coated with the layered double hydroxide,
The manufacturing method of the electrolyte membrane for batteries characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014205227A JP6243312B2 (en) | 2014-10-03 | 2014-10-03 | Battery electrolyte membrane and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014205227A JP6243312B2 (en) | 2014-10-03 | 2014-10-03 | Battery electrolyte membrane and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016076357A JP2016076357A (en) | 2016-05-12 |
JP6243312B2 true JP6243312B2 (en) | 2017-12-06 |
Family
ID=55951648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014205227A Active JP6243312B2 (en) | 2014-10-03 | 2014-10-03 | Battery electrolyte membrane and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6243312B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6469326B2 (en) | 2016-10-25 | 2019-02-13 | 三菱電機株式会社 | MAP DATA GENERATION DEVICE, TERMINAL DEVICE, AND MAP DATA GENERATION METHOD |
KR102036872B1 (en) * | 2017-08-31 | 2019-10-25 | 경상대학교산학협력단 | Composite membrane based on polyether ether ketone, preparation method thereof and anion-exchange membrane for fuel cell comprising the same |
CN111566841A (en) * | 2017-12-18 | 2020-08-21 | 日本碍子株式会社 | LDH separator and zinc secondary battery |
JP7162215B2 (en) * | 2018-11-30 | 2022-10-28 | ダイハツ工業株式会社 | Membrane electrode assembly |
CN115133122B (en) * | 2022-08-29 | 2022-11-04 | 江苏展鸣新能源有限公司 | Preparation method and application of lithium ion battery electrolyte |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1995807A4 (en) * | 2006-03-14 | 2010-07-14 | Tokuyama Corp | Separation membrane for direct liquid fuel cell |
JP2008188791A (en) * | 2007-02-01 | 2008-08-21 | Nisshinbo Ind Inc | Antibacterial and dustproof cloth |
JP5172441B2 (en) * | 2008-04-09 | 2013-03-27 | 日本バイリーン株式会社 | Composite sheet and manufacturing method thereof |
JP5339346B2 (en) * | 2008-11-04 | 2013-11-13 | 国立大学法人神戸大学 | Method for producing aluminum-substituted α-type nickel hydroxide |
JP2014525115A (en) * | 2011-06-17 | 2014-09-25 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Improved composite polymer electrolyte membrane |
EP2843753B1 (en) * | 2012-04-26 | 2017-06-28 | NGK Insulators, Ltd. | Lithium air secondary cell |
JP6353183B2 (en) * | 2012-05-14 | 2018-07-04 | 公立大学法人首都大学東京 | Fuel cell catalyst layer |
JP2014011000A (en) * | 2012-06-29 | 2014-01-20 | Hitachi Ltd | Ion conductor and electrochemical device using the same |
JP6155143B2 (en) * | 2013-08-30 | 2017-06-28 | 株式会社ノリタケカンパニーリミテド | Organic-inorganic hybrid porous membrane and method for producing the same |
-
2014
- 2014-10-03 JP JP2014205227A patent/JP6243312B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016076357A (en) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6243312B2 (en) | Battery electrolyte membrane and method for producing the same | |
Zhang et al. | Anion‐sorbent composite separators for high‐rate lithium‐ion batteries | |
Hwang et al. | Selective ion transporting polymerized ionic liquid membrane separator for enhancing cycle stability and durability in secondary zinc–air battery systems | |
Xing et al. | Side-chain-type anion exchange membranes for vanadium flow battery: properties and degradation mechanism | |
Poynton et al. | Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells | |
Park et al. | A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries | |
Pan et al. | Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries | |
Shin et al. | A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective | |
US10297861B2 (en) | Anion conducting material and cell | |
Chen et al. | Internal cross-linked anion exchange membranes with improved dimensional stability for electrodialysis | |
Zhang et al. | Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures | |
CN108779275B (en) | Bipolar ionomer membranes | |
JP5953576B2 (en) | Air electrode catalyst layer for metal-air secondary battery | |
Lim et al. | Advances in membrane and stack design of redox flow batteries (RFBs) for medium-and large-scale energy storage | |
Kim et al. | 1D Building Blocks-Intermingled Heteronanomats as a Platform Architecture For High-Performance Ultrahigh-Capacity Lithium-Ion Battery Cathodes. | |
JP6993522B2 (en) | Pore-filled amphoteric membrane for the purpose of low permeation of vanadium ions and its manufacturing method | |
TW201030066A (en) | Anion-exchange membrane and method for producing same | |
JPWO2002037506A1 (en) | Solid electrolyte | |
Vijayakumar et al. | A quaternized mesoporous silica/polysulfone composite membrane for an efficient alkaline fuel cell application | |
Dong et al. | Neoteric polyimide nanofiber encapsulated by the TiO2 armor as the tough, highly wettable, and flame-retardant separator for advanced lithium-ion batteries | |
CN107431182A (en) | Porous electrode and the electrochemical cell and liquid accumulator cell being produced from it | |
Ahn et al. | Surface‐modified polyethylene separator with hydrophilic property for enhancing the electrochemical performance of lithium‐ion battery | |
Wan et al. | A Nafion/polybenzimidazole composite membrane with consecutive proton-conducting pathways for aqueous redox flow batteries | |
Kumar et al. | Nanocomposite polymer electrolyte membrane for high performance microbial fuel cell: Synthesis, characterization and application | |
JP6338896B2 (en) | Electrode layer with resin, electrode composite with resin, and redox flow secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160721 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6243312 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |