JP6237492B2 - Heating furnace heating control device, combustion control method, rolled material manufacturing method - Google Patents

Heating furnace heating control device, combustion control method, rolled material manufacturing method Download PDF

Info

Publication number
JP6237492B2
JP6237492B2 JP2014130514A JP2014130514A JP6237492B2 JP 6237492 B2 JP6237492 B2 JP 6237492B2 JP 2014130514 A JP2014130514 A JP 2014130514A JP 2014130514 A JP2014130514 A JP 2014130514A JP 6237492 B2 JP6237492 B2 JP 6237492B2
Authority
JP
Japan
Prior art keywords
temperature
zone
steel material
furnace
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014130514A
Other languages
Japanese (ja)
Other versions
JP2016008335A (en
Inventor
進典 秋吉
進典 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014130514A priority Critical patent/JP6237492B2/en
Publication of JP2016008335A publication Critical patent/JP2016008335A/en
Application granted granted Critical
Publication of JP6237492B2 publication Critical patent/JP6237492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Description

本発明は、加熱する鋼材を搬送しながら連続的に加熱する連続式の加熱炉の加熱温度を制御する技術及び、その技術を使用した圧延材の製造方法に関する。   The present invention relates to a technique for controlling the heating temperature of a continuous heating furnace that continuously heats a steel material to be heated and a method for manufacturing a rolled material using the technique.

従来の連続式加熱炉の燃焼制御方法では、加熱炉からの鋼材の抽出ピッチを予測し、抽出時の目標温度まで焼き上げるのに必要な炉温を算出し、その算出した炉温となるように燃料流量を制御している(特許文献1)。即ち、鋼材温度については抽出時の目標抽出温度に着目して、対象とする鋼材を、装入時(現在)の鋼材温度から目標抽出温度に焼き上げるために必要な各加熱帯での炉温設定値を、1次元ないし2次元伝熱モデルなどの炉温設定モデルに基づき計算する。そして、抽出時までに鋼材の温度が所定温度に達するように加熱炉の加熱制御を行う。   In the conventional continuous heating furnace combustion control method, the extraction pitch of steel from the heating furnace is predicted, the furnace temperature required to bake to the target temperature at the time of extraction is calculated, and the calculated furnace temperature is set. The fuel flow rate is controlled (Patent Document 1). In other words, with regard to the steel material temperature, focusing on the target extraction temperature at the time of extraction, the furnace temperature setting in each heating zone required to bake the target steel material from the steel material temperature at the time of charging (current) to the target extraction temperature The value is calculated based on a furnace temperature setting model such as a one-dimensional or two-dimensional heat transfer model. And heating control of a heating furnace is performed so that the temperature of steel materials reaches predetermined temperature by the time of extraction.

特開平7−258752号公報JP 7-258752 A

特許文献1に記載の制御方法では、鋼材の抽出ピッチを予測し、予測した抽出ピッチから各鋼材の加熱炉全体での在炉時間を予測して、炉温設定モデルに基づき鋼材の加熱に必要な炉温を設定し、その設定した炉温となるように燃焼制御を行っている。
しかしながら、鋼材が加熱炉中に滞在する在炉時間は、通常3時間を超える長時間である。このため、加熱炉に装入する鋼材が抽出されると予測される予想時刻は、誤差が大きくなる傾向にある。そして誤差が大きいほど、鋼材を装入する際に設定する炉温が不適切となり、目標抽出温度に対する、実際の加熱炉抽出時の鋼材温度のばらつきが大きくなる。
本発明は、上記のような点に着目してなされたもので、装入側でより適切な炉温を設定可能とすることで、加熱炉抽出時の鋼材温度のばらつきを小さくすることを目的とする。
In the control method described in Patent Document 1, it is necessary to predict the extraction pitch of the steel material, predict the in-furnace time in the entire heating furnace of each steel material from the predicted extraction pitch, and heat the steel material based on the furnace temperature setting model A proper furnace temperature is set, and combustion control is performed so that the set furnace temperature is obtained.
However, the in-furnace time during which the steel material stays in the heating furnace is usually a long time exceeding 3 hours. For this reason, the estimated time when the steel material charged in the heating furnace is predicted to be extracted tends to have a large error. And the larger the error, the more inappropriate the furnace temperature set when charging the steel material, and the greater the variation in the steel material temperature during actual heating furnace extraction with respect to the target extraction temperature.
The present invention has been made paying attention to the above points, and it is possible to set a more appropriate furnace temperature on the charging side, thereby reducing the variation in the steel material temperature at the time of extraction from the heating furnace. And

上記課題を解決するために、本発明の一態様である加熱炉の加熱制御装置は、加熱する鋼材を搬送しながら連続的に加熱する加熱炉の加熱制御装置であって、上記加熱炉を装入側から抽出側に向けて2以上のゾーンに区画し、区画されたゾーンで個別に燃焼制御を行う構成とし、少なくとも装入側のゾーンを対象として、対象とするゾーン入側での鋼材温度を取得する入側温度取得部と、対象とするゾーンの次のゾーン入側で必要な鋼材温度を推定する推定温度計算部と、加熱する鋼材の対象とするゾーンの滞在時間を推定する滞在時間推定部と、上記入側温度取得部が取得した鋼材温度、上記推定温度計算部が推定した鋼材温度、上記滞在時間推定部が推定した滞在時間から、対象とするゾーンでの炉温を設定する炉温設定部と、を備えることを特徴とする。   In order to solve the above problems, a heating control apparatus for a heating furnace according to one aspect of the present invention is a heating control apparatus for a heating furnace that continuously heats a steel material to be heated while conveying the steel material to be heated. It is divided into two or more zones from the entry side to the extraction side, and the combustion control is performed individually in the divided zones, and the steel material temperature at the target zone entry side at least for the charge side zone , The estimated temperature calculation unit for estimating the temperature of the steel material required on the next zone entry side of the target zone, and the stay time for estimating the stay time of the target zone of the steel material to be heated The furnace temperature in the target zone is set from the estimation part, the steel material temperature acquired by the entry side temperature acquisition part, the steel material temperature estimated by the estimation temperature calculation part, and the stay time estimated by the stay time estimation part. A furnace temperature setting unit, And wherein the door.

また、本発明の一態様である加熱炉の燃焼制御方法は、加熱する鋼材を搬送しながら連続的に加熱する加熱炉の燃焼制御方法であって、上記加熱炉を装入側から抽出側に向けて2以上のゾーンに区画し、区画されたゾーンで個別に燃焼制御を行う構成とし、少なくとも装入側のゾーンを対象として、対象とするゾーン入側での鋼材温度、対象とするゾーンの次のゾーン入側で必要な鋼材温度、及び加熱する鋼材の対象とするゾーンの滞在時間に基づき、対象とするゾーンでの炉温を設定し、対象とするゾーンにおける炉温を設定した炉温となるように、燃料流量及び空気流量を制御することを特徴とする。   Moreover, the combustion control method for a heating furnace according to one aspect of the present invention is a combustion control method for a heating furnace that continuously heats a steel material to be heated while conveying the steel material to be heated from the charging side to the extraction side. It is divided into two or more zones, and combustion control is individually performed in the divided zones. At least the charging side zone, the steel material temperature at the target zone entry side, the target zone temperature Set the furnace temperature in the target zone based on the required steel temperature at the next zone entry side and the residence time of the target steel zone to be heated, and set the furnace temperature in the target zone Thus, the fuel flow rate and the air flow rate are controlled.

このとき、全てのゾーンを対象とし、各ゾーン毎に、対象とするゾーン入側での鋼材温度、対象とするゾーンの次のゾーン入側で必要な鋼材温度、加熱する鋼材の対象とするゾーンの滞在時間に基づき、対象とするゾーンでの炉温を設定し、対象とするゾーンにおける炉温を設定した炉温となるように、燃料流量及び空気流量を制御し、最後のゾーンでは、対象とするゾーンの次のゾーン入側で必要な鋼材温度として、上記加熱炉での目標抽出温度を設定するようにしても良い。   At this time, all zones are targeted, and for each zone, the steel material temperature at the target zone entry side, the steel material temperature required at the next zone entry side of the target zone, the zone targeted for the steel material to be heated Set the furnace temperature in the target zone based on the staying time, and control the fuel flow rate and the air flow rate so that the furnace temperature in the target zone becomes the set furnace temperature. The target extraction temperature in the heating furnace may be set as the steel material temperature required on the zone entry side next to the zone.

また、本発明の一態様である圧延材製造方法は、加熱する鋼材を搬送しながら連続的に加熱する加熱炉から抽出した鋼材を熱間圧延して圧延材を製造する圧延材製造方法であって、上記の一態様である加熱炉の燃焼制御方法で加熱炉の燃焼を制御し、上記熱間圧延後の圧延材の目標温度から上記加熱炉での目標抽出温度を計算し、計算した目標抽出温度に基づき、上記対象とするゾーンの次のゾーン入側で必要な鋼材温度を推定することを特徴とする。   The rolled material manufacturing method according to an aspect of the present invention is a rolled material manufacturing method in which a rolled material is manufactured by hot rolling a steel material extracted from a heating furnace that is continuously heated while conveying the heated steel material. Then, controlling the combustion of the heating furnace by the combustion control method of the heating furnace according to the above aspect, calculating the target extraction temperature in the heating furnace from the target temperature of the rolled material after the hot rolling, and calculating the calculated target Based on the extraction temperature, the steel material temperature required on the zone entry side next to the target zone is estimated.

本発明によれば、加熱炉における装入側での鋼材加熱量を適正にすることが可能となるため、加熱炉抽出時の鋼材温度のばらつきを小さくすることが可能となる。この結果、過加熱防止による加熱炉の燃料原単位向上や被加熱材である鋼材の加熱不足による抽出停止時間の短縮という効果がある。
また、本発明によれば、加熱炉抽出時の鋼材温度のばらつきが小さくなることで、次工程での熱間圧延後の圧延材の品質精度の向上に繋がる。
本発明は、特に、目標抽出温度の範囲が狭い鋼材に有効である、例えば目標抽出温度の範囲を狭く制御する必要がある鋼材に好適な技術である。
According to the present invention, it is possible to make the heating amount of the steel material on the charging side in the heating furnace appropriate, so that it is possible to reduce the variation in the steel material temperature at the time of extraction of the heating furnace. As a result, there are effects of improving the fuel consumption rate of the heating furnace by preventing overheating and shortening the extraction stop time due to insufficient heating of the steel material to be heated.
Moreover, according to this invention, it becomes connected with the improvement of the quality accuracy of the rolling material after the hot rolling by the next process because the dispersion | variation in the steel material temperature at the time of heating furnace extraction becomes small.
The present invention is particularly effective for a steel material having a narrow target extraction temperature range, for example, a technique suitable for a steel material that needs to be controlled to have a narrow target extraction temperature range.

本発明に基づく実施形態に係る圧延材製造設備を説明する概念図である。It is a conceptual diagram explaining the rolling material manufacturing equipment which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る燃焼制御部の構成を示す図である。It is a figure which shows the structure of the combustion control part which concerns on embodiment based on this invention.

次に、本発明の実施形態について図面を参照しながら説明する。
(構成)
本実施形態の圧延材製造設備は、図1に示すように、連続式の加熱炉1と、熱間圧延設備2とを備える。
加熱炉1は、通常3つ又は4つのゾーンに区画されている。本実施形態では、図1に示すように、予熱帯1A、加熱帯1B、均熱帯1Cの3つのゾーンに区画される場合を例示している。本実施形態では、炉温設定のためのゾーン分けとして、本実施形態では、予熱帯1Aのゾーンと、加熱帯1B及び均熱帯1Cのゾーンとの2つのゾーンに区画する場合で例示する。
Next, embodiments of the present invention will be described with reference to the drawings.
(Constitution)
As shown in FIG. 1, the rolled material manufacturing facility of the present embodiment includes a continuous heating furnace 1 and a hot rolling facility 2.
The heating furnace 1 is usually divided into three or four zones. In this embodiment, as shown in FIG. 1, the case where it divides into three zones, the pretropical 1A, the heating zone 1B, and the soaking zone 1C is illustrated. In the present embodiment, as an example of zoning for setting the furnace temperature, in the present embodiment, the zone is divided into two zones, a pretropical zone 1A, and a heating zone 1B and a soaking zone 1C.

そして、不図示の連続鋳造機で鋳造されて製造された鋼材3(スラブ)が、連続的に加熱炉1に装入され、その鋼材3は、予熱帯1A、加熱帯1B、均熱帯1Cを通過しながら、3,4時間程度をかけて加熱される。更に、加熱された鋼材は、加熱炉1から順次抽出されて、熱間圧延設備(不図示)によって圧延に供され目的の圧延材となる。
加熱炉1では、個々のゾーン毎に、設定された炉温設定値となるように燃焼制御が行われる。即ち、加熱制御装置を構成する燃焼制御コントローラ6が、炉壁に設置された熱電対などからなる雰囲気温度計4a、4b、4cの測定値を取得し、測定した炉温測定値から求まる各帯の雰囲気温度が設定した炉温設定値となるように、各帯で供される燃料流量、及び空気流量を調整する。図1中、符号5は、各帯を加熱するバーナーを示している。
And the steel material 3 (slab) produced by casting with a continuous casting machine (not shown) is continuously charged into the heating furnace 1, and the steel material 3 has a pretropical 1A, a heating zone 1B, and a soaking zone 1C. While passing, it is heated for about 3 to 4 hours. Further, the heated steel material is sequentially extracted from the heating furnace 1 and subjected to rolling by a hot rolling facility (not shown) to become a target rolled material.
In the heating furnace 1, combustion control is performed for each zone so that the set furnace temperature is set. That is, the combustion controller 6 constituting the heating controller acquires the measured values of the ambient thermometers 4a, 4b, and 4c including thermocouples installed on the furnace wall, and each band obtained from the measured furnace temperature measured values. The fuel flow rate and the air flow rate provided in each zone are adjusted so that the ambient temperature becomes the set furnace temperature set value. In FIG. 1, the code | symbol 5 has shown the burner which heats each belt | band | zone.

燃焼制御コントローラ6は、図2に示すように、装入温度計算部6A、目標抽出温度計算部6B、鋼材温度計算部6C、抽出ピッチ予測部6D、加熱帯入側鋼材温度取得部6E、予熱帯在炉時間計算部6F、次段在炉時間計算部6G、加熱帯入側目標温度推定部6H、予熱帯温度設定部6I、次段帯温度設定部6J、及び燃料流量設定部6Kを備える。
装入温度計算部6Aは、連続鋳造機(不図示)の出側で測定した鋼材温度に基づき、連続鋳造機から加熱炉1までの移動に要した時間から鋼材3の装入温度を計算する。装入温度計算部6Aは、加熱炉1入側で鋼材3の温度を直接計測することで取得するようにしても良い。
As shown in FIG. 2, the combustion controller 6 includes a charging temperature calculation unit 6A, a target extraction temperature calculation unit 6B, a steel material temperature calculation unit 6C, an extraction pitch prediction unit 6D, a heating zone entry side steel material temperature acquisition unit 6E, A tropical in-furnace time calculation unit 6F, a next stage in-furnace time calculation unit 6G, a heating zone entry side target temperature estimation unit 6H, a pre-tropical temperature setting unit 6I, a next stage zone temperature setting unit 6J, and a fuel flow rate setting unit 6K are provided. .
The charging temperature calculation unit 6A calculates the charging temperature of the steel material 3 from the time required to move from the continuous casting machine to the heating furnace 1 based on the steel material temperature measured on the exit side of the continuous casting machine (not shown). . The charging temperature calculation unit 6A may be obtained by directly measuring the temperature of the steel material 3 on the heating furnace 1 entry side.

目標抽出温度計算部6Bは、加熱炉抽出時の目標温度を計算する。目標抽出温度計算部6Bは、例えば、熱間圧延機の出側目標温度および製品寸法から、圧延ラインにおける材料温度降下モデルを用いて、加熱炉抽出時の目標温度を計算する。即ち、目標抽出温度計算部6Bは、圧延機での温度降下を考慮して、抽出時の鋼材目標温度(目標抽出温度)を決定する。また、熱間圧延される前の鋼材加熱段階において、鋼中の析出物の溶解・析出挙動を制御する目的で、加熱温度を規制する場合には、その条件に従って加熱炉抽出時の目標温度を計算することができる。   The target extraction temperature calculation unit 6B calculates a target temperature at the time of heating furnace extraction. The target extraction temperature calculation unit 6B calculates the target temperature at the time of extraction in the heating furnace using, for example, the material temperature drop model in the rolling line from the delivery-side target temperature and product dimensions of the hot rolling mill. That is, the target extraction temperature calculation unit 6B determines a steel target temperature (target extraction temperature) at the time of extraction in consideration of a temperature drop in the rolling mill. In addition, when the heating temperature is regulated for the purpose of controlling the dissolution / precipitation behavior of precipitates in steel in the steel heating stage before hot rolling, the target temperature at the time of extraction in the furnace is set according to the conditions. Can be calculated.

抽出ピッチ予測部6Dは、圧延スケジュール及び目標圧延量から、加熱炉1からの鋼材抽出ピッチを予測する。この予測された抽出ピッチから、鋼材3が炉内を通過していく搬送速度が予測される。
鋼材温度計算部6Cは、加熱炉1内の各帯1A、1B、1Cの炉温実績をもとに、炉内の鋼材3の温度を所定サンプリング周期で計算する。
加熱帯入側鋼材温度取得部6Eは、加熱帯1Bに進入する鋼材3の温度を取得する。加熱帯入側鋼材温度取得部6Eは、例えば予熱帯1Aの出側近傍に設置した雰囲気温度計4aの測定値に基づき、予熱帯1Aから加熱帯1Bに移行する鋼材3の温度を計算する。若しくは、鋼材温度計算部6Cの計算値から加熱帯1Bに進入する鋼材3の温度を取得する。
The extraction pitch prediction unit 6D predicts the steel material extraction pitch from the heating furnace 1 from the rolling schedule and the target rolling amount. From this predicted extraction pitch, the conveyance speed at which the steel material 3 passes through the furnace is predicted.
The steel material temperature calculation unit 6C calculates the temperature of the steel material 3 in the furnace at a predetermined sampling period based on the furnace temperature results of the bands 1A, 1B, and 1C in the heating furnace 1.
The heating zone entry side steel material temperature acquisition unit 6E acquires the temperature of the steel material 3 entering the heating zone 1B. The heating zone entry side steel material temperature acquisition part 6E calculates the temperature of the steel material 3 which transfers from the pretropical 1A to the heating zone 1B based on the measured value of the atmospheric thermometer 4a installed in the exit side vicinity of the pretropical 1A, for example. Alternatively, the temperature of the steel material 3 entering the heating zone 1B is acquired from the calculated value of the steel material temperature calculation unit 6C.

予熱帯在炉時間計算部6Fは、抽出ピッチ予測部6Dが求めた抽出ピッチから、予熱帯1Aに装入されている先行の鋼材3の予熱帯1Aに存在する残りの在炉時間をそれぞれ算出し、その算出した在炉時間から、これから加熱炉1に装入される鋼材3の予熱帯1Aの在炉時間を求める。具体的には、予熱帯1Aに存在する先行の全鋼材3の圧延時間の合計値を、これから加熱炉1に装入される鋼材3の予熱帯1Aの予測される在炉時間とする。   The pre-tropical in-reactor time calculation unit 6F calculates the remaining in-reactor time existing in the pre-tropical 1A of the preceding steel material 3 charged in the pre-tropical 1A from the extracted pitch obtained by the extracted pitch prediction unit 6D. Then, from the calculated in-furnace time, the in-furnace time of the pre-tropical zone 1A of the steel material 3 to be charged into the heating furnace 1 is determined. Specifically, the total value of the rolling times of the preceding all steel materials 3 existing in the pre-tropical zone 1A is set as the predicted in-furnace time of the pre-tropical zone 1A of the steel material 3 to be charged into the heating furnace 1 from now on.

次段在炉時間計算部6Gは、抽出ピッチ予測部6Dが求めた抽出ピッチから、加熱帯1B及び均熱帯1Cに装入されている先行の鋼材3の加熱炉1から抽出されるまでの残りの在炉時間をそれぞれ算出し、その算出した在炉時間から、これから加熱帯1Bに装入される鋼材3の抽出されるまでの在炉時間を求める。具体的には、加熱帯1B及び均熱帯1Cに存在する先行の全鋼材3の圧延時間の合計値を、これから加熱帯1Bに装入される鋼材3の加熱炉抽出までの在炉時間とする。   The next stage in-furnace time calculation unit 6G remains from the extraction pitch obtained by the extraction pitch prediction unit 6D until it is extracted from the heating furnace 1 of the preceding steel material 3 charged in the heating zone 1B and the soaking zone 1C. Each in-furnace time is calculated, and from the calculated in-furnace time, the in-furnace time until the steel material 3 charged in the heating zone 1B is extracted is obtained. Specifically, the total value of the rolling times of the preceding all steel materials 3 existing in the heating zone 1B and the soaking zone 1C is set as the in-furnace time until the furnace extraction of the steel materials 3 charged in the heating zone 1B. .

加熱帯入側目標温度推定部6Hは、加熱炉1に装入される鋼材3の加熱帯1B入側で目標温度を計算する。加熱帯入側目標温度推定部6Hは、目標抽出温度計算部6Bから抽出時の鋼材目標温度(目標抽出温度)を取得すると共に、抽出ピッチ予測部6Dが求めた抽出ピッチから炉内の各鋼材3の加熱帯1B及び均熱帯1Cでの残りの在炉時間を算出し、その算出した在炉時間から、これから加熱炉1に装入する鋼材3の加熱帯1B及び均熱帯1Cでの在炉時間(抽出までの時間)を予測する。そして、加熱帯入側目標温度推定部6Hは、抽出時の鋼材目標温度、予測した加熱帯1B及び均熱帯1Cでの在炉時間、現在の加熱帯1B及び均熱帯1Cの炉温設定値をパラメータとして使用し、1次元若しくは2次元の伝熱式(伝熱モデル)に基づき、抽出時の鋼材温度が目標抽出温度となる、加熱帯1B入側での目標温度を推定する。   The heating zone entry side target temperature estimation unit 6H calculates the target temperature on the entry side of the heating zone 1B of the steel material 3 charged in the heating furnace 1. The heating zone entry side target temperature estimation unit 6H acquires the steel material target temperature (target extraction temperature) at the time of extraction from the target extraction temperature calculation unit 6B, and each steel material in the furnace from the extraction pitch obtained by the extraction pitch prediction unit 6D. The remaining in-furnace time in the heating zone 1B and the soaking zone 1C is calculated, and the in-furnace in the heating zone 1B and soaking zone 1C of the steel 3 to be charged into the heating furnace 1 is calculated from the calculated in-shutdown time. Predict time (time to extraction). And the heating zone entrance side target temperature estimation part 6H sets the steel material target temperature at the time of extraction, the predicted heating time in the heating zone 1B and the soaking zone 1C, the furnace temperature setting value of the present heating zone 1B and soaking zone 1C. It is used as a parameter, and based on a one-dimensional or two-dimensional heat transfer equation (heat transfer model), a target temperature on the heating zone 1B inlet side where the steel material temperature during extraction becomes the target extraction temperature is estimated.

予熱帯温度設定部6Iは、予熱帯1Aの炉温設定値を求める。予熱帯温度設定部6Iは、加熱炉1に装入する鋼材3が、予熱帯在炉時間計算部6Fが求めた在炉時間だけ予熱帯1Aに存在するとして、装入する鋼材3が、装入温度計算部6Aが求めた鋼材温度から、加熱帯入側目標温度推定部6Hが求めた加熱帯1B入側での目標温度とするために必要な予熱帯1Aの温度を、1次元若しくは2次元の伝熱式(伝熱モデル)に基づき算出する。   The pre-tropical temperature setting unit 6I calculates the furnace temperature setting value of the pre-tropical 1A. The pre-tropical temperature setting unit 6I assumes that the steel material 3 to be charged into the heating furnace 1 is present in the pre-tropical zone 1A only for the in-furnace time obtained by the pre-tropical in-reactor time calculation unit 6F. The temperature of the pre-tropical zone 1A required for setting the target temperature on the heating zone 1B inlet side determined by the heating zone inlet side target temperature estimation unit 6H from the steel material temperature calculated by the inlet temperature calculator 6A is one-dimensional or 2 Calculated based on the dimensional heat transfer equation (heat transfer model).

次段帯温度設定部6Jは、加熱帯1B及び均熱帯1Cの炉温設定値を求める。次段帯温度設定部6Jは、加熱帯1Bに移行する鋼材3が、次段在炉時間計算部6Gが求めた在炉時間だけ加熱帯1B及び均熱帯1Cに存在するとして、加熱帯1Bに移行する鋼材3が、現在の鋼材温度から、抽出時の目標抽出温度とするために必要な加熱帯1B及び均熱帯1Cでの各温度を、1次元若しくは2次元の伝熱式(伝熱モデル)に基づき算出する。   The next zone temperature setting unit 6J obtains the furnace temperature set values for the heating zone 1B and the soaking zone 1C. The next zone temperature setting unit 6J assumes that the steel material 3 transitioning to the heating zone 1B exists in the heating zone 1B and the soaking zone 1C for the duration of the in-furnace time obtained by the next zone in-furnace time calculating unit 6G. The steel material 3 to be transferred is a one-dimensional or two-dimensional heat transfer equation (heat transfer model) for each temperature in the heating zone 1B and the soaking zone 1C necessary to obtain the target extraction temperature at the time of extraction from the current steel material temperature. ).

燃料流量設定部6Kは、予熱帯温度設定部6I及び次段帯温度設定部6Jが求めた各帯1A、1B、1Cの炉温設定値と、各帯1A、1B、1Cの実施の雰囲気温度と、炉効率とから、各帯1A、1B、1Cの温度を炉温設定値にするための燃料流量及び空気流量を算出する。実際には燃料流量は、炉温のカスケード制御の操作量とすることが多い。
炉効率は、ガス1Nmを投入したときの鋼材3の昇熱量(℃)のことであって、各帯1A、1B、1C毎に実験その他によって予め求めておく。炉効率の影響因子は多々あるが、例えば、横軸にガス投入量、縦軸に鋼帯昇熱量のグラフを、例えば1次の線形近似式として予め各帯1A、1B、1C毎に求め、その1次の近似式の傾きを炉効率の指標とする。
The fuel flow rate setting unit 6K includes the furnace temperature setting values of the zones 1A, 1B, and 1C obtained by the pre-tropical temperature setting unit 6I and the next zone temperature setting unit 6J, and the ambient temperatures of the zones 1A, 1B, and 1C. From the furnace efficiency, the fuel flow rate and the air flow rate for setting the temperatures of the bands 1A, 1B, and 1C to the furnace temperature set values are calculated. In practice, the fuel flow rate is often set to an operation amount for cascade control of the furnace temperature.
The furnace efficiency is the amount of heat increase (° C.) of the steel material 3 when the gas 1Nm 3 is charged, and is obtained in advance by experiments or the like for each of the bands 1A, 1B, 1C. Although there are many factors affecting the furnace efficiency, for example, a graph of the amount of gas input on the horizontal axis and a graph of the heating amount of the steel strip on the vertical axis is obtained in advance for each of the bands 1A, 1B, 1C as a linear linear approximation formula, for example. The slope of the first order approximate expression is used as an index of the furnace efficiency.

そして各帯1A、1B、1Cの燃焼操作部7a、7b、7cは、燃料流量設定部6Kが算出した燃料流量及び空気流量となるように操作する。
ここで、装入温度計算部6A及び加熱帯入側鋼材温度取得部6Eは、入側温度取得部を構成する。加熱帯入側鋼材温度取得部6Eは推定温度計算部を構成する。予熱帯在炉時間計算部6F、次段在炉時間計算部6Gは、滞在時間推定部を構成する。予熱帯温度設定部6I、次段帯温度設定部6Jは炉温設定部を構成する。
The combustion operation units 7a, 7b, and 7c of the bands 1A, 1B, and 1C are operated so that the fuel flow rate and the air flow rate calculated by the fuel flow rate setting unit 6K are obtained.
Here, the charging temperature calculation unit 6A and the heating zone entry side steel material temperature acquisition unit 6E constitute an entry side temperature acquisition unit. The heating zone entry side steel material temperature acquisition unit 6E constitutes an estimated temperature calculation unit. The pre-tropical in-reactor time calculation unit 6F and the next-stage in-reactor time calculation unit 6G constitute a stay time estimation unit. The pre-tropical temperature setting unit 6I and the next stage zone temperature setting unit 6J constitute a furnace temperature setting unit.

(鋼材3の加熱・圧延処理)
鋼材3は、連続的に加熱炉1に装入され、加熱炉1内の予熱帯1A、加熱帯1B、及び均熱帯1Cを通過しながら目標とする目標抽出温度まで加熱される。更に、加熱炉1から順次抽出された鋼材3は、熱間圧延設備によって圧延されて、目的の圧延材となる。
本実施形態では、上記の加熱炉1で鋼材3を加熱する際の燃焼制御が次のように行われる。
(Heating and rolling treatment of steel 3)
The steel material 3 is continuously charged into the heating furnace 1 and heated to the target extraction temperature while passing through the pre-tropical zone 1A, the heating zone 1B, and the soaking zone 1C in the heating furnace 1. Furthermore, the steel 3 which are successively extracted from the heating furnace 1, the hot rolling set Bei Therefore being rolled, the rolled material of interest.
In the present embodiment, combustion control when the steel material 3 is heated in the heating furnace 1 is performed as follows.

すなわち、加熱炉1に装入(予熱帯1Aに装入)する鋼材3について、加熱炉1から抽出する際の目標抽出温度から逆算して、加熱帯1B入側での目標温度を求める。また、加熱炉1に装入する鋼材3について、予熱帯1Aでの在炉時間を予測する。そして、加熱炉装入時の現在の鋼材温度、加熱帯1B入側での目標温度、予熱帯1Aでの予測される在炉時間をパラメータとし、公知の伝熱モデルに基づき、加熱炉1に装入する鋼材3の予熱帯1A出側での温度を加熱帯1B入側での目標温度とするために必要な予熱帯1Aの炉温設定値を求め、その炉温設定値となるように、予熱帯1Aで必要な燃料流量を決定して、その決定した燃料流量となるように予熱帯1Aでの燃焼制御(加熱制御)を実施する。   That is, for the steel material 3 charged into the heating furnace 1 (charged into the pre-tropical zone 1A), the target temperature at the inlet side of the heating zone 1B is calculated by calculating backward from the target extraction temperature when extracting from the heating furnace 1. Moreover, about the steel material 3 charged into the heating furnace 1, the in-furnace time in the pretropical 1A is estimated. And the present steel material temperature at the time of heating furnace charging, the target temperature in the heating zone 1B entrance side, the estimated in-furnace time in the pretropical 1A are used as parameters, and the heating furnace 1 is set based on a known heat transfer model. The furnace temperature set value for the pre-tropical zone 1A necessary for setting the temperature of the steel material 3 to be charged at the outlet side of the pre-tropical zone 1A as the target temperature at the inlet side of the heating zone 1B is obtained and set to the furnace temperature set value. Then, the fuel flow rate required in the pre-tropical zone 1A is determined, and the combustion control (heating control) in the pre-tropical zone 1A is performed so as to achieve the determined fuel flow rate.

なお、先行して予熱帯1Aに装入されている各鋼材3に対する炉温設定値とこれから予熱帯1Aに装入する鋼材3の炉温設定値との偏差が所定以上の場合には、例えば、一番大きな炉温設定値を採用して、被加熱材である鋼材の加熱不足が無いようにする。予熱帯1Aに存在する全鋼材3の炉温設定値の平均値を現在の予熱帯1Aの炉温設定値としても良い。通常、加熱炉1に連続して装入される鋼材3の目標抽出温度は同じ値若しくは近似の値であるので、最新の炉温設定値(これから装入する鋼材3の炉温設定値)を、現在の予熱帯1Aの炉温設定値として設定するようにしても良い。後述の加熱帯1Bや均熱帯1Cでも同様である。   In addition, when the deviation between the furnace temperature set value for each steel material 3 previously charged in the pre-tropical zone 1A and the furnace temperature set value of the steel material 3 to be charged in the pre-tropical zone 1A is a predetermined value or more, for example, The largest furnace temperature setting value is adopted so that there is no insufficient heating of the steel material to be heated. It is good also considering the average value of the furnace temperature setting value of all the steel materials 3 which exist in the pretropical 1A as the furnace temperature setting value of the present pretropical 1A. Usually, since the target extraction temperature of the steel material 3 continuously charged in the heating furnace 1 is the same value or an approximate value, the latest furnace temperature setting value (the furnace temperature setting value of the steel material 3 to be charged from now on) is set. Alternatively, it may be set as the furnace temperature setting value of the current pre-tropical zone 1A. The same applies to the heating zone 1B and soaking zone 1C described later.

また、予熱帯1Aで加熱され、続いて加熱帯1Bに移行する鋼材3について、加熱帯1B及び均熱帯1Cでの在炉時間を予測する。そして、加熱帯1Bへの移行時の現在の鋼材温度、加熱炉抽出時の目標温度(加熱帯1Bへの移行時に再度、目標抽出温度を算出しても良い)、加熱帯1B及び均熱帯1Cでの予測される在炉時間をパラメータとし、公知の伝熱モデルに基づき、加熱帯1Bに移行する鋼材3の現在の温度を抽出時の目標温度とするために必要な加熱帯1B及び均熱帯1Cの各炉温設定値を求め、その炉温設定値となるように、加熱帯1B及び均熱帯1Cでそれぞれ必要な燃料流量を決定して、その決定した燃料流量となるように、加熱帯1B及び均熱帯1Cでの燃焼制御(加熱制御)を実施する。   Moreover, the in-furnace time in the heating zone 1B and the soaking zone 1C is predicted about the steel material 3 which is heated in the pre-tropical zone 1A and subsequently moves to the heating zone 1B. And the present steel material temperature at the time of the transition to the heating zone 1B, the target temperature at the time of extraction from the heating furnace (the target extraction temperature may be calculated again at the time of the transition to the heating zone 1B), the heating zone 1B and the soaking zone 1C The heating zone 1B and the soaking zone required to make the current temperature of the steel material 3 moving to the heating zone 1B the target temperature at the time of extraction based on a known heat transfer model, with the predicted in-furnace time as a parameter Each furnace temperature set value of 1C is obtained, and necessary fuel flow rates are determined in the heating zone 1B and the soaking zone 1C so as to be the furnace temperature set value, and the heating zone is set so as to obtain the determined fuel flow rate. Combustion control (heating control) is performed in 1B and soaking zone 1C.

ここで、従来のように加熱炉1に装入する鋼材3について、抽出時の目標抽出温度から直接、伝熱モデルに基づき各帯1A、1B、1Cでの炉温設定温度を設定した場合、先行して加熱されている先行の鋼材3の加熱炉全体の在炉時間の誤差の積み重ねから、抽出位置から一番遠い予熱帯1Aでの在炉時間の予測精度が悪く、その結果、予熱帯1Aでの炉温設定値の精度が悪かった。例えば加熱炉1に30枚の鋼材3が装入可能であれば、これから装入する鋼材3の在炉時間は、先行する30枚の全鋼材3の予測される圧延時間の合計から求めているためである。   Here, for the steel material 3 charged into the heating furnace 1 as in the prior art, when the furnace temperature set temperature in each zone 1A, 1B, 1C is set directly from the target extraction temperature at the time of extraction based on the heat transfer model, From the accumulation of errors in the in-furnace time of the entire heating furnace of the preceding steel material 3 that has been heated in advance, the prediction accuracy of the in-furnace time in the pre-tropical zone 1A farthest from the extraction position is poor. The accuracy of the furnace temperature setting value at 1A was poor. For example, if 30 steel materials 3 can be charged in the heating furnace 1, the in-furnace time of the steel materials 3 to be charged from now is obtained from the sum of the predicted rolling times of all 30 preceding steel materials 3. Because.

これに対し、本実施形態では、加熱炉1内のうち予熱帯1Aに存在する先行する鋼材3(例えば12枚の鋼材3)だけから、装入する鋼材3の予熱帯1Aでの在炉時間を求める事となるため、予熱帯1Aでの加熱制御の精度が向上する。
更に、再度、加熱帯1Bの入側で、加熱炉1内のうち加熱帯1B及び均熱帯1Cに存在する先行する鋼材3(例えば18枚の鋼材3)だけから、加熱帯1B及び均熱帯1Cでの在炉時間を求める事となるため、加熱帯1B及び均熱帯1Cでの加熱制御の精度も向上する。
On the other hand, in the present embodiment, the in-furnace time in the pretropical zone 1A of the steel material 3 to be charged from only the preceding steel material 3 (for example, 12 steel materials 3) existing in the pretropical zone 1A in the heating furnace 1 is used. Therefore, the accuracy of heating control in the pre-tropical 1A is improved.
Furthermore, the heating zone 1B and the soaking zone 1C only from the preceding steel material 3 (for example, 18 steel materials 3) existing in the heating zone 1B and the soaking zone 1C in the heating furnace 1 again on the entrance side of the heating zone 1B. Therefore, the accuracy of heating control in the heating zone 1B and the soaking zone 1C is also improved.

この結果、本実施形態では、加熱炉抽出時の鋼材温度のばらつきを小さくすることが可能となる。この結果、過加熱防止による加熱炉1の燃料原単位向上や被加熱材である鋼材の加熱不足による抽出停止時間の短縮に効果がある。
また、加熱炉抽出時の鋼材温度のばらつきが小さくなることで、次工程での熱間圧延後の圧延材の品質精度の向上に繋がる。
本実施形態の方法は、特に、抽出温度の範囲を狭く制御する必要がある鋼材の製造に好適な技術である。
尚、伝熱モデルを使用して、目標抽出温度となるように、所定サンプリング周期で繰り返し計算し直して精度を向上させることも考えられるが、計算負荷が高くなるといった問題がある。
As a result, in the present embodiment, it is possible to reduce the variation in the steel material temperature at the time of extraction in the heating furnace. As a result, it is effective in improving the fuel consumption rate of the heating furnace 1 by preventing overheating and shortening the extraction stop time due to insufficient heating of the steel material to be heated.
Moreover, since the dispersion | variation in the steel material temperature at the time of a heating furnace extraction becomes small, it leads to the improvement of the quality precision of the rolling material after the hot rolling in the next process.
The method of the present embodiment is a technique that is particularly suitable for the manufacture of steel materials that require a narrow control of the extraction temperature range.
Although it may be possible to improve the accuracy by repeatedly calculating at a predetermined sampling period so that the target extraction temperature is obtained using the heat transfer model, there is a problem that the calculation load increases.

ここで、上記の実施形態では、予熱帯1Aと、加熱帯1B及び均熱帯1Cとの2つのゾーンを想定して、各帯1A、1B、1Cの炉温設定値を算出する場合を例示している。本発明は、これに限定されない。例えば加熱帯1Bを2つのゾーン(第1加熱帯、第2加熱帯)に更に分けて、第2加熱帯入側での目標温度を求め、その第2加熱帯入側での目標温度から、本発明に基づき第1加熱帯の炉温設置値を計算するようにしても良い。即ち、加熱炉1内を炉温設定値の決定のために3つゾーンに区画して、本発明を適用しても良い。
また、本実施形態では、加熱帯1B入側での実際の鋼材温度から加熱帯1B及び均熱帯1Cでの炉温設定値を計算している。この代わりに、従来のように、加熱炉装入時の鋼材温度と目標抽出温度から加熱帯1B及び均熱帯1Cでの炉温設定値を求めても良い。
Here, the above embodiment exemplifies a case where the furnace temperature set values for the zones 1A, 1B, and 1C are calculated assuming two zones of the pre-tropical zone 1A, the heating zone 1B, and the soaking zone 1C. ing. The present invention is not limited to this. For example, the heating zone 1B is further divided into two zones (first heating zone and second heating zone), the target temperature on the second heating zone entry side is obtained, and from the target temperature on the second heating zone entry side, You may make it calculate the furnace temperature installation value of a 1st heating zone based on this invention. That is, the present invention may be applied by dividing the inside of the heating furnace 1 into three zones for determining the furnace temperature set value.
Moreover, in this embodiment, the furnace temperature setting value in the heating zone 1B and the soaking zone 1C is calculated from the actual steel material temperature on the heating zone 1B entrance side. Instead of this, the furnace temperature set values in the heating zone 1B and the soaking zone 1C may be obtained from the steel material temperature and the target extraction temperature at the time of charging in the heating furnace as in the past.

1 加熱炉
1A 予熱帯
1B 加熱帯
1C 均熱帯
3 鋼材
4a、4b、4c 雰囲気温度計
5 バーナー
6 燃焼制御コントローラ
6A 装入温度計算部
6B 目標抽出温度計算部
6C 鋼材温度計算部
6D 抽出ピッチ予測部
6E 加熱帯入側鋼材温度取得部
6F 予熱帯在炉時間計算部
6G 次段在炉時間計算部
6H 加熱帯入側目標温度推定部
6I 予熱帯温度設定部
6J 次段帯温度設定部
6K 燃料流量設定部
DESCRIPTION OF SYMBOLS 1 Heating furnace 1A Pre-tropical 1B Heating zone 1C Soaking zone 3 Steel materials 4a, 4b, 4c Atmosphere thermometer 5 Burner 6 Combustion controller 6A Charge temperature calculation part 6B Target extraction temperature calculation part 6C Steel material temperature calculation part 6D Extraction pitch prediction part 6E Heating zone entry side steel temperature acquisition unit 6F Pre-tropical in-reactor time calculation unit 6G Next stage in-reactor time calculation unit 6H Heating zone entry side target temperature estimation unit 6I Pre-tropical temperature setting unit 6J Next stage zone temperature setting unit 6K Fuel flow rate Setting section

Claims (4)

加熱する鋼材を搬送しながら連続的に加熱する加熱炉の加熱制御装置であって、
上記加熱炉を装入側から抽出側に向けて2以上のゾーンに区画し、区画されたゾーンで個別に燃焼制御を行う構成とし、
少なくとも装入側のゾーンを対象として、
対象とするゾーン入側での鋼材温度を取得する入側温度取得部と、
対象とするゾーンへの移動時に目標抽出温度を算出してその目標抽出温度に基づき、対象とするゾーンの次のゾーン入側で必要な鋼材温度を推定する推定温度計算部と、
加熱する鋼材の対象とするゾーンの滞在時間を推定する滞在時間推定部と、
上記入側温度取得部が取得した鋼材温度、上記推定温度計算部が推定した鋼材温度、上記滞在時間推定部が推定した滞在時間から、対象とするゾーンでの炉温を設定する炉温設定部と、
を備えることを特徴とする加熱炉の加熱制御装置。
A heating control device for a heating furnace that continuously heats a steel material to be heated,
The heating furnace is divided into two or more zones from the charging side toward the extraction side, and combustion control is individually performed in the divided zones.
For at least the charging zone,
An entry-side temperature acquisition unit for acquiring the steel material temperature at the target zone entry side;
An estimated temperature calculation unit that calculates a target extraction temperature when moving to a target zone and estimates a steel material temperature required on the next zone entry side of the target zone based on the target extraction temperature ;
A residence time estimation unit for estimating the residence time of the zone to be heated by the steel material;
The furnace temperature setting unit for setting the furnace temperature in the target zone from the steel material temperature acquired by the entry side temperature acquisition unit, the steel material temperature estimated by the estimated temperature calculation unit, and the stay time estimated by the stay time estimation unit When,
A heating control device for a heating furnace, comprising:
加熱する鋼材を搬送しながら連続的に加熱する加熱炉の燃焼制御方法であって、
上記加熱炉を装入側から抽出側に向けて2以上のゾーンに区画し、区画されたゾーンで個別に燃焼制御を行う構成とし、
少なくとも装入側のゾーンを対象として、対象とするゾーン入側での鋼材温度、対象とするゾーンへの移動時に目標抽出温度を算出してその目標抽出温度に基づき求めた対象とするゾーンの次のゾーン入側で必要な鋼材温度、及び加熱する鋼材の対象とするゾーンの滞在時間に基づき、対象とするゾーンでの炉温を設定し、対象とするゾーンにおける炉温を上記設定した炉温となるように、燃料流量及び空気流量を制御することを特徴とする加熱炉の燃焼制御方法。
It is a combustion control method of a heating furnace that continuously heats steel material to be heated,
The heating furnace is divided into two or more zones from the charging side toward the extraction side, and combustion control is individually performed in the divided zones.
Next to the target zone calculated based on the target extraction temperature by calculating the target extraction temperature when moving to the target zone, at least for the charging side zone The furnace temperature in the target zone is set based on the steel material temperature required on the zone entry side and the staying time of the target zone of the steel to be heated, and the furnace temperature in the target zone is set above. A combustion control method for a heating furnace, wherein the fuel flow rate and the air flow rate are controlled so that
全てのゾーンを対象とし、各ゾーン毎に、対象とするゾーン入側での鋼材温度、対象とするゾーンの次のゾーン入側で必要な鋼材温度、加熱する鋼材の対象とするゾーンの滞在時間に基づき、対象とするゾーンでの炉温を設定し、対象とするゾーンにおける炉温を設定した炉温となるように、燃料流量及び空気流量を制御し、
最後のゾーンでは、対象とするゾーンの次のゾーン入側で必要な鋼材温度として、上記加熱炉での目標抽出温度を再度求めて設定することを特徴とする請求項2に記載の加熱炉の燃焼制御方法。
For all zones, for each zone, the steel material temperature at the target zone entry side, the steel material temperature required at the zone entry side next to the target zone, the residence time of the target steel material to be heated Based on the above, the furnace temperature in the target zone is set, and the fuel flow rate and the air flow rate are controlled so that the furnace temperature in the target zone is set,
In the last zone, the target extraction temperature in the said heating furnace is again calculated | required and set as a steel material temperature required in the zone entrance side next to the zone of interest, The heating furnace of Claim 2 characterized by the above-mentioned. Combustion control method.
加熱する鋼材を搬送しながら連続的に加熱する加熱炉から抽出した鋼材を熱間圧延して圧延材を製造する圧延材製造方法であって、
請求項2又は請求項3に記載の燃焼制御方法で上記加熱炉の燃焼を制御し、
上記熱間圧延後の圧延材の目標温度から上記加熱炉での目標抽出温度を計算し、計算した目標抽出温度に基づき、上記対象とするゾーンの次のゾーン入側で必要な鋼材温度を推定することを特徴とする圧延材製造方法。
A rolled material manufacturing method for manufacturing a rolled material by hot rolling a steel material extracted from a heating furnace that continuously heats the steel material to be heated,
The combustion control method according to claim 2 or 3 is used to control combustion of the heating furnace,
The target extraction temperature in the heating furnace is calculated from the target temperature of the rolled material after the hot rolling, and the necessary steel material temperature is estimated on the next zone entry side of the target zone based on the calculated target extraction temperature. A rolled material manufacturing method characterized by comprising:
JP2014130514A 2014-06-25 2014-06-25 Heating furnace heating control device, combustion control method, rolled material manufacturing method Active JP6237492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130514A JP6237492B2 (en) 2014-06-25 2014-06-25 Heating furnace heating control device, combustion control method, rolled material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130514A JP6237492B2 (en) 2014-06-25 2014-06-25 Heating furnace heating control device, combustion control method, rolled material manufacturing method

Publications (2)

Publication Number Publication Date
JP2016008335A JP2016008335A (en) 2016-01-18
JP6237492B2 true JP6237492B2 (en) 2017-11-29

Family

ID=55226122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130514A Active JP6237492B2 (en) 2014-06-25 2014-06-25 Heating furnace heating control device, combustion control method, rolled material manufacturing method

Country Status (1)

Country Link
JP (1) JP6237492B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246058A (en) * 1995-03-09 1996-09-24 Nippon Steel Corp Automatic combustion control method in continuous type heating furnace
JPH11335739A (en) * 1998-05-28 1999-12-07 Kawasaki Steel Corp Method and device for heating temp. control of continuous heating furnace
JP2008024966A (en) * 2006-07-18 2008-02-07 Sumitomo Metal Ind Ltd Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JP6021450B2 (en) * 2012-06-06 2016-11-09 株式会社神戸製鋼所 Heating furnace operation support system

Also Published As

Publication number Publication date
JP2016008335A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP6146553B1 (en) Steel plate temperature control device and temperature control method
KR101956365B1 (en) System for control temperature pattern of strip in continuous annealing line and the method of the same
WO2017130508A1 (en) Steel sheet temperature control device and temperature control method
JP5391205B2 (en) Control device
JP6035817B2 (en) Automatic combustion control method and apparatus for continuous heating furnace
JP4598586B2 (en) Cooling control method, apparatus, and computer program
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JP5736804B2 (en) Combustion control method and combustion control apparatus for continuous heating furnace
JP6015033B2 (en) Mill pacing control device and mill pacing control method
JP6237492B2 (en) Heating furnace heating control device, combustion control method, rolled material manufacturing method
JP5482249B2 (en) Plate temperature control device and plate temperature control method for continuous annealing furnace
JP4998655B2 (en) Combustion control method for continuous heating furnace
JP4598580B2 (en) Cooling control method, apparatus, and computer program
JP2009056504A (en) Manufacturing method and manufacturing device of hot-rolled steel sheet
JP2022165402A (en) Temperature measuring method, temperature measuring device, temperature control method, temperature control device, method for manufacturing steel material, and facility for manufacturing steel material
EP2944393B1 (en) Heating device for hot stamping
JP6784182B2 (en) Steel plate temperature control method and steel sheet temperature control device
JP2019151864A (en) Steel sheet temperature prediction method, steel sheet temperature prediction device, and steel sheet temperature control method
JP2014079778A (en) Manufacturing method and manufacturing apparatus of hot rolled steel sheet
JP2006274401A (en) Method for automatically controlling combustion in continuous heating furnace
JP5544345B2 (en) Temperature estimation device, temperature estimation method, rolling mill control device
JP2010167503A (en) Method, device and computer program for controlling cooling
JP2023125249A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JP2001181744A (en) Method for preventing variation of width in continuous annealing equipment
JP2021109990A (en) Plate temperature control method, heating control device and method for producing metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250