JP6238716B2 - Discrimination method and apparatus for surface defect depth of inspection object - Google Patents

Discrimination method and apparatus for surface defect depth of inspection object Download PDF

Info

Publication number
JP6238716B2
JP6238716B2 JP2013254312A JP2013254312A JP6238716B2 JP 6238716 B2 JP6238716 B2 JP 6238716B2 JP 2013254312 A JP2013254312 A JP 2013254312A JP 2013254312 A JP2013254312 A JP 2013254312A JP 6238716 B2 JP6238716 B2 JP 6238716B2
Authority
JP
Japan
Prior art keywords
depth
surface defect
flaw detection
inspected
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013254312A
Other languages
Japanese (ja)
Other versions
JP2015114127A (en
Inventor
利英 福井
利英 福井
和佐 泰宏
泰宏 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013254312A priority Critical patent/JP6238716B2/en
Publication of JP2015114127A publication Critical patent/JP2015114127A/en
Application granted granted Critical
Publication of JP6238716B2 publication Critical patent/JP6238716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、鋼材や棒鋼に存在する表面欠陥の深さを弁別する被検査体の表面欠陥深さの弁別方法及びその装置に関する。   The present invention relates to a method for discriminating a surface defect depth of an object to be inspected and a device for discriminating the depth of a surface defect present in a steel material or a steel bar.

金属材料である棒鋼や鋼片などの被検査体の表面や表面皮下に存在する欠陥(以降、両者をまとめて「表面欠陥」と呼ぶ)の有無を検出したり、表面欠陥の深さを検出する方法、言い換えれば被検査体の品質を保証する方法としては、磁粉探傷法や超音波探傷法などが知られている。
磁粉探傷法は、湿式検査技術であって、被検査体表面にできた磁粉指示模様を観察することで表面欠陥を検出する技術であり、超音波探傷法は、超音波を用いて被検査体の表面及び内部に存在する欠陥を探傷する技術である。
Detects the presence or absence of defects (hereinafter collectively referred to as “surface defects”) on the surface of the object to be inspected, such as steel bars or steel slabs, which are metallic materials, and the depth of surface defects As a method for performing the inspection, in other words, a method for assuring the quality of the inspection object, a magnetic particle inspection method, an ultrasonic inspection method, and the like are known.
The magnetic particle flaw detection method is a wet inspection technology that detects a surface defect by observing the magnetic particle indication pattern formed on the surface of the object to be inspected. The ultrasonic flaw detection method uses ultrasonic waves to detect the object to be inspected. This is a technique for flaw detection on the surface and the inside of a wafer.

超音波探傷法としては、「垂直探傷法」と「斜角探傷法」と「表面探傷法」の3つの技術が一般に用いられている。具体的に、垂直探傷法は、被検査体の表面に対して垂直に進行する超音波を用いて被検査体内を探傷する技術であり、斜角探傷法は、被検査体の表面に対して斜めに進行する超音波を用いて被検査体内又は被検査体表面を探傷する技術である。表面探傷法は、被検査体の表面を伝播する表面超音波を用いて被検査体表面を探傷する技術である。   As an ultrasonic flaw detection method, three techniques of “vertical flaw detection method”, “bevel angle flaw detection method”, and “surface flaw detection method” are generally used. Specifically, the vertical flaw detection method is a technique for flaw detection in the inspected body using ultrasonic waves that travel perpendicularly to the surface of the object to be inspected, and the oblique flaw detection method is for the surface of the object to be inspected. This is a technique for flaw-detecting an inspected body or the surface of an inspected object using ultrasonic waves that travel obliquely. The surface flaw detection method is a technique for flaw-detecting the surface of an inspection object using surface ultrasonic waves that propagate on the surface of the inspection object.

被検査体の表面品質を保証する場合は、上記した磁粉探傷法や表面波探傷法などが用いられ、被検査体の内部品質を保証する場合は、垂直探傷法及び斜角探傷法が用いられている。
このように、様々な探傷手法があるが、より被検査体の表面や表面皮下に存在する欠陥や欠陥深さを正確に検出するため、すなわち被検査体の品質を確実に保証するために、上記した複数の探傷手法を組み合わせた被検査体の検査が行われている。
The above-mentioned magnetic particle inspection method and surface wave inspection method are used to guarantee the surface quality of the object to be inspected, and the vertical inspection method and the oblique inspection method are used to guarantee the internal quality of the object to be inspected. ing.
In this way, there are various flaw detection methods, but in order to accurately detect defects and defect depths existing on the surface of the object to be inspected and the surface under the skin, that is, in order to ensure the quality of the object to be inspected, Inspection of an object to be inspected that combines a plurality of flaw detection methods described above is performed.

複数の探傷手法を組み合わせた被検査体の検査技術としては、例えば、特許文献1及び特許文献2に開示されているようなものがある。
特許文献1には、鋼片等の被検材を表面欠陥探傷、超音波斜角探傷及び超音波垂直内部探傷により夫々探傷し、その探傷結果から被検材の合否判定を行なうに際して、表面欠陥探傷により検出された全ての欠陥及び斜角探傷により検出された欠陥のうち欠陥評定深さが疵取り限界値より浅い欠陥については、夫々の欠陥評定位置を疵取り限界値まで疵取りを行ない、垂直内部探傷により欠陥が検出された場合、及び斜角探傷により検出された欠陥のうち欠陥評定深さが疵取り限界値より深い欠陥については被検材を内部欠陥材として処理する鋼片等の被検材の合否判定方法が開示されている。
Examples of inspection techniques for an object to be inspected by combining a plurality of flaw detection techniques include those disclosed in Patent Document 1 and Patent Document 2.
In Patent Document 1, a specimen such as a steel slab is flaw-detected by surface defect flaw detection, ultrasonic oblique flaw detection, and ultrasonic vertical internal flaw detection. For defects detected by flaw detection and defects detected by oblique flaw detection, defects whose depth of defect evaluation is shallower than the chamfering limit value are chamfered to the chamfering limit value of each defect rating position, When a defect is detected by vertical internal flaw detection, and for defects detected by oblique flaw detection whose depth of defect evaluation is deeper than the cut-off limit value, such as a steel slab that treats the test material as an internal defect material, etc. A pass / fail determination method for a test material is disclosed.

また、特許文献2には、複数の非破壊試験を組み合わせた探傷方法において、浸透液を含む接触媒質を探傷面と探触子との間に供給して超音波探傷試験を行い、前記浸透液を含む接触媒質の供給から所要の浸透液浸透時間を経過したのちに浸透液による欠陥指示模様を検出する探傷方法が開示されている。   In Patent Document 2, in a flaw detection method combining a plurality of nondestructive tests, an ultrasonic flaw detection test is performed by supplying a contact medium containing a permeation liquid between a flaw detection surface and a probe, and the permeation liquid A flaw detection method for detecting a defect indicating pattern by a permeating liquid after a required permeating liquid permeation time has elapsed from the supply of the contact medium containing the liquid is disclosed.

特公平6−77000号公報Japanese Patent Publication No. 6-77000 特公平6−82118号公報Japanese Examined Patent Publication No. 6-82118

ところで、磁粉探傷法を用いて被検査体の検査を行う際には、本来、被検査体に存在している欠陥が検出されないことが稀にある。また、超音波探傷法を用いて被検査体の検査を行う際には、欠陥ではない箇所(例えば、略角状の被検査体のコーナーで反射した超音波など)を誤って欠陥として検出したり、被検査体に存在している欠陥の深さを誤って検出したりすることが稀にある。   By the way, when inspecting an object to be inspected using the magnetic particle flaw detection method, a defect that originally exists in the object to be inspected is rarely detected. Also, when inspecting an object to be inspected using the ultrasonic flaw detection method, a location that is not a defect (for example, an ultrasonic wave reflected at a corner of a substantially square object to be inspected) is erroneously detected as a defect. In rare cases, the depth of a defect existing in the inspection object is erroneously detected.

このような誤検出が発生した場合は、被検査体の品質を確実に保証することが不可能に
なる。例えば、実際に存在する被検査体の表面欠陥の深さが比較的浅いものであるにもかかわらず、表面欠陥の深さが「深い」と検出することもあれば、逆に、実際に存在する被検査体の表面欠陥の深さが比較的深いものであるにもかかわらず、表面欠陥の深さが「浅い」と検出することもある。
When such erroneous detection occurs, it becomes impossible to ensure the quality of the object to be inspected. For example, the depth of surface defects may be detected as "deep" even though the surface defect depth of the object to be inspected is relatively shallow. Even though the surface defect depth of the object to be inspected is relatively deep, the depth of the surface defect may be detected as “shallow”.

ただし、表面欠陥が浅いにもかかわらず「深い」ものとして検出された場合、検出された深さでその表面欠陥の箇所を削ることで製品として出荷することができ、また被検査体の前後端内部であれば、製品となる重量分を確保できるように被検査体の前後端を切削することで製品として出荷することができる。
一方で、表面欠陥が深いにもかかわらず「浅い」ものとして検出された場合、検出された深さでその表面欠陥の箇所を削ったとしても、表面欠陥は依然存在すること(削り残し)となり、係る状態のままでは製品として出荷することは非常に困難である。
However, if the surface defect is detected as “deep” despite being shallow, it can be shipped as a product by scraping the surface defect at the detected depth, and the front and rear ends of the object to be inspected. If it is inside, it can be shipped as a product by cutting the front and rear ends of the object to be inspected so as to ensure the weight of the product.
On the other hand, if a surface defect is detected as being "shallow" despite being deep, the surface defect will still exist (uncut) even if the surface defect is cut at the detected depth. In such a state, it is very difficult to ship as a product.

ところで、検出された表面欠陥は、探傷工程の後工程である表面欠陥除去工程で、検出された表面欠陥の位置データを基に、サーボグラインダーやフライスカッターなどの切削装置(疵取機)で自動的に取り除かれる。この表面欠陥除去工程で用いられる切削装置は、構造上、被検査体の表面から浅い箇所(例えば、数mm程度)の表面欠陥しか除去(疵取り)することができない。   By the way, the detected surface defects are automatically detected by a cutting device (trapping machine) such as a servo grinder or a milling cutter based on the position data of the detected surface defects in the surface defect removal process that is a subsequent process of the flaw detection process. Removed. The cutting device used in this surface defect removal process can remove (scratch) only surface defects at a shallow location (for example, about several mm) from the surface of the object to be inspected.

そこで、上述した「削り残し」を避けるため、表面欠陥の疵取り深さを切削装置の限界まで深く切削するように設定しておけば、表面欠陥の取り残しの確率は減少するようにはなるが、表面欠陥が存在する位置付近を深く切削する分、切削時間がかかると共に、切削刃の損耗も大きくなる虞がある。さらに、切削刃の損耗が大きくなるための疵取り不良や、損耗した切削刃を取り替える費用もかかり、製品の製造コストが増大する問題も生じる。   Therefore, if the depth of the surface defect is set to cut deeply to the limit of the cutting device in order to avoid the above-mentioned “uncut residue”, the probability of leaving the surface defect is reduced. Further, it takes a long time to cut deep in the vicinity of the position where the surface defect exists, and the wear of the cutting blade may be increased. In addition, there is a problem that scraping failure due to increased wear of the cutting blade, and cost for replacing the worn cutting blade, which increases the manufacturing cost of the product.

まとめれば、従来の被検査体の検査技術で探傷した表面欠陥を切削装置で切削しているだけでは、被検査体の表面欠陥が正確に探傷され、且つ被検査体から表面欠陥が確実に除去されたが不明である。
このような誤った探傷結果を回避するために、特許文献1や特許文献2などに開示されているように、複数の検査技術を組み合わせて、被検査体の検査を行うことも考えられる。
In summary, the surface defect detected by the conventional inspection technology of the inspection object is simply cut with the cutting device, and the surface defect of the inspection object is accurately detected, and the surface defect is surely removed from the inspection object. It is unknown.
In order to avoid such an erroneous flaw detection result, it is also conceivable to inspect the object to be inspected by combining a plurality of inspection techniques as disclosed in Patent Document 1 and Patent Document 2.

しかしながら、特許文献1や特許文献2では、2つ以上の検査技術を併用することが開示されているだけであって、上記した誤検出を回避すべく、2つ以上の検査技術を協働させ且つ有効に動作させるための手法の開示はなされていない。
そこで本発明は、上記問題点に鑑み、磁粉探傷法で得られた被検査体の表面欠陥の探傷結果と、表面波探傷法で得られた被検査体の表面欠陥深さの探傷結果とを用いて、当該被検査体の表面欠陥の深さを評価して、被検査体に存在する表面欠陥の深さを、正確且つ確実に弁別することができる被検査体の表面欠陥深さの弁別方法及びその装置を提供することを目的とする。
However, Patent Document 1 and Patent Document 2 only disclose that two or more inspection technologies are used in combination, and two or more inspection technologies are allowed to cooperate in order to avoid the above-described erroneous detection. In addition, no technique for effectively operating is disclosed.
Therefore, in view of the above problems, the present invention provides a flaw detection result of the surface defect of the inspection object obtained by the magnetic particle flaw detection method and a flaw detection result of the surface defect depth of the inspection object obtained by the surface wave flaw detection method. The surface defect depth of the object to be inspected can be accurately and reliably discriminated by evaluating the depth of the surface defect of the object to be inspected. It is an object to provide a method and apparatus.

上述の目的を達成するため、本発明においては以下の技術的手段を講じた。
本発明に係る被検査体の表面欠陥深さの弁別方法は、被検査体の表面及び/又は表面皮下に存在する表面欠陥を探傷すると共に、当該被検査体の表面欠陥の深さを評価して、被検査体に存在する表面欠陥の深さを弁別する被検査体の表面欠陥深さの弁別方法であって、粉探傷法を用いて、前記被検査体の表面欠陥を探傷し、前記被検査体に対して送出される超音波の周波数が変更可能とされている超音波探傷法を用いて、前記被検査体の表面欠陥を探傷すると共に当該表面欠陥の深さを検出し、前記磁粉探傷法で得られた表面欠陥の探傷結果と、前記超音波探傷法で得られた表面欠陥の探傷結果より傷が検出された場合と検出されない場合の組合せを評価することで、前記被検査体の表面欠陥の有無、及び表面欠陥の深さを弁別し、前記超音波探傷法で得られた表面欠陥の探傷結果から測定周波数が5MHz、2MHzおよび1.5MHzのときに反射信号が受信される場合と受信されない場合の組合せを評価することで、探傷された表面欠陥を、表面欠陥の深さごとに区分けされた深さランクに弁別することを特徴とする。
In order to achieve the above-described object, the present invention takes the following technical means.
The method for discriminating the surface defect depth of an object to be inspected according to the present invention detects a surface defect existing on the surface of the object to be inspected and / or the surface under the surface, and evaluates the depth of the surface defect of the object to be inspected. Te, a discriminating method of surface defect depth of the test subject to distinguish the depth of surface defects present in the object to be inspected, using a magnetic Konasagu scratch method, flaw detection surface defects of the object to be inspected, Using an ultrasonic flaw detection method in which the frequency of ultrasonic waves transmitted to the object to be inspected can be changed , the surface defect of the object to be inspected is detected and the depth of the surface defect is detected, By evaluating the combination of the case where the flaw is detected and the case where the flaw is not detected from the flaw detection result of the surface defect obtained by the magnetic particle flaw detection method and the flaw detection result of the surface defect obtained by the ultrasonic flaw detection method, absence of surface defects of the inspected, and discriminates the depth of the surface defect, the greater By examining the combination of the case where the reflected signal is received and the case where the reflected signal is not received when the measurement frequency is 5MHz, 2MHz and 1.5MHz from the surface defect inspection result obtained by the wave flaw detection method, In addition, it is characterized by discriminating into depth ranks classified according to the depth of surface defects .

発明に係る被検査体の表面欠陥深さの弁別装置は、被検査体の表面及び/又は表面皮下に存在する表面欠陥を探傷すると共に、当該被検査体の表面欠陥の深さを評価して、被検査体に存在する表面欠陥の深さを弁別する被検査体の表面欠陥深さの弁別装置であって、磁粉探傷法を用いて、前記被検査体の表面欠陥を探傷する磁粉探傷手段と、記被検査体に対して送出される超音波の周波数が変更可能とされている超音波探傷法を用いて、前記被検査体の表面欠陥を探傷すると共に当該表面欠陥の深さを検出する超音波探傷手段と、前記磁粉探傷手段で得られた表面欠陥の探傷結果と、前記超音波探傷手段で得られた表面欠陥の探傷結果より傷が検出された場合と検出されない場合の組合せを評価することで、前記被検査体の表面欠陥の有無、及び表面欠陥の深さを弁別する表面欠陥深さ弁別手段と、を有し、前記表面欠陥深さ弁別手段は、前記超音波探傷手段で得られた表面欠陥の探傷結果から測定周波数が5MHz、2MHzおよび1.5MHzのときに反射信号が受信される場合と受信されない場合の組合せを評価することで、探傷された表面欠陥を、表面欠陥の深さごとに区分けされた深さランクに弁別するように構成されていることを特徴とする。 The apparatus for discriminating the surface defect depth of an object to be inspected according to the present invention detects a surface defect existing on the surface and / or surface of the object to be inspected, and evaluates the depth of the surface defect of the object to be inspected. An apparatus for discriminating the surface defect depth of an object to be inspected for discriminating the depth of a surface defect existing in the object to be inspected, and for detecting the surface defect of the object to be inspected using a magnetic particle inspection method and means, prior SL using the ultrasonic flaw detection method is ultrasonic frequencies dispatched for inspection object is changeable, the depth of the surface defect while testing the surface defects of the object to be inspected Ultrasonic flaw detection means for detecting the surface flaw detection result obtained by the magnetic particle flaw detection means, and the case where a flaw is detected or not detected from the surface flaw detection result obtained by the ultrasonic flaw detection means to assess the combination, organic surface defects of the object to be inspected , And has a surface defect depth discrimination means for discriminating the depth of the surface defect, the said surface defect depth discrimination means, wherein the measuring frequency from the flaw detection results of the surface defect obtained by the ultrasonic flaw detection means 5MHz Discriminate flaws that have been inspected into depth ranks divided by the depth of surface defects by evaluating the combination of when reflected signals are received and not received at 2 MHz and 1.5 MHz It is comprised as follows.

本発明に係る被検査体の表面欠陥深さの弁別方法及びその装置によれば、磁粉探傷法で得られた被検査体の表面欠陥の探傷結果と、表面波探傷法で得られた被検査体の表面欠陥深さの探傷結果とを用いて、当該被検査体の表面欠陥の深さを評価して、被検査体に存在する表面欠陥の深さを、正確且つ確実に弁別することができる。   According to the method and apparatus for discriminating the surface defect depth of an inspection object according to the present invention, the inspection result of the surface defect of the inspection object obtained by the magnetic particle inspection method and the inspection obtained by the surface wave inspection method It is possible to accurately and reliably discriminate the depth of surface defects existing in the inspection object by evaluating the surface defect depth of the inspection object using the inspection result of the surface defect depth of the body. it can.

本発明に係る被検査体の表面欠陥深さの弁別装置を示す概略図である。It is the schematic which shows the discrimination apparatus of the surface defect depth of the to-be-inspected object which concerns on this invention. (a)は、被検査体の表面欠陥深さの弁別装置の超音波探傷手段の構成を示す概略図であり、(b)は、被検査体の表面欠陥深さの弁別装置の磁粉探傷手段の構成を示す概略図である。(A) is the schematic which shows the structure of the ultrasonic flaw detection means of the discrimination apparatus of the surface defect depth of a to-be-inspected object, (b) is the magnetic particle flaw detection means of the discrimination apparatus of the surface defect depth of a to-be-inspected object It is the schematic which shows the structure of these. 表面波探傷の周波数(波長)による表面欠陥の検出性能の違いを示す図である。It is a figure which shows the difference in the detection performance of the surface defect by the frequency (wavelength) of surface wave flaw detection. 表面欠陥の深さと深さランクとの関係を示した図である。It is the figure which showed the relationship between the depth of a surface defect, and a depth rank. 本発明に係る被検査体の表面欠陥深さの弁別装置の変形例を示す概略図である。It is the schematic which shows the modification of the discrimination apparatus of the surface defect depth of the to-be-inspected object which concerns on this invention.

以下、本発明に係る被検査体の表面欠陥深さの弁別装置の実施形態について、図を基に説明すると共に、この弁別装置を用いた被検査体の表面欠陥深さの弁別方法の本発明について、図を基に説明する。
本発明に係る被検査体Wの表面欠陥深さの弁別装置1は、磁粉探傷法を用いて、被検査体Wの表面欠陥Kを探傷し、更に、超音波探傷法を用いて、棒鋼や鋼材などの被検査体Wの表面欠陥Kを探傷すると共にその表面欠陥Kの深さを検出し、当該被検査体Wの表面欠陥Kの深さを評価して、被検査体Wに存在する表面欠陥Kの深さを弁別する装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a discrimination device for surface defect depth of an object to be inspected according to the present invention will be described with reference to the drawings, and the present invention of a method for discriminating surface defect depth of an object to be inspected using the discrimination device Will be described with reference to the drawings.
The surface defect depth discrimination device 1 according to the present invention uses a magnetic particle inspection method to detect a surface defect K of the inspection subject W, and further uses an ultrasonic inspection method to detect a steel bar or The surface defect K of the inspection object W such as a steel material is detected, the depth of the surface defect K is detected, the depth of the surface defect K of the inspection object W is evaluated, and the inspection object W exists. This device discriminates the depth of the surface defect K.

なお、本実施形態では、被検査体Wの表面と表面皮下に存在する欠陥をまとめて「表面欠陥K」と呼ぶ。
図1は、本発明に係る被検査体Wの表面欠陥深さの弁別装置1を示す図である。また、図2(a)は、被検査体Wの表面欠陥深さの弁別装置1の超音波探傷手段2の構成を示す図であり、図2(b)は、被検査体Wの表面欠陥深さの弁別装置1の磁粉探傷手段12の構成を示す図である。
In the present embodiment, defects existing on the surface and the surface of the inspected object W are collectively referred to as “surface defects K”.
FIG. 1 is a diagram showing a discrimination device 1 for the surface defect depth of an object to be inspected W according to the present invention. 2A is a diagram showing a configuration of the ultrasonic flaw detector 2 of the discrimination device 1 for the surface defect depth of the object W to be inspected, and FIG. 2B is a surface defect of the object W to be inspected. It is a figure which shows the structure of the magnetic particle flaw detection means 12 of the discrimination apparatus 1 of depth.

図1、図2に示すように、本発明の被検査体Wの表面欠陥深さの弁別装置1は、被検査体Wの検査する検査ラインに設置される。この検査ラインは、被検査体Wを搬送する搬送部20(一対のピンチローラ)を備えており、搬送部20で搬送される被検査体Wに対して、表面欠陥Kなどの有無の検査を行う。
検査ラインに設置された弁別装置1は、鋼材搬送方向の上流側に配備された超音波探傷手段2と、その下流側に配備された磁粉探傷手段12と、磁粉探傷手段12で得られた表面欠陥Kの探傷結果と、超音波探傷手段2で得られた表面欠陥Kの探傷結果とを用いて、被検査体Wの表面欠陥Kの有無、及び表面欠陥Kの深さを弁別する表面欠陥深さ弁別手段18と、を有している。
As shown in FIG. 1 and FIG. 2, the surface defect depth discrimination device 1 of the inspection subject W according to the present invention is installed in an inspection line for inspecting the inspection subject W. This inspection line includes a transport unit 20 (a pair of pinch rollers) that transports the object to be inspected W, and inspects the object to be inspected W transported by the transport unit 20 for the presence of surface defects K and the like. Do.
The discriminating apparatus 1 installed in the inspection line includes an ultrasonic flaw detector 2 provided upstream in the steel material conveying direction, a magnetic flaw detector 12 provided downstream thereof, and a surface obtained by the magnetic flaw detector 12. A surface defect that discriminates the presence / absence of the surface defect K and the depth of the surface defect K by using the flaw detection result of the defect K and the flaw detection result of the surface defect K obtained by the ultrasonic flaw detection means 2. Depth discriminating means 18.

このように、超音波探傷手段2の後に、磁粉探傷手段12を配置することで、超音波探傷手段2で用いられた接触媒質が被検査体Wの表面に少しだけ残留することとなり、磁粉
探傷手段12で散布される磁粉液Lの被検査体Wの表面への塗れ性が良くなる。
図1、図2(a)に示すように、超音波探傷手段2は、被検査体Wに対して送出される超音波の周波数が変更可能とされている表面波探傷法を用いて、被検査体Wの表面欠陥Kを探傷すると共に当該表面欠陥Kの深さを検出するものである。
In this way, by arranging the magnetic particle flaw detection means 12 after the ultrasonic flaw detection means 2, the contact medium used in the ultrasonic flaw detection means 2 remains on the surface of the object W to be measured a little, and the magnetic particle flaw detection is performed. The wettability of the magnetic powder L sprayed by the means 12 to the surface of the inspection object W is improved.
As shown in FIGS. 1 and 2 (a), the ultrasonic flaw detection means 2 uses a surface wave flaw detection method in which the frequency of ultrasonic waves sent to the object W to be inspected can be changed. The surface defect K of the inspection object W is detected and the depth of the surface defect K is detected.

超音波探傷手段2は、探触子4と、探触子4とセンサホルダ5とホルダ支持体6からなるセンサヘッド3と、超音波探傷器7と、信号記録処理部8と、接触媒質供給回収部9と、エアブロア10と、エア供給部11とを有するものである。
センサヘッド3は、探触子4と、探触子4を保持するセンサホルダ5と、センサホルダ5を支持し被検査体Wに探触子4を押し付けるように当接させる機構を備えたホルダ支持体6とで構成されるものである。
The ultrasonic flaw detection means 2 includes a probe 4, a sensor head 3 including the probe 4, a sensor holder 5, and a holder support 6, an ultrasonic flaw detector 7, a signal recording processing unit 8, and a contact medium supply. The recovery unit 9, the air blower 10, and the air supply unit 11 are provided.
The sensor head 3 includes a probe 4, a sensor holder 5 that holds the probe 4, and a holder that supports the sensor holder 5 and abuts the probe 4 against the object W to be inspected. It is comprised with the support body 6. As shown in FIG.

探触子4は、例えば圧電素子によって構成されており、搬送部20によって搬送されている被検査体Wの表面直下を伝播する超音波(表面波)を送出する送出部及び被検査体Wの表面及び表面皮下に存在する表面欠陥Kで反射して戻った超音波を受波する受波部を有する。送出部は、所定電圧のパルス電流が加えられると所定周波数の超音波(表面波)を送出する機能を有し、受波部は、反射超音波(反射表面波)を受波すると共に、その反射表面波を受波すると受波した反射表面波に対応したパルス電流を発生する機能とを有する。   The probe 4 is composed of, for example, a piezoelectric element, and includes a sending unit that transmits ultrasonic waves (surface waves) propagating directly under the surface of the inspection object W being conveyed by the conveyance unit 20 and the inspection object W. It has a wave receiving part for receiving the ultrasonic wave reflected and returned by the surface defect K existing on the surface and the surface under the skin. The transmitting unit has a function of transmitting an ultrasonic wave (surface wave) having a predetermined frequency when a pulse current of a predetermined voltage is applied, and the receiving unit receives the reflected ultrasonic wave (reflected surface wave) and When a reflected surface wave is received, it has a function of generating a pulse current corresponding to the received reflected surface wave.

図2(a)の右側のA’−A’矢視図に示すように、探触子4が被検査体Wの側面に当接し、矢印で示される被検査体Wの周方向に表面波が送出部から送出され、被検査体Wの表面及び表面皮下に存在する表面欠陥Kで反射して戻った超音波を受波部で受波する。
特に、本実施形態の超音波探傷手段2における探触子4は、異なる2種類以上の圧電素子で構成されており、複数の周波数(例えば、f1=5MHz,f2=2MHz,f3=1.5MHz)の表面波を送出することができる。
2A, the probe 4 comes into contact with the side surface of the object W to be inspected and a surface wave is generated in the circumferential direction of the object W indicated by the arrow. Is transmitted from the transmitting unit, and the ultrasonic wave reflected and returned by the surface defect K existing on the surface of the object to be inspected W and under the surface is received by the receiving unit.
In particular, the probe 4 in the ultrasonic flaw detector 2 of this embodiment is composed of two or more different types of piezoelectric elements, and has a plurality of frequencies (for example, f1 = 5 MHz, f2 = 2 MHz, f3 = 1.5 MHz). ) Surface wave can be transmitted.

図3に示すように、例えば、深さが0.2mmの表面欠陥Kを検出しようとする場合、周波数が5MHzの超音波を用いると、表面波伝播領域が狭く、0.2mm深さの表面欠陥Kを検出することが容易である。一方、周波数が2MHzの超音波を用いて表面欠陥Kを検出しようとすると、表面波伝播領域が広く、0.2mm深さの表面欠陥Kを検出しにくい。   As shown in FIG. 3, for example, when a surface defect K having a depth of 0.2 mm is to be detected, if an ultrasonic wave having a frequency of 5 MHz is used, the surface wave propagation region is narrow and the surface has a depth of 0.2 mm. It is easy to detect the defect K. On the other hand, if the surface defect K is detected using an ultrasonic wave having a frequency of 2 MHz, the surface wave propagation region is wide and it is difficult to detect the surface defect K having a depth of 0.2 mm.

そして、上記した超音波(表面波)の周波数(波長)による検出性能の違いを、表1に示す。   Table 1 shows the difference in detection performance depending on the frequency (wavelength) of the above-described ultrasonic wave (surface wave).

表1に示すように、表面波の特徴として超音波のエネルギーは、表層の1波長分程度に集中するため、反射波強度は表面欠陥Kの深さと関係があるので、異なる周波数(波長)の表面波を用いている。それゆえ、表面欠陥Kの深さ情報を得ることができる。また、周波数の異なる表面波を使い分けることで、弁別したい深さを変えることもできる。
このように、周波数によって検出可能な表面欠陥Kの深さが異なるので、本実施形態では周波数を切り替え可能にしている。
As shown in Table 1, since the ultrasonic energy is concentrated to about one wavelength of the surface layer as a characteristic of the surface wave, the reflected wave intensity is related to the depth of the surface defect K, and therefore, has different frequencies (wavelengths). Surface waves are used. Therefore, the depth information of the surface defect K can be obtained. In addition, the depth to be distinguished can be changed by properly using surface waves having different frequencies.
As described above, since the depth of the surface defect K that can be detected differs depending on the frequency, the frequency can be switched in this embodiment.

センサホルダ5は、例えば略立方体で下方が開放された箱型の筐体であって、ホルダ支持体6により支持されるものとなっている。
センサホルダ5は、その箱型の内部において、前述した探触子4と、その探触子4と被検査体Wとの間で超音波を伝達する接触媒質を探触子4に供給するための接触媒質供給管
と、供給された接触媒質を探触子4から回収するための接触媒質回収管を有するものである。
The sensor holder 5 is, for example, a box-shaped housing having a substantially cubic shape and opened downward, and is supported by a holder support 6.
The sensor holder 5 supplies the probe 4 with the above-described probe 4 and a contact medium that transmits ultrasonic waves between the probe 4 and the object W to be inspected. And a contact medium recovery pipe for recovering the supplied contact medium from the probe 4.

超音波探傷器7は、センサヘッド3に備えられた探触子4に接続されており、探触子4の送出部として働く2種類の圧電素子のいずれかへ選択的に所定電圧のパルス電流を出力する。また、超音波探傷器7は、当該2種類の圧電素子が反射表面波を受波して受波部として働いたときに発生したパルス電流を受け取り、後述する信号記録処理部8に反射表面波信号として出力するものである。超音波探傷器7でパルス電流を調整することで、被検査体Wの表面に伝播する表面波を探触子4に送出させることができる。   The ultrasonic flaw detector 7 is connected to a probe 4 provided in the sensor head 3, and selectively applies a pulse current of a predetermined voltage to one of two types of piezoelectric elements that function as a sending unit of the probe 4. Is output. Further, the ultrasonic flaw detector 7 receives a pulse current generated when the two types of piezoelectric elements receive the reflected surface wave and acts as a wave receiving unit, and receives the reflected surface wave in the signal recording processing unit 8 described later. It is output as a signal. By adjusting the pulse current with the ultrasonic flaw detector 7, the surface wave propagating to the surface of the inspection subject W can be sent to the probe 4.

信号記録処理部8は、超音波探傷器7に接続されており、超音波探傷器7から出力された反射表面波信号を受信して、受信した反射表面波信号を基に、反射表面波(エコー)の到達時間、すなわち表面欠陥Kの深さなどを算出するものである。信号記録処理部8で算出された表面欠陥Kの深さの探傷結果は、後述する表面欠陥深さ弁別手段18に送られる。   The signal recording processing unit 8 is connected to the ultrasonic flaw detector 7, receives the reflected surface wave signal output from the ultrasonic flaw detector 7, and based on the received reflected surface wave signal, the reflected surface wave ( Echo) arrival time, that is, the depth of the surface defect K is calculated. The flaw detection result of the depth of the surface defect K calculated by the signal recording processing unit 8 is sent to the surface defect depth discrimination means 18 described later.

接触媒質供給回収部9は、センサヘッド3の探触子4で用いられる接触媒質を、センサホルダ5の接触媒質供給管を通して探触子4に供給すると共に、センサホルダ5の接触媒質回収管を通して探触子4から接触媒質を回収するものであり、センサホルダ5の接触媒質供給管及び接触媒質回収管に接続されている。
エアブロア10は、図2(a)に示すように、被検査体Wの側面上に残る接触媒質などを除去するための手段である。このエアブロア10は、センサヘッド3が配置された被検査体Wの側面上で、センサヘッド3から所定の距離だけ離れた通材方向下流側に配置されていて、被検査体Wの側面幅とほぼ同じ幅である略直方体の筐体と、該筐体の長手方向に沿うと共に通材方向とは逆向きに突設された複数のエアノズルと、エア導入口(図示せず)とから構成される。
The contact medium supply / recovery unit 9 supplies the contact medium used by the probe 4 of the sensor head 3 to the probe 4 through the contact medium supply pipe of the sensor holder 5 and also passes through the contact medium recovery pipe of the sensor holder 5. The contact medium is collected from the probe 4 and is connected to the contact medium supply pipe and the contact medium collection pipe of the sensor holder 5.
As shown in FIG. 2A, the air blower 10 is a means for removing contact medium and the like remaining on the side surface of the object W to be inspected. The air blower 10 is arranged on the side surface of the inspection object W on which the sensor head 3 is arranged, on the downstream side in the material passing direction, which is away from the sensor head 3 by a predetermined distance. A substantially rectangular parallelepiped housing having substantially the same width, a plurality of air nozzles extending in the longitudinal direction of the housing and projecting in the direction opposite to the material passing direction, and an air inlet (not shown). The

一方、図1、図2(b)に示すように、磁粉探傷手段12は、搬送部20によって搬送されている被検査体Wの表面に磁粉液Lを散布する磁粉液散布部13と、この磁粉液散布部13の下流側で被検査体Wを磁化させる磁化器14と、この磁化器14の下流側で被検査体Wの表面の照明を行う照明部15と、この照明部15によって蛍光発光した磁粉模様を撮像する撮像部16と、この撮像部16で撮像した画像を解析して表面欠陥Kを検出する画像解析部17とを有するものである。   On the other hand, as shown in FIG. 1 and FIG. 2B, the magnetic particle flaw detector 12 includes a magnetic powder liquid spraying unit 13 that sprays the magnetic powder liquid L onto the surface of the object W being transported by the transport unit 20, and this A magnetizer 14 that magnetizes the inspected object W on the downstream side of the magnetic powder dispersion unit 13, an illuminating unit 15 that illuminates the surface of the inspected object W on the downstream side of the magnetizer 14, and fluorescence by the illuminating unit 15. The imaging unit 16 that images the emitted magnetic powder pattern and the image analysis unit 17 that analyzes the image captured by the imaging unit 16 and detects the surface defect K are included.

磁粉液散布部13は、被検査体Wの表面に対して、磁粉(鉄粉に蛍光体を付着させたもの)が含まれた検査液Lを散布ノズルで散布するものである。
磁化器14は、例えば、コ字状の磁性体にコイルを巻き付けた電磁石2組で構成されていて、これら各コ字状の磁性体の一対の先端部(極部)の間を被検査体Wに近づけて、コイルに交流電流を印可し、両極部間に位置する被検査体Wの表面に磁場を印可するものである。この磁化器14により磁場が印可された被検査体Wに表面欠陥Kが存在する場合、表面欠陥Kの近傍で漏洩した磁束が存在するため、表面欠陥Kのない部分よりも強い磁界が生じ、蛍光体を含んだ磁粉が表面欠陥Kの近傍に高密度に凝集し、表面欠陥Kの状況に対応する磁粉の模様が現れる。
The magnetic powder liquid spraying unit 13 sprays a test liquid L containing magnetic powder (iron powder with a phosphor attached) to the surface of the inspection object W with a spray nozzle.
The magnetizer 14 includes, for example, two sets of electromagnets in which a coil is wound around a U-shaped magnetic body, and an object to be inspected is formed between a pair of tip portions (pole portions) of each U-shaped magnetic body. An AC current is applied to the coil close to W, and a magnetic field is applied to the surface of the object to be inspected W positioned between both pole portions. When the surface defect K exists in the inspected object W to which the magnetic field is applied by the magnetizer 14, a magnetic field leaked in the vicinity of the surface defect K is present, so that a stronger magnetic field is generated than the portion without the surface defect K, Magnetic powder containing the phosphor aggregates in the vicinity of the surface defect K at a high density, and a pattern of magnetic powder corresponding to the state of the surface defect K appears.

照明部15は、表面欠陥Kの近傍で漏洩した磁束によって生じる磁粉模様に紫外線を照射する紫外線ランプなどであり、輝度ムラの少ない光源が用いられる。
撮像部16は、被検査体Wの表面欠陥Kの近傍に付着した蛍光体を含む磁粉から発せられた蛍光を撮像し、その撮像した画像は画像解析部17へ供給されるものである。撮像部16には、例えばラインセンサカメラなどが用いられる。
The illumination unit 15 is an ultraviolet lamp or the like that irradiates the magnetic powder pattern generated by the magnetic flux leaked in the vicinity of the surface defect K with ultraviolet rays, and a light source with less luminance unevenness is used.
The imaging unit 16 images the fluorescence emitted from the magnetic powder containing the phosphor attached in the vicinity of the surface defect K of the inspection object W, and the captured image is supplied to the image analysis unit 17. For example, a line sensor camera or the like is used for the imaging unit 16.

画像解析部17は、撮像部16で撮像された被検査体Wの表面画像を解析して、被検査体Wの表面欠陥Kの有無を判定する。画像解析部17で解析された表面欠陥Kの探傷結果は、後述する表面欠陥深さ弁別手段18に送られる。また、上記した超音波探傷手段2で得られた表面欠陥Kの探傷結果も、後述する表面欠陥深さ弁別手段18に送られる。
表面欠陥深さ弁別手段18は、超音波探傷手段2で得られた表面欠陥Kの探傷結果と、磁粉探傷手段12で得られた表面欠陥Kの探傷結果を基に、被検査体Wの表面欠陥Kの有無、及び表面欠陥Kの深さを同定・弁別するものである。
The image analysis unit 17 analyzes the surface image of the inspection object W imaged by the imaging unit 16 and determines the presence or absence of the surface defect K of the inspection object W. The flaw detection result of the surface defect K analyzed by the image analysis unit 17 is sent to the surface defect depth discrimination means 18 described later. Further, the flaw detection result of the surface defect K obtained by the ultrasonic flaw detection means 2 is also sent to the surface defect depth discrimination means 18 described later.
The surface defect depth discriminating means 18 is based on the surface defect K detection result obtained by the ultrasonic flaw detection means 2 and the surface defect K flaw detection result obtained by the magnetic particle flaw detection means 12. The presence / absence of the defect K and the depth of the surface defect K are identified and discriminated.

この表面欠陥深さ弁別手段18は、超音波探傷手段2の信号記録処理部8に接続されると共に、磁粉探傷手段12の画像解析部17に接続されている。
表2に示すように、表面欠陥深さ弁別手段18は、被検査体Wの表面及び表面皮下に存在する、あらゆる表面欠陥Kの深さを検出することができる。
表2のパターン1を見てみると、磁粉探傷手段12において、被検査体Wの表面欠陥Kが検出されている。また、超音波探傷手段2においては、超音波の周波数をf1にして探傷した場合でも、超音波の周波数をf2(f1>f2)に切り替えて探傷した場合でも、被検査体Wの表面欠陥Kの深さが検出されている。このような検出結果の場合、被検査体Wに存在する表面欠陥Kの形状は、被検査体Wの表面で開口していて、疵深さが深い表面欠陥Kであると同定される。
The surface defect depth discrimination means 18 is connected to the signal recording processing section 8 of the ultrasonic flaw detection means 2 and also connected to the image analysis section 17 of the magnetic particle flaw detection means 12.
As shown in Table 2, the surface defect depth discriminating means 18 can detect the depth of any surface defect K existing on the surface of the object W to be inspected and the surface of the surface to be inspected.
When the pattern 1 of Table 2 is seen, the surface defect K of the to-be-inspected object W is detected in the magnetic particle flaw detector 12. Further, in the ultrasonic flaw detection means 2, even when flaw detection is performed with the frequency of the ultrasonic wave being f1, or when flaw detection is performed by switching the frequency of the ultrasonic wave to f2 (f1> f2), the surface defect K of the inspection object W is detected. The depth of is detected. In the case of such a detection result, the shape of the surface defect K present in the inspection object W is identified as a surface defect K that is open on the surface of the inspection object W and has a deep wrinkle depth.

次に、表1のパターン2を見てみると、磁粉探傷手段12において、被検査体Wの表面欠陥Kが検出されている。また、超音波探傷手段2においては、超音波の周波数をf1にして探傷した場合のみ、被検査体Wの表面欠陥Kの深さが検出されている。このような検出結果の場合、被検査体Wに存在する表面欠陥Kの形状は、被検査体Wの表面で開口していて、疵深さが浅い表面欠陥Kであると同定される。   Next, looking at the pattern 2 in Table 1, the magnetic particle flaw detector 12 detects the surface defect K of the object W to be inspected. Further, in the ultrasonic flaw detection means 2, the depth of the surface defect K of the inspection object W is detected only when flaw detection is performed with the frequency of the ultrasonic wave being f1. In the case of such a detection result, the shape of the surface defect K existing in the inspection object W is identified as the surface defect K that is open on the surface of the inspection object W and has a shallow wrinkle depth.

表2のパターン3を見てみると、磁粉探傷手段12において、被検査体Wの表面欠陥Kが検出されている。一方、超音波探傷手段2においては、いずれの超音波の周波数においても、被検査体Wの表面欠陥Kの深さは検出されていない。このような検出結果の場合、被検査体Wに存在する表面欠陥Kの形状は、被検査体Wの表面で開口していて、疵深さがごく浅い表面欠陥Kであると同定される。   When the pattern 3 of Table 2 is seen, the surface defect K of the to-be-inspected object W is detected in the magnetic particle flaw detector 12. On the other hand, in the ultrasonic flaw detection means 2, the depth of the surface defect K of the object W to be inspected is not detected at any ultrasonic frequency. In the case of such a detection result, the shape of the surface defect K present in the inspection object W is identified as the surface defect K that is open on the surface of the inspection object W and has a very shallow wrinkle depth.

表2のパターン4を見てみると、磁粉探傷手段12において、被検査体Wの表面欠陥Kが検出されず、超音波探傷手段2においては、超音波の周波数をf1にして探傷した場合でも、超音波の周波数をf2(f1>f2)に切り替えて探傷した場合でも、被検査体Wの表面欠陥Kの深さが検出されている。
このような検出結果の場合、被検査体Wに存在する表面欠陥Kの形状は、被検査体Wの表面で閉口していて、疵深さが深い表面欠陥Kであると同定される。
Looking at the pattern 4 in Table 2, the magnetic particle flaw detector 12 does not detect the surface defect K of the object W, and the ultrasonic flaw detector 2 does not detect even if the ultrasonic frequency is f1. Even when the ultrasonic frequency is switched to f2 (f1> f2) and the flaw detection is performed, the depth of the surface defect K of the inspected object W is detected.
In the case of such a detection result, the shape of the surface defect K present in the inspection object W is identified as the surface defect K that is closed on the surface of the inspection object W and has a deep wrinkle depth.

表2のパターン5を見てみると、磁粉探傷手段12において、被検査体Wの表面欠陥Kが検出されず、超音波探傷手段2においては、超音波の周波数をf1にして探傷した場合にのみ被検査体Wの表面欠陥Kの深さが検出されている。このような検出結果の場合、被検査体Wに存在する表面欠陥Kの形状は、被検査体Wの表面で閉口していて、疵深さが浅い表面欠陥Kであると同定される。   When looking at the pattern 5 in Table 2, the magnetic particle flaw detector 12 does not detect the surface defect K of the object W, and the ultrasonic flaw detector 2 detects flaws with the frequency of the ultrasonic wave set to f1. Only the depth of the surface defect K of the inspection object W is detected. In the case of such a detection result, the shape of the surface defect K present in the inspection object W is identified as the surface defect K that is closed on the surface of the inspection object W and has a shallow wrinkle depth.

表2のパターン6を見てみると、磁粉探傷手段12において、被検査体Wの表面欠陥Kが検出されず、超音波探傷手段2においては、超音波の周波数をf2にして探傷した場合にのみ被検査体Wの表面欠陥Kの深さが検出されている。このような検出結果の場合、被検査体Wに存在する表面欠陥Kの形状は、被検査体Wの表面で閉口していて、疵深さが深い表面欠陥Kであると同定される。   When the pattern 6 of Table 2 is seen, the surface defect K of the to-be-inspected object W is not detected in the magnetic particle flaw detection means 12, and the ultrasonic flaw detection means 2 performs flaw detection with the ultrasonic frequency set to f2. Only the depth of the surface defect K of the inspection object W is detected. In the case of such a detection result, the shape of the surface defect K present in the inspection object W is identified as the surface defect K that is closed on the surface of the inspection object W and has a deep wrinkle depth.

以上述べた如く、本発明の特徴である表面欠陥深さ弁別手段18は、複数の探傷手段(磁粉探傷手段12、及び超音波探傷手段2)で得られた結果を複合して検証することで、被検査体Wに存在するあらゆる表面欠陥K、及びその表面欠陥Kの深さを弁別することができる。
例えば、磁粉探傷手段12で、表面欠陥Kが検出されていても実際には表面欠陥Kが存在しない場合や、逆に表面欠陥Kが検出されていなくても実際には表面欠陥Kが存在する場合があり、そのときに超音波探傷手段2で得られた探傷結果を参照することで、表面欠陥Kの誤検出を低減させることができる。
As described above, the surface defect depth discriminating means 18 which is a feature of the present invention is obtained by combining and verifying the results obtained by a plurality of flaw detection means (magnetic particle flaw detection means 12 and ultrasonic flaw detection means 2). Any surface defect K present in the inspection subject W and the depth of the surface defect K can be discriminated.
For example, even if the surface defect K is detected by the magnetic particle flaw detection means 12, the surface defect K does not actually exist. Conversely, even if the surface defect K is not detected, the surface defect K actually exists. In some cases, erroneous detection of the surface defect K can be reduced by referring to the flaw detection result obtained by the ultrasonic flaw detection means 2 at that time.

さらに、本発明の特徴である表面欠陥深さ弁別手段18には、超音波探傷手段2における探傷結果を基に、表面欠陥Kをその深さごとに区分けされた深さランクに弁別する機能が備えられている。この機能によって、検出された表面欠陥Kの深さの信頼性を高めることができ、表面欠陥Kをさらに良好に弁別することができる。
表面欠陥深さ弁別手段18にて求められる深さランクは、超音波探傷手段2の信号記録処理部8で反射信号強度を基にして算出されるものであり、発射される超音波の周波数と受信された信号の強度とを基に表面欠陥K(表面疵)の深さを推定し、ランク付けしたものである。
Furthermore, the surface defect depth discriminating means 18 which is a feature of the present invention has a function of discriminating the surface defects K into depth ranks classified according to their depths based on the flaw detection result in the ultrasonic flaw detection means 2. Is provided. With this function, the reliability of the depth of the detected surface defect K can be increased, and the surface defect K can be distinguished more satisfactorily.
The depth rank obtained by the surface defect depth discrimination means 18 is calculated on the basis of the reflected signal intensity by the signal recording processing unit 8 of the ultrasonic flaw detection means 2, and the frequency of the emitted ultrasonic wave and The depth of the surface defect K (surface defect) is estimated and ranked based on the received signal strength.

本実施形態では、深さが0.5mm以下の比較的浅い表面欠陥Kを「深さランク1」とし、深さが0.5〜1.0mmの範囲内の表面欠陥Kを「深さランク2」とし、深さが1.0mm以上の比較的深い表面欠陥Kを「深さランク3」として、表面欠陥Kの深さを弁別(区分け)する。
具体的には、表面欠陥Kの探傷を行う際、送出される超音波の周波数が5MHzのとき、受波される反射信号強度が予め設定された閾値以上である場合、且つ、送出される超音波の周波数が1.5MHz及び2MHzのとき、受波される反射信号強度が予め設定された閾値未満である場合に、検出される表面欠陥Kの深さを「深さランク1」に弁別する。
In this embodiment, a relatively shallow surface defect K having a depth of 0.5 mm or less is defined as “depth rank 1”, and a surface defect K having a depth in the range of 0.5 to 1.0 mm is defined as “depth rank 1”. 2 ”, a relatively deep surface defect K having a depth of 1.0 mm or more is defined as“ depth rank 3 ”, and the depth of the surface defect K is discriminated (classified).
Specifically, when flaw detection of the surface defect K is performed, when the frequency of the transmitted ultrasonic wave is 5 MHz, the intensity of the reflected signal received is equal to or higher than a preset threshold, and the transmitted ultrasonic wave When the frequency of the sound wave is 1.5 MHz and 2 MHz, the depth of the detected surface defect K is discriminated to “depth rank 1” when the received reflected signal intensity is less than a preset threshold value. .

言い換えれば、送出される超音波の周波数が5MHzであるときのみ反射信号強度が受波される場合、もしくは、送出される全ての周波数(5MHz、2MHz、1.5MHz)において反射信号が受波されない(表面欠陥Kが検出されない)場合に、検出される表面欠陥Kの深さを「深さランク1」に弁別する。
次に、送出される超音波の周波数が2MHzのとき、受波される反射信号強度が予め設定された閾値以上である場合、且つ、送出される超音波の周波数が1.5MHzとき、受波される反射信号強度が予め設定された閾値未満である場合に、検出される表面欠陥Kの深さを「深さランク2」に弁別する。
In other words, the reflected signal intensity is received only when the transmitted ultrasonic frequency is 5 MHz, or the reflected signal is not received at all transmitted frequencies (5 MHz, 2 MHz, and 1.5 MHz). When the surface defect K is not detected, the depth of the detected surface defect K is discriminated to “depth rank 1”.
Next, when the frequency of the transmitted ultrasonic wave is 2 MHz, when the reflected signal intensity received is equal to or higher than a preset threshold, and when the frequency of the transmitted ultrasonic wave is 1.5 MHz, the received wave When the reflected signal intensity to be detected is less than a preset threshold value, the depth of the detected surface defect K is discriminated to “depth rank 2”.

言い換えれば、送出される超音波の周波数が1.5MHzのとき、反射信号が受波され
ない場合、且つ、送出される超音波の周波数が5MHz及び2MHzであるとき、反射信号強度が受波される場合に、検出される表面欠陥Kの深さを「深さランク2」に弁別する。
また、送出される超音波の周波数全て(5MHz、2MHz、1.5MHz)で反射信号が受波されると共に、その反射信号強度が予め設定された閾値以下である場合に、検出される表面欠陥Kの深さも「深さランク2」に弁別する。
In other words, when the frequency of the transmitted ultrasonic wave is 1.5 MHz, the reflected signal is not received, and when the frequency of the transmitted ultrasonic wave is 5 MHz and 2 MHz, the reflected signal intensity is received. In this case, the depth of the detected surface defect K is discriminated to “depth rank 2”.
Further, a surface defect is detected when a reflected signal is received at all the frequencies of the transmitted ultrasonic waves (5 MHz, 2 MHz, 1.5 MHz) and the reflected signal intensity is equal to or lower than a preset threshold value. The depth of K is also distinguished into “depth rank 2”.

さらに、送出される超音波の周波数が1.5MHzのとき、受波される反射信号強度が予め設定された閾値以上である場合に、検出される表面欠陥Kの深さを「深さランク3」に弁別する。
言い換えれば、送出される超音波の周波数が5MHz及び2MHzのとき、反射信号が受波されない場合、且つ、送出される超音波の周波数が1.5MHzのとき、反射信号強度が受波される場合に、検出される表面欠陥Kの深さを「深さランク3」に弁別する。
Further, when the frequency of the transmitted ultrasonic wave is 1.5 MHz and the intensity of the reflected signal received is equal to or higher than a preset threshold, the depth of the surface defect K to be detected is expressed as “depth rank 3 To discriminate.
In other words, when the reflected signal is not received when the transmitted ultrasonic frequency is 5 MHz and 2 MHz, and when the reflected signal intensity is received when the transmitted ultrasonic frequency is 1.5 MHz. Further, the depth of the detected surface defect K is discriminated into “depth rank 3”.

また、送出される超音波の周波数全て(5MHz、2MHz、1.5MHz)で反射信号が受波されると共に、その反射信号強度が予め設定された閾値以上である場合に、検出される表面欠陥Kの深さも「深さランク3」に弁別する。
そして、上記した深さランク1〜3以外のものは、「深さランク外」として弁別する。
このように、超音波探傷手段2にて探傷された表面欠陥Kの深さを、超音波探傷手段2で得られた表面欠陥Kの探傷結果を基に、表面欠陥Kの深さごとに区分けされた深さランクに弁別する。
Further, a surface defect is detected when a reflected signal is received at all the frequencies of the transmitted ultrasonic waves (5 MHz, 2 MHz, 1.5 MHz) and the reflected signal intensity is equal to or higher than a preset threshold value. The depth of K is also distinguished into “depth rank 3”.
And things other than the above-mentioned depth ranks 1-3 are discriminated as "outside the depth rank".
As described above, the depth of the surface defect K detected by the ultrasonic flaw detector 2 is classified according to the depth of the surface defect K based on the flaw detection result of the surface defect K obtained by the ultrasonic flaw detector 2. Distinguish to a given depth rank.

次に、上記した深さランクを用いて、表面欠陥Kの深さを弁別した結果について、図に基づいて説明する。
図4は、磁粉探傷手段12で検出した表面欠陥Kに対して超音波探傷を実施し、その超音波探傷手段2で得られた各周波数における反射信号強度を基に、検出された表面欠陥Kの深さを表面欠陥深さ弁別手段18にて、弁別した結果を示す図である。図4に示す縦軸は、弁別した表面欠陥Kの深さランクを示し、横軸は実際に表面欠陥Kの深さを測定した結果を示す。
Next, the result of discriminating the depth of the surface defect K using the above-described depth rank will be described with reference to the drawings.
FIG. 4 shows that the surface defect K detected by the magnetic particle flaw detector 12 is subjected to ultrasonic flaw detection, and the detected surface flaw K based on the reflected signal intensity at each frequency obtained by the ultrasonic flaw detector 2. It is a figure which shows the result of having discriminate | determined the depth of this by the surface defect depth discrimination means 18. FIG. The vertical axis shown in FIG. 4 indicates the depth rank of the distinguished surface defect K, and the horizontal axis indicates the result of actually measuring the depth of the surface defect K.

図4に示すように、各周波数(5MHz、2MHz、1.5MHz)で被検査体Wの表面及び表面皮下を探傷したときに受波される、深さランク1に相当する反射信号強度を基に得られた探傷結果が、深さランク1を示す横軸上に弁別されている(◆印)。同様に、各周波数で被検査体Wの表面及び表面皮下を探傷したときに受波される、深さランク2に相当する反射信号強度を基に得られた探傷結果が、深さランク2を示す横軸上に弁別されている(▲印)。同様に、各周波数で被検査体Wの表面及び表面皮下を探傷したときに受波される、深さランク3に相当する反射信号強度を基に得られた探傷結果が、深さランク3を示す横軸上に弁別されている(●印)。   As shown in FIG. 4, based on the reflected signal intensity corresponding to depth rank 1 received when flaws are detected on the surface and the surface of the inspected body W at each frequency (5 MHz, 2 MHz, and 1.5 MHz). The flaw detection results obtained are distinguished on the horizontal axis indicating depth rank 1 (marked with ◆). Similarly, the flaw detection result obtained based on the reflected signal intensity corresponding to the depth rank 2 that is received when flaw detection is performed on the surface and the subsurface of the test subject W at each frequency is the depth rank 2. Discriminated on the horizontal axis shown (▲). Similarly, the flaw detection results obtained based on the reflected signal intensity corresponding to the depth rank 3 received when flaws are detected on the surface and the subsurface of the test subject W at each frequency are the depth rank 3 Discriminated on the horizontal axis (marked with ●).

ここで、図4の弁別された探傷結果Aを見てみると、この探傷結果Aは、深さランク2に相当する反射強度が得られ、その反射強度から深さランク2に弁別される。深さランク2は、深さが0.5〜1.0mmの範囲内の表面欠陥Kと推定されるものである。一方で、実際に疵深さを測って表面欠陥Kの深さを検出した場合、探傷結果Aに関しては、表面欠陥Kの深さが約0.8mmと検出されている。つまり、探傷結果Aは、表面欠陥Kの深さと深さランクが一致するものとなっている(弁別成功)。   Here, looking at the flaw detection result A discriminated in FIG. 4, the flaw detection result A has a reflection intensity corresponding to the depth rank 2, and is discriminated to the depth rank 2 from the reflection intensity. Depth rank 2 is estimated as a surface defect K having a depth in the range of 0.5 to 1.0 mm. On the other hand, when the depth of the surface defect K is detected by actually measuring the wrinkle depth, the depth of the surface defect K is detected as about 0.8 mm with respect to the flaw detection result A. That is, in the flaw detection result A, the depth of the surface defect K and the depth rank are the same (successful discrimination).

このように弁別成功とされた結果は、図4中の原点と右上を結ぶ対角線付近に分布するようになり、図4中の破線で囲まれた領域が「弁別成功」とされる。
一方で、弁別された探傷結果B(図4中で一点鎖線)を見てみると、この探傷結果Bは、実際の表面欠陥Kの深さが浅いもの(約0.55mm)であるが、深さランク3(1.0mm以上の比較的深い表面欠陥K)に相当する反射強度が得られており、疵深さと深さランクが一致しない場合である。
The results determined as successful in this way are distributed in the vicinity of the diagonal line connecting the origin and the upper right in FIG. 4, and the region surrounded by the broken line in FIG.
On the other hand, when looking at the identified flaw detection result B (the one-dot chain line in FIG. 4), this flaw detection result B is the one where the actual surface defect K has a shallow depth (about 0.55 mm). The reflection intensity corresponding to the depth rank 3 (a relatively deep surface defect K of 1.0 mm or more) is obtained, and this is the case where the wrinkle depth does not match the depth rank.

探傷結果Bの場合、浅い疵にも拘わらず、深さランク3に相当する反射強度が得られていることから、「過弁別」、すなわち実際の疵深さ以上に深い疵と同定されている可能性がある。図4中の原点と右上を結ぶ対角線より、上側の領域にプロットされる探傷結果が、過弁別に該当する。
また、弁別された探傷結果C(図4中で実線)を見てみると、この探傷結果Cは、実際の表面欠陥Kの深さが深いもの(約1.2mm)であるが、深さランク2(0.5mm〜1.0mmの範囲内の深さ)に相当する反射強度が得られており、疵深さと深さランクが一致しない場合である。
In the case of the flaw detection result B, the reflection intensity corresponding to the depth rank 3 is obtained in spite of the shallow wrinkles, and therefore, it is identified as “over discrimination”, that is, wrinkles deeper than the actual wrinkle depth. there is a possibility. The flaw detection results plotted in the area above the diagonal line connecting the origin and the upper right in FIG.
Further, looking at the detected flaw detection result C (solid line in FIG. 4), this flaw detection result C shows that the actual surface defect K has a deep depth (about 1.2 mm). The reflection intensity corresponding to rank 2 (depth in the range of 0.5 mm to 1.0 mm) is obtained, and the ridge depth does not match the depth rank.

探傷結果Cの場合、深い疵にも拘わらず、深さランク2に相当する反射強度が得られていることから、「誤弁別」、すなわち実際の疵深さより浅い疵と同定されている可能性がある。図4中の原点と右上を結ぶ対角線より、下側の領域にプロットされる探傷結果が、誤弁別に該当する。
つまり、「誤弁別」及び「過弁別」は、被検査体Wを検査する上で、問題となるものである。「過弁別」は、表面欠陥Kが浅いにもかかわらず深いものとして検出され、問題ではあるが、被検査体Wの表面に存在する表面欠陥K(表面疵)を除去することができる。一方、「誤弁別」は、表面欠陥Kが深いにもかかわらず浅いものとして検出され、被検査体Wの表面に存在する表面欠陥Kを除去する際に設定される切削深さが浅いので、表面欠陥Kが除去できない虞がある。それゆえ、「誤弁別」と検出された表面欠陥Kにおいては、その表面欠陥Kを再検査するなどして、弁別が成功するように対応すればよい。
In the case of the flaw detection result C, the reflection intensity corresponding to the depth rank 2 is obtained in spite of the deep flaw, so that “false discrimination”, that is, a flaw that is shallower than the actual flaw depth may be identified. There is. The flaw detection results plotted in the area below the diagonal line connecting the origin and the upper right in FIG.
That is, “false discrimination” and “overdiscrimination” are problems in inspecting the inspected object W. “Over-discrimination” is detected as deep even though the surface defect K is shallow, and although it is a problem, the surface defect K (surface defect) existing on the surface of the inspected object W can be removed. On the other hand, “misidentification” is detected as shallow even though the surface defect K is deep, and the cutting depth set when removing the surface defect K present on the surface of the inspection object W is shallow. There is a possibility that the surface defect K cannot be removed. Therefore, the surface defect K detected as “false discrimination” may be dealt with so as to succeed in the discrimination by reinspecting the surface defect K.

以上より、本発明に係る被検査体Wの表面欠陥深さの弁別装置1によれば、磁粉探傷手段12で得られた探傷結果と、超音波探傷手段2で得られた探傷結果と用いることで 図4に示すように、超音波探傷を行ったほとんどの検査結果が、「弁別成功」に属するものとなっていることがわかり、被検査体Wの表面欠陥Kの深さを高い確率で弁別することが可能である。   As described above, according to the discrimination apparatus 1 for the surface defect depth of the inspection subject W according to the present invention, the flaw detection result obtained by the magnetic particle flaw detection means 12 and the flaw detection result obtained by the ultrasonic flaw detection means 2 are used. As shown in FIG. 4, it can be seen that most inspection results of ultrasonic flaw detection belong to “successful discrimination”, and the depth of the surface defect K of the object W to be inspected is highly probable. It is possible to discriminate.

上記で詳説したように、本実施形態に係る被検査体Wの表面欠陥深さの弁別装置1を用いる際には、超音波探傷手段2により得られた信号波形を基に表面欠陥Kの深さを検出すると共に、表面欠陥深さ弁別手段18にて深さランクを求める。
「表面欠陥Kの深さ」と「深さランク」が一致した場合は、表面欠陥Kの深さが正確に求められていると考えることができる。
As described in detail above, when using the discrimination device 1 for the surface defect depth of the inspection object W according to the present embodiment, the depth of the surface defect K based on the signal waveform obtained by the ultrasonic flaw detection means 2. In addition to detecting the depth, the depth rank is obtained by the surface defect depth discrimination means 18.
When the “depth of the surface defect K” matches the “depth rank”, it can be considered that the depth of the surface defect K is accurately obtained.

このようにして表面欠陥Kを正確に同定することで、後工程での表面欠陥Kの除去を効率的、且つ確実に行うことができる。さらに、製品の生産性の向上、切削装置の替え刃を交換する回数を削減するといったコスト削減にも繋がるようになる。
[変形例]
次に、本発明に係る被検査体Wの表面欠陥深さの弁別装置1に変形例について、図を基に説明する。
Thus, by accurately identifying the surface defect K, it is possible to efficiently and reliably remove the surface defect K in a subsequent process. Furthermore, it leads to cost reduction such as improvement of product productivity and reduction of the number of times of replacing the replacement blade of the cutting apparatus.
[Modification]
Next, a modified example of the surface defect depth discrimination device 1 according to the present invention will be described with reference to the drawings.

図5に示すように、本発明に係る被検査体Wの表面欠陥深さの弁別装置1の変形例は、磁粉探傷手段12と超音波探傷手段2の配置位置が上記した本発明の弁別装置1と大きく異なっている。つまり、本変形例は、検査ラインの上流側に磁粉探傷手段12が配置され、磁粉探傷手段12の下流側に超音波探傷手段2が配置されている点が、上記した本発明の弁別装置1と異なっている。   As shown in FIG. 5, a modification of the surface defect depth discrimination device 1 according to the present invention is a discrimination device according to the present invention in which the arrangement positions of the magnetic particle flaw detection means 12 and the ultrasonic flaw detection means 2 are described above. It is very different from 1. That is, in this modification, the magnetic particle flaw detection means 12 is disposed on the upstream side of the inspection line, and the ultrasonic flaw detection means 2 is disposed on the downstream side of the magnetic particle flaw detection means 12. Is different.

被検査体Wの表面欠陥深さの弁別装置1の変形例の配置位置以外の部分は、上記した本発明の弁別装置1(図1参照)とほぼ同じである。
なお、本変形例におけるその他の構成、奏する作用効果は、上記した本発明の弁別装置1及び弁別方法と略同じであるため、その説明は省略する。
以上述べたように、本発明の被検査体Wの表面欠陥深さの弁別方法及びその装置1によれば、磁粉探傷法で得られた被検査体Wの表面欠陥Kの探傷結果と、表面波探傷法で得られた被検査体Wの表面欠陥の探傷結果とを用いて、当該被検査体Wの表面欠陥Kの深さを評価して、被検査体Wに存在する表面欠陥Kの深さを、正確且つ確実に弁別することができる。
The parts other than the arrangement position of the modification of the discrimination device 1 for the surface defect depth of the object W to be inspected are substantially the same as the discrimination device 1 of the present invention described above (see FIG. 1).
In addition, since the other structure in this modification and the effect to show | play are substantially the same as the discrimination apparatus 1 and the discrimination method of this invention mentioned above, the description is abbreviate | omitted.
As described above, according to the discrimination method of the surface defect depth of the inspection object W and the apparatus 1 of the present invention, the flaw detection result of the surface defect K of the inspection object W obtained by the magnetic particle inspection method, and the surface Using the flaw detection result of the surface defect of the inspection object W obtained by the wave flaw detection method, the depth of the surface defect K of the inspection object W is evaluated, and the surface defect K existing in the inspection object W is evaluated. The depth can be discriminated accurately and reliably.

なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。
例えば、本実施形態では、深さランクを3つに区分けしてものとして説明したが、検査対象となる被検査体Wの探傷方法に応じて、深さランクの数を適宜変更してもよい。
また、本実施形態では、変更可能な超音波の周波数を1.5MHz、2MHz、5MH
zの3種類の場合例に挙げて説明しているが、変更可能な超音波の周波数は、弁別する表面欠陥Kの深さによって適宜選択すればよく、また用いる周波数の数も2つ以上であるならば特に限定しない。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive.
For example, in the present embodiment, the depth rank has been described as being divided into three, but the number of depth ranks may be changed as appropriate according to the flaw detection method of the inspection subject W to be inspected. .
In the present embodiment, the changeable ultrasonic frequency is 1.5 MHz, 2 MHz, 5 MHz.
In the case of three types of z, an example is described. However, the frequency of the ultrasonic wave that can be changed may be appropriately selected depending on the depth of the surface defect K to be discriminated, and the number of frequencies to be used is two or more. If there is, it does not specifically limit.

特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。   In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.

1 弁別装置
2 超音波探傷手段(表面波探傷手段)
3 センサヘッド
4 探触子
5 センサホルダ
6 ホルダ支持体
7 超音波探傷器
8 信号記録処理部
9 接触媒質供給回収部
10 エアブロア
11 エア供給部
12 磁粉探傷手段
13 磁粉液散布部
14 磁化器
15 照明部
16 撮像部
17 画像解析部
18 表面欠陥深さ弁別手段
20 搬送部
L 磁粉液
K 表面欠陥(表面疵)
W 被検査体
1 Discriminating device 2 Ultrasonic flaw detection means (surface wave flaw detection means)
DESCRIPTION OF SYMBOLS 3 Sensor head 4 Probe 5 Sensor holder 6 Holder support body 7 Ultrasonic flaw detector 8 Signal recording process part 9 Contact medium supply collection | recovery part 10 Air blower 11 Air supply part 12 Magnetic particle flaw detection means 13 Magnetic powder dispersion | spreading part 14 Magnetizer 15 Illumination Section 16 Imaging section 17 Image analysis section 18 Surface defect depth discrimination means 20 Transport section L Magnetic powder liquid K Surface defect (surface defect)
W Inspected object

Claims (2)

被検査体の表面及び/又は表面皮下に存在する表面欠陥を探傷すると共に、当該被検査体の表面欠陥の深さを評価して、被検査体に存在する表面欠陥の深さを弁別する被検査体の表面欠陥深さの弁別方法であって、
粉探傷法を用いて、前記被検査体の表面欠陥を探傷し、
前記被検査体に対して送出される超音波の周波数が変更可能とされている超音波探傷法を用いて、前記被検査体の表面欠陥を探傷すると共に当該表面欠陥の深さを検出し、
前記磁粉探傷法で得られた表面欠陥の探傷結果と、前記超音波探傷法で得られた表面欠陥の探傷結果より傷が検出された場合と検出されない場合の組合せを評価することで、前記被検査体の表面欠陥の有無、及び表面欠陥の深さを弁別し、
前記超音波探傷法で得られた表面欠陥の探傷結果から測定周波数が5MHz、2MHzおよび1.5MHzのときに反射信号が受信される場合と受信されない場合の組合せを評価することで、探傷された表面欠陥を、表面欠陥の深さごとに区分けされた深さランクに弁別する
ことを特徴とする被検査体の表面欠陥深さの弁別方法。
A surface defect that exists on the surface and / or under the surface of the inspection object is detected, and the depth of the surface defect of the inspection object is evaluated to discriminate the depth of the surface defect that exists on the inspection object. A method for discriminating the surface defect depth of an inspection object,
Using magnetic Konasagu scratch method, flaw detection surface defects of the object to be inspected,
Using an ultrasonic flaw detection method in which the frequency of ultrasonic waves transmitted to the object to be inspected can be changed , the surface defect of the object to be inspected is detected and the depth of the surface defect is detected,
By evaluating the combination of the case where the flaw is detected and the case where the flaw is not detected from the flaw detection result of the surface defect obtained by the magnetic particle flaw detection method and the flaw detection result of the surface defect obtained by the ultrasonic flaw detection method, Discriminate the presence or absence of surface defects in the inspection object and the depth of surface defects ,
From the flaw detection result of the surface defect obtained by the ultrasonic flaw detection method, by evaluating the combination of the case where the reflected signal is received and the case where the reflected signal is not received when the measurement frequency is 5 MHz, 2 MHz and 1.5 MHz, the flawed surface A method for discriminating a surface defect depth of an object to be inspected, characterized by discriminating defects into depth ranks classified according to the depth of surface defects.
被検査体の表面及び/又は表面皮下に存在する表面欠陥を探傷すると共に、当該被検査体の表面欠陥の深さを評価して、被検査体に存在する表面欠陥の深さを弁別する被検査体の表面欠陥深さの弁別装置であって、
磁粉探傷法を用いて、前記被検査体の表面欠陥を探傷する磁粉探傷手段と、
記被検査体に対して送出される超音波の周波数が変更可能とされている超音波探傷法を用いて、前記被検査体の表面欠陥を探傷すると共に当該表面欠陥の深さを検出する超音波探傷手段と、
前記磁粉探傷手段で得られた表面欠陥の探傷結果と、前記超音波探傷手段で得られた表面欠陥の探傷結果より傷が検出された場合と検出されない場合の組合せを評価することで、前記被検査体の表面欠陥の有無、及び表面欠陥の深さを弁別する表面欠陥深さ弁別手段と、を有し、
前記表面欠陥深さ弁別手段は、前記超音波探傷手段で得られた表面欠陥の探傷結果から測定周波数が5MHz、2MHzおよび1.5MHzのときに反射信号が受信される場合と受信されない場合の組合せを評価することで、探傷された表面欠陥を、表面欠陥の深さごとに区分けされた深さランクに弁別するように構成されている
ことを特徴とする被検査体の表面欠陥深さの弁別装置。
A surface defect that exists on the surface and / or under the surface of the inspection object is detected, and the depth of the surface defect of the inspection object is evaluated to discriminate the depth of the surface defect that exists on the inspection object. A discrimination device for the surface defect depth of an inspection object,
Magnetic particle flaw detection means for flaw detection of surface defects of the object to be inspected using a magnetic particle flaw detection method,
Before SL using the ultrasonic flaw detection method in which the ultrasonic frequency is changeable dispatched for the test subject, to detect the depth of the surface defect while testing the surface defects of the object to be inspected Ultrasonic flaw detection means,
By evaluating the combination of the case where the flaw is detected and the case where the flaw is not detected from the flaw detection result of the surface defect obtained by the magnetic particle flaw detection means and the flaw detection result of the surface defect obtained by the ultrasonic flaw detection means, A surface defect depth discriminating means for discriminating the presence / absence of a surface defect in the inspection object and the depth of the surface defect ;
The surface defect depth discrimination means is a combination of a case where a reflected signal is received and a case where a reflected signal is not received when the measurement frequency is 5 MHz, 2 MHz and 1.5 MHz from the surface defect inspection result obtained by the ultrasonic inspection means. A device for discriminating the surface defect depth of an object to be inspected, which is configured to discriminate the surface defects detected by evaluation into depth ranks classified according to the depth of the surface defects. .
JP2013254312A 2013-12-09 2013-12-09 Discrimination method and apparatus for surface defect depth of inspection object Active JP6238716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254312A JP6238716B2 (en) 2013-12-09 2013-12-09 Discrimination method and apparatus for surface defect depth of inspection object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254312A JP6238716B2 (en) 2013-12-09 2013-12-09 Discrimination method and apparatus for surface defect depth of inspection object

Publications (2)

Publication Number Publication Date
JP2015114127A JP2015114127A (en) 2015-06-22
JP6238716B2 true JP6238716B2 (en) 2017-11-29

Family

ID=53528068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254312A Active JP6238716B2 (en) 2013-12-09 2013-12-09 Discrimination method and apparatus for surface defect depth of inspection object

Country Status (1)

Country Link
JP (1) JP6238716B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184521A1 (en) 2019-03-13 2020-09-17 Jfeスチール株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, facility for manufacturing steel material, method for manufacturing steel material, and steel material quality control method
JP2021004809A (en) * 2019-06-26 2021-01-14 マークテック株式会社 Ultraviolet LED irradiation device
KR102287304B1 (en) * 2021-02-09 2021-08-09 나우 주식회사 Adaptive magnetic particle detection device and magnetic particle detection method using the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142384U (en) * 1975-05-12 1976-11-16
JPS57132054A (en) * 1981-02-10 1982-08-16 Sumitomo Metal Ind Ltd Flaw detector
JPS59148865A (en) * 1983-02-14 1984-08-25 Kobe Steel Ltd Internal defect detecting method of ultrasonic flow detection
NL8302988A (en) * 1983-08-26 1985-03-18 Dow Chemical Nederland METHOD AND APPARATUS FOR NON-DESTRUCTIVE APPROVAL OF FIXED BODIES.
JPS6138451A (en) * 1984-07-30 1986-02-24 Kobe Steel Ltd Functional inspection of automatic flaw observation apparatus by fluorescent magnetic powder flaw detection method
JPH0677000B2 (en) * 1987-03-12 1994-09-28 株式会社神戸製鋼所 Pass / fail judgment method for test materials such as steel billets
JPH0682118B2 (en) * 1989-01-12 1994-10-19 新日本製鐵株式会社 Flaw detection method
JPH0587784A (en) * 1991-09-25 1993-04-06 Kansai Electric Power Co Inc:The Method and apparatus for estimation for quantification of defect
JP2922507B1 (en) * 1998-07-31 1999-07-26 三菱電機株式会社 Ultrasonic flaw detector
JP2000241397A (en) * 1999-02-24 2000-09-08 Nkk Corp Method and apparatus for detecting surface defect
JP2001272379A (en) * 2000-03-24 2001-10-05 Kawasaki Steel Corp Method and device for non destructive test for tube
JP2006242942A (en) * 2005-02-03 2006-09-14 Tokyo Electric Power Co Inc:The Liquid immersion flaw detection device, local liquid immersion flaw detecting device and liquid immersion flaw detection method
JP2008209148A (en) * 2007-02-23 2008-09-11 Kobe Steel Ltd Non-destructive inspection method and device
JP5570242B2 (en) * 2010-02-22 2014-08-13 株式会社神戸製鋼所 Apparatus for detecting surface defect and surface subcutaneous defect, and detection method thereof
JP5430533B2 (en) * 2010-10-19 2014-03-05 株式会社神戸製鋼所 Subsurface defect detection method and apparatus

Also Published As

Publication number Publication date
JP2015114127A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
US10648937B2 (en) Nondestructive inspection method for coatings and ceramic matrix composites
US5537876A (en) Apparatus and method for nondestructive evaluation of butt welds
JP4631002B2 (en) Method for detecting defects and apparatus therefor
US7694568B2 (en) Method for the nondestructive material testing of highly pure polycrystalline silicon
US20060201253A1 (en) System for non-contact interrogation of railroad axles using laser-based ultrasonic inspection
JP6238716B2 (en) Discrimination method and apparatus for surface defect depth of inspection object
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
RU2698510C1 (en) Method of integrated control of rail joint weld quality
JP2006030218A (en) Quality inspection method of welded steel pipe welded section
Uchanin et al. Detection of cracks in ferrous steel structures: new innovative eddy current techniques
Lopato et al. Image and signal processing algorithms for THz imaging of composite materials
KR101700061B1 (en) Flaw inspection method and flaw inspection device
CN113015901A (en) Method for producing glass plate and apparatus for producing glass plate
Raude et al. Advances in carbon steel weld inspection using tangential eddy current array
IEM-RM B-scan ultrasonic image analysis for internal rail defect detection
JP5570242B2 (en) Apparatus for detecting surface defect and surface subcutaneous defect, and detection method thereof
Krieg et al. In-Line Inspection In Lieu of Hydrostatic Testing for Low Frequency Electric Resistance Welded Pipe
Peng et al. An ultrasonic technology study for subsurface defect in railway wheel tread
JP3662231B2 (en) Inspection method for steel drums
Hesse et al. Defect detection in rails using ultrasonic surface waves
JP5430533B2 (en) Subsurface defect detection method and apparatus
JP2006133031A (en) Method and device for detecting defect of casting member
Haines et al. Identifying and sizing axial seam weld flaws in ERW pipe seams and SCC in the pipe body using ultrasonic imaging
JPS58216950A (en) Ultrasonic flaw detection
Nakamura et al. Development of on-line Lamb wave testing technique using real time digital signal processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150