JP6155143B2 - Organic-inorganic hybrid porous membrane and method for producing the same - Google Patents

Organic-inorganic hybrid porous membrane and method for producing the same Download PDF

Info

Publication number
JP6155143B2
JP6155143B2 JP2013180665A JP2013180665A JP6155143B2 JP 6155143 B2 JP6155143 B2 JP 6155143B2 JP 2013180665 A JP2013180665 A JP 2013180665A JP 2013180665 A JP2013180665 A JP 2013180665A JP 6155143 B2 JP6155143 B2 JP 6155143B2
Authority
JP
Japan
Prior art keywords
porous membrane
organic
inorganic hybrid
hybrid porous
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013180665A
Other languages
Japanese (ja)
Other versions
JP2015050021A (en
Inventor
沛霖 張
沛霖 張
エム アニルクマル ジー
エム アニルクマル ジー
宮嶋 圭太
圭太 宮嶋
猪子 展弘
展弘 猪子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2013180665A priority Critical patent/JP6155143B2/en
Publication of JP2015050021A publication Critical patent/JP2015050021A/en
Application granted granted Critical
Publication of JP6155143B2 publication Critical patent/JP6155143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、有機質のポリマー多孔質膜の表面が、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子でコーティングされたイオン伝導性を有する有機無機ハイブリッド多孔質膜およびその製造方法に関する。   The present invention relates to an organic / inorganic hybrid porous membrane having ion conductivity, wherein the surface of an organic polymer porous membrane is coated with inorganic layered double hydroxide particles composed of two or more kinds of metal ions having different valences. And a manufacturing method thereof.

例えば特許文献1および特許文献2に示すように、燃料電池用の電解質膜では、たとえばその電解質膜を取り扱う際に必要な強度を持たせるために、有機質のポリマー多孔質膜を基材(フレーム)として使用し、プロトンのイオン伝導性高分子であるイオン交換ポリマーがそのポリマー多孔質膜の細孔の中に充填されることによって燃料電池用の電解質膜が作製される。   For example, as shown in Patent Document 1 and Patent Document 2, in an electrolyte membrane for a fuel cell, for example, an organic polymer porous membrane is used as a base material (frame) in order to give strength necessary for handling the electrolyte membrane. The electrolyte membrane for a fuel cell is produced by filling the pores of the polymer porous membrane with an ion exchange polymer that is an ion conductive polymer of proton.

特開2007−165204号公報JP 2007-165204 A 特開2006−63095号公報JP 2006-63095 A 国際公開第2010/109670号International Publication No. 2010/109670

ところで、上記のようなポリマー多孔質膜を基材として用いる電解質膜では、ポリマー多孔質膜自体にはイオン伝導性がないため、それを用いて作製した電解質膜のイオン伝導性が比較的低くなるという問題があった。   By the way, in the electrolyte membrane using the polymer porous membrane as described above as the base material, the polymer porous membrane itself has no ionic conductivity, so that the ionic conductivity of the electrolyte membrane produced using the polymer membrane is relatively low. There was a problem.

これに対して、例えば特許文献3では、上記ポリマー多孔質膜を使用せずに無機質の層状複水酸化物(Layered Double Hydroxide)を用いて燃料電池の電解質膜を作製することが提案されている。このような電解質膜は、電解質膜がイオン伝導材料である層状複水酸化物から構成されているので、その電解質膜のイオン伝導性が、ポリマー多孔質膜を電解質膜の基材として用いるものに比べて高くなる。しかしながら、上記のような層状複水酸化物から構成される電解質膜は、柔軟性がないため、たとえば電解質膜を製造する際などにおいて機械的強度が不足するという問題があった。なお、上記層状複水酸化物は、例えば、基本層[M2+ 1−x3+ (OH)]x+と中間層[An− x/n・yHO]x−とが層状に積み重ねられたものであり、共通化学式[M2+ 1−x3+ (OH)]x+[An− x/n・yHO]x−にて表される。ここで、M2+は2価の金属イオンを示し、M3+は3価の金属イオンを示し、An−は1価又は2価の陰イオンを示し、xは0.1〜0.8の範囲内にある数を示し、yは実数である。 On the other hand, for example, Patent Document 3 proposes that an electrolyte membrane of a fuel cell is produced using an inorganic layered double hydroxide without using the above-described polymer porous membrane. . Since such an electrolyte membrane is composed of a layered double hydroxide, which is an ion conductive material, the ionic conductivity of the electrolyte membrane is such that the polymer porous membrane is used as a base material for the electrolyte membrane. Compared to higher. However, since the electrolyte membrane composed of the layered double hydroxide as described above is not flexible, there is a problem that the mechanical strength is insufficient, for example, when the electrolyte membrane is manufactured. In addition, the layered double hydroxide includes, for example, a basic layer [M 2 + 1−x M 3+ x (OH) 2 ] x + and an intermediate layer [A n− x / n · yH 2 O] x− in a layered form. It is those that are stacked, represented by a common formula [M 2+ 1-x M 3+ x (OH) 2] x + [A n- x / n · yH 2 O] x-. Here, M 2+ is a divalent metal ion, M 3+ is a trivalent metal ion, A n-represents a monovalent or divalent anion, x is 0.1 to 0.8 Indicates a number within range, y is a real number.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、比較的高いイオン伝導性および機械的強度を有する電解質膜を製造するために用いられる有機無機ハイブリッド多孔質膜およびその製造方法を提供することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is an organic-inorganic hybrid porous material used for producing an electrolyte membrane having relatively high ion conductivity and mechanical strength. It is to provide a film and a method for manufacturing the same.

本発明者は種々の解析や検討を重ねた結果、以下に示す事実に到達した。すなわち、有機質のポリマー多孔質膜の表面にアニオン伝導性がある層状複水酸化物をコーティングすると、その層状複水酸化物が表面にコーティングされたポリマー多孔質膜すなわち有機無機ハイブリッド多孔質膜自体に陰イオン伝導性が実質的に生じるという意外な事実を見いだした。本発明はこのような知見に基づいて為されたものである。   As a result of various analyzes and examinations, the present inventor has reached the facts shown below. That is, when the surface of the organic polymer porous membrane is coated with a layered double hydroxide having anion conductivity, the layered double hydroxide is coated on the surface of the polymer porous membrane, ie, the organic / inorganic hybrid porous membrane itself. We have found the surprising fact that anion conductivity occurs substantially. The present invention has been made based on such findings.

前記目的を達成するための本発明の有機無機ハイブリッド多孔質膜の要旨とするところは、燃料電池の電解質膜の基材として用いられる有機無機ハイブリッド多孔質膜であって、有機質のポリマー多孔質膜の表面が、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子でコーティングされ、前記層状複水酸化物の粒子は、鱗片状の粒子であって、前記金属イオンに囲まれた複数層の基本層と、前記複数層の基本層の間に層間に存在する陰イオンおよび水分子から成る中間層との層状構造が規則的に積み重ねられたものであることを特徴とするイオン伝導性を有する有機無機ハイブリッド多孔質膜であることにある。 The gist of the organic-inorganic hybrid porous membrane of the present invention for achieving the above object is an organic-inorganic hybrid porous membrane used as a base material for an electrolyte membrane of a fuel cell, which is an organic polymer porous membrane Is coated with inorganic layered double hydroxide particles composed of two or more kinds of metal ions having different valences , and the layered double hydroxide particles are scaly particles, and the metal ions A layered structure of a plurality of basic layers surrounded by and an intermediate layer composed of anions and water molecules existing between the layers is regularly stacked between the plurality of basic layers. The organic-inorganic hybrid porous membrane having ion conductivity.

本発明の有機無機ハイブリッド多孔質膜によれば、有機質のポリマー多孔質膜の表面が、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子でコーティングされ、前記層状複水酸化物の粒子は、鱗片状の粒子であって、前記金属イオンに囲まれた複数層の基本層と、前記複数層の基本層の間に層間に存在する陰イオンおよび水分子から成る中間層との層状構造が規則的に積み重ねられたものであることにより、前記有機無機ハイブリッド多孔質膜自体にイオン伝導性があることから、例えばその有機無機ハイブリッド多孔質膜を電解質膜の基材として用いた場合には、イオン伝導性のないポリマー多孔質膜を用いた場合に比べて、電解質膜のイオン伝導性が高くなる。また、前記有機無機ハイブリッド多孔質膜を電解質膜の基材として用いることによって、電解質膜の強度を向上させることができる。すなわち、前記有機無機ハイブリッド多孔質膜を用いることにより比較的高いイオン伝導性および機械的強度を有する電解質膜を製造することができる。 According to the organic-inorganic hybrid porous membrane of the present invention, the surface of the organic polymer porous membrane is coated with inorganic layered double hydroxide particles composed of two or more kinds of metal ions having different valences, The double hydroxide particles are scaly particles, and are composed of a plurality of basic layers surrounded by the metal ions and anions and water molecules present between the plurality of basic layers. Since the organic-inorganic hybrid porous membrane itself has ionic conductivity due to the layered structure with the intermediate layer being regularly stacked , for example, the organic-inorganic hybrid porous membrane is used as the base material of the electrolyte membrane. When used as an electrolyte membrane, the ionic conductivity of the electrolyte membrane is higher than when a porous polymer membrane without ionic conductivity is used. Moreover, the strength of the electrolyte membrane can be improved by using the organic-inorganic hybrid porous membrane as a base material for the electrolyte membrane. That is, an electrolyte membrane having relatively high ionic conductivity and mechanical strength can be produced by using the organic-inorganic hybrid porous membrane.

ここで、好適には、前記有機無機ハイブリッド多孔質膜を用いて、イオン伝導ポリマーをその有機無機ハイブリッド多孔質膜の細孔に充填することによってアニオン交換膜型燃料電池用の電解質膜が作製される。このため、前記アニオン交換膜型燃料電池用の電解質膜のイオン伝導性および機械的強度が好適に向上する。   Here, preferably, an electrolyte membrane for an anion exchange membrane fuel cell is produced by filling the pores of the organic-inorganic hybrid porous membrane with an ion conductive polymer using the organic-inorganic hybrid porous membrane. The For this reason, the ion conductivity and mechanical strength of the electrolyte membrane for the anion exchange membrane fuel cell are preferably improved.

また、前記有機無機ハイブリッド多孔質膜の製造方法に係る発明の要旨とするところは、(a)有機質のポリマー多孔質膜の表面が、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子でコーティングされたイオン電導性を有する有機無機ハイブリッド多孔質膜の製造方法であって、(b)複数の金属塩が溶解された溶液を作製する溶液作製工程と、(c)前記溶液中において前記ポリマー多孔質膜を入れそのポリマー多孔質膜の表面に小片状の層状複水酸化物を析出させる析出工程とを、含むことにある。 Further, the gist of the invention relating to the method for producing the organic-inorganic hybrid porous membrane is as follows: (a) The surface of the organic polymer porous membrane is an inorganic layered layer composed of two or more kinds of metal ions having different valences. a manufacturing method of an organic-inorganic hybrid porous membrane having ion conductivity coated with particles of double hydroxides, and the solution preparation step of preparing a solution which is dissolved (b) a plurality of metal salts, (c ) and precipitation step of precipitating the small pieces of the layered double hydroxide in the polymeric porous membrane was placed surface of the polymeric porous membrane in the solution, Ru Kotonia containing.

上記有機無機ハイブリッド多孔質膜の製造方法によれば、前記溶液作製工程において複数の金属塩が溶解された溶液が作製され、前記析出工程において前記溶液中において前記ポリマー多孔質膜を入れそのポリマー多孔質膜の表面に小片状の層状複水酸化物が析出されることで、ポリマー多孔質膜の表面が層状複水酸化物の粒子でコーティングされたイオン伝導性を有する有機無機ハイブリッド多孔質膜が得られ、その有機無機ハイブリッド多孔質膜を例えば電解質膜の基材として用いることによって、比較的高いイオン伝導性および強度を有する電解質膜を製造することができる。   According to the method for producing an organic-inorganic hybrid porous membrane, a solution in which a plurality of metal salts are dissolved is prepared in the solution preparation step, and the polymer porous membrane is placed in the solution in the precipitation step. An organic / inorganic hybrid porous membrane having ion conductivity in which the surface of the polymer porous membrane is coated with particles of the layered double hydroxide by depositing small pieces of the layered double hydroxide on the surface of the porous membrane By using the organic-inorganic hybrid porous membrane as a base material for an electrolyte membrane, for example, an electrolyte membrane having relatively high ionic conductivity and strength can be produced.

また、好適には、前記ポリマー多孔質膜は、平均細孔径が2μm、気孔率が86%程度のポリフッ化ビニリデン膜である。   Preferably, the polymer porous membrane is a polyvinylidene fluoride membrane having an average pore diameter of 2 μm and a porosity of about 86%.

本発明の一実施例の有機無機ハイブリッド多孔質膜が基材として用いられた電解質膜を備える燃料電池の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of a fuel cell provided with the electrolyte membrane in which the organic-inorganic hybrid porous membrane of one Example of this invention was used as a base material. 図1の電解質膜に使用された有機無機ハイブリッド多孔質膜の表面を示す図である。It is a figure which shows the surface of the organic inorganic hybrid porous membrane used for the electrolyte membrane of FIG. 図2の有機無機ハイブリッド多孔質膜においてポリマー多孔質膜の表面にコーティングされた層状複水酸化物の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the layered double hydroxide coated on the surface of the polymer porous membrane in the organic-inorganic hybrid porous membrane of FIG. 図2の有機無機ハイブリッド多孔質膜の製造工程を説明する工程図である。It is process drawing explaining the manufacturing process of the organic inorganic hybrid porous membrane of FIG. 図4に示す製造工程によって製造された実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜等の製造条件を示す図である。It is a figure which shows manufacturing conditions, such as an organic inorganic hybrid porous membrane of the Example goods 1 thru | or Example goods 4 manufactured by the manufacturing process shown in FIG. 図5に示す比較例品1の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic-inorganic hybrid porous membrane of the comparative example product 1 shown in FIG. 図6のFESEM写真を拡大したFESEM写真を示す図である。It is a figure which shows the FESEM photograph which expanded the FESEM photograph of FIG. 図5に示す比較例品2の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic-inorganic hybrid porous membrane of the comparative example product 2 shown in FIG. 図8のFESEM写真を拡大したFESEM写真を示す図である。It is a figure which shows the FESEM photograph which expanded the FESEM photograph of FIG. 図5に示す比較例品3の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic-inorganic hybrid porous membrane of the comparative example goods 3 shown in FIG. 図10のFESEM写真を拡大したFESEM写真を示す図である。It is a figure which shows the FESEM photograph which expanded the FESEM photograph of FIG. 図5に示す比較例品4の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic inorganic hybrid porous membrane of the comparative example goods 4 shown in FIG. 図12のFESEM写真を拡大したFESEM写真を示す図である。It is a figure which shows the FESEM photograph which expanded the FESEM photograph of FIG. 図5に示す実施例品1の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic-inorganic hybrid porous membrane of Example goods 1 shown in FIG. 図14のFESEM写真を拡大したFESEM写真を示す図である。It is a figure which shows the FESEM photograph which expanded the FESEM photograph of FIG. 図5に示す実施例品2の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic-inorganic hybrid porous membrane of Example goods 2 shown in FIG. 図16のFESEM写真を拡大したFESEM写真を示す図である。It is a figure which shows the FESEM photograph which expanded the FESEM photograph of FIG. 図5に示す実施例品3の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic-inorganic hybrid porous membrane of Example goods 3 shown in FIG. 図18のFESEM写真を拡大したFESEM写真を示す図である。It is a figure which shows the FESEM photograph which expanded the FESEM photograph of FIG. 図5に示す実施例品4の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic-inorganic hybrid porous membrane of Example goods 4 shown in FIG. 図20のFESEM写真を拡大したFESEM写真を示す図である。It is a figure which shows the FESEM photograph which expanded the FESEM photograph of FIG. 図5に示す実施例品1の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic-inorganic hybrid porous membrane of Example goods 1 shown in FIG. 図22に示す実施例品1の有機無機ハイブリッド多孔質膜に含まれる元素Mg、Alの原子比(At.%)を示す図である。It is a figure which shows atomic ratio (At.%) Of element Mg and Al contained in the organic-inorganic hybrid porous membrane of Example goods 1 shown in FIG. 図22に示す実施例品1の有機無機ハイブリッド多孔質膜に存在するMg元素の分布を示す図である。It is a figure which shows distribution of Mg element which exists in the organic-inorganic hybrid porous membrane of Example goods 1 shown in FIG. 図22に示す実施例品1の有機無機ハイブリッド多孔質膜に存在するAl元素の分布を示す図である。It is a figure which shows distribution of Al element which exists in the organic-inorganic hybrid porous membrane of Example goods 1 shown in FIG. 図22に示す実施例品1の有機無機ハイブリッド多孔質膜に存在する複数の元素の強度(カウント数)を示す図である。It is a figure which shows the intensity | strength (count number) of the some element which exists in the organic-inorganic hybrid porous membrane of Example goods 1 shown in FIG. 図5に示す実施例品2の有機無機ハイブリッド多孔質膜においてその表面のFESEM写真を示す図である。It is a figure which shows the FESEM photograph of the surface in the organic-inorganic hybrid porous membrane of Example goods 2 shown in FIG. 図27に示す実施例品2の有機無機ハイブリッド多孔質膜に含まれる元素Mg、Alの原子比(At.%)を示す図である。It is a figure which shows atomic ratio (At.%) Of element Mg and Al contained in the organic-inorganic hybrid porous membrane of Example goods 2 shown in FIG. 図27に示す実施例品2の有機無機ハイブリッド多孔質膜に存在するMg元素の分布を示す図である。It is a figure which shows distribution of Mg element which exists in the organic-inorganic hybrid porous membrane of Example goods 2 shown in FIG. 図27に示す実施例品2の有機無機ハイブリッド多孔質膜に存在するAl元素の分布を示す図である。It is a figure which shows distribution of Al element which exists in the organic-inorganic hybrid porous membrane of Example goods 2 shown in FIG. 図27に示す実施例品2の有機無機ハイブリッド多孔質膜に存在する複数の元素の強度(カウント数)を示す図である。It is a figure which shows the intensity | strength (count number) of the some element which exists in the organic-inorganic hybrid porous membrane of Example goods 2 shown in FIG. 図5に示す実施例品1の有機無機ハイブリッド多孔質膜、実施例品2の有機無機ハイブリッド多孔質膜、比較例品1の有機無機ハイブリッド多孔質膜、層状複水酸化物において、それらのX線回折パターンを示す図である。In the organic-inorganic hybrid porous membrane of Example Product 1, the organic-inorganic hybrid porous membrane of Example Product 2, the organic-inorganic hybrid porous membrane of Comparative Product 1, and the layered double hydroxide shown in FIG. It is a figure which shows a line diffraction pattern. 図5に示す実施例品1の有機無機ハイブリッド多孔質膜および実施例品2の有機無機ハイブリッド多孔質膜において、それら有機無機ハイブリッド多孔質膜のイオン伝導率を測定する測定方法を概略的に示す図である。In the organic-inorganic hybrid porous membrane of Example product 1 and the organic-inorganic hybrid porous membrane of Example product 2 shown in FIG. 5, a measurement method for measuring the ionic conductivity of these organic-inorganic hybrid porous membranes is schematically shown. FIG. 図5に示す実施例品1の有機無機ハイブリッド多孔質膜および実施例品2の有機無機ハイブリッド多孔質膜において、それら有機無機ハイブリッド多孔質膜のイオン伝導率を示す図である。FIG. 6 is a diagram showing the ionic conductivity of the organic-inorganic hybrid porous membrane in the organic-inorganic hybrid porous membrane of Example Product 1 and the organic-inorganic hybrid porous membrane of Example Product 2 shown in FIG. 5.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確には描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例の有機無機ハイブリッド多孔質膜10(図2参照)が基材として用いられた電解質膜12を備える燃料電池14の構成を模式的に示す断面図である。図1に示すように、燃料電池14は、例えば白金や遷移金属等を担持する触媒担持カーボンを電解質膜12側の一面全体に支持したカーボンクロスから成り、導電性およびガス透過性を有するアノード(燃料極)16およびカソード(空気極)18が、電解質膜12を介して対向した構造を有している。また、燃料電池14には、アノード16の電解質膜12と接していない側に燃料室20と、カソード18の電解質膜12と接していない側に酸化剤ガス室22とが配置させられており、燃料室20には例えば水素ガス(H)等が供給され、酸化剤ガス室22には例えば酸素(O)を含む気体(空気)等が供給されている。 FIG. 1 is a cross-sectional view schematically showing a configuration of a fuel cell 14 including an electrolyte membrane 12 in which an organic-inorganic hybrid porous membrane 10 (see FIG. 2) according to an embodiment of the present invention is used as a base material. As shown in FIG. 1, the fuel cell 14 is composed of a carbon cloth in which, for example, a catalyst-carrying carbon carrying platinum, a transition metal, or the like is supported on the entire surface of the electrolyte membrane 12, and is an anode having conductivity and gas permeability ( The fuel electrode 16 and the cathode 18 are opposed to each other with the electrolyte membrane 12 interposed therebetween. The fuel cell 14 includes a fuel chamber 20 on the side of the anode 16 not in contact with the electrolyte membrane 12 and an oxidant gas chamber 22 on the side of the cathode 18 not in contact with the electrolyte membrane 12. For example, hydrogen gas (H 2 ) or the like is supplied to the fuel chamber 20, and gas (air) containing oxygen (O 2 ) or the like is supplied to the oxidant gas chamber 22, for example.

以上のように構成された燃料電池14では、燃料電池14に電流を印加すると、カソード18において酸素含有ガス中の酸素と水(HO)とが還元反応して水酸化物イオン(OH)が生成され、その生成された水酸化物イオンがカソード18から電解質膜12を介してアノード16に供給される。そして、アノード14において、水酸化物イオン(OH)が燃料と反応して水を生成し電子(e)を放出することにより発電が行われる。なお、燃料電池14は、カソード18での還元反応により生成された水酸化物イオン(OH)が電解質膜12であるアニオン交換膜(アルカリ電解質膜)を介してアノード16へ移動し、燃料との酸化還元反応により発電するアニオン交換膜型燃料電池である。 In the fuel cell 14 configured as described above, when a current is applied to the fuel cell 14, oxygen in the oxygen-containing gas and water (H 2 O) undergo a reduction reaction at the cathode 18 to generate hydroxide ions (OH ) Is generated, and the generated hydroxide ions are supplied from the cathode 18 to the anode 16 through the electrolyte membrane 12. Then, at the anode 14, hydroxide ions (OH ) react with the fuel to generate water and release electrons (e ) to generate power. In the fuel cell 14, hydroxide ions (OH ) generated by the reduction reaction at the cathode 18 move to the anode 16 through the anion exchange membrane (alkaline electrolyte membrane) that is the electrolyte membrane 12, and It is an anion exchange membrane type fuel cell which generates electric power by oxidation-reduction reaction.

図2は、電解質膜12にその基材(骨材)として含まれる有機無機ハイブリッド多孔質膜10の表面を示す概念図である。図2に示すように、有機無機ハイブリッド多孔質膜10は、繊維状のポリマーが絡み合うことで連通細気孔が形成されることにより例えばPVDF(ポリフッ化ビニリデン、Poly Vinylidene DiFluoride)膜等の比較的高いガス透過性を有する有機質のポリマー多孔質膜24の表面に、例えばマグネシウムイオン(Mg2+)等の2価の金属イオンと例えばアルミニウムイオン(Al3+)等の3価の金属イオンとから成る無機質の層状複水酸化物LDHの粒子がコーティングされている。なお、PVDF膜は、50nm〜5μm程度の平均細孔径と、30〜90%程度の気孔率とを有する。また、燃料電池14の電解質膜12は、有機無機ハイブリッド多孔質膜10の細孔10a内に陰イオン伝導ポリマー例えばクロロメチル(CM)基と4級アンモニウム基(QA)とを連鎖上に有する芳香族系アニオン交換ポリマーや、芳香族環を持つ非架橋のブロック共重合体等が充填されることにより作製されたものである。また、有機無機ハイブリッド多孔質膜10の細孔10aに上記陰イオン伝導ポリマーを充填させる方法としては、例えば、有機無機ハイブリッド多孔質膜10を電解質モノマー溶液に浸漬し真空引きをして細孔10a内にその電解質モノマー溶液を含浸させ、その後、その電解質モノマー溶液のモノマーを重合させる等の方法がある。 FIG. 2 is a conceptual diagram showing the surface of the organic-inorganic hybrid porous membrane 10 included in the electrolyte membrane 12 as its base material (aggregate). As shown in FIG. 2, the organic-inorganic hybrid porous membrane 10 is relatively high in, for example, a PVDF (Poly Vinylidene DiFluoride) membrane by forming continuous pores by entanglement of fibrous polymers. On the surface of the porous organic polymer membrane 24 having gas permeability, an inorganic substance composed of a divalent metal ion such as magnesium ion (Mg 2+ ) and a trivalent metal ion such as aluminum ion (Al 3+ ) is used. Layered double hydroxide LDH particles are coated. The PVDF membrane has an average pore diameter of about 50 nm to 5 μm and a porosity of about 30 to 90%. Further, the electrolyte membrane 12 of the fuel cell 14 is an aroma having an anion conducting polymer such as a chloromethyl (CM) group and a quaternary ammonium group (QA) on the chain in the pores 10a of the organic-inorganic hybrid porous membrane 10. It is produced by filling a group anion exchange polymer, a non-crosslinked block copolymer having an aromatic ring, or the like. Further, as a method for filling the pores 10a of the organic / inorganic hybrid porous membrane 10 with the anion conducting polymer, for example, the organic / inorganic hybrid porous membrane 10 is immersed in an electrolyte monomer solution and evacuated to obtain pores 10a. There is a method in which the electrolyte monomer solution is impregnated inside, and then the monomer of the electrolyte monomer solution is polymerized.

図3は、有機無機ハイブリッド多孔質膜10においてポリマー多孔質膜24の表面にコーティングされた層状複水酸化物LDHの構造を模式的に示す図である。その図3に示すように、層状複水酸化物LDHは、ランダムに存在する二価または三価の金属イオン例えばマグネシウムイオン(Mg2+)、アルミニウムイオン(Al3+)等が水酸化物イオン(OH)に囲まれた複数層の基本層26と、それら複数層の基本層26との間の層間に存在する例えば炭酸イオン(CO 2−)等の陰イオン28および図示しない水分子から成る中間層30とから構成されている。なお、本実施例の無機質の層状複水酸化物LDHは、上記基本層26と中間層30との層状構造が規則的に積み重ねられており、例えば、基本層26が[Mg2+ 1−xAl3+ (OH)]x+で表され、中間層30が[CO 2− ・yHO]x−で表される。 FIG. 3 is a diagram schematically showing the structure of the layered double hydroxide LDH coated on the surface of the polymer porous membrane 24 in the organic-inorganic hybrid porous membrane 10. As shown in FIG. 3, the layered double hydroxide LDH is composed of randomly present divalent or trivalent metal ions such as magnesium ions (Mg 2+ ), aluminum ions (Al 3+ ) and the like. -) and the base layer 26 of a plurality of layers surrounded by consist water molecules present example the carbonate ion (CO 3 2-) not anionic 28 and shown such interlayer between the base layer 26 of the plurality layers The intermediate layer 30 is configured. In the inorganic layered double hydroxide LDH of this example, the layered structure of the basic layer 26 and the intermediate layer 30 is regularly stacked. For example, the basic layer 26 is [Mg 2+ 1-x Al 3+ x (OH) 2 ] x + , and the intermediate layer 30 is represented by [CO 3 2− x · yH 2 O] x− .

図4は、前述した有機無機ハイブリッド多孔質膜10の製造工程SA1乃至SA4を説明する工程図である。図4に示すように、先ず、溶液作製工程SA1において、硝酸マグネシウム6水和物(Mg(NO)・6HO)を例えば0.030molと、硝酸アルミニウム9水和物(Al(NO)・9HO)を例えば0.015molと、尿素(Urea、CO(NH))を例えば0.420molとを精製水に溶かして、複数の金属塩例えば硝酸マグネシウムおよび硝酸アルミニウムが溶解された溶液が作製される。なお、上記溶液において、尿素と硝酸とのモル比すなわちUrea/[NO]は、4.0である。 FIG. 4 is a process diagram for explaining the manufacturing processes SA1 to SA4 of the organic-inorganic hybrid porous membrane 10 described above. As shown in FIG. 4, first, in the solution preparation step SA1, for example, 0.030 mol of magnesium nitrate hexahydrate (Mg (NO 3 ) 2 .6H 2 O) and aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O), for example, 0.015 mol, urea (urea, CO (NH 2) 2) , for example, by dissolving and 0.420mol in purified water, a plurality of metal salts such as magnesium nitrate and aluminum nitrate A dissolved solution is made. In the above solution, the molar ratio of urea and nitric acid, that is, Urea / [NO 3 ] is 4.0.

次に、析出工程SA2において、溶液作製工程SA1で得られた溶液をポリ−テトラ−フルオロ−エチレンの容器に移し、その容器内の溶液中において比較的高い疎水性があるポリマー多孔質膜24例えばPVDF膜等を入れて、上記容器を密封してオーブンに入れて例えば95℃で12時間保持させる。これにより、上記溶液中のポリマー多孔質膜24の表面に小片状の層状複水酸化物LDHが析出させられる。なお、析出工程SA2で使用されるポリマー多孔質膜24であるPVDF膜は比較的高い疎水性があるため、例えば上記溶液がPVDF膜に浸透しない場合には、そのPVDF膜を例えばエタノールで濡らしてから上記溶液に入れる。なお、上記PVDF膜は、例えば以下の表1に示す条件で作製されたものであり、高分子(PVDF)が溶媒に溶解された高分子溶液に高電圧を印加することで紡糸するエレクトロスピニング法により得られた繊維を例えば図2に示すように膜状に積層したものである。   Next, in the precipitation step SA2, the solution obtained in the solution preparation step SA1 is transferred to a poly-tetra-fluoro-ethylene container, and the polymer porous membrane 24 having a relatively high hydrophobicity in the solution in the container, for example, A PVDF membrane or the like is placed, the container is sealed, placed in an oven, and held at, for example, 95 ° C. for 12 hours. As a result, a small piece of layered double hydroxide LDH is deposited on the surface of the polymer porous membrane 24 in the solution. Since the PVDF membrane, which is the polymer porous membrane 24 used in the deposition step SA2, has a relatively high hydrophobicity, for example, when the above solution does not penetrate the PVDF membrane, the PVDF membrane is wetted with, for example, ethanol. Into the above solution. In addition, the said PVDF membrane is produced on the conditions shown in the following Table 1, for example, The electrospinning method which spins by applying a high voltage to the polymer solution in which the polymer (PVDF) was melt | dissolved in the solvent The fibers obtained by the above are laminated in a film shape as shown in FIG. 2, for example.

[表1]
・高分子溶液
ポリマー: PVDF(株式会社クレハ、KFポリマー W♯1100)
溶媒: Acetone(アセトン)/DMF(N,N−ジメチルホルムアミド) 重量比3:7
濃度: 20wt.%

・エレクトロスピニング条件
装置: NANON(株式会社メック)
電圧: 20kV
流量: 1ml/hr
ノズル: 27G(テルモ注射針)
距離(ノズルからコレクター):15cm
膜厚み: 5〜20μm
[Table 1]
・ Polymer solution polymer: PVDF (Kureha Corporation, KF Polymer W # 1100)
Solvent: Acetone (acetone) / DMF (N, N-dimethylformamide) Weight ratio 3: 7
Concentration: 20 wt. %

・ Electrospinning condition equipment: NANON (MEC Co., Ltd.)
Voltage: 20kV
Flow rate: 1ml / hr
Nozzle: 27G (Terumo needle)
Distance (nozzle to collector): 15cm
Film thickness: 5-20 μm

次に、洗浄工程SA3において、析出工程SA2によって表面に層状複水酸化物LDHの粒子がコーティングされたポリマー多孔質膜24すなわち有機無機ハイブリッド多孔質膜10が精製水で洗浄される。次に、乾燥工程SA4において、洗浄工程SA3で洗浄された有機無機ハイブリッド多孔質膜10が例えば80度で乾燥される。これにより、有機無機ハイブリッド多孔質膜10が得られる。   Next, in the cleaning step SA3, the polymer porous membrane 24, that is, the organic / inorganic hybrid porous membrane 10 whose surface is coated with the particles of the layered double hydroxide LDH in the precipitation step SA2, is washed with purified water. Next, in the drying step SA4, the organic-inorganic hybrid porous membrane 10 washed in the washing step SA3 is dried at, for example, 80 degrees. Thereby, the organic-inorganic hybrid porous membrane 10 is obtained.

[実験I]
ここで、本発明者等が行った実験Iを説明する。なお、この実験Iは、前述した析出工程SA2によって、ポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子がコーティングされることを検証するための実験である。
[Experiment I]
Here, Experiment I conducted by the present inventors will be described. The experiment I is an experiment for verifying that the surface of the polymer porous film 24 is coated with the layered double hydroxide LDH particles by the above-described precipitation step SA2.

この実験Iでは、先ず、溶液作製工程SA1乃至乾燥工程SA4を経て図5に示す実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10を製造した。そして、製造された実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜の表面に粒子が析出されたかを、FE−SEM(電界放射型走査型電子顕微鏡、Field Emission Scanning Electron Microscope)によるFESEM写真を用いて判定した。更に、PVDF膜の表面に析出された粒子が、層状複水酸化物LDHであるか否かをEDX(エネルギー分散型X線分光法)およびX線回折(X-ray diffraction)により判定した。なお、図5に示すように、実施例品1の有機無機ハイブリッド多孔質膜10は、前述した溶液作製工程SA1乃至乾燥工程SA4を経て製造されたものである。また、実施例品2の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して析出工程SA2で保温時間が12時間から24時間に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。また、実施例品3の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して析出工程SA2で保温時間が12時間から48時間に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。また、実施例品4の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して析出工程SA2で保温温度が95℃から120℃に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。   In this experiment I, first, the organic-inorganic hybrid porous membrane 10 of Examples 1 to 4 shown in FIG. 5 was manufactured through the solution preparation process SA1 to the drying process SA4. Then, in the manufactured organic-inorganic hybrid porous membrane 10 of Examples 1 to 4, whether or not particles were deposited on the surface of the PVDF membrane as the polymer porous membrane 24 was determined by FE-SEM (field emission type). The determination was made using a FESEM photograph obtained by a scanning electron microscope (Field Emission Scanning Electron Microscope). Further, it was determined by EDX (energy dispersive X-ray spectroscopy) and X-ray diffraction whether the particles deposited on the surface of the PVDF film were layered double hydroxide LDH. As shown in FIG. 5, the organic-inorganic hybrid porous membrane 10 of Example Product 1 is manufactured through the above-described solution preparation process SA1 to drying process SA4. Moreover, the organic-inorganic hybrid porous membrane 10 of Example Product 2 is different from the organic-inorganic hybrid porous membrane 10 of Example Product 1 in that the heat retention time was changed from 12 hours to 24 hours in the deposition step SA2. Otherwise, it was manufactured in the same manner as the organic-inorganic hybrid porous membrane 10 of Example Product 1. Further, the organic-inorganic hybrid porous membrane 10 of Example Product 3 is different from the organic-inorganic hybrid porous membrane 10 of Example Product 1 in that the heat retention time was changed from 12 hours to 48 hours in the deposition step SA2. Otherwise, it was manufactured in the same manner as the organic-inorganic hybrid porous membrane 10 of Example Product 1. In addition, the organic-inorganic hybrid porous membrane 10 of Example Product 4 is different from the organic-inorganic hybrid porous membrane 10 of Example Product 1 in that the heat retention temperature was changed from 95 ° C. to 120 ° C. in the precipitation step SA2. Otherwise, it was manufactured in the same manner as the organic-inorganic hybrid porous membrane 10 of Example Product 1.

更に、上記実験Iでは、図5に示す比較例品1乃至比較例品4の有機無機ハイブリッド多孔質膜10を製造し、上記と同様に、製造された比較例品1乃至比較例品4の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜の表面に粒子が析出されたかを、FE−SEMによるFESEM写真を用いて判定した。なお、図5に示すように、比較例品1の有機無機ハイブリッド多孔質膜10は、前述した析出工程SA2で処理される前のポリマー多孔質膜24すなわちPVDF膜である。また、比較例品2の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して溶液作製工程SA1で作製された溶液において溶かされた尿素(Urea)が0.420molから0.210molに変更すなわち上記溶液中のUrea/[NO]のモル比が4.0から2.0に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。また、比較例品3の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して溶液作製工程SA1で作製された溶液において溶かされた尿素(Urea)が0.420molから0.315molに変更すなわち上記溶液中のUrea/[NO]のモル比が4.0から3.0に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。また、比較例品4の有機無機ハイブリッド多孔質膜10は、上記実施例品1の有機無機ハイブリッド多孔質膜10に対して析出工程SA2で保温時間が12時間から6時間に変更された点で異なりそれ以外は実施例品1の有機無機ハイブリッド多孔質膜10と同様に製造されたものである。 Furthermore, in Experiment I, the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 1 to Comparative Example Product 4 shown in FIG. 5 was manufactured, and the manufactured Comparative Example Product 1 to Comparative Example Product 4 were similar to the above. In the organic-inorganic hybrid porous membrane 10, whether or not particles were deposited on the surface of the PVDF membrane, which is the polymer porous membrane 24, was determined using a FESEM photograph by FE-SEM. As shown in FIG. 5, the organic-inorganic hybrid porous membrane 10 of the comparative product 1 is the polymer porous membrane 24, that is, the PVDF membrane before being processed in the above-described deposition step SA2. Further, the organic-inorganic hybrid porous membrane 10 of the comparative example product 2 has urea (Urea) dissolved in the solution prepared in the solution preparation step SA1 with respect to the organic-inorganic hybrid porous membrane 10 of the example product 1 described above. It differs from 0.420 mol to 0.210 mol, that is, the molar ratio of Urea / [NO 3 ] in the above solution is changed from 4.0 to 2.0. It is manufactured in the same manner as the membrane 10. Further, the organic-inorganic hybrid porous membrane 10 of the comparative example product 3 has urea (Urea) dissolved in the solution prepared in the solution preparation step SA1 with respect to the organic-inorganic hybrid porous membrane 10 of the example product 1 described above. It differs from 0.420 mol to 0.315 mol, that is, the mole ratio of Urea / [NO 3 ] in the above solution is changed from 4.0 to 3.0. It is manufactured in the same manner as the membrane 10. Moreover, the organic-inorganic hybrid porous membrane 10 of the comparative example product 4 is different from the organic-inorganic hybrid porous membrane 10 of the example product 1 in that the heat retention time was changed from 12 hours to 6 hours in the deposition step SA2. Otherwise, it was manufactured in the same manner as the organic-inorganic hybrid porous membrane 10 of Example Product 1.

以下、図6乃至図32を用いて上記実験Iの結果を示す。図6および図7の比較例品1の有機無機ハイブリッド多孔質膜10すなわちポリマー多孔質膜24のFESEM写真に示すように、析出工程SA2の処理前のPVDF膜においてファイバーの表面は滑らかであった。また、図8および図9の比較例品2の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、比較例品2の有機無機ハイブリッド多孔質膜10の表面は、図6および図7に示す処理前のPVDF膜と略同じであり、比較例品2の有機無機ハイブリッド多孔質膜10では、ポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子が析出しなかった。また、図10および図11の比較例品3の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、比較例品3の有機無機ハイブリッド多孔質膜10の表面は、図6および図7に示す処理前のPVDF膜と略同じであり、比較例品3の有機無機ハイブリッド多孔質膜10では、ポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子が析出しなかった。また、図12および図13の比較例品4の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、比較例品4の有機無機ハイブリッド多孔質膜10の表面は、図6および図7に示す処理前のPVDF膜と略同じであり、比較例品4の有機無機ハイブリッド多孔質膜10では、ポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子が析出しなかった。   Hereinafter, the results of Experiment I will be described with reference to FIGS. As shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the comparative example product 1 in FIGS. 6 and 7, that is, the polymer porous membrane 24, the surface of the fiber was smooth in the PVDF membrane before the treatment of the deposition step SA2. . Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the comparative example product 2 in FIGS. 8 and 9, the surface of the organic-inorganic hybrid porous membrane 10 of the comparative example product 2 is shown in FIG. 6 and FIG. In the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 2, the layered double hydroxide LDH particles did not precipitate on the surface of the polymer porous membrane 24. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the comparative example product 3 in FIGS. 10 and 11, the surface of the organic-inorganic hybrid porous membrane 10 of the comparative example product 3 is shown in FIGS. In the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 3, the layered double hydroxide LDH particles did not precipitate on the surface of the polymer porous membrane 24. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the comparative example product 4 in FIGS. 12 and 13, the surface of the organic-inorganic hybrid porous membrane 10 of the comparative example product 4 is shown in FIGS. 6 and 7. In the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 4, the layered double hydroxide LDH particles were not deposited on the surface of the polymer porous membrane 24.

また、図14および図15の実施例品1の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、実施例品1の有機無機ハイブリッド多孔質膜10の表面には、図6および図7に示す析出工程SA2処理前のPVDF膜に比べると、鱗片状(小片状)の粒子が略均一に析出されていた。また、図16および図17の実施例品2の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、実施例品2の有機無機ハイブリッド多孔質膜10の表面には、図6および図7に示す析出工程SA2処理前のPVDF膜に比べると、鱗片状の粒子が略均一に析出されていた。なお、実施例品1の有機無機ハイブリッド多孔質膜10に析出された鱗片状の粒子は、実施例品2の有機無機ハイブリッド多孔質膜10に析出された鱗片状の粒子より小さい。また、図18および図19の実施例品3の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、実施例品3の有機無機ハイブリッド多孔質膜10の表面には、図6および図7に示す析出工程SA2処理前のPVDF膜に比べると、鱗片状の粒子が略均一に析出されていた。また、図20および図21の実施例品4の有機無機ハイブリッド多孔質膜10のFESEM写真に示すように、実施例品4の有機無機ハイブリッド多孔質膜10の表面には、図6および図7に示す析出工程SA2処理前のPVDF膜に比べると、鱗片状の粒子が略均一に析出されていた。   Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the example product 1 of FIGS. 14 and 15, the surface of the organic-inorganic hybrid porous membrane 10 of the example product 1 is shown in FIGS. Compared with the PVDF membrane before the deposition step SA2 treatment shown in FIG. 2, scale-like (small piece-like) particles were deposited almost uniformly. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the example product 2 in FIGS. 16 and 17, the surface of the organic-inorganic hybrid porous membrane 10 of the example product 2 is shown in FIGS. 6 and 7. In comparison with the PVDF film before the deposition step SA2 shown in FIG. 2, the scaly particles were deposited substantially uniformly. The scale-like particles deposited on the organic-inorganic hybrid porous membrane 10 of Example Product 1 are smaller than the scale-like particles deposited on the organic-inorganic hybrid porous membrane 10 of Example Product 2. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the example product 3 of FIGS. 18 and 19, the surface of the organic-inorganic hybrid porous membrane 10 of the example product 3 is shown in FIGS. In comparison with the PVDF film before the deposition step SA2 shown in FIG. 2, the scaly particles were deposited substantially uniformly. Moreover, as shown in the FESEM photograph of the organic-inorganic hybrid porous membrane 10 of the example product 4 in FIGS. 20 and 21, the surface of the organic-inorganic hybrid porous membrane 10 of the example product 4 is shown in FIGS. 6 and 7. In comparison with the PVDF film before the deposition step SA2 shown in FIG. 2, the scaly particles were deposited substantially uniformly.

図22および図27は、実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10のFESEM写真を示す図である。また、図23および図28は、図22、図27で示された実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10に含まれる元素Mg、Alの原子比(At.%)を示す図である。図24および図29は、図22、図27で示された実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10に存在するMg元素の分布を示す図である。図25および図30は、図22、図27で示された実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10に存在するAl元素の分布を示す図である。図26および図31は、図22、図27で示された実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10に存在する複数の元素の強度(カウント数)を示す図である。なお、図23乃至図26、図28乃至図31は、図22、図27に示す実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10を、EDX(エネルギー分散型X線分光法)によって元素分析や組成分析したものである。   22 and FIG. 27 are diagrams showing FESEM photographs of the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2. FIG. 23 and 28 show the elements Mg and Al contained in the organic-inorganic hybrid porous film 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 shown in FIGS. It is a figure which shows atomic ratio (At.%) Of this. 24 and 29 show the distribution of Mg elements present in the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 shown in FIGS. FIG. 25 and 30 show the distribution of Al elements present in the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 shown in FIGS. FIG. 26 and 31 show the strengths of a plurality of elements existing in the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 shown in FIGS. FIG. 23 to FIG. 26, FIG. 28 to FIG. 31 show the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 shown in FIG. Elemental analysis and composition analysis are performed by (energy dispersive X-ray spectroscopy).

図22乃至図26に示すように、実施例品1の有機無機ハイブリッド多孔質膜10において、PVDF膜であるポリマー多孔質膜24の表面に析出された鱗片状の粒子の主な成分は、層状複水酸化物LDHに含まれるMgおよびAlであることが分かった。また、図24および図25に示すように、実施例品1の有機無機ハイブリッド多孔質膜10において、MgとAlとの二種類の元素がPVDF膜のファイバー全体に均一に分散していることが観察された。また、図27乃至図31に示すように、実施例品2の有機無機ハイブリッド多孔質膜10において、PVDF膜であるポリマー多孔質膜24の表面に析出された鱗片状の粒子の主な成分は、層状複水酸化物LDHに含まれるMgおよびAlであることが分かった。また、図29および図30に示すように、実施例品2の有機無機ハイブリッド多孔質膜10において、MgとAlとの二種類の元素がPVDF膜のファイバー全体に均一に分散していることが観察された。   As shown in FIGS. 22 to 26, in the organic-inorganic hybrid porous membrane 10 of Example Product 1, the main components of the scaly particles deposited on the surface of the polymer porous membrane 24 that is a PVDF membrane are layered. It was found to be Mg and Al contained in the double hydroxide LDH. Further, as shown in FIGS. 24 and 25, in the organic-inorganic hybrid porous membrane 10 of Example Product 1, two kinds of elements of Mg and Al are uniformly dispersed throughout the fiber of the PVDF membrane. Observed. In addition, as shown in FIGS. 27 to 31, in the organic-inorganic hybrid porous film 10 of Example Product 2, the main components of the scaly particles deposited on the surface of the polymer porous film 24 that is a PVDF film are as follows. It was found to be Mg and Al contained in the layered double hydroxide LDH. Further, as shown in FIGS. 29 and 30, in the organic-inorganic hybrid porous membrane 10 of Example Product 2, two kinds of elements of Mg and Al are uniformly dispersed throughout the fiber of the PVDF membrane. Observed.

図32に示すように、比較例品1の析出工程SA2が行われていないPVDF膜のXRDパターンは、20度付近に2箇所回折ピークが観測されており、層状複水酸化物LDHのXRDパターンは、10度付近、24度付近、35度付近、40度付近、48度付近に回折ピークが観測されている。また、実施例品1の有機無機ハイブリッド多孔質膜10のXRDパターンは、10度付近、20度付近に2箇所、24度付近、35度付近、40度付近、48度付近に回折ピークが観測されており、PVDF膜由来の回折ピーク以外に、層状複水酸化物LDHに帰属する回折ピークが観測された。このため、実施例品1の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜のファイバーの表面に均一に成長した鱗片状の粒子は、層状複水酸化物LDHから成る粒子であることが分かった。また、実施例品2の有機無機ハイブリッド多孔質膜10のXRDパターンは、実施例品1の有機無機ハイブリッド多孔質膜10と同様に、10度付近、20度付近に2箇所、24度付近、35度付近、40度付近、48度付近に回折ピークが観測されており、PVDF膜由来の回折ピーク以外に、層状複水酸化物LDHに帰属する回折ピークが観測された。このため、実施例品2の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜のファイバーの表面に均一に成長した鱗片状の粒子は、層状複水酸化物LDHから成る粒子であることが分かった。なお、図示していないが、実施例品1、実施例品2の有機無機ハイブリッド多孔質膜10と同様に、前述したEDX(エネルギー分散型X線分光法)およびX線回折(X-ray diffraction)から、実施例品3および実施例品4の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24であるPVDF膜のファイバーの表面に均一に成長した鱗片状の粒子は、層状複水酸化物LDHから成る粒子であった。   As shown in FIG. 32, the XRD pattern of the PVDF film in which the precipitation step SA2 of the comparative example product 1 is not performed has two diffraction peaks observed at around 20 degrees, and the XRD pattern of the layered double hydroxide LDH. Have diffraction peaks observed at around 10 degrees, around 24 degrees, around 35 degrees, around 40 degrees, and around 48 degrees. In addition, the XRD pattern of the organic-inorganic hybrid porous membrane 10 of Example Product 1 shows diffraction peaks at around 10 degrees, around 2 degrees, around 24 degrees, around 35 degrees, around 40 degrees, and around 48 degrees. In addition to the diffraction peak derived from the PVDF film, a diffraction peak attributed to the layered double hydroxide LDH was observed. Therefore, in the organic-inorganic hybrid porous membrane 10 of Example Product 1, the scale-like particles uniformly grown on the surface of the PVDF membrane fiber, which is the polymer porous membrane 24, are particles composed of layered double hydroxide LDH. It turns out that. Further, the XRD pattern of the organic-inorganic hybrid porous membrane 10 of Example Product 2 is similar to that of the organic-inorganic hybrid porous membrane 10 of Example Product 1 at around 10 degrees, two locations around 20 degrees, around 24 degrees, Diffraction peaks were observed at around 35 degrees, around 40 degrees, and around 48 degrees. In addition to the diffraction peaks derived from the PVDF film, diffraction peaks attributed to the layered double hydroxide LDH were observed. Therefore, in the organic-inorganic hybrid porous membrane 10 of Example Product 2, the scale-like particles uniformly grown on the surface of the PVDF membrane fiber that is the polymer porous membrane 24 are particles composed of layered double hydroxide LDH. It turns out that. Although not shown in the drawing, the EDX (energy dispersive X-ray spectroscopy) and the X-ray diffraction (X-ray diffraction) described above are the same as in the organic / inorganic hybrid porous membrane 10 of Example Product 1 and Example Product 2. From the organic-inorganic hybrid porous membrane 10 of Example Product 3 and Example Product 4, the scaly particles grown uniformly on the surface of the PVDF membrane fiber, which is the polymer porous membrane 24, are layered double hydroxides. The particles were composed of the product LDH.

図6乃至図32の上記実験Iの結果によれば、比較例品1乃至比較例品4の有機無機ハイブリッド多孔質膜10では、そのPVDF膜であるポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子がコーティングされなかったが、実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10では、そのPVDF膜であるポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子がコーティングされた。このため、析出工程SA2によって、ポリマー多孔質膜24の表面に鱗片状の層状複水酸化物LDHが析出されたと考えられる。   According to the results of Experiment I in FIGS. 6 to 32, in the organic-inorganic hybrid porous membrane 10 of the comparative product 1 to the comparative product 4, the layered double water is formed on the surface of the polymer porous membrane 24 that is the PVDF membrane. Although the particles of the oxide LDH were not coated, in the organic-inorganic hybrid porous membrane 10 of Examples 1 to 4, the layered double hydroxide LDH was formed on the surface of the polymer porous membrane 24 as the PVDF membrane. Of particles were coated. For this reason, it is considered that the scaly layered double hydroxide LDH was deposited on the surface of the polymer porous membrane 24 by the deposition step SA2.

また、図6乃至図32の上記実験Iの結果によれば、比較例品2、比較例品3の有機無機ハイブリッド多孔質膜10では、PVDF膜の表面に層状複水酸化物LDHの粒子がコーティングされなかったが、実施例品1の有機無機ハイブリッド多孔質膜10では、PVDF膜の表面に層状複水酸化物LDHの粒子がコーティングされた。このため、析出工程SA2において、PVDF膜を入れる溶液に溶かされた尿素を0.420mol以上またはその溶液中のUrea/[NO]のモル比を4.0以上にすることによって、好適にPVDF膜の表面に層状複水酸化物LDHをコーティングさせることができると考えられる。 Further, according to the results of Experiment I in FIGS. 6 to 32, in the organic-inorganic hybrid porous membrane 10 of Comparative Example Product 2 and Comparative Example Product 3, the layered double hydroxide LDH particles are formed on the surface of the PVDF membrane. Although not coated, in the organic-inorganic hybrid porous membrane 10 of Example Product 1, the surface of the PVDF membrane was coated with particles of layered double hydroxide LDH. Therefore, in the precipitation step SA2, the urea dissolved in the solution containing the PVDF membrane is 0.420 mol or more, or the urea / [NO 3 ] molar ratio in the solution is preferably set to 4.0 or more. It is considered that the layered double hydroxide LDH can be coated on the surface of the film.

また、図6乃至図32の上記実験Iの結果によれば、比較例品4の有機無機ハイブリッド多孔質膜10では、PVDF膜の表面に層状複水酸化物LDHの粒子がコーティングされなかったが、実施例品1の有機無機ハイブリッド多孔質膜10では、PVDF膜の表面に層状複水酸化物LDHの粒子がコーティングされた。このため、析出工程SA2において、保持時間を12時間以上にすることによって、好適にPVDF膜の表面に層状複水酸化物LDHをコーティングさせることができると考えられる。   Further, according to the result of Experiment I in FIG. 6 to FIG. 32, in the organic-inorganic hybrid porous membrane 10 of Comparative Example 4, the surface of the PVDF membrane was not coated with the layered double hydroxide LDH particles. In the organic-inorganic hybrid porous membrane 10 of Example Product 1, the surface of the PVDF membrane was coated with particles of layered double hydroxide LDH. For this reason, in precipitation process SA2, it is thought that the layered double hydroxide LDH can be suitably coated on the surface of the PVDF film by setting the holding time to 12 hours or longer.

[実験II]
ここで、本発明者等が行った実験IIを説明する。なお、この実験IIは、PVDF膜であるポリマー多孔質膜24の表面に層状複水酸化物LDHの粒子がコーティングされた有機無機ハイブリッド多孔質膜10が、イオン伝導性を有することを検証するための実験である。
[Experiment II]
Here, Experiment II conducted by the present inventors will be described. This experiment II is for verifying that the organic-inorganic hybrid porous membrane 10 in which the surface of the polymer porous membrane 24, which is a PVDF membrane, is coated with particles of layered double hydroxide LDH has ion conductivity. This is an experiment.

この実験IIでは、先ず、前述した実施例品1の有機無機ハイブリッド多孔質膜10、実施例品2の有機無機ハイブリッド多孔質膜10をそれぞれ用いて、図33に示すように、一対の金電極32および34をその有機無機ハイブリッド多孔質膜10の両面に取り付けた。そして、交流インピーダンスアナライザー法で、環境温度80℃における相対湿度80%の時の上記実施例品1の有機無機ハイブリッド多孔質膜10および実施例品2の有機無機ハイブリッド多孔質膜10のイオン伝導率をそれぞれ測定した。なお、上記実験IIにおいて、上記有機無機ハイブリッド多孔質膜10の環境制御は、ESPEC社製(Japan)SH−221の小型環境試験器を使用し、上記有機無機ハイブリッド多孔質膜10のイオン伝導率の測定は、Solartron Analytical社製(UK)Solartron 1260 lmpedance/gain-phase analyzerの電気特性評価装置を使用した。   In this experiment II, first, as shown in FIG. 33, a pair of gold electrodes is used by using the organic-inorganic hybrid porous membrane 10 of Example product 1 and the organic-inorganic hybrid porous membrane 10 of Example product 2 described above. 32 and 34 were attached to both sides of the organic-inorganic hybrid porous membrane 10. The ionic conductivity of the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 when the relative humidity is 80% at an environmental temperature of 80 ° C. by the AC impedance analyzer method. Was measured respectively. In the experiment II, the environmental control of the organic-inorganic hybrid porous membrane 10 is performed using an ESPEC (Japan) SH-221 small environment tester, and the ionic conductivity of the organic-inorganic hybrid porous membrane 10 is controlled. The measurement was performed using an electrical property evaluation apparatus of Solartron Analytical (UK) Solartron 1260 lmpedance / gain-phase analyzer.

以下、図34を用いて上記実験IIの結果を示す。図34に示すように、実施例品1の有機無機ハイブリッド多孔質膜10のイオン伝導率は、1.2×10−6[S/cm]であり、実施例品1の有機無機ハイブリッド多孔質膜10自体にイオン伝導性を有していることが分かった。また、実施例品2の有機無機ハイブリッド多孔質膜10のイオン伝導率は、1.1×10−8[S/cm]であり、実施例品2の有機無機ハイブリッド多孔質膜10自体にイオン伝導性を有していることが分かった。なお、図示していないが、実施例品3の有機無機ハイブリッド多孔質膜10および実施例品4の有機無機ハイブリッド多孔質膜10自体にも、実施例品1の有機無機ハイブリッド多孔質膜10および実施例品2の有機無機ハイブリッド多孔質膜10と同様に、イオン伝導性を有していた。 Hereinafter, the result of Experiment II will be described with reference to FIG. As shown in FIG. 34, the ionic conductivity of the organic-inorganic hybrid porous membrane 10 of Example Product 1 is 1.2 × 10 −6 [S / cm], and the organic-inorganic hybrid porous membrane of Example Product 1 It was found that the membrane 10 itself has ionic conductivity. In addition, the ionic conductivity of the organic-inorganic hybrid porous membrane 10 of Example Product 2 is 1.1 × 10 −8 [S / cm], and the organic-inorganic hybrid porous membrane 10 of Example Product 2 has an ionic conductivity. It was found to have conductivity. Although not shown, the organic-inorganic hybrid porous membrane 10 of Example Product 3 and the organic-inorganic hybrid porous membrane 10 of Example Product 4 are also included in the organic-inorganic hybrid porous membrane 10 of Example Product 1 and Similar to the organic-inorganic hybrid porous membrane 10 of Example Product 2, it had ion conductivity.

図34の上記実験IIの結果によれば、実施例品1の有機無機ハイブリッド多孔質膜10および実施例品2の有機無機ハイブリッド多孔質膜10は、イオン伝導性を有していた。このため、PVDF膜であるポリマー多孔質膜24の表面が、層状複水酸化物LDHの粒子でコーティングされることによって、そのポリマー多孔質膜24の表面が層状複水酸化物LDHの粒子でコーティングされた有機無機ハイブリッド多孔質膜10は、イオン伝導性を有すると考えられる。   34, the organic-inorganic hybrid porous membrane 10 of Example Product 1 and the organic-inorganic hybrid porous membrane 10 of Example Product 2 had ionic conductivity. For this reason, the surface of the polymer porous film 24 which is a PVDF film is coated with particles of the layered double hydroxide LDH, so that the surface of the polymer porous film 24 is coated with the particles of the layered double hydroxide LDH. The formed organic-inorganic hybrid porous membrane 10 is considered to have ionic conductivity.

図34の上記実験IIの結果によれば、実施例品1の有機無機ハイブリッド多孔質膜10のイオン伝導率は、実施例品2の有機無機ハイブリッド多孔質膜のイオン伝導率より高かった。また、前述したように図14乃至図17から実施例品1の有機無機ハイブリッド多孔質膜10においてPVDF膜の表面にコーティングされた層状複水酸化物LDHの粒子の大きさは、実施例品2の有機無機ハイブリッド多孔質膜10における層状複水酸化物LDHの粒子に比べて小さかった。このため、PVDF膜の表面にコーティングされた層状複水酸化物LDHの粒子の大きさが小さい程、有機無機ハイブリッド多孔質膜10のイオン伝導率が高くなると考えられる。   According to the result of Experiment II in FIG. 34, the ionic conductivity of the organic-inorganic hybrid porous membrane 10 of Example Product 1 was higher than that of the organic-inorganic hybrid porous membrane of Example Product 2. Further, as described above, the size of the layered double hydroxide LDH particles coated on the surface of the PVDF membrane in the organic-inorganic hybrid porous membrane 10 of Example Product 1 from FIGS. It was smaller than the particles of the layered double hydroxide LDH in the organic / inorganic hybrid porous membrane 10. For this reason, it is considered that the ionic conductivity of the organic-inorganic hybrid porous membrane 10 increases as the size of the layered double hydroxide LDH particles coated on the surface of the PVDF membrane decreases.

本実施例の実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10によれば、それら実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10自体にイオン伝導性があることから、それら実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10を電解質膜12の基材として用いた場合には、イオン伝導性のないポリマー多孔質膜24を電解質膜12の基材として用いた場合に比べて、その電解質膜12のイオン伝導性が高くなる。また、実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10を電解質膜12の基材として用いることによって、電解質膜12の強度を向上させることができる。すなわち、実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10を用いることにより比較的高いイオン伝導性および強度を有する電解質膜12を製造することができる。   According to the organic-inorganic hybrid porous membranes 10 of Example Product 1 to Example Product 4 of this example, the organic-inorganic hybrid porous membranes 10 of Example Product 1 to Example Product 4 themselves have ionic conductivity. Therefore, when the organic-inorganic hybrid porous membrane 10 of Examples 1 to 4 is used as the base material of the electrolyte membrane 12, the polymer porous membrane 24 having no ion conductivity is used as the electrolyte membrane 12. Compared with the case where it is used as a substrate, the ionic conductivity of the electrolyte membrane 12 is increased. Moreover, the strength of the electrolyte membrane 12 can be improved by using the organic-inorganic hybrid porous membrane 10 of the example product 1 to the example product 4 as a base material of the electrolyte membrane 12. That is, by using the organic-inorganic hybrid porous membrane 10 of Example Product 1 to Example Product 4, an electrolyte membrane 12 having relatively high ionic conductivity and strength can be produced.

また、本実施例の実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10によれば、それら実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10を用いて、イオン伝導ポリマーをその有機無機ハイブリッド多孔質膜10の細孔10aに充填することによってアニオン交換膜型燃料電池14用の電解質膜12が作製される。このため、アニオン交換膜型燃料電池14用の電解質膜12のイオン伝導性および強度が好適に向上する。   Moreover, according to the organic-inorganic hybrid porous membrane 10 of the example product 1 to the example product 4 of this example, the organic-inorganic hybrid porous membrane 10 of the example product 1 to the example product 4 is used, and the ion The electrolyte membrane 12 for the anion exchange membrane fuel cell 14 is produced by filling the conductive polymer into the pores 10 a of the organic-inorganic hybrid porous membrane 10. For this reason, the ion conductivity and strength of the electrolyte membrane 12 for the anion exchange membrane fuel cell 14 are preferably improved.

本実施例の実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10の製造方法によれば、溶液作製工程SA1において複数の金属塩例えば硝酸マグネシウムおよび硝酸アルミニウムが溶解された溶液が作製され、析出工程SA2において前記溶液中においてPVDF膜であるポリマー多孔質膜24を入れそのポリマー多孔質膜24の表面に小片状の層状複水酸化物LDHが析出されることで、ポリマー多孔質膜24の表面が層状複水酸化物LDHの粒子でコーティングされたイオン伝導性を有する有機無機ハイブリッド多孔質膜10が得られ、その有機無機ハイブリッド多孔質膜10を例えば電解質膜12の基材として用いることによって、比較的高いイオン伝導性および強度を有する電解質膜12を製造することができる。   According to the method of manufacturing the organic-inorganic hybrid porous membrane 10 of Example product 1 to Example product 4 of this example, a solution in which a plurality of metal salts such as magnesium nitrate and aluminum nitrate are dissolved is prepared in the solution preparation step SA1. In the precipitation step SA2, the polymer porous membrane 24, which is a PVDF membrane, is placed in the solution, and a small piece of layered double hydroxide LDH is deposited on the surface of the polymer porous membrane 24, so that the polymer porous An organic-inorganic hybrid porous membrane 10 having ion conductivity in which the surface of the membrane 24 is coated with layered double hydroxide LDH particles is obtained, and the organic-inorganic hybrid porous membrane 10 is used as a base material of the electrolyte membrane 12, for example. By using it, the electrolyte membrane 12 having relatively high ion conductivity and strength can be produced.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

本実施例の実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10において、ポリマー多孔質膜24の表面にコーティングされた無機質の層状複水酸化物LDHの基本層26は、マグネシウムイオン(Mg2+)およびアルミニウムイオン(Al3+)を有していたが、そのマグネシウムイオンに代えてマグネシウムイオン以外の2価の金属イオン例えば鉄イオン(Fe2+)、亜鉛イオン(Zn2+)、カルシウムイオン(Ca2+)、リチウムイオン(Li2+)、ニッケルイオン(Ni2+)、コバルトイオン(Co2+)、銅イオン(Cu2+)等や、そのアルミニウムイオンに代えてアルミニウムイオン以外の3価の金属イオン例えば鉄イオン(Fe3+)、マンガンイオン(Mn3+)、コバルトイオン(Co3+)等が用いられても良い。更に、層状複水酸化物LDHの基本層26は、2価の金属イオンおよび3価の金属イオンを1種類ずつ有するものだけに限定されるものではない。例えば、1価の金属イオンおよび2価の金属イオンを1種類ずつ有するものであってもよいし、2価の金属イオンを1種類および4価の金属イオンを2種類有するものであってもよい。すなわち、互いに価数の異なる金属イオンを1種類以上ずつ有していればよい。なお、価数が互いに異なれば、同じ元素の金属イオンを含んでいてもよい。すなわち、本実施例の層状複水酸化物LDHは、価数の異なる2種類以上の金属イオンから成るものであれば良い。また、本実施例の実施例品1乃至実施例品4の有機無機ハイブリッド多孔質膜10では、層状複水酸化物LDHの中間層30に炭酸イオン(CO 2−)を有していたが、炭酸イオン以外の陰イオン例えば硝酸イオン(NO )、水酸化物イオン(OH)、塩化物イオン(Cl)、臭化物イオン(Br)等が用いられても良い。 In the organic-inorganic hybrid porous membrane 10 of Example product 1 to Example product 4 of this example, the base layer 26 of the inorganic layered double hydroxide LDH coated on the surface of the polymer porous membrane 24 is composed of magnesium ions. (Mg 2+ ) and aluminum ions (Al 3+ ), but instead of the magnesium ions, divalent metal ions other than magnesium ions such as iron ions (Fe 2+ ), zinc ions (Zn 2+ ), calcium ions (Ca 2+ ), lithium ion (Li 2+ ), nickel ion (Ni 2+ ), cobalt ion (Co 2+ ), copper ion (Cu 2+ ), etc., trivalent metal ions other than aluminum ions instead of aluminum ions for example, iron ions (Fe 3+), manganese ion (Mn 3+), it may also be cobalt ions (Co 3+) or the like is used . Further, the basic layer 26 of the layered double hydroxide LDH is not limited to the one having one kind of divalent metal ion and one kind of trivalent metal ion. For example, it may have one type of monovalent metal ion and one type of divalent metal ion, or one type of bivalent metal ion and two types of tetravalent metal ion. . That is, it is only necessary to have one or more types of metal ions having different valences. Note that metal ions of the same element may be included as long as the valences are different from each other. That is, the layered double hydroxide LDH of the present embodiment may be composed of two or more kinds of metal ions having different valences. Moreover, in the organic-inorganic hybrid porous membrane 10 of Example Product 1 to Example Product 4 of this example, the intermediate layer 30 of the layered double hydroxide LDH had carbonate ions (CO 3 2− ). Anions other than carbonate ions such as nitrate ions (NO 3 ), hydroxide ions (OH ), chloride ions (Cl ), bromide ions (Br ) and the like may be used.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

10:有機無機ハイブリッド多孔質膜
10a:細孔
12:電解質膜
14:燃料電池
24:ポリマー多孔質膜
LDH:層状複水酸化物
SA1:溶液作製工程
SA2:析出工程
10: Organic-inorganic hybrid porous membrane 10a: Pore 12: Electrolyte membrane 14: Fuel cell 24: Polymer porous membrane LDH: Layered double hydroxide SA1: Solution preparation step SA2: Precipitation step

Claims (3)

燃料電池の電解質膜の基材として用いられる有機無機ハイブリッド多孔質膜であって、有機質のポリマー多孔質膜の表面が、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子でコーティングされ
前記層状複水酸化物の粒子は、鱗片状の粒子であって、前記金属イオンに囲まれた複数層の基本層と、前記複数層の基本層の間に層間に存在する陰イオンおよび水分子から成る中間層との層状構造が規則的に積み重ねられたものである
ことを特徴とするイオン伝導性を有する有機無機ハイブリッド多孔質膜。
An organic / inorganic hybrid porous membrane used as a base material for an electrolyte membrane of a fuel cell, wherein the surface of the organic polymer porous membrane is an inorganic layered double hydroxide composed of two or more kinds of metal ions having different valences coated with particles,
The layered double hydroxide particles are scaly particles, and a plurality of basic layers surrounded by the metal ions, and anions and water molecules present between the plurality of basic layers. A layered structure with an intermediate layer consisting of
An organic-inorganic hybrid porous membrane having ion conductivity , characterized in that
請求項1の有機無機ハイブリッド多孔質膜を用いて、イオン伝導ポリマーを該有機無機ハイブリッド多孔質膜の細孔に充填することによって作製されたアニオン交換膜型燃料電池用の電解質膜。   An electrolyte membrane for an anion exchange membrane fuel cell, produced by filling the pores of the organic-inorganic hybrid porous membrane with an ion conductive polymer using the organic-inorganic hybrid porous membrane according to claim 1. 有機質のポリマー多孔質膜の表面が、価数の異なる2種類以上の金属イオンから成る無機質の層状複水酸化物の粒子でコーティングされたイオン電導性を有する有機無機ハイブリッド多孔質膜の製造方法であって、
複数の金属塩が溶解された溶液を作製する溶液作製工程と、
前記溶液中において前記ポリマー多孔質膜を入れそのポリマー多孔質膜の表面に小片状の層状複水酸化物を析出させる析出工程と
を含む有機無機ハイブリッド多孔質膜の製造方法。
A method for producing an organic / inorganic hybrid porous membrane having ionic conductivity, in which the surface of an organic polymer porous membrane is coated with inorganic layered double hydroxide particles composed of two or more kinds of metal ions having different valences. There,
A solution preparation step for preparing a solution in which a plurality of metal salts are dissolved;
A method for producing an organic-inorganic hybrid porous membrane comprising: a step of depositing the polymer porous membrane in the solution and precipitating small pieces of layered double hydroxide on the surface of the polymer porous membrane.
JP2013180665A 2013-08-30 2013-08-30 Organic-inorganic hybrid porous membrane and method for producing the same Active JP6155143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013180665A JP6155143B2 (en) 2013-08-30 2013-08-30 Organic-inorganic hybrid porous membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013180665A JP6155143B2 (en) 2013-08-30 2013-08-30 Organic-inorganic hybrid porous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015050021A JP2015050021A (en) 2015-03-16
JP6155143B2 true JP6155143B2 (en) 2017-06-28

Family

ID=52699882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013180665A Active JP6155143B2 (en) 2013-08-30 2013-08-30 Organic-inorganic hybrid porous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP6155143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243312B2 (en) * 2014-10-03 2017-12-06 株式会社ノリタケカンパニーリミテド Battery electrolyte membrane and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419396B2 (en) * 2003-01-31 2010-02-24 東レ株式会社 Polymer solid electrolyte and polymer electrolyte fuel cell using the same
JP6000537B2 (en) * 2011-12-08 2016-09-28 株式会社ノリタケカンパニーリミテド Alkaline electrolyte and fuel cell provided with the electrolyte
JP5953575B2 (en) * 2012-03-15 2016-07-20 国立大学法人北海道大学 Electrolyte membrane for all solid alkaline fuel cells
EP2843753B1 (en) * 2012-04-26 2017-06-28 NGK Insulators, Ltd. Lithium air secondary cell
JP2014011000A (en) * 2012-06-29 2014-01-20 Hitachi Ltd Ion conductor and electrochemical device using the same

Also Published As

Publication number Publication date
JP2015050021A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
Ng et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications
Indra et al. Metal organic framework derived materials: progress and prospects for the energy conversion and storage
Wan et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis
US10297861B2 (en) Anion conducting material and cell
Kim et al. Novel catalytic effects of Mn 3 O 4 for all vanadium redox flow batteries
Park et al. A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries
Wu et al. Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solid‐State Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives
Kim et al. MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li–O2 battery cathodes
JP6243312B2 (en) Battery electrolyte membrane and method for producing the same
JP6965392B2 (en) Positive electrode for zinc-bromine battery and its manufacturing method
JP5953576B2 (en) Air electrode catalyst layer for metal-air secondary battery
JP5707698B2 (en) Electrode manufacturing method, electrode paste manufacturing method, and sodium secondary battery
JP2020518964A (en) Battery separator membrane and battery using the same
Kim et al. 1D Building Blocks-Intermingled Heteronanomats as a Platform Architecture For High-Performance Ultrahigh-Capacity Lithium-Ion Battery Cathodes.
Xiao et al. Preparation of core–shell structural single ionic conductor SiO2@ Li+ and its application in PVDF–HFP-based composite polymer electrolyte
JP5531602B2 (en) Electrode active material, electrode and non-aqueous electrolyte secondary battery
Lee et al. Highly interconnected nanorods and nanosheets based on a hierarchically layered metal–organic framework for a flexible, high-performance energy storage device
JP2010027364A (en) Electrode catalyst for fuel cell and its manufacturing method
Dong et al. Neoteric polyimide nanofiber encapsulated by the TiO2 armor as the tough, highly wettable, and flame-retardant separator for advanced lithium-ion batteries
CN107431182A (en) Porous electrode and the electrochemical cell and liquid accumulator cell being produced from it
KR20210133269A (en) Separator for non-aqueous secondary battery, manufacturing method thereof, and non-aqueous secondary battery
KR101652626B1 (en) Preparing method of transition metal-nitrogen doped porous carbon catalyst
JP6155143B2 (en) Organic-inorganic hybrid porous membrane and method for producing the same
CN110246702B (en) Porous metal/three-dimensional graphene composite material, and manufacturing method and application thereof
JP5594247B2 (en) Non-aqueous electrolyte lithium-air secondary battery positive electrode and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6155143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533