JP6242424B2 - Copper-based sliding member - Google Patents
Copper-based sliding member Download PDFInfo
- Publication number
- JP6242424B2 JP6242424B2 JP2016069455A JP2016069455A JP6242424B2 JP 6242424 B2 JP6242424 B2 JP 6242424B2 JP 2016069455 A JP2016069455 A JP 2016069455A JP 2016069455 A JP2016069455 A JP 2016069455A JP 6242424 B2 JP6242424 B2 JP 6242424B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- sliding
- copper
- island
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 38
- 229910052802 copper Inorganic materials 0.000 title claims description 36
- 239000010949 copper Substances 0.000 title claims description 36
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 134
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 72
- 239000012791 sliding layer Substances 0.000 claims description 54
- 239000010439 graphite Substances 0.000 claims description 32
- 229910002804 graphite Inorganic materials 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 229910052797 bismuth Inorganic materials 0.000 claims description 7
- 229910052745 lead Inorganic materials 0.000 claims description 7
- 241000357293 Leptobrama muelleri Species 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000012071 phase Substances 0.000 description 72
- 239000010410 layer Substances 0.000 description 50
- 238000005245 sintering Methods 0.000 description 42
- 239000002245 particle Substances 0.000 description 41
- 239000000843 powder Substances 0.000 description 31
- 238000005096 rolling process Methods 0.000 description 19
- 230000003068 static effect Effects 0.000 description 19
- 230000013011 mating Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000007791 liquid phase Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000003892 spreading Methods 0.000 description 8
- 230000007480 spreading Effects 0.000 description 8
- 230000005489 elastic deformation Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 6
- 238000009692 water atomization Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/121—Use of special materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16N—LUBRICATING
- F16N15/00—Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions
- F16N15/02—Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions with graphite or graphite-containing compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/40—Carbon, graphite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/10—Alloys based on copper
- F16C2204/12—Alloys based on copper with tin as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2220/00—Shaping
- F16C2220/20—Shaping by sintering pulverised material, e.g. powder metallurgy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/20—Application independent of particular apparatuses related to type of movement
- F16C2300/28—Reciprocating movement
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Powder Metallurgy (AREA)
- Sliding-Contact Bearings (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
本発明は、各種産業機械の往復摺動部に用いられる銅系摺動部材に関する。 The present invention relates to a copper-based sliding member used for a reciprocating sliding portion of various industrial machines.
従来から、潤滑成分として黒鉛を添加した銅系摺動部材が使用されている。例えば、特許文献1の銅合金層を被覆した銅系摺動部材では、75〜900μmの大きな粒径の黒鉛を銅合金層に添加することで、銅合金層中の黒鉛粉末の数が少なくなり、銅合金がネットワークを形成することにより、従来の粒径の小さな黒鉛を添加した銅合金よりも強度の高い摺動部材になるとしている。また、特許文献2の銅合金層を被覆した銅系摺動部材では、潤滑成分としてBiや黒鉛等の固体潤滑剤を銅合金層中に含有させることで、黒鉛等の固体潤滑剤がBiに取り込まれて共存した相として焼結銅合金中に分散するようになり、摺動部材の強度を高めるとしている。 Conventionally, a copper-based sliding member to which graphite is added as a lubricating component has been used. For example, in the copper-based sliding member coated with the copper alloy layer of Patent Document 1, the number of graphite powder in the copper alloy layer is reduced by adding graphite having a large particle size of 75 to 900 μm to the copper alloy layer. The copper alloy forms a network, so that it becomes a sliding member having higher strength than a conventional copper alloy to which graphite having a small particle size is added. Moreover, in the copper-type sliding member which coat | covered the copper alloy layer of patent document 2, solid lubricants, such as graphite, are contained in Bi by including solid lubricants, such as Bi and graphite, as a lubrication component in a copper alloy layer. It is said that it is dispersed in the sintered copper alloy as a phase that is taken in and coexists, thereby increasing the strength of the sliding member.
上記した特許文献1,2の銅系摺動部材では、図4(a)に示すように、銅合金等の金属部がネットワークを形成し、固体潤滑剤が該金属部により取り囲まれた島状の形態で金属中に分散している。そして、往復摺動部に特許文献1,2の銅系摺動部材を適用した場合、まず、往復摺動する相手部材の摺動方向が変化する瞬間には、相手部材の表面と銅系摺動部材の摺動面との相対速度が0となる。このとき、銅系摺動部材の摺動層は、相手部材から摺動層の厚さ方向に平行な負荷のみが加えられる。 In the copper-based sliding member of Patent Documents 1 and 2 described above, as shown in FIG. 4A, a metal part such as a copper alloy forms a network, and a solid lubricant is surrounded by the metal part. Are dispersed in the metal in the form of When the copper-based sliding member of Patent Documents 1 and 2 is applied to the reciprocating sliding portion, first, at the moment when the sliding direction of the mating member that reciprocally slides changes, the surface of the mating member and the copper-based sliding member are changed. The relative speed with the sliding surface of the moving member is zero. At this time, only the load parallel to the thickness direction of the sliding layer is applied from the mating member to the sliding layer of the copper-based sliding member.
次いで、図4(b)に示すように、相手部材の運動が開始する瞬間から動摩擦状態(銅系摺動部材の摺動面と相手部材との2面間で摺動(滑動)が起こる状態)に移行するまでの間には、銅系摺動部材の摺動層が相手部材の運動方向へ向かう負荷により弾性変形し、2面間には摺動(滑動)が起こらない。この場合、銅系摺動部材の摺動面と相手部材との2面間に摺動(滑動)を起こすための力(起動力)には、摺動層の弾性変形に要する力も含まれる。そして、特許文献1,2のように摺動層の銅合金がネットワークを形成した場合、図4(a)に示すように、変形が銅合金のネットワークの全体に伝播しやすいので、摺動層の弾性変形量が大きくなり、そのため起動力が大きくなる。換言すれば、銅系摺動部材の摺動面と相手部材との静摩擦係数が大きくなる。このため、銅系摺動部材の摺動面と相手部材との2面間で摺動(滑動)が起こる瞬間には、その2面間に大きな摩擦力が加わり、摺動層の表面に摩耗が起こりやすい。 Next, as shown in FIG. 4B, a dynamic friction state (sliding (sliding) occurs between two surfaces of the sliding surface of the copper-based sliding member and the counterpart member from the moment when the counterpart member starts to move. In the meantime, the sliding layer of the copper-based sliding member is elastically deformed by a load in the direction of movement of the mating member, and no sliding (sliding) occurs between the two surfaces. In this case, the force (starting force) for causing sliding (sliding) between the two surfaces of the copper-based sliding member and the mating member includes the force required for elastic deformation of the sliding layer. And when the copper alloy of a sliding layer forms a network like patent document 1, 2, since a deformation | transformation is easy to propagate to the whole copper alloy network as shown to Fig.4 (a), a sliding layer The amount of elastic deformation increases, so that the starting force increases. In other words, the coefficient of static friction between the sliding surface of the copper-based sliding member and the mating member increases. For this reason, at the moment when sliding (sliding) occurs between the two surfaces of the copper-based sliding member and the mating member, a large frictional force is applied between the two surfaces, and the surface of the sliding layer is worn. Is likely to occur.
本発明は、上記した事情に鑑みなされたものであり、その目的とするところは、相手部材との静摩擦係数が低く、往復摺動部での使用に好適な銅系摺動部材を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a copper-based sliding member that has a low coefficient of static friction with a counterpart member and is suitable for use in a reciprocating sliding portion. It is in.
上記した目的を達成するために、請求項1に係る発明においては、鋼裏金の表面に、摺動面を有する摺動層を設けた銅系摺動部材であって、前記摺動層は銅合金と20〜40体積%の黒鉛とからなり、前記銅合金はSnを1〜15質量%含有し、残部が銅及び不可避不純物からなる銅系摺動部材において、前記摺動層は、前記黒鉛により取り囲まれた海島構造の形態で前記摺動層中に分散する島状銅合金相を含み、前記島状銅合金相は、前記摺動面に平行方向の長さが25〜500μmであるものを含み、前記摺動層に対する前記摺動面に平行方向の長さが25〜500μmである島状銅合金相の割合は、5〜40体積%であることを特徴とする。 In order to achieve the above-described object, in the invention according to claim 1, a copper-based sliding member in which a sliding layer having a sliding surface is provided on the surface of a steel back metal, wherein the sliding layer is made of copper. An alloy and 20 to 40% by volume of graphite, wherein the copper alloy contains 1 to 15% by mass of Sn, and the balance is made of copper and inevitable impurities. The sliding layer includes the graphite Including an island-shaped copper alloy phase dispersed in the sliding layer in the form of a sea-island structure surrounded by the island-shaped copper alloy phase having a length in the direction parallel to the sliding surface of 25 to 500 μm The ratio of the island-shaped copper alloy phase having a length in the direction parallel to the sliding surface with respect to the sliding layer is 25 to 500 μm is 5 to 40% by volume.
請求項2に係る発明においては、請求項1記載の銅系摺動部材において、前記摺動面に平行方向の長さが25〜500μmである島状銅合金相は、前記摺動面に平行方向の長さxと前記摺動面に垂直方向の長さyとの比(x/y)で定義されるアスペクト比が1.2〜5であるものが50体積%以上であることを特徴とする。 In the invention which concerns on Claim 2, the copper-type sliding member of Claim 1 WHEREIN: The island-shaped copper alloy phase whose length of a parallel direction to the said sliding surface is 25-500 micrometers is parallel to the said sliding surface. The aspect ratio defined by the ratio (x / y) of the length x in the direction and the length y in the direction perpendicular to the sliding surface is 1.2 to 5 and is 50% by volume or more. And
請求項3に係る発明においては、請求項1又は請求項2記載の銅系摺動部材において、前記銅合金は、さらにNiを1〜15質量%、Pを0.01〜0.5質量%の少なくとも1種以上を含有することを特徴とする。 In the invention which concerns on Claim 3, in the copper-type sliding member of Claim 1 or Claim 2, the said copper alloy is further 1-15 mass% of Ni, and 0.01-0.5 mass% of P. It contains at least one of the above.
請求項4に係る発明においては、請求項1乃至請求項3のいずれかに記載の銅系摺動部材において、前記銅合金は、さらにPbとBiとの少なくとも1種以上を1〜10質量%含有することを特徴とする。 In the invention which concerns on Claim 4, in the copper-type sliding member in any one of Claim 1 thru | or 3, the said copper alloy is further 1-10 mass% of at least 1 or more types of Pb and Bi. It is characterized by containing.
請求項1に係る発明においては、図1に示すように、摺動層は、黒鉛により取り囲まれた海島構造の形態で摺動層中に分散する島状銅合金相を含み、摺動層に対する摺動面に平行方向の長さが25〜500μmである島状銅合金相の割合が5〜40体積%であることで、相手部材との静摩擦係数が低くなることを見出した。これは、以下のメカニズムによってなされていると推測される。 In the invention according to claim 1, as shown in FIG. 1, the sliding layer includes an island-like copper alloy phase dispersed in the sliding layer in the form of a sea-island structure surrounded by graphite. It has been found that the static friction coefficient with the mating member is lowered when the ratio of the island-like copper alloy phase having a length in the direction parallel to the sliding surface of 25 to 500 μm is 5 to 40% by volume. This is presumed to be performed by the following mechanism.
往復摺動部に本発明の銅系摺動部材を適用した場合、まず、往復摺動する相手部材の摺動方向が変化する瞬間には、相手部材の表面と銅系摺動部材の摺動面との相対速度が0となる。そして、相手部材の運動が開始する瞬間から動摩擦状態(銅系摺動部材の摺動面と相手部材との2面間で摺動(滑動)が起こる状態)に移行するまでの間には、銅系摺動部材の摺動層は相手部材の運動方向へ向かう負荷を受けるが、図1に示すように、島状銅合金相が周囲を黒鉛により取り込まれているため、黒鉛との界面ですべりが発生するので、島状銅合金相自身には僅かな弾性変形しか生じない。また、島状銅合金相に僅かな弾性変形を生じても、周囲の黒鉛に遮断されて、他の島状銅合金相及び島状銅合金相以外の形態の銅合金相(部分的にネットワークを形成した銅合金相)には伝播することがない。また、島状銅合金相以外の形態の銅合金相(部分的にネットワークを形成した銅合金相)の間に存在する島状銅合金相及びその周囲の黒鉛は、島状銅合金相以外の形態の銅合金相(部分的にネットワークを形成した銅合金相)の弾性変形が他の島状銅合金相以外の形態の銅合金相へ伝播することを抑制する。このため、摺動層の弾性変形量は小さくなり、摺動層に負荷される起動時の摩擦力が小さくなる。換言すれば、本発明の銅系摺動部材の摺動層は、相手部材との静摩擦係数が低くなる。 When the copper-based sliding member of the present invention is applied to the reciprocating sliding portion, first, at the moment when the sliding direction of the mating member that reciprocates is changed, the surface of the mating member and the copper-based sliding member slide. The relative speed with the surface becomes zero. And, from the moment when the movement of the mating member starts, until the transition to a dynamic friction state (a state where sliding (sliding) occurs between the sliding surface of the copper-based sliding member and the mating member), Although the sliding layer of the copper-based sliding member receives a load in the direction of movement of the mating member, as shown in FIG. 1, the island-shaped copper alloy phase is taken in by the surroundings, so at the interface with the graphite Since slip occurs, only a slight elastic deformation occurs in the island-like copper alloy phase itself. In addition, even if a slight elastic deformation occurs in the island-like copper alloy phase, it is blocked by the surrounding graphite, and other island-like copper alloy phases and copper alloy phases other than the island-like copper alloy phase (partly network) It does not propagate to the copper alloy phase). In addition, the island-like copper alloy phase existing between the copper alloy phases other than the island-like copper alloy phase (copper alloy phase partially forming a network) and the surrounding graphite are other than the island-like copper alloy phase. It suppresses that the elastic deformation of the copper alloy phase of a form (copper alloy phase which formed the network partially) propagates to the copper alloy phase of forms other than other island-like copper alloy phases. For this reason, the amount of elastic deformation of the sliding layer is reduced, and the frictional force at the time of activation applied to the sliding layer is reduced. In other words, the sliding layer of the copper-based sliding member of the present invention has a low coefficient of static friction with the counterpart member.
また、請求項1に係る発明において、摺動層に対する摺動面に平行方向の長さが25〜500μmである島状銅合金相の割合は、5〜40体積%であるが、その島状銅合金相の割合が5体積%未満であると、摺動層の弾性変形量を小さくする効果が不十分となり、相手部材との静摩擦係数が高くなる。一方、その島状銅合金相の割合が40体積%を超える場合には、後述する一次焼結後の焼結層の強度が低くなりすぎるため、圧延時に焼結層が破壊され、本発明の銅系摺動部材を作製することができない。なお、銅系摺動部材の摺動層に含まれる島状銅合金相は、摺動面に平行方向の長さが25〜500μmである島状銅合金相だけでなく、摺動面に平行方向の長さが25μm未満の島状銅合金相、あるいは、長さが500μmを超える島状銅合金相を少量(摺動層に対して5体積%以下)含むようにしてもよい。 Moreover, in the invention which concerns on Claim 1, although the ratio of the island-like copper alloy phase whose length of a parallel direction with respect to the sliding surface with respect to a sliding layer is 25-500 micrometers is 5-40 volume%, the island shape When the ratio of the copper alloy phase is less than 5% by volume, the effect of reducing the elastic deformation amount of the sliding layer becomes insufficient, and the static friction coefficient with the mating member increases. On the other hand, when the ratio of the island-like copper alloy phase exceeds 40% by volume, the strength of the sintered layer after the primary sintering described later becomes too low, so the sintered layer is destroyed during rolling, and the present invention A copper-based sliding member cannot be produced. In addition, the island-shaped copper alloy phase contained in the sliding layer of the copper-based sliding member is not only an island-shaped copper alloy phase having a length in the direction parallel to the sliding surface of 25 to 500 μm, but also parallel to the sliding surface. A small amount (5% by volume or less with respect to the sliding layer) of an island-shaped copper alloy phase having a length in the direction of less than 25 μm or an island-shaped copper alloy phase having a length exceeding 500 μm may be included.
なお、摺動層に対する島状銅合金相の体積割合は、直接、測定することは困難であるが、摺動面に垂直方向の摺動層の断面組織での摺動層の面積に対する島状合金相の面積の割合を測定することにより確認することができる。また、請求項1に係る発明において、島状銅合金相の摺動面に平行方向の長さとは、摺動面に垂直方向の摺動層の断面組織での島状銅合金相の摺動面に対する平行方向の長さである。 Although the volume ratio of the island-shaped copper alloy phase to the sliding layer is difficult to directly measure, the island-shaped copper area relative to the area of the sliding layer in the cross-sectional structure of the sliding layer perpendicular to the sliding surface. This can be confirmed by measuring the ratio of the area of the alloy phase. In the invention according to claim 1, the length in the direction parallel to the sliding surface of the island-shaped copper alloy phase is the sliding of the island-shaped copper alloy phase in the cross-sectional structure of the sliding layer perpendicular to the sliding surface. It is the length in the direction parallel to the surface.
また、黒鉛は、潤滑成分として摺動層に含有させるが、さらに、黒鉛により取り囲まれた海島構造の形態で摺動層中に分散する島状銅合金相の形成にも関与する。摺動層中の黒鉛の含有量が20体積%未満であると、黒鉛により取り囲まれた形態で摺動層中に分散する島状銅合金相の形成が不十分になる。一方、摺動層中の黒鉛の含有量が40体積%を超えると、摺動層が脆くなる。 Further, graphite is contained in the sliding layer as a lubricating component, and is further involved in the formation of island-like copper alloy phases dispersed in the sliding layer in the form of a sea-island structure surrounded by graphite. If the content of graphite in the sliding layer is less than 20% by volume, the island-shaped copper alloy phase dispersed in the sliding layer in a form surrounded by graphite becomes insufficient. On the other hand, if the content of graphite in the sliding layer exceeds 40% by volume, the sliding layer becomes brittle.
また、摺動層中の銅合金は、Snを1〜15質量%含有する。Snは、銅合金の強度を高める効果があるが、Snの含有量が1質量%未満であると、その効果が不十分である。一方、Snの含有量が15質量%を超えると、銅合金が脆くなる。 Moreover, the copper alloy in a sliding layer contains 1-15 mass% of Sn. Sn has the effect of increasing the strength of the copper alloy, but if the Sn content is less than 1% by mass, the effect is insufficient. On the other hand, if the Sn content exceeds 15% by mass, the copper alloy becomes brittle.
また、請求項2に係る発明においては、摺動面に平行方向の長さが25〜500μmである島状銅合金相は、摺動面に平行方向の長さxと摺動面に垂直方向の長さyとの比(x/y)で定義されるアスペクト比が1.2〜5であるものが50体積%以上であることで、銅系摺動部材と相手部材との静摩擦係数がより低くなることを見出した。これは、島状銅合金相の粒の形状が、摺動面に対して平行方向に若干、長い異方性をもっていることに起因する。すなわち、相手部材は、銅系摺動部材の摺動面に対して水平方向に往復摺動するため、島状銅合金相は、摺動面に対して平行方向に若干、長い形状であるほうが、島状銅合金相と黒鉛とのすべりが発生しやすい。このため、相手部材との静摩擦係数が低くなる。 In the invention according to claim 2, the island-shaped copper alloy phase having a length in the direction parallel to the sliding surface of 25 to 500 μm has a length x parallel to the sliding surface and a direction perpendicular to the sliding surface. When the aspect ratio defined by the ratio (x / y) to the length y is 1.2 to 5% is 50% by volume or more, the static friction coefficient between the copper-based sliding member and the mating member is Found lower. This is due to the fact that the shape of the island-shaped copper alloy phase grains has a slightly long anisotropy in the direction parallel to the sliding surface. That is, since the mating member reciprocates horizontally in the horizontal direction with respect to the sliding surface of the copper-based sliding member, the island-shaped copper alloy phase should be slightly longer in the direction parallel to the sliding surface. Sliding between the island-like copper alloy phase and graphite is likely to occur. For this reason, the coefficient of static friction with the counterpart member is lowered.
また、請求項3に係る発明のように、銅合金は、さらにNiを1〜15質量%、Pを0.01〜0.5質量%の少なくとも1種以上を含有させてもよい。これらの元素を銅合金に含有させたとしても、摺動層中の島状銅合金相によって相手部材との静摩擦係数を低減する効果が十分に発揮される。 Further, as in the invention according to claim 3, the copper alloy may further contain at least one of Ni in an amount of 1 to 15% by mass and P in an amount of 0.01 to 0.5% by mass. Even if these elements are contained in the copper alloy, the effect of reducing the coefficient of static friction with the counterpart member is sufficiently exhibited by the island-like copper alloy phase in the sliding layer.
また、請求項4に係る発明のように、銅合金は、さらにPbとBiとの少なくとも1種以上を1〜10質量%含有させてもよい。Pb、Biは、潤滑成分であり、摺動層の動摩擦時の動摩擦係数を低くする効果があるが、PbとBiとの少なくとも1種以上の含有量が1質量%未満であると、その効果が不十分である。一方、PbとBiとの少なくとも1種以上の含有量が10質量%を超えると、摺動層が脆くなる。 Further, as in the invention according to claim 4, the copper alloy may further contain 1 to 10% by mass of at least one of Pb and Bi. Pb and Bi are lubricating components and have the effect of lowering the dynamic friction coefficient during the dynamic friction of the sliding layer. However, when the content of at least one or more of Pb and Bi is less than 1% by mass, the effect Is insufficient. On the other hand, if the content of at least one of Pb and Bi exceeds 10% by mass, the sliding layer becomes brittle.
本実施形態に係る銅合金と黒鉛とからなる銅系摺動部材について、図2及び図3を参照して説明する。本実施形態に係る銅系摺動部材の製造工程は、粉末作製、粉末混合、散布、一次焼結、一次圧延、二次焼結の順に行われる。まず、水アトマイズ法にて、平均粒径d50が25〜50μmの銅合金粉末を作製する。なお、平均粒径d50は、レーザー回折・散乱方式を用いた粒度分布測定における累積体積50%の粒径を意味する。また、水アトマイズにて作製した粉末は、異形粉(球形ではない形状の粉末)となる。 A copper-based sliding member made of a copper alloy and graphite according to this embodiment will be described with reference to FIGS. The manufacturing process of the copper-type sliding member which concerns on this embodiment is performed in order of powder preparation, powder mixing, dispersion | distribution, primary sintering, primary rolling, and secondary sintering. First, a copper alloy powder having an average particle diameter d50 of 25 to 50 μm is prepared by a water atomization method. The average particle size d50 means a particle size having a cumulative volume of 50% in the particle size distribution measurement using a laser diffraction / scattering method. Moreover, the powder produced by water atomization becomes irregular shaped powder (powder having a non-spherical shape).
次に、上記銅合金粉末と、扁平形状である鱗片状黒鉛粉末(日本黒鉛工業(株)製)と、を一般的な混合機を用いて混合する。この鱗片状黒鉛粉末は、粒径が45〜75μmのものが黒鉛粉末全体の60質量%以上を占め、且つ、最大粒径が300μm以下である。なお、鱗片状黒鉛粉末の粒径は、篩を用いて測定する。また、鱗片状黒鉛粉末の粒径とは、扁平形状である粒子の最も長い部分の寸法である。このとき、銅合金粉末と鱗片状黒鉛粉末との混合粉末の空孔率(空孔率:1−AD/TD、AD:見掛密度(g/cm3)、TD:理論密度(g/cm3))は、60〜76%になる。 Next, the copper alloy powder is mixed with a scaly graphite powder having a flat shape (manufactured by Nippon Graphite Industry Co., Ltd.) using a general mixer. The scaly graphite powder has a particle size of 45 to 75 μm and occupies 60% by mass or more of the entire graphite powder, and the maximum particle size is 300 μm or less. The particle size of the flaky graphite powder is measured using a sieve. The particle size of the scaly graphite powder is the dimension of the longest part of the particles having a flat shape. At this time, the porosity of the mixed powder of copper alloy powder and scaly graphite powder (porosity: 1-AD / TD, AD: apparent density (g / cm 3 ), TD: theoretical density (g / cm 3 )) is 60 to 76%.
そして、この混合粉末を帯鋼(鋼裏金)上に散布し、散布層を形成する。図2(a)に示すように、散布層の空孔率は、前記混合粉末の空孔率(60〜76%)が維持される。なお、裏金層は鋼に限定されないで、銅合金や他の金属製であってもよい。また、裏金は、鋼と、鋼の表面に被覆された銅または銅合金からなるものであってもよい。 And this mixed powder is spread | dispersed on a steel strip (steel back metal), and a spreading layer is formed. As shown to Fig.2 (a), the porosity (60-76%) of the said mixed powder is maintained for the porosity of a spreading | diffusion layer. The back metal layer is not limited to steel, but may be made of a copper alloy or other metal. The back metal may be made of steel and copper or a copper alloy coated on the surface of the steel.
散布工程の後、一次焼結工程を行う。一次焼結工程では、散布時の散布層の空孔率を維持するため、銅合金に液相が発生する温度(融点)よりも50℃以上低い焼結温度で焼結を行う必要がある。これにより、銅合金に液相が発生するのを防ぐことができる。焼結温度は、例えば、10質量%の錫を含有した銅合金を焼結する場合、700〜740℃の焼結温度で焼結を行う。そして、銅合金の加熱を開始して焼結温度になった後には、その焼結温度で2〜10分間保持し、その後冷却する。また、一次焼結工程では、収縮率(収縮率:1−焼結層厚(mm)/散布層厚(mm))が3〜10%になるように焼結を行う。このように、一次焼結時の収縮率が3〜10%になるように焼結を行った場合には、図2(b)に示すように、焼結層の空孔率が55〜75%になる。なお、銅合金に液相が発生する焼結温度で焼結を行うと、焼結層の空孔率が低下してしまい、一次焼結時の収縮率が10%を超えるようになる。そして、一次焼結時の収縮率が10%を超えたときの焼結層の断面を測定すると、図3(b)に示す組織と同じように、銅合金粉末同士のネック形成が多くみられ、結果、焼結層(摺動層)中の島状銅合金相の形成量が少なくなる。一方、一次焼結時の収縮率が3%未満になると、焼結層の強度が低すぎて、後述する圧延時に焼結層が破壊されてしまう。 After the spraying process, a primary sintering process is performed. In the primary sintering step, it is necessary to perform sintering at a sintering temperature lower by 50 ° C. or more than the temperature (melting point) at which the liquid phase is generated in the copper alloy in order to maintain the porosity of the spray layer during spraying. Thereby, it can prevent that a liquid phase generate | occur | produces in a copper alloy. For example, when sintering a copper alloy containing 10% by mass of tin, sintering is performed at a sintering temperature of 700 to 740 ° C. And after heating of a copper alloy is started and it becomes sintering temperature, it hold | maintains at the sintering temperature for 2 to 10 minutes, and cools after that. In the primary sintering step, sintering is performed so that the shrinkage ratio (shrinkage ratio: 1-sintered layer thickness (mm) / spreading layer thickness (mm)) is 3 to 10%. Thus, when sintering was performed such that the shrinkage rate during primary sintering was 3 to 10%, the porosity of the sintered layer was 55 to 75 as shown in FIG. %become. In addition, when sintering is performed at a sintering temperature at which a liquid phase is generated in the copper alloy, the porosity of the sintered layer is reduced, and the shrinkage rate during primary sintering exceeds 10%. And when the cross section of the sintered layer when the shrinkage rate during primary sintering exceeds 10%, the neck formation between the copper alloy powders is often observed as in the structure shown in FIG. As a result, the amount of island-shaped copper alloy phase formed in the sintered layer (sliding layer) is reduced. On the other hand, if the shrinkage rate during primary sintering is less than 3%, the strength of the sintered layer is too low, and the sintered layer is destroyed during rolling described later.
一次焼結工程の後、圧延機を用いて焼結層を緻密化する圧延工程を行う。圧延前の焼結層の空孔率が55〜75%の場合(図2(b))には、圧延時の潰し代(圧延前に空孔を有する焼結層の厚さと、圧延後に空孔が無くなり緻密化された焼結層の厚さとの差)が多い。このため、図2(c)に示すように、圧延後に鱗片状黒鉛粉末の長軸の向きが揃う。また、一次焼結工程では、図2(b)に示すように、銅合金粉末同士のネック形成が少ないので、その後の圧延工程において、鱗片状黒鉛粉末が銅合金粉末同士の隙間に入り込み、鱗片状黒鉛粉末に囲まれた島状銅合金相が多く形成される。一方、散布層の空孔率が60%未満の場合(図3(a))には、焼結層の空孔率も低くなる。そして、圧延前の焼結層の空孔率が55%未満の場合には、図3(b)に示すように、圧延時の潰し代が少ない。このため、図3(c)に示すように、圧延後に鱗片状黒鉛粉末の長軸の向きが揃わない。また、一次焼結工程では、図3(b)に示すように、銅合金粉末同士のネック形成が多いので、その後の圧延工程において、鱗片状黒鉛粉末が銅合金粉末同士の隙間に入り込むことができず、鱗片状黒鉛粉末に囲まれた島状銅合金相はほとんど形成されない。 After the primary sintering step, a rolling step for densifying the sintered layer is performed using a rolling mill. When the porosity of the sintered layer before rolling is 55 to 75% (FIG. 2 (b)), the crushing allowance during rolling (the thickness of the sintered layer having pores before rolling and the void after rolling) There are many differences between the thickness of the sintered layer that has been eliminated and the holes have been densified. For this reason, as shown in FIG.2 (c), the direction of the major axis of scaly graphite powder aligns after rolling. Further, in the primary sintering process, as shown in FIG. 2 (b), since there is little neck formation between the copper alloy powders, in the subsequent rolling process, the scaly graphite powder enters the gaps between the copper alloy powders, Many island-like copper alloy phases surrounded by the graphite powder are formed. On the other hand, when the porosity of the sprayed layer is less than 60% (FIG. 3A), the porosity of the sintered layer is also lowered. And when the porosity of the sintered layer before rolling is less than 55%, as shown in FIG. For this reason, as shown in FIG.3 (c), the direction of the major axis of scaly graphite powder does not align after rolling. Further, in the primary sintering process, as shown in FIG. 3 (b), there is much neck formation between the copper alloy powders. The island-like copper alloy phase surrounded by the scaly graphite powder cannot be formed.
圧延工程(一次圧延工程)の後、二次焼結工程を行うが、この二次焼結工程では、一次焼結工程と同様の条件で焼結し、必要に応じて二次圧延工程を行う。 After the rolling process (primary rolling process), a secondary sintering process is performed. In this secondary sintering process, sintering is performed under the same conditions as the primary sintering process, and a secondary rolling process is performed as necessary. .
銅合金粉末について、平均粒径d50が25μm未満のものを用いると、一次焼結後の焼結層の空孔率が75%より大きくなるため、焼結層の強度が低くなり、圧延時に焼結層が破壊される。一方、銅合金粉末の平均粒径d50が50μmを超えると、一次焼結後の焼結層の空孔率が55%より小さくなるため、鱗片状黒鉛粉末に囲まれた島状銅合金相はほとんど形成されない。 When a copper alloy powder having an average particle diameter d50 of less than 25 μm is used, the porosity of the sintered layer after the primary sintering becomes greater than 75%, so that the strength of the sintered layer is lowered, and the sintered layer is sintered during rolling. The stratification is destroyed. On the other hand, when the average particle diameter d50 of the copper alloy powder exceeds 50 μm, the porosity of the sintered layer after the primary sintering becomes smaller than 55%, so the island-shaped copper alloy phase surrounded by the scaly graphite powder is Little formed.
図2(c)に示すように、一次焼結後の焼結層の空孔率が55〜75%であり、圧延時の潰し代が多い場合には、鱗片状黒鉛の粉末の長軸の向きが揃うが、粒径の小さい鱗片状黒鉛粉末を用いると、粒径の大きい鱗片状黒鉛粉末に比べて、長軸の向きが揃いにくい。このため、鱗片状黒鉛粉末の粒径が小さくなるほど、鱗片状黒鉛粉末に囲まれた島状銅合金相の形成への寄与が小さい。また、摺動層に含まれる鱗片状黒鉛の量を一定とするならば、鱗片状黒鉛粉末の粒径が大きくなるほどその粉末の個数が減り、鱗片状黒鉛粉末に囲まれた島状銅合金相は形成されにくくなる。このように、鱗片状黒鉛の粒径が小さすぎる場合や、大きすぎる場合のいずれも、鱗片状黒鉛粉末によって囲まれた島状銅合金相は形成されにくくなる。具体的には、粒径が45μm未満の鱗片状黒鉛粉末は、鱗片状黒鉛粉末によって囲まれた島状銅合金相の形成への寄与が小さく、粒径が75μmを超えた鱗片状黒鉛粉末も、鱗片状黒鉛粉末によって囲まれた島状銅合金相の形成への寄与が小さい。したがって、粒径が45〜75μmの範囲にあるものを60%以上含む鱗片状黒鉛粉末を用いなければ、鱗片状黒鉛粉末によって囲まれた島状銅合金相は形成されない。また、上記のような理由から、最大粒径が300μmを超える鱗片状黒鉛粉末が含まれる場合にも、鱗片状黒鉛粉末によって囲まれた島状銅合金相は形成されにくくなる。 As shown in FIG. 2 (c), the porosity of the sintered layer after primary sintering is 55 to 75%, and when the crushing allowance during rolling is large, the long axis of the flake graphite powder Although the orientations are uniform, the use of flaky graphite powder with a small particle size makes it difficult to align the major axes as compared with flaky graphite powder with a large particle size. For this reason, the smaller the particle size of the scaly graphite powder, the smaller the contribution to the formation of the island-like copper alloy phase surrounded by the scaly graphite powder. If the amount of scaly graphite contained in the sliding layer is constant, the larger the particle size of scaly graphite powder, the smaller the number of powders, and the island-like copper alloy phase surrounded by scaly graphite powder. Becomes difficult to form. Thus, the island-like copper alloy phase surrounded by the flaky graphite powder is less likely to be formed when the particle size of the flaky graphite is too small or too large. Specifically, the flaky graphite powder having a particle size of less than 45 μm has a small contribution to the formation of the island-like copper alloy phase surrounded by the flaky graphite powder, and the flaky graphite powder having a particle size exceeding 75 μm is also used. The contribution to the formation of the island-shaped copper alloy phase surrounded by the scaly graphite powder is small. Therefore, unless a scaly graphite powder containing 60% or more of particles having a particle size in the range of 45 to 75 μm is used, the island-like copper alloy phase surrounded by the scaly graphite powder is not formed. For the reasons described above, even when scaly graphite powder having a maximum particle size exceeding 300 μm is included, the island-shaped copper alloy phase surrounded by scaly graphite powder is difficult to form.
次に、本実施形態に係る実施例1〜14及び比較例1〜6を作製し、その銅合金相の形態を測定すると共に、往復摺動試験を行った。実施例1〜14及び比較例1〜6の成分、銅合金相の形態、往復摺動試験での静摩擦係数の測定結果を、表1に示す。 Next, Examples 1 to 14 and Comparative Examples 1 to 6 according to this embodiment were produced, and the form of the copper alloy phase was measured, and a reciprocating sliding test was performed. Table 1 shows the measurement results of the components of Examples 1 to 14 and Comparative Examples 1 to 6, the form of the copper alloy phase, and the static friction coefficient in the reciprocating sliding test.
銅系摺動部材の断面測定は、摺動面の垂直方向に切断し、2.3mm×0.7mmの範囲で組成像(倍率:50倍)を撮影した。また、得られた組成像を、一般的な画像解析手法(解析ソフト:Image−Pro Plus(Version4.5);(株)プラネトロン製)を用いて摺動面に平行方向の長さが25〜500μmである島状銅合金相の面積の和を測定し、摺動層全体の面積から、摺動面に平行方向の長さが25〜500μmである島状銅合金相の占める割合を算出した。また、この面積の割合は、6視野(6つの異なる任意の断面)の組成像を用いて、その平均を求めた。この結果は、表1の「25〜500μmの島状銅合金相(体積%)」欄に示す。 For the cross-sectional measurement of the copper-based sliding member, the composition image (magnification: 50 times) was taken in the range of 2.3 mm × 0.7 mm by cutting in the direction perpendicular to the sliding surface. In addition, the obtained composition image is obtained by using a general image analysis method (analysis software: Image-Pro Plus (Version 4.5); manufactured by Planetron Co., Ltd.) having a length in the direction parallel to the sliding surface of 25 to 25. The sum of the area of the island-shaped copper alloy phase which is 500 μm was measured, and the proportion of the island-shaped copper alloy phase whose length in the direction parallel to the sliding surface was 25 to 500 μm was calculated from the area of the entire sliding layer. . Moreover, the ratio of this area calculated | required the average using the composition image of six visual fields (six different arbitrary cross sections). This result is shown in the column “25 to 500 μm island-shaped copper alloy phase (volume%)” in Table 1.
また、アスペクト比は、得られた組成像を上記解析ソフトを用いて、摺動層の厚さ方向の長さをY軸とし、それに対して垂直方向の長さをX軸とした場合の各島状銅合金相のY軸方向の長さ(y)とX軸方向の長さ(x)を測定し、それら各長さの比(x/y)を算出して求めた。その中からアスペクト比が1.2〜5のものの面積の和を測定し、摺動面に平行方向の長さが25〜500μmである島状銅合金相の全体の面積から、アスペクト比が1.2〜5である島状銅合金相の占める割合を算出した。この結果は、表1の「アスペクト比:1.2〜5(体積%)」欄に示す。 In addition, the aspect ratio is obtained by using the above analysis software for the obtained composition image when the length in the thickness direction of the sliding layer is set as the Y axis and the length in the vertical direction is set as the X axis. The length (y) in the Y-axis direction and the length (x) in the X-axis direction of the island-shaped copper alloy phase were measured, and the ratio (x / y) of these lengths was calculated and determined. The sum of the areas having an aspect ratio of 1.2 to 5 was measured, and the aspect ratio was 1 from the total area of the island-shaped copper alloy phase having a length in the direction parallel to the sliding surface of 25 to 500 μm. The ratio of the island-like copper alloy phase of 2 to 5 was calculated. The results are shown in the column “Aspect ratio: 1.2 to 5 (volume%)” in Table 1.
また、往復摺動試験は、表2に示す条件で実施した。静摩擦係数の測定方法は、摺動方向が変化した直後の摩擦係数を測定し、これを4時間繰り返し、その平均値を求めた。また、往復摺動試験での摩擦係数の測定は、摺動方向の変化時の摩擦係数のピークを、静摩擦係数として測定している。また、試験時間は4時間であるが、摩耗量が50μmを超えた場合、異常摩耗と判断し、試験を終了した。 The reciprocating sliding test was performed under the conditions shown in Table 2. The static friction coefficient was measured by measuring the friction coefficient immediately after the sliding direction was changed and repeating this for 4 hours to obtain the average value. In addition, in the measurement of the friction coefficient in the reciprocating sliding test, the peak of the friction coefficient when the sliding direction changes is measured as the static friction coefficient. The test time was 4 hours, but when the amount of wear exceeded 50 μm, it was judged as abnormal wear and the test was terminated.
実施例1〜3、6〜11は、水アトマイズ法を用いて作製した平均粒径d50が35μmの異形状の銅合金粉末と、粒径が45〜75μmの範囲にあるものが80質量%を占め、且つ、最大粒径が106〜150μmの範囲にある鱗片状黒鉛粉末と、を表1の成分となるように一般的な混合機を用いて混合し、混合粉末を作製した。Sn、Ni、P、Pb、Biの成分は、合金化され銅合金粉末に含まれている。そして、帯鋼(鋼裏金)上に作製した混合粉末を散布して散布層を形成し、700〜740℃の焼結温度で一次焼結を行い、焼結層を形成した。次に、焼結層を緻密化する圧延および700〜740℃の焼結温度での二次焼結を行い、銅系摺動部材を作製した。なお、表1の「黒鉛45〜75μm(質量%)」欄には、原材料である鱗片状黒鉛粉末のうち、粒径が45〜75μmの範囲にあるものが占める質量割合を示し、「散布層の空孔率(%)」欄には、散布層の空孔率を示し、「収縮率(%)」欄には、一次焼結工程での収縮率(収縮率:1−一次焼結後の焼結層厚(mm)/散布層厚(mm))を示し、「焼結層の空孔率(%)」欄には、一次焼結後の焼結層の空孔率を示す。 In Examples 1 to 3 and 6 to 11, an irregularly shaped copper alloy powder having an average particle diameter d50 of 35 μm and a particle diameter in the range of 45 to 75 μm produced by using the water atomization method is 80% by mass. Occurred and the flaky graphite powder having a maximum particle size in the range of 106 to 150 μm was mixed using a general mixer so as to be the components shown in Table 1 to prepare a mixed powder. The components of Sn, Ni, P, Pb, and Bi are alloyed and contained in the copper alloy powder. And the mixed powder produced on the steel strip (steel back metal) was spread | dispersed, the spreading layer was formed, primary sintering was performed at the sintering temperature of 700-740 degreeC, and the sintered layer was formed. Next, rolling to densify the sintered layer and secondary sintering at a sintering temperature of 700 to 740 ° C. were performed to produce a copper-based sliding member. In addition, in the column of “graphite 45 to 75 μm (mass%)” in Table 1, the mass ratio of the raw graphite powder having a particle size in the range of 45 to 75 μm is shown. "Porosity (%)" column shows the porosity of the spray layer, and "Shrinkage (%)" column shows the shrinkage ratio (shrinkage ratio: 1- after primary sintering) in the primary sintering step. Sintered layer thickness (mm) / spreaded layer thickness (mm)), and the “sintered layer porosity (%)” column shows the porosity of the sintered layer after primary sintering.
実施例4は、銅合金粉末として、水アトマイズ法を用いて作製した平均粒径d50が50μmの異形状の銅合金粉末を用い、これ以外は実施例1と同様に作製した。 Example 4 was prepared in the same manner as in Example 1 except that an irregularly shaped copper alloy powder having an average particle diameter d50 of 50 μm produced using a water atomization method was used as the copper alloy powder.
実施例5は、鱗片状黒鉛粉末として、粒径が45〜75μmの範囲にあるものが60質量%を占め、且つ、最大粒径が106〜150μmの範囲にある鱗片状黒鉛粉末を用い、これ以外は実施例1と同様に作製した。 Example 5 uses a scaly graphite powder having a particle size in the range of 45 to 75 μm occupying 60% by mass and a maximum particle size in the range of 106 to 150 μm as the scaly graphite powder. Except for the above, it was produced in the same manner as in Example 1.
実施例13は、銅合金粉末として、水アトマイズ法を用いて作製した平均粒径d50が25μmの異形状の銅合金粉末を用い、これ以外は実施例1と同様に作製した。 In Example 13, a copper alloy powder having an average particle diameter d50 of 25 μm and produced using a water atomizing method was used as a copper alloy powder, and the other than that, it was produced in the same manner as in Example 1.
実施例14は、鱗片状黒鉛粉末として、粒径が45〜75μmの範囲にあるものが95質量%を占め、且つ、最大粒径が106〜150μmの範囲にある鱗片状黒鉛粉末を用い、これ以外は実施例1と同様に作製した。 In Example 14, a scaly graphite powder having a particle size in the range of 45 to 75 μm occupies 95% by mass and a maximum particle size in the range of 106 to 150 μm is used. Except for the above, it was produced in the same manner as in Example 1.
実施例1〜11,13,14は、摺動面に平行方向の長さが25〜500μmである島状銅合金相が5〜40体積%形成され、静摩擦係数が低い結果となった。また、実施例3,13,14は、焼結層の空孔率(散布層の空孔率)が高くなるように制御することで、摺動面に平行方向の長さが25〜500μmである島状銅合金相が多く形成されている。特に、実施例3は、焼結層の空孔率(散布層の空孔率)が高くなるように制御することで、摺動層に対する摺動面に平行方向の長さが25〜500μmである島状銅合金相の割合が40体積%ともっとも多く形成されている。このような実施例3,13,14では、摺動面に平行方向の長さが25〜500μmである島状銅合金相のうち、アスペクト比が1.2〜5のものが50体積%以上と多く、特に静摩擦係数が低い結果となった。 In Examples 1 to 11, 13, and 14, 5 to 40% by volume of an island-like copper alloy phase having a length in the direction parallel to the sliding surface of 25 to 500 μm was formed, resulting in a low coefficient of static friction. In Examples 3, 13, and 14, the length in the direction parallel to the sliding surface is 25 to 500 μm by controlling the sintered layer to have a higher porosity (spreading layer porosity). Many island-like copper alloy phases are formed. In particular, in Example 3, the length in the direction parallel to the sliding surface with respect to the sliding layer is 25 to 500 μm by controlling so that the porosity of the sintered layer (the porosity of the spreading layer) is increased. The ratio of a certain island-like copper alloy phase is formed as much as 40% by volume. In such Examples 3, 13, and 14, among the island-like copper alloy phases whose length in the direction parallel to the sliding surface is 25 to 500 μm, those having an aspect ratio of 1.2 to 5 are 50% by volume or more. In particular, the coefficient of static friction was low.
実施例12は、実施例1と同様に作製したが、粉末混合工程で、同時に硬質粒子(Mo2C)も添加し混合した。硬質粒子の成分量は、表1になるように添加した。硬質粒子を添加しても、実施例1と同じ結果が得られた。 Example 12 was produced in the same manner as in Example 1, but hard particles (Mo 2 C) were also added and mixed at the same time in the powder mixing step. The component amount of the hard particles was added as shown in Table 1. Even when hard particles were added, the same results as in Example 1 were obtained.
比較例1は、実施例1と同じ鱗片状黒鉛粉末を用い、摺動層中の黒鉛含有量を15体積%とし、これ以外は実施例1と同様に作製した。この比較例1は、摺動層中の黒鉛含有量が15体積%と少ないため、鱗片状黒鉛粉末によって銅合金が囲まれる割合が低くなった。このため、摺動層中に黒鉛に囲まれた島状銅合金相がほとんど形成されず、静摩擦係数が実施例1よりも高い結果となった。 Comparative Example 1 was prepared in the same manner as in Example 1 except that the same scaly graphite powder as in Example 1 was used, and the graphite content in the sliding layer was 15% by volume. In Comparative Example 1, since the graphite content in the sliding layer was as low as 15% by volume, the ratio of the copper alloy surrounded by the scaly graphite powder was low. For this reason, the island-like copper alloy phase surrounded by graphite was hardly formed in the sliding layer, and the static friction coefficient was higher than that of Example 1.
比較例2は、鱗片状黒鉛粉末として、粒径が45〜75μmの範囲にあるものが50質量%を占め、且つ、75〜300μmの範囲にあるものが50質量%を占める鱗片状黒鉛粉末を用い、これ以外は実施例1と同様に作製した。この比較例2は、粒径が45〜75μmの範囲にある鱗片状黒鉛粉末を50質量%しか含まないために、鱗片状黒鉛粉末の個数が少なく、鱗片状黒鉛粉末によって銅合金が囲まれにくい。このため、摺動層中に黒鉛に囲まれた島状銅合金相がほとんど形成されず、静摩擦係数が実施例1よりも高い結果となった。 Comparative Example 2 is a flaky graphite powder having a particle size in the range of 45 to 75 μm occupying 50% by mass, and in the range of 75 to 300 μm occupying 50% by mass. Other than this, it was produced in the same manner as in Example 1. Since this comparative example 2 contains only 50% by mass of scaly graphite powder having a particle size in the range of 45 to 75 μm, the number of scaly graphite powder is small, and the copper alloy is hardly surrounded by the scaly graphite powder. . For this reason, the island-like copper alloy phase surrounded by graphite was hardly formed in the sliding layer, and the static friction coefficient was higher than that of Example 1.
比較例3は、銅合金粉末として、水アトマイズ法を用いて作製した平均粒径d50が55μmの異形状の銅合金粉末を用い、これ以外は実施例1と同様に作製した。この比較例3は、銅合金粉末の平均粒径d50が55μmと大きいため、散布層の空孔率が低くなってしまい、焼結層の空孔率も低くなった。このため、摺動層中に黒鉛に囲まれた島状銅合金相がほとんど形成されず、静摩擦係数が実施例1よりも高い結果となった。 Comparative Example 3 was produced in the same manner as in Example 1 except that an irregularly shaped copper alloy powder having an average particle diameter d50 of 55 μm produced using a water atomization method was used as the copper alloy powder. In Comparative Example 3, since the average particle diameter d50 of the copper alloy powder was as large as 55 μm, the porosity of the spray layer was low, and the porosity of the sintered layer was also low. For this reason, the island-like copper alloy phase surrounded by graphite was hardly formed in the sliding layer, and the static friction coefficient was higher than that of Example 1.
比較例4は、銅合金粉末として、ガスアトマイズ法を用いて作製した平均粒径d50が35μmの銅合金粉末を用い、これ以外は実施例1と同様に作製した。ガスアトマイズ法を用いて銅合金粉末を作製した場合、その粉末は球形状となる。この比較例3は、球形状の銅合金粉末を用いたため、散布層の空孔率が低くなってしまい、焼結層の空孔率も低くなった。このため、摺動層中に黒鉛に囲まれた島状銅合金相がほとんど形成されず、静摩擦係数が実施例1よりも高い結果となった。 Comparative Example 4 was prepared in the same manner as in Example 1 except that a copper alloy powder having an average particle diameter d50 of 35 μm prepared using a gas atomization method was used as the copper alloy powder. When copper alloy powder is produced using the gas atomization method, the powder has a spherical shape. In Comparative Example 3, since the spherical copper alloy powder was used, the porosity of the spray layer was low, and the porosity of the sintered layer was also low. For this reason, the island-like copper alloy phase surrounded by graphite was hardly formed in the sliding layer, and the static friction coefficient was higher than that of Example 1.
比較例5は、銅合金の一部が液相になる850℃の焼結温度で焼結を行い、これ以外は実施例1と同様に作製した。この比較例5は、散布層の空孔率が67%であったが、一次焼結時に銅合金の液相が発生し、焼結層の空孔率が51%に低下した。このため、摺動層中に黒鉛に囲まれた島状銅合金相がほとんど形成されず、静摩擦係数が実施例1よりも高い結果となった。 In Comparative Example 5, sintering was performed at a sintering temperature of 850 ° C. in which a part of the copper alloy was in a liquid phase, and the others were produced in the same manner as Example 1. In Comparative Example 5, the porosity of the spray layer was 67%, but a liquid phase of the copper alloy was generated during the primary sintering, and the porosity of the sintered layer was reduced to 51%. For this reason, the island-like copper alloy phase surrounded by graphite was hardly formed in the sliding layer, and the static friction coefficient was higher than that of Example 1.
比較例6は、銅合金粉末として銅粉末と錫粉末の混合粉末を用い、これ以外は実施例1と同様に作製した。この比較例5は、一次焼結時の昇温過程で、まず、錫粉末が液相となり、錫の液相により銅粉末の一部が液相化され、焼結層の空孔率が51%に低下した。このため、摺動層中に黒鉛に囲まれた島状銅合金相がほとんど形成されず、静摩擦係数が実施例1よりも高い結果となった。 Comparative Example 6 was prepared in the same manner as in Example 1 except that a mixed powder of copper powder and tin powder was used as the copper alloy powder. In this comparative example 5, in the temperature raising process during primary sintering, first, the tin powder becomes a liquid phase, and a part of the copper powder is made into a liquid phase by the liquid phase of tin, and the porosity of the sintered layer is 51. %. For this reason, the island-like copper alloy phase surrounded by graphite was hardly formed in the sliding layer, and the static friction coefficient was higher than that of Example 1.
Claims (4)
前記摺動層は銅合金と20〜40体積%の黒鉛とからなり、前記銅合金はSnを1〜15質量%含有し、残部が銅及び不可避不純物からなる銅系摺動部材において、
前記摺動層は、前記黒鉛により取り囲まれた海島構造の形態で前記摺動層中に分散する島状銅合金相を含み、
前記島状銅合金相は、前記摺動面に平行方向の長さが25〜500μmであるものを含み、
前記摺動層に対する前記摺動面に平行方向の長さが25〜500μmである島状銅合金相の割合は、5〜40体積%であることを特徴とする銅系摺動部材。 A copper-based sliding member provided with a sliding layer having a sliding surface on the surface of the steel back metal,
The sliding layer is made of a copper alloy and 20 to 40% by volume of graphite, the copper alloy contains 1 to 15% by mass of Sn, and the remainder is made of copper and inevitable impurities.
The sliding layer includes an island-shaped copper alloy phase dispersed in the sliding layer in the form of a sea-island structure surrounded by the graphite,
The island-shaped copper alloy phase includes one having a length in a direction parallel to the sliding surface of 25 to 500 μm,
The ratio of the island-like copper alloy phase whose length in a direction parallel to the said sliding surface with respect to the said sliding layer is 25-500 micrometers is 5-40 volume%, The copper-type sliding member characterized by the above-mentioned.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016069455A JP6242424B2 (en) | 2016-03-30 | 2016-03-30 | Copper-based sliding member |
TW106106216A TWI620825B (en) | 2016-03-30 | 2017-02-23 | Sliding member |
CN201710192600.6A CN107269706B (en) | 2016-03-30 | 2017-03-28 | Slide unit |
KR1020170039309A KR101911450B1 (en) | 2016-03-30 | 2017-03-28 | Sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016069455A JP6242424B2 (en) | 2016-03-30 | 2016-03-30 | Copper-based sliding member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017179496A JP2017179496A (en) | 2017-10-05 |
JP6242424B2 true JP6242424B2 (en) | 2017-12-06 |
Family
ID=60003773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016069455A Active JP6242424B2 (en) | 2016-03-30 | 2016-03-30 | Copper-based sliding member |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6242424B2 (en) |
KR (1) | KR101911450B1 (en) |
CN (1) | CN107269706B (en) |
TW (1) | TWI620825B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11231067B2 (en) * | 2018-05-10 | 2022-01-25 | Nissan Motor Co., Ltd. | Bearing member |
JP7092636B2 (en) * | 2018-10-22 | 2022-06-28 | 大同メタル工業株式会社 | Sliding members and bearing devices using them |
JP7029384B2 (en) * | 2018-12-18 | 2022-03-03 | 大同メタル工業株式会社 | Sliding member |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11286704A (en) * | 1998-04-02 | 1999-10-19 | Sumitomo Electric Ind Ltd | Friction member and its production |
JP3939931B2 (en) * | 2001-03-23 | 2007-07-04 | 大同メタル工業株式会社 | Copper-based multi-layer sliding material |
JP4211048B2 (en) * | 2003-03-28 | 2009-01-21 | 三菱マテリアルPmg株式会社 | Manufacturing method of sliding parts |
CN1546878A (en) * | 2003-11-28 | 2004-11-17 | 东风汽车有限公司 | Bearing bush strip and production method thereof |
DE102004011831B3 (en) * | 2004-03-11 | 2005-03-31 | Federal-Mogul Deva Gmbh | Sintered, solid-lubricated copper-based bearing material for dry sliding and rotating bearings, contains tin, bismuth and graphite |
US7851055B2 (en) * | 2005-03-29 | 2010-12-14 | Hitachi Metals, Ltd. | High-thermal-conductivity graphite-particles-dispersed-composite and its production method |
US8679641B2 (en) * | 2007-01-05 | 2014-03-25 | David M. Saxton | Wear resistant lead free alloy bushing and method of making |
CN102037158B (en) * | 2009-01-28 | 2014-05-28 | 东洋铝株式会社 | Carbon-coated aluminum member and method for producing the same |
JP5525986B2 (en) * | 2009-12-21 | 2014-06-18 | 日立粉末冶金株式会社 | Sintered valve guide and manufacturing method thereof |
JP2012005320A (en) * | 2010-06-21 | 2012-01-05 | Tokai Rika Co Ltd | Wireless power transmission system |
US9034466B2 (en) * | 2010-07-09 | 2015-05-19 | Daido Metal Company Ltd. | Sliding member |
KR101245743B1 (en) * | 2010-11-22 | 2013-03-25 | 주식회사 티엔피 | Wear plate and manufacturing method thereof |
JP6021468B2 (en) * | 2012-06-26 | 2016-11-09 | 東芝メディカルシステムズ株式会社 | Medical image display device |
JP6468766B2 (en) * | 2014-09-11 | 2019-02-13 | 株式会社ダイヤメット | Sintered sliding material with excellent corrosion resistance, heat resistance and wear resistance, and method for producing the same |
-
2016
- 2016-03-30 JP JP2016069455A patent/JP6242424B2/en active Active
-
2017
- 2017-02-23 TW TW106106216A patent/TWI620825B/en active
- 2017-03-28 KR KR1020170039309A patent/KR101911450B1/en active IP Right Grant
- 2017-03-28 CN CN201710192600.6A patent/CN107269706B/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI620825B (en) | 2018-04-11 |
KR101911450B1 (en) | 2018-10-24 |
JP2017179496A (en) | 2017-10-05 |
CN107269706A (en) | 2017-10-20 |
TW201741467A (en) | 2017-12-01 |
CN107269706B (en) | 2019-04-16 |
KR20170113330A (en) | 2017-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Junior et al. | Evaluation of microstructure, mechanical and tribological properties of a Babbitt alloy deposited by arc and flame spray processes | |
Liu et al. | Tribological behavior and self-healing functionality of M50 material covered with surface micropores filled with Sn-Ag-Cu | |
JP6300843B2 (en) | Sliding member | |
JP6242424B2 (en) | Copper-based sliding member | |
JP6298132B1 (en) | Sliding member | |
US20180119265A1 (en) | Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder | |
CN104838183B (en) | Piston ring sprayed coating, piston ring, and method for producing piston ring sprayed coating | |
JP5058276B2 (en) | Copper-based sliding material | |
JP2008144253A (en) | Copper-based slide material and its manufacturing method | |
JP6267174B2 (en) | Sliding member | |
CN103394688A (en) | Heatproof anti-wear self-lubrication material and preparation method thereof | |
JP6760807B2 (en) | Copper-based sintered alloy oil-impregnated bearing | |
JP6587571B2 (en) | Copper-based sliding member | |
JP5340355B2 (en) | Copper-based sliding material | |
JP5403636B2 (en) | Copper-based sliding material | |
Chen et al. | Cold spraying: A new alternative preparation method for nickel-based high-temperature solid-lubrication coating | |
JP6738619B2 (en) | Thermal spray material and its use | |
JP6624679B2 (en) | Sliding member | |
JP6938086B2 (en) | Sliding member | |
JP5546485B2 (en) | Sliding resin composition | |
Chen et al. | Effect of Nd 2 O 3 Additive on Microstructure and Tribological Properties of Plasma-Sprayed NiCr-Cr 2 O 3 Composite Coatings | |
JP3308473B2 (en) | Sliding metal and manufacturing method thereof | |
JP2018165402A (en) | Piston ring and manufacturing method therefor | |
JP6712202B2 (en) | Sliding member | |
US11097344B2 (en) | Multilayered sintered plate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6242424 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |