JP6231031B2 - Thermally conductive particle composition, method for producing thermally conductive particle composition, thermally conductive resin composition, and thermally conductive resin cured body - Google Patents

Thermally conductive particle composition, method for producing thermally conductive particle composition, thermally conductive resin composition, and thermally conductive resin cured body Download PDF

Info

Publication number
JP6231031B2
JP6231031B2 JP2015034520A JP2015034520A JP6231031B2 JP 6231031 B2 JP6231031 B2 JP 6231031B2 JP 2015034520 A JP2015034520 A JP 2015034520A JP 2015034520 A JP2015034520 A JP 2015034520A JP 6231031 B2 JP6231031 B2 JP 6231031B2
Authority
JP
Japan
Prior art keywords
boron nitride
thermally conductive
resin
fine powder
conductive particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015034520A
Other languages
Japanese (ja)
Other versions
JP2016155937A (en
Inventor
崇人 今井
崇人 今井
深澤 元晴
元晴 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56825135&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6231031(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2015034520A priority Critical patent/JP6231031B2/en
Publication of JP2016155937A publication Critical patent/JP2016155937A/en
Application granted granted Critical
Publication of JP6231031B2 publication Critical patent/JP6231031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、熱伝導性粒子組成物、熱伝導性粒子組成物の製造方法、熱伝導性樹脂組成物および熱伝導性樹脂硬化体に関する。   The present invention relates to a thermally conductive particle composition, a method for producing a thermally conductive particle composition, a thermally conductive resin composition, and a thermally conductive resin cured body.

従来より、樹脂組成物や樹脂シートに対して熱伝導性のフィラーを含有させることで、樹脂単体よりも熱伝導性を向上させる方法が利用されている。特に、シリコーン樹脂やエポキシ樹脂などのマトリックス樹脂に、熱伝導性の無機フィラーを充填した熱伝導性樹脂組成物は、発熱性電子部品を実装するプリント配線版の絶縁層や発熱性電子部品の搭載された回路とヒートシンクの間の絶縁層等の用途において広く採用されている。   2. Description of the Related Art Conventionally, a method has been used in which a thermal conductive filler is contained in a resin composition or a resin sheet to improve thermal conductivity as compared with a resin alone. In particular, a thermally conductive resin composition in which a matrix resin such as a silicone resin or an epoxy resin is filled with a thermally conductive inorganic filler is used for mounting an insulating layer of a printed wiring board on which a heat generating electronic component is mounted or a heat generating electronic component. Widely used in applications such as an insulating layer between a formed circuit and a heat sink.

近年、電子部品の高性能・高集積化に伴って、電子デバイス内部の発熱密度が増加しており、高熱伝導性の樹脂組成物や樹脂シートが要求されている。高熱伝導化を達成するためには、高熱伝導性の無機フィラーを樹脂中に高充填することが必要である。しかし、フィラーを高充填すると、フィラーの分散不良・凝集が起こり、樹脂組成物の熱伝導率向上が困難となる。特に、熱伝導性フィラーとして、窒化ホウ素などの窒化物を用いると、フィラー表面の変性が困難で、樹脂とフィラーの親和性の向上効果が不十分であり、シリカやアルミナ等のフィラーよりも、樹脂中における分散性に問題があった。   In recent years, along with the high performance and high integration of electronic parts, the heat generation density inside the electronic device is increasing, and a highly heat conductive resin composition and resin sheet are required. In order to achieve high thermal conductivity, it is necessary to highly fill the resin with a highly heat-conductive inorganic filler. However, if the filler is highly filled, poor filler dispersion and agglomeration occur, and it becomes difficult to improve the thermal conductivity of the resin composition. In particular, when a nitride such as boron nitride is used as the thermally conductive filler, the modification of the filler surface is difficult, and the effect of improving the affinity between the resin and the filler is insufficient. There was a problem with dispersibility in the resin.

そこで、これらの熱伝導性粒子を用いた組成物の流動性改善を目的として、フィラー表面を変性させる方法が検討されている。例えば、窒化ホウ素フィラーを、アミン系(特許文献1)やエポキシ系(非特許文献1)シラン系カップリング剤を用いる方法や、ジルコネートカップリング剤、アルミン酸ジルコニウムカップリング剤、アルミネートカップリング剤(特許文献2)で表面処理する方法が開示されているが、カップリング剤のみでは十分な分散性を得るには不十分であった。   Therefore, a method for modifying the filler surface has been studied for the purpose of improving the fluidity of a composition using these thermally conductive particles. For example, boron nitride filler, a method using an amine-based (Patent Document 1) or an epoxy-based (Non-Patent Document 1) silane coupling agent, a zirconate coupling agent, a zirconium aluminate coupling agent, an aluminate coupling A method of surface treatment with an agent (Patent Document 2) is disclosed, but a coupling agent alone is insufficient to obtain sufficient dispersibility.

特開2013−203770号公報JP 2013-203770 A 特開2006−257392号公報JP 2006-257392 A 広島県立創業技術研究所 西部工業技術センター研究報告 No.49、2006、p19Hiroshima Prefectural Institute of Technology Research Report 49, 2006, p19

本発明は、上記問題と実情に鑑み、分散性および樹脂の低粘度化に優れた熱伝導性粒子組成物およびその製造方法を提供することを目的とする。加えて、この熱伝導性粒子組成物を用いて製造される熱伝導性に優れた樹脂組成物および硬化体を提供することを目的とする。   An object of this invention is to provide the heat conductive particle composition excellent in the dispersibility and resin viscosity reduction, and its manufacturing method in view of the said problem and the situation. In addition, it aims at providing the resin composition excellent in the heat conductivity manufactured using this heat conductive particle composition, and a hardening body.

すなわち、本発明は上記の課題を解決するために、以下の方法を採用する。
(1)平均粒子径が20〜150μmの窒化ホウ素粗粉と窒化ホウ素微粉が平均粒子径1〜10μm、平均厚み0.001〜1μmの鱗片形状である窒化ホウ素微粉を含む熱伝導性粒子組成物。
(2)前記窒化ホウ素微粉が、シランカップリング剤で分散処理されたものである、(1)に記載の熱伝導性粒子組成物。
(3)前記窒化ホウ素微粉の一部が、前記窒化ホウ素粗粉表面に付着したものである、(1)または(2)に記載の熱伝導性粒子組成物。
)前記窒化ホウ素粗粉90〜99.8質量部に対し、前記窒化ホウ素微粉が0.2〜10質量部である、(1)〜()の何れか一つに記載の熱伝導性粒子組成物。
)(1)〜()の何れか一つに記載の熱伝導性粒子組成物と樹脂を含有する熱伝導性樹脂組成物。
)前記樹脂が、エポキシ樹脂、シリコーン樹脂、液晶ポリマー、ポリエステル、ポリアミド、ポリイミド、ポリフタルアミド、ポリフェニレンスルフィド、ポリカーボネート、ポリエーテルエーテルケトン、ポリアリールエーテルケトン、ポリフェニレンオキシドから選択される少なくとも1種以上の樹脂である、()に記載の熱伝導性樹脂組成物。
)()に記載の熱伝導性樹脂組成物における樹脂としてエポキシ樹脂を使用し、該エポキシ樹脂が硬化された熱伝導性樹脂硬化体。
)窒化ホウ素粉末を高圧ホモジナイザーで、平均粒子径1〜10μm、平均厚み0.01〜1μmの鱗片形状の窒化ホウ素微粉に粉砕する第一工程と、前記窒化ホウ素微粉をシランカップリング剤で分散処理する第二工程と、前記シランカップリング剤で表面処理された窒化ホウ素微粉を、乾式混合にて、窒化ホウ素粗粉と混合する第3工程を含む、熱伝導性粒子組成物の製造方法。
That is, the present invention employs the following method in order to solve the above problems.
(1) Thermally conductive particle composition comprising boron nitride fine powder having a mean particle diameter of 20 to 150 μm and boron nitride fine powder and boron nitride fine powder in the form of scales having an average particle diameter of 1 to 10 μm and an average thickness of 0.001 to 1 μm. .
(2) The thermally conductive particle composition according to (1), wherein the boron nitride fine powder is dispersed with a silane coupling agent.
(3) The thermally conductive particle composition according to (1) or (2), wherein a part of the boron nitride fine powder is attached to the surface of the boron nitride coarse powder.
( 4 ) The heat conduction according to any one of (1) to ( 3 ), wherein the boron nitride fine powder is 0.2 to 10 parts by mass with respect to 90 to 99.8 parts by mass of the boron nitride coarse powder. Particle composition.
( 5 ) A thermally conductive resin composition comprising the thermally conductive particle composition according to any one of (1) to ( 4 ) and a resin.
( 6 ) At least one selected from the group consisting of epoxy resin, silicone resin, liquid crystal polymer, polyester, polyamide, polyimide, polyphthalamide, polyphenylene sulfide, polycarbonate, polyether ether ketone, polyaryl ether ketone, and polyphenylene oxide. The heat conductive resin composition as described in ( 5 ) which is the above resin.
( 7 ) A thermally conductive resin cured product obtained by using an epoxy resin as the resin in the thermally conductive resin composition according to ( 6 ) , and curing the epoxy resin .
( 8 ) A first step of pulverizing boron nitride powder with a high-pressure homogenizer into scaly boron nitride fine powder having an average particle diameter of 1 to 10 μm and an average thickness of 0.01 to 1 μm, and the boron nitride fine powder with a silane coupling agent A method for producing a thermally conductive particle composition, comprising: a second step of dispersion treatment; and a third step of mixing boron nitride fine powder surface-treated with the silane coupling agent with boron nitride coarse powder by dry mixing. .

本発明者らは鋭意検討の結果、熱伝導性粒子粗粉と、特定範囲にある平均粒子径および平均厚みの鱗片形状を有する窒化ホウ素微粉を用いた熱伝導性粒子組成物は、樹脂組成物中での分散性および低粘度化に優れることを見出した。さらに本発明の熱伝導性粒子組成物を用いた樹脂組成物および硬化体は、熱伝導性粒子組成物を高充填できるため、優れた熱伝導性を示す。   As a result of intensive studies, the present inventors have determined that a thermally conductive particle composition using a thermally conductive particle coarse powder and a boron nitride fine powder having a scale shape having an average particle diameter and an average thickness in a specific range is a resin composition. It has been found that it is excellent in dispersibility and viscosity reduction. Furthermore, since the resin composition and cured body using the thermally conductive particle composition of the present invention can be highly filled with the thermally conductive particle composition, it exhibits excellent thermal conductivity.

図1は実施例1で用いた、窒化ホウ素微粉の走査型電子顕微鏡写真である。1 is a scanning electron micrograph of fine boron nitride powder used in Example 1. FIG. 図2は実施例9で用いた、窒化ホウ素微粉の厚みを示す走査型電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph showing the thickness of the boron nitride fine powder used in Example 9. 図3は実施例2の熱伝導性粒子組成物の走査型電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of the thermally conductive particle composition of Example 2. 図4は図3を部分的に拡大した走査型電子顕微鏡写真である。FIG. 4 is a scanning electron micrograph in which FIG. 3 is partially enlarged.

<熱伝導性粒子粗粉>
本発明の熱伝導性粒子粗粉としては、アルミナ、窒化アルミ、窒化ホウ素、窒化ケイ素、炭化ケイ素、シリカ、表面絶縁処理を行った金属や炭素系の導電性粒子を使用することができる。これらの中では、高熱伝導性および高絶縁性を示すことから、アルミナ、窒化アルミ、窒化ホウ素が好ましい。
<Thermal conductive particle coarse powder>
As the heat conductive particle coarse powder of the present invention, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, silica, surface-treated metal or carbon-based conductive particles can be used. Among these, alumina, aluminum nitride, and boron nitride are preferable because they exhibit high thermal conductivity and high insulation.

熱伝導性粒子粗粉の平均粒子径は20〜150μmが好ましく、20〜70μmがより好ましい。熱伝導性粒子粗粉の平均粒子径が20μm未満であると、熱伝導性が低下する場合がある。平均粒子径が150μmを超えると、絶縁性が低下する場合がある。   20-150 micrometers is preferable and, as for the average particle diameter of heat conductive particle coarse powder, 20-70 micrometers is more preferable. When the average particle diameter of the heat conductive particle coarse powder is less than 20 μm, the heat conductivity may be lowered. When the average particle diameter exceeds 150 μm, the insulating properties may deteriorate.

<窒化ホウ素微粉>
本発明の窒化ホウ素微粉は鱗片形状であり、その平均粒子径は1〜10μmであり、好ましくは2〜8μmである。1μm未満であると、分散性が低下したり、樹脂組成物の粘度が高くなり充填性が低下する場合がある。また、10μmよりも大きいと、熱伝導性粒子粗粉に良好な流動性や充填性を付与できない場合がある。
<Boron nitride fine powder>
The boron nitride fine powder of the present invention has a scaly shape, and the average particle diameter is 1 to 10 μm, preferably 2 to 8 μm. If it is less than 1 μm, the dispersibility may be lowered, or the viscosity of the resin composition may be increased and the filling property may be lowered. Moreover, when larger than 10 micrometers, favorable fluidity | liquidity and a filling property may not be provided to a heat conductive particle coarse powder.

窒化ホウ素微粉の平均厚みは0.001〜1μmであり、好ましくは0.05〜0.5μmである。平均厚みが0.001μm未満または1μmを超えると、樹脂組成物へ熱伝導性粒子組成物を高充填することが困難になる場合がある。   The average thickness of the boron nitride fine powder is 0.001 to 1 μm, preferably 0.05 to 0.5 μm. When the average thickness is less than 0.001 μm or exceeds 1 μm, it may be difficult to highly fill the resin composition with the heat conductive particle composition.

前記窒化ホウ素微粉は、窒化ホウ素粉末を湿式で粉砕可能な、例えば高圧ホモジナイザー、ビーズミル、磨細機または振動ミルを用いて作製することができる。特に、不純物の混入を避けるため、メディアレスである高圧ホモジナイザーによる粉砕処理が好ましい。前述の方法以外に、化学気相成長(CVD)法、有機溶媒中で超音波を照射する方法を用いて窒化ホウ素微粉を作製してもよい。   The boron nitride fine powder can be produced using, for example, a high-pressure homogenizer, a bead mill, a fine mill, or a vibration mill that can pulverize the boron nitride powder in a wet manner. In particular, a pulverization process using a mediumless high-pressure homogenizer is preferable in order to avoid contamination with impurities. In addition to the method described above, boron nitride fine powder may be produced using a chemical vapor deposition (CVD) method or a method of irradiating ultrasonic waves in an organic solvent.

さらに、前記窒化ホウ素微粉は、樹脂組成物中での分散性向上および樹脂組成物の低粘度化を目的として分散処理されていることが好ましい。分散処理としては、アミン系やエポキシ系のシランカップリング剤を用いる方法や、ジルコネートカップリング剤、アルミン酸ジルコニウムカップリング剤、アルミネートカップリング剤で処理する方法が挙げられる。これらの中では、分散性の点でシランカップリング剤で分散処理されたものが好ましい。   Further, the boron nitride fine powder is preferably subjected to a dispersion treatment for the purpose of improving dispersibility in the resin composition and reducing the viscosity of the resin composition. Examples of the dispersion treatment include a method using an amine or epoxy silane coupling agent, and a method using a zirconate coupling agent, a zirconium aluminate coupling agent, or an aluminate coupling agent. Among these, those dispersed with a silane coupling agent are preferable from the viewpoint of dispersibility.

分散処理の方法としては、公知の方法を採用することができる。例えば分散剤としてシランカプリング剤を用いた場合は、窒化ホウ素微粉をシランカップリング剤を添加したアルコール溶液と混合後、真空乾燥にてアルコールを除去する方法が挙げられる。   A publicly known method can be adopted as a method of distributed processing. For example, when a silane coupling agent is used as the dispersant, a method of removing the alcohol by vacuum drying after mixing boron nitride fine powder with an alcohol solution to which a silane coupling agent is added can be mentioned.

<熱伝導性粒子組成物>
本発明の熱伝導性粒子組成物(以下、粒子組成物と略す)は、熱伝導性粒子粗粉と窒化ホウ素微粉を含む。窒化ホウ素微粉の一部が熱伝導性粒子粗粉の表面に付着した状態にあることが好ましい。付着とは、窒化ホウ素微粉が、ファデアワールス力により熱伝導性粒子粗粉の表面に物理的に付着した状態を意味する。粒子組成物は、熱伝導性粒子粗粉90〜99.8質量部に対し窒化ホウ素微粉0.2〜10質量部であることが好ましく、熱伝導性粒子粗粉95〜99.5質量部に対し窒化ホウ素微粉0.5〜5質量部であることがより好ましい。熱伝導性粒子粗粉が90質量部未満であると、後述する熱伝導性樹脂組成物の粘度が高くなる場合がある。また、99.8質量部を超えると、分散性が低下する場合がある。
<Heat conductive particle composition>
The heat conductive particle composition of the present invention (hereinafter abbreviated as a particle composition) includes heat conductive particle coarse powder and boron nitride fine powder. It is preferable that a part of the boron nitride fine powder is attached to the surface of the thermally conductive particle coarse powder. The adhesion means a state in which the boron nitride fine powder is physically adhered to the surface of the thermally conductive particle coarse powder by Fade Awarus force. The particle composition is preferably 0.2 to 10 parts by mass of boron nitride fine powder with respect to 90 to 99.8 parts by mass of thermally conductive particle coarse powder, and 95 to 99.5 parts by mass of thermally conductive particle coarse powder. On the other hand, boron nitride fine powder is more preferably 0.5 to 5 parts by mass. When the heat conductive particle coarse powder is less than 90 parts by mass, the viscosity of the heat conductive resin composition described later may increase. Moreover, when it exceeds 99.8 mass parts, a dispersibility may fall.

粒子組成物は、前記窒化ホウ素微粉を乾式混合にて、熱伝導性粒子粗粉と混合し作製される。混合方法として、ヘンシェルミキサー、転動流動式混合機、V型ブレンダー、らいかい機、バタフライミキサーを用いて、各成分の所定量を均一に混合すればよい。   The particle composition is prepared by mixing the boron nitride fine powder with the heat conductive particle coarse powder by dry mixing. As a mixing method, a predetermined amount of each component may be uniformly mixed using a Henschel mixer, a rolling fluid mixer, a V-type blender, a raking machine, and a butterfly mixer.

<熱伝導性樹脂組成物>
本発明の熱伝導性樹脂組成物(以下、樹脂組成物と略す)は、粒子組成物と樹脂を含んでなる。樹脂としては、エポキシ樹脂、シリコーン樹脂、液晶ポリマー、ポリエステル、ポリアミド、ポリイミド、ポリフタルアミド、ポリフェニレンスルフィド、ポリカーボネート、ポリエーテルエーテルケトン、ポリアリールエーテルケトンおよびポリフェニレンオキシドから選択される1種以上の樹脂から選択することができる。なお、樹脂が熱硬化性樹脂の場合は、硬化剤および硬化助剤等を配合することができる。
これらの中では、エポキシ樹脂が耐熱性と銅箔回路への接着性が優れていることから、プリント配線板の絶縁層として好適である。また、シリコーン樹脂は耐熱性、柔軟性及びヒートシンク等への密着性が優れていることから熱インターフェース材として好適である。樹脂組成物の総質量の10〜90質量%、特に好ましくは20〜80質量%が粒子組成物であると、樹脂組成物の熱伝導性、電気絶縁性等を向上させることが可能となる。
なお、樹脂組成物には、粒子組成物への分散性を促進させるため、シランカプリング剤を添加することが好ましい。
<Thermal conductive resin composition>
The thermally conductive resin composition (hereinafter abbreviated as a resin composition) of the present invention comprises a particle composition and a resin. Examples of the resin include one or more resins selected from epoxy resins, silicone resins, liquid crystal polymers, polyesters, polyamides, polyimides, polyphthalamides, polyphenylene sulfides, polycarbonates, polyether ether ketones, polyaryl ether ketones, and polyphenylene oxides. You can choose. In addition, when resin is a thermosetting resin, a hardening | curing agent, a hardening adjuvant, etc. can be mix | blended.
Among these, epoxy resins are suitable as insulating layers for printed wiring boards because of their excellent heat resistance and adhesiveness to copper foil circuits. Silicone resin is suitable as a thermal interface material because it is excellent in heat resistance, flexibility and adhesion to a heat sink. When the total mass of the resin composition is 10 to 90% by mass, and particularly preferably 20 to 80% by mass is the particle composition, it is possible to improve the thermal conductivity, electrical insulation, and the like of the resin composition.
In addition, in order to promote the dispersibility to a particle composition, it is preferable to add a silane coupling agent to a resin composition.

樹脂組成物は、ミル、バンバリーミキサー、ブラベンダー、一軸又は二軸スクリュー押出機、連続ミキサー、混練機等を用いて調製することができる。   The resin composition can be prepared using a mill, a Banbury mixer, a Brabender, a single or twin screw extruder, a continuous mixer, a kneader and the like.

樹脂組成物は、厚さ0.1〜5mmの金属基板上に塗布し、回路を形成する金属箔と重ね合わせた後、150〜240℃で5〜8時間加熱し硬化体を得ることができる。塗布は、ダイコーター、コンマコーター、ロールコーター、バーコーター、グラビヤコーター、カーテンコーター、ドクターブレードコーター、スプレーコーターおよびスクリーン印刷等の方法を使用し塗布することができる。または、金属基板上に樹脂組成物を塗布した後に加熱により半硬化させた後、樹脂組成物の表面に金属箔とラミネートまたは熱プレスする方法が採用できる。さらには、樹脂組成物をシート状に半硬化後、金属基板と金属箔を貼り合わせて硬化体を得ることもできる。   The resin composition can be applied on a metal substrate having a thickness of 0.1 to 5 mm, superimposed on a metal foil that forms a circuit, and then heated at 150 to 240 ° C. for 5 to 8 hours to obtain a cured product. . The coating can be performed using a method such as a die coater, comma coater, roll coater, bar coater, gravure coater, curtain coater, doctor blade coater, spray coater, and screen printing. Or after apply | coating a resin composition on a metal substrate and making it harden | cure by heating, the method of laminating or hot-pressing with metal foil on the surface of a resin composition is employable. Furthermore, after a resin composition is semi-cured into a sheet, a metal substrate and a metal foil are bonded together to obtain a cured body.

<硬化体>
硬化体の厚みは20〜150μmであることが好ましく、40〜125μmであることがより好ましい。厚みを20μm以上とすることで、耐電圧特性が良好となり、150μm以下とすることで、熱抵抗が低くなる。金属基板としてはアルミニウム、鉄、銅およびこれらの合金、もしくはこれらのクラッド材が熱伝導性の点で好ましい。また、金属箔としては、銅、アルミニウム、ニッケル、鉄、スズ、金、銀、モリブデン、チタニウム、ステンレス等が使用できる。
<Hardened body>
The thickness of the cured body is preferably 20 to 150 μm, and more preferably 40 to 125 μm. By setting the thickness to 20 μm or more, the withstand voltage characteristics are improved, and by setting the thickness to 150 μm or less, the thermal resistance is lowered. As the metal substrate, aluminum, iron, copper and alloys thereof, or a clad material thereof is preferable in terms of thermal conductivity. As the metal foil, copper, aluminum, nickel, iron, tin, gold, silver, molybdenum, titanium, stainless steel, or the like can be used.

以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to an Example.

(実施例1)
<窒化ホウ素微粉の作製>
ガラス製300mlビーカーに鱗片形状の窒化ホウ素粉末(電気化学工業(株)製、製品名「SGP」、平均粒子径18μm)5質量部、エタノール47.5質量部、水47.5質量部を入れて混合した。この溶液をスギノマシン社製高圧ホモジナイザー(湿式微粒化装置「スターバーストミニ」)を用いて、微粉化処理を行った。条件として、ノズルの形状はボール衝突型を使用し、200MPaの圧力での処理を10回行い、窒化ホウ素微粉分散溶液を作製した。得られた分散溶液を、目開き0.5μmのろ紙によって、吸引ろ過し、固液分離し、濾物を45℃で12時間真空乾燥し、窒化ホウ素微粉を得た。
Example 1
<Preparation of boron nitride fine powder>
In a 300 ml glass beaker, 5 parts by mass of scale-shaped boron nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd., product name “SGP”, average particle diameter 18 μm), 47.5 parts by mass of ethanol, and 47.5 parts by mass of water And mixed. This solution was pulverized using a high-pressure homogenizer (wet atomizer “Starburst Mini”) manufactured by Sugino Machine. As a condition, a ball collision type was used for the nozzle shape, and the treatment at a pressure of 200 MPa was performed 10 times to prepare a boron nitride fine powder dispersion solution. The obtained dispersion solution was subjected to suction filtration with a filter paper having an opening of 0.5 μm and separated into solid and liquid, and the residue was vacuum dried at 45 ° C. for 12 hours to obtain fine boron nitride powder.

<窒化ホウ素微粉の分散処理>
メタノール溶媒3.4質量部に、エポキシ系シランカップリング剤(信越化学工業(株)製、商品名「KBM403」、3−グリシドキシプロピルトリメトキシシラン)5質量部、pHを3.3に調整した酢酸水溶液1.6質量部を加え、室温で1時間攪拌した。上記の方法により得られた窒化ホウ素微粉100質量部に対し、この溶液を滴下しながら、ミキサーにて混合し、風乾した後、45℃真空乾燥機中に12時間放置し、窒化ホウ素微粉の分散処理を行った。
<Dispersion treatment of boron nitride fine powder>
To 3.4 parts by mass of a methanol solvent, 5 parts by mass of an epoxy silane coupling agent (trade name “KBM403”, 3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.), and pH to 3.3. 1.6 parts by mass of the adjusted aqueous acetic acid solution was added, and the mixture was stirred at room temperature for 1 hour. While dripping this solution to 100 parts by mass of boron nitride fine powder obtained by the above method, mixing with a mixer, air-drying, and leaving to stand in a 45 ° C. vacuum dryer for 12 hours to disperse the boron nitride fine powder Processed.

<熱伝導性粒子組成物の作製>
上記の方法で分散処理した窒化ホウ素微粉0.2質量部、をミキサー(Iwatani社製、「IFM−620DG」、インペラー径58mm、回転数20000rpm)にて、10秒間解砕処理した。さらに、熱伝導性粒子粗粉として、平均粒子径64.1μmである窒化ホウ素粗粉(電気化学工業(株)製)99.8質量部を加えて、さらにミキサーにて50秒間混合し、熱伝導性粒子粗粉99.8質量部と窒化ホウ素微粉0.2質量部からなる粒子組成物を得た。なお、得られた粒子組成物の走査型電子顕微鏡画像により、窒化ホウ素微粉は窒化ホウ素粗粉表面に付着した状態にあることを確認した。
<Preparation of thermally conductive particle composition>
0.2 parts by mass of boron nitride fine powder dispersed by the above method was pulverized for 10 seconds with a mixer (Iwatani, “IFM-620DG”, impeller diameter: 58 mm, rotation speed: 20000 rpm). Further, 99.8 parts by mass of boron nitride coarse powder (manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 64.1 μm was added as the heat conductive particle coarse powder, and further mixed for 50 seconds with a mixer. A particle composition comprising 99.8 parts by mass of conductive particle coarse powder and 0.2 parts by mass of boron nitride fine powder was obtained. In addition, from the scanning electron microscope image of the obtained particle composition, it was confirmed that the boron nitride fine powder was in a state of adhering to the surface of the boron nitride coarse powder.

<熱伝導性樹脂組成物の作製>
上記の方法により得られた粒子組成物75質量部と、ビスフェノールA型液状エポキシ樹脂(DIC社製、「EPICLON 850CRP」)19質量部、芳香族アミン(日本合成化工社製、「H−48B」)6質量部、(東レ・ダウコーニング社製、「z−6040」)シランカップリング剤1.0質量部を、遊星式撹拌機(シンキー社「あわとり練太郎AR−250」、回転数2000rpm)にて混練し、樹脂組成物を作製した。
<Preparation of thermal conductive resin composition>
75 parts by mass of the particle composition obtained by the above method, 19 parts by mass of a bisphenol A type liquid epoxy resin (manufactured by DIC, “EPICLON 850CRP”), aromatic amine (manufactured by Nippon Synthetic Chemical Industry, “H-48B” ) 6 parts by mass (manufactured by Dow Corning Toray, “z-6040”) 1.0 part by mass of a silane coupling agent was added to a planetary stirrer (“Shinky Corporation Awatori Nertaro AR-250”, rotation speed 2000 rpm) ) To prepare a resin composition.

実施例1で用いた原料、作製した粒子組成物及び樹脂組成物の特性を、以下の方法で評価した。結果を表1に示す。   The characteristics of the raw materials used in Example 1, the produced particle composition, and the resin composition were evaluated by the following methods. The results are shown in Table 1.


[平均粒子径]
熱伝導性粒子粗粉又は窒化ホウ素微粉の平均粒子径は、ベックマンコールター製「レーザー回折式粒度分布測定装置LS 13 320」を用いて測定を行った。試料はガラスビーカーに10ccの純水と、熱伝導性粒子粗粉又は窒化ホウ素微粉を1g添加して、超音波洗浄機(アズワン社製、「US CLEANER」、出力80W)で15分間、分散処理を行った。分散処理を行った熱伝導性粒子粗粉または窒化ホウ素微粉の分散液をスポイトで装置に一滴ずつ添加し、再度超音波を90秒間照射後、60秒後に測定を行った。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じて、相対粒子量の合計(100%)で割って求めた。
[Average particle size]
The average particle size of the thermally conductive particle coarse powder or boron nitride fine powder was measured using “Laser Diffraction Particle Size Distribution Measuring Device LS 13 320” manufactured by Beckman Coulter. The sample is a glass beaker with 10 cc of pure water and 1 g of heat conductive particle coarse powder or boron nitride fine powder added, and dispersion treatment is performed for 15 minutes with an ultrasonic cleaner (AUSONE, “US CLEANER”, output 80 W). Went. The dispersion liquid of the thermally conductive particle coarse powder or boron nitride fine powder subjected to the dispersion treatment was added drop by drop to the apparatus with a dropper, and the ultrasonic wave was irradiated again for 90 seconds, and measurement was performed 60 seconds later. In the laser diffraction particle size distribution measuring device, the particle size distribution was calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size was determined by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%).

[窒化ホウ素微粉の平均厚み]
窒化ホウ素微粉75質量部と、ビスフェノールA型液状エポキシ樹脂(DIC社製、「EPICLON 850CRP」)19質量部、芳香族アミン(日本合成化工社製、「H−48B」)6質量部を、遊星式撹拌機にて混練後、30mmΦの一軸押出機にて60℃で押出し窒化ホウ素微粉の長径が押出方向に配向したシート状を得た。得られたシートを200℃で8時間加熱し硬化させた。硬化したシートの中央部を採取後、ミクロトームで端面処理し10mm×10mmの細片を得た。得られた細片の断面図の走査型電子顕微鏡画像より、任意に選択した窒化ホウ素微粉の20個の最大厚みを測定し、その算術平均値を平均厚みとした。
[Average thickness of boron nitride fine powder]
75 parts by mass of boron nitride fine powder, 19 parts by mass of bisphenol A type liquid epoxy resin (DIC Corporation, “EPICLON 850CRP”), 6 parts by mass of aromatic amine (Nippon Synthetic Chemical Industry Co., Ltd., “H-48B”) After kneading with a type stirrer, it was extruded at 60 ° C. with a single screw extruder of 30 mmΦ to obtain a sheet shape in which the major diameter of boron nitride fine powder was oriented in the extrusion direction. The obtained sheet was heated at 200 ° C. for 8 hours to be cured. After collecting the central portion of the cured sheet, the end surface was processed with a microtome to obtain a 10 mm × 10 mm strip. The maximum thickness of 20 arbitrarily selected boron nitride fine powders was measured from the scanning electron microscope image of the cross-sectional view of the obtained strip, and the arithmetic average value was taken as the average thickness.

[熱伝導性樹脂組成物の粘度]
得られた樹脂組成物を、レオメーター(日本シイベルヘグナー社製「MCR−300」)を用い下記条件にて粘度を測定した。
プレート形状:円形平板25mmφ
試料厚み:1mm
温度:25±1℃
剪断速度:0.1S−1
[Viscosity of thermally conductive resin composition]
The viscosity of the obtained resin composition was measured under the following conditions using a rheometer (“MCR-300” manufactured by Nippon Shibel Hegner).
Plate shape: Circular flat plate 25mmφ
Sample thickness: 1 mm
Temperature: 25 ± 1 ° C
Shear rate: 0.1S -1

[熱伝導性樹脂組成物の分散性]
スクレパーを用い、50℃に加温した樹脂組成物を平板上に塗布した。塗布した面の中央部の50mm×50mmの範囲を選定し、目視にて確認可能な凝集塊の個数を以下の判定に従い評価した。なお、評価には3枚の試料を用いた際の凝集塊の総個数を用いた。
優:凝集塊が観られなかった。
可:凝集塊が1個以上3個未満であった。
不良:凝集塊状が3個以上であった。
[Dispersibility of thermally conductive resin composition]
Using a scraper, the resin composition heated to 50 ° C. was applied on a flat plate. A range of 50 mm × 50 mm in the center of the coated surface was selected, and the number of aggregates that could be visually confirmed was evaluated according to the following judgment. For the evaluation, the total number of agglomerates when three samples were used was used.
Excellent: No clumps were observed.
Good: The number of aggregates was 1 or more and less than 3.
Bad: There were 3 or more aggregates.

[熱伝導率]
熱伝導率は、得られた樹脂組成物のシートを作成し、熱拡散率、比重、比熱を全て乗じて算出した。熱拡散率は、試料を幅10mm×10mm×厚み1mmに加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(NETZSCH社製LFA447 NanoFlash)を用いた。比重はアルキメデス法を用いて求めた。比熱は、示差走査熱量計(ティー・エイ・インスツルメント社製、「Q2000」)を用い、窒素雰囲気下、昇温速度10℃/分で室温〜400℃まで昇温させて求めた。結果を表1に示す。なお、樹脂シートの硬化条件は、200℃で8時間とした。
[Thermal conductivity]
The thermal conductivity was calculated by preparing a sheet of the obtained resin composition and multiplying all of the thermal diffusivity, specific gravity, and specific heat. The thermal diffusivity was determined by a laser flash method after processing the sample into a width of 10 mm × 10 mm × thickness of 1 mm. The measuring device used was a xenon flash analyzer (LFA447 NanoFlash manufactured by NETZSCH). Specific gravity was determined using the Archimedes method. The specific heat was obtained by using a differential scanning calorimeter (“Q Instruments”, “Q2000”) and raising the temperature from room temperature to 400 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere. The results are shown in Table 1. The resin sheet was cured at 200 ° C. for 8 hours.

(実施例2)
窒化ホウ素粗粉99質量部、窒化ホウ素微粉1質量部へ変更した以外は、実施例1と同様な方法で評価を実施した。
(Example 2)
Evaluation was carried out in the same manner as in Example 1 except that the content was changed to 99 parts by mass of boron nitride coarse powder and 1 part by mass of boron nitride fine powder.

(実施例3)
窒化ホウ素粗粉90質量部、窒化ホウ素微粉10質量部へ変更した以外は、実施例1と同様な方法で評価を実施した。
(Example 3)
Evaluation was carried out in the same manner as in Example 1 except that the mass was changed to 90 parts by mass of boron nitride coarse powder and 10 parts by mass of boron nitride fine powder.

参考例4)
熱伝導性粒子粗粉を窒化ホウ素(電気化学工業社製、「SGP」、平均粒子径18μmへ変更した以外は、実施例2と同様な方法で評価を実施した。
( Reference Example 4)
Evaluation was performed in the same manner as in Example 2 except that the heat conductive particle coarse powder was changed to boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd., “SGP”, average particle diameter: 18 μm).

(実施例5)
熱伝導性粒子粗粉を窒化ホウ素(電気化学工業社製、平均粒子径150μmへ変更した以外は、実施例2と同様な方法で評価を実施した。
(Example 5)
Evaluation was carried out in the same manner as in Example 2 except that the heat conductive particle coarse powder was changed to boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 150 μm).

参考例6)
熱伝導性粒子粗粉をアルミナ(電気化学工業社製、「DAW−70」、平均粒子径71μm)へ変更した以外は、実施例1と同様な方法で評価を実施した。
( Reference Example 6)
Evaluation was carried out in the same manner as in Example 1 except that the thermally conductive particle coarse powder was changed to alumina (manufactured by Denki Kagaku Kogyo Co., Ltd., “DAW-70”, average particle diameter 71 μm).

参考例7)
熱伝導性粒子粗粉99質量部、窒化ホウ素微粉1質量部へ変更した以外は、参考例6と同様な方法で評価を実施した。
( Reference Example 7)
Evaluation was carried out in the same manner as in Reference Example 6 except that the mass was changed to 99 parts by mass of thermally conductive particle coarse powder and 1 part by mass of boron nitride fine powder.

参考例8)
熱伝導性粒子粗粉90質量部、窒化ホウ素微粉10質量部へ変更した以外は、参考例6と同様な方法で評価を実施した。
( Reference Example 8)
Evaluation was carried out in the same manner as in Reference Example 6 except that the mass was changed to 90 parts by mass of thermally conductive particle coarse powder and 10 parts by mass of boron nitride fine powder.

(実施例9)
平均粒子径1.7μm、平均厚み0.03μmの窒化ホウ素微粉を用いた以外は、実施例2と同様な方法で評価を実施した。
Example 9
Evaluation was performed in the same manner as in Example 2 except that boron nitride fine powder having an average particle diameter of 1.7 μm and an average thickness of 0.03 μm was used.

(実施例10)
平均粒子径9μm、平均厚み0.62μmの窒化ホウ素微粉を用いた以外は、実施例2と同様な方法で評価を実施した。
(Example 10)
Evaluation was performed in the same manner as in Example 2 except that boron nitride fine powder having an average particle diameter of 9 μm and an average thickness of 0.62 μm was used.

(比較例1)
窒化ホウ素微粉の平均粒子径を0.5μmに変更した以外は、実施例2と同様な方法で評価を実施した。結果を表2に記す。
(Comparative Example 1)
Evaluation was performed in the same manner as in Example 2 except that the average particle size of the boron nitride fine powder was changed to 0.5 μm. The results are shown in Table 2.


(比較例2)
窒化ホウ素微粉の平均粒子径を20μmに変更した以外は、実施例2と同様な方法で評価を実施した。
(Comparative Example 2)
Evaluation was performed in the same manner as in Example 2 except that the average particle size of the boron nitride fine powder was changed to 20 μm.

(比較例3)
窒化ホウ素微粉を使用せず、熱伝導性粒子粗粉のみを使用した以外は、実施例1と同様な方法で評価を実施した。
(Comparative Example 3)
Evaluation was carried out in the same manner as in Example 1 except that only the heat conductive particle coarse powder was used without using boron nitride fine powder.

(比較例4)
窒化ホウ素微粉の平均粒子径を0.5μmに変更した以外は、実施例4と同様な方法で評価を実施した。
(Comparative Example 4)
Evaluation was carried out in the same manner as in Example 4 except that the average particle size of the boron nitride fine powder was changed to 0.5 μm.

(比較例5)
窒化ホウ素微粉の平均粒子径を20μmに変更した以外は、実施例4と同様な方法で評価を実施した。
(Comparative Example 5)
Evaluation was performed in the same manner as in Example 4 except that the average particle size of the boron nitride fine powder was changed to 20 μm.

(比較例6)
窒化ホウ素微粉を使用せず、熱伝導性粒子粗粉のみを使用した以外は、実施例4と同様な方法で評価を実施した。
(Comparative Example 6)
Evaluation was carried out in the same manner as in Example 4 except that only the heat conductive particle coarse powder was used without using boron nitride fine powder.

(比較例7)
窒化ホウ素微粉の平均粒子径を0.5μmに変更した以外は、実施例5と同様な方法で評価を実施した。結果を表3に記す。
(Comparative Example 7)
Evaluation was carried out in the same manner as in Example 5 except that the average particle size of the boron nitride fine powder was changed to 0.5 μm. The results are shown in Table 3.


(比較例8)
窒化ホウ素微粉の平均粒子径を20μmに変更した以外は、実施例5と同様な方法で評価を実施した。
(Comparative Example 8)
Evaluation was carried out in the same manner as in Example 5 except that the average particle size of the boron nitride fine powder was changed to 20 μm.

(比較例9)
窒化ホウ素微粉を使用せず、熱伝導性粒子粗粉のみを使用した以外は、実施例5と同様な方法で評価を実施した。
(Comparative Example 9)
Evaluation was performed in the same manner as in Example 5 except that only the heat conductive particle coarse powder was used without using boron nitride fine powder.

(比較例10)
窒化ホウ素微粉の平均粒子径を0.5μmに変更した以外は、実施例7と同様な方法で評価を実施した。
(Comparative Example 10)
Evaluation was carried out in the same manner as in Example 7 except that the average particle size of the boron nitride fine powder was changed to 0.5 μm.

(比較例11)
窒化ホウ素微粉の平均粒子径を20μmに変更した以外は、実施例7と同様な方法で評価を実施した。
(Comparative Example 11)
Evaluation was carried out in the same manner as in Example 7 except that the average particle size of the boron nitride fine powder was changed to 20 μm.

(比較例12)
窒化ホウ素微粉を使用せず、熱伝導性粒子粗粉のみを使用した以外は、実施例6と同様な方法で評価を実施した。
(Comparative Example 12)
Evaluation was carried out in the same manner as in Example 6 except that only the heat conductive particle coarse powder was used without using boron nitride fine powder.

本発明の粒子組成物を配合した樹脂組成物は、窒化ホウ素微粉が配合されていない樹脂組成物と比較して、粘度が低く抑えられた結果となった。また、本発明の樹脂組成物は分散性及び熱伝導性も良好であることが確認された。   The resin composition in which the particle composition of the present invention was blended resulted in a lower viscosity than the resin composition in which no boron nitride fine powder was blended. Moreover, it was confirmed that the resin composition of the present invention also has good dispersibility and thermal conductivity.

本発明の粒子組成物を用いた樹脂組成物は、熱伝導性に優れるため、金属ベース回路基板の絶縁材の他、放熱性が必要とされる混成集積回路等の絶縁材に利用可能である。   Since the resin composition using the particle composition of the present invention is excellent in thermal conductivity, it can be used for insulating materials such as hybrid integrated circuits that require heat dissipation in addition to insulating materials for metal base circuit boards. .

Claims (8)

平均粒子径が20〜150μmの窒化ホウ素粗粉と平均粒子径1〜10μm、平均厚み0.001〜1μmの鱗片形状である窒化ホウ素微粉を含む熱伝導性粒子組成物。 A thermally conductive particle composition comprising boron nitride coarse powder having an average particle diameter of 20 to 150 μm, and boron nitride fine powder having a scale-like shape having an average particle diameter of 1 to 10 μm and an average thickness of 0.001 to 1 μm. 前記窒化ホウ素微粉が、シランカップリング剤で分散処理されたものである、請求項1に記載の熱伝導性粒子組成物。 The thermally conductive particle composition according to claim 1, wherein the boron nitride fine powder is dispersed with a silane coupling agent. 前記窒化ホウ素微粉の一部が、前記窒化ホウ素粗粉表面に付着したものである、請求項1または2に記載の熱伝導性粒子組成物。 The thermally conductive particle composition according to claim 1 or 2, wherein a part of the boron nitride fine powder is attached to the surface of the boron nitride coarse powder. 前記窒化ホウ素粗粉90〜99.8質量部に対し、前記窒化ホウ素微粉が0.2〜10質量部である、請求項1〜の何れか一項に記載の熱伝導性粒子組成物。 The thermally conductive particle composition according to any one of claims 1 to 3 , wherein the boron nitride fine powder is 0.2 to 10 parts by mass with respect to 90 to 99.8 parts by mass of the boron nitride coarse powder. 請求項1〜の何れか一項に記載の熱伝導性粒子組成物と樹脂を含有する熱伝導性樹脂組成物。 The heat conductive resin composition containing the heat conductive particle composition and resin as described in any one of Claims 1-4 . 前記樹脂が、エポキシ樹脂、シリコーン樹脂、液晶ポリマー、ポリエステル、ポリアミド、ポリイミド、ポリフタルアミド、ポリフェニレンスルフィド、ポリカーボネート、ポリエーテルエーテルケトン、ポリアリールエーテルケトン、ポリフェニレンオキシドから選択される少なくとも1種以上の樹脂である、請求項に記載の熱伝導性樹脂組成物。 The resin is at least one resin selected from epoxy resin, silicone resin, liquid crystal polymer, polyester, polyamide, polyimide, polyphthalamide, polyphenylene sulfide, polycarbonate, polyether ether ketone, polyaryl ether ketone, and polyphenylene oxide. The thermally conductive resin composition according to claim 5 , wherein 請求項に記載の熱伝導性樹脂組成物における樹脂としてエポキシ樹脂を使用し、該エポキシ樹脂が硬化された熱伝導性樹脂硬化体。 Thermal conductivity using an epoxy resin as the resin in the resin composition, thermally conductive resin cured product The epoxy resin is cured according to claim 6. 窒化ホウ素粉末を高圧ホモジナイザーで、平均粒子径1〜10μm、平均厚み0.01〜1μmの鱗片形状の窒化ホウ素微粉に粉砕する第一工程と、前記窒化ホウ素微粉をシランカップリング剤で分散処理する第二工程と、前記シランカップリング剤で表面処理された窒化ホウ素微粉を、乾式混合にて、窒化ホウ素粗粉と混合する第3工程を含む、熱伝導性粒子組成物の製造方法。
A first step of pulverizing boron nitride powder with a high-pressure homogenizer into flaky boron nitride powder having an average particle diameter of 1 to 10 μm and an average thickness of 0.01 to 1 μm, and the boron nitride powder is dispersed with a silane coupling agent. A method for producing a thermally conductive particle composition, comprising a second step and a third step of mixing boron nitride fine powder surface-treated with the silane coupling agent with boron nitride coarse powder by dry mixing.
JP2015034520A 2015-02-24 2015-02-24 Thermally conductive particle composition, method for producing thermally conductive particle composition, thermally conductive resin composition, and thermally conductive resin cured body Active JP6231031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034520A JP6231031B2 (en) 2015-02-24 2015-02-24 Thermally conductive particle composition, method for producing thermally conductive particle composition, thermally conductive resin composition, and thermally conductive resin cured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034520A JP6231031B2 (en) 2015-02-24 2015-02-24 Thermally conductive particle composition, method for producing thermally conductive particle composition, thermally conductive resin composition, and thermally conductive resin cured body

Publications (2)

Publication Number Publication Date
JP2016155937A JP2016155937A (en) 2016-09-01
JP6231031B2 true JP6231031B2 (en) 2017-11-15

Family

ID=56825135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034520A Active JP6231031B2 (en) 2015-02-24 2015-02-24 Thermally conductive particle composition, method for producing thermally conductive particle composition, thermally conductive resin composition, and thermally conductive resin cured body

Country Status (1)

Country Link
JP (1) JP6231031B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176020A (en) * 2019-04-15 2020-10-29 三菱瓦斯化学株式会社 Scaly boron nitride aggregate, composition, resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material and adhesive
JP7115645B2 (en) * 2019-10-18 2022-08-09 Dic株式会社 Method for producing pigment composition
CN114829467B (en) * 2019-12-17 2024-05-07 电化株式会社 Resin sheet and method for producing same
CN111269551B (en) * 2020-04-09 2022-11-22 龙岩市润峰科技有限公司 Polyphenyl ether composition and application thereof in new energy automobile battery protective shell
JP2021181381A (en) * 2020-05-18 2021-11-25 株式会社Adeka Inorganic powder composition, resin composition containing the same and heat radiation material
CN118202018A (en) * 2021-11-10 2024-06-14 电化株式会社 Heat sink

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089636B2 (en) * 2004-02-19 2008-05-28 三菱電機株式会社 Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP5430449B2 (en) * 2010-03-05 2014-02-26 電気化学工業株式会社 High thermal conductive filler
WO2011111684A1 (en) * 2010-03-10 2011-09-15 新日鐵化学株式会社 Thermally conductive polyimide film and thermally conductive laminate produced using same
JP2012238676A (en) * 2010-05-10 2012-12-06 Shin Kobe Electric Mach Co Ltd Resin molding
KR101453352B1 (en) * 2010-07-02 2014-10-22 쇼와 덴코 가부시키가이샤 Ceramic mixture, and ceramic-containing thermally-conductive resin sheet using same
JP2014105297A (en) * 2012-11-28 2014-06-09 Tokuyama Corp Sheet-like molded body
JP2014193965A (en) * 2013-03-29 2014-10-09 Nippon Steel & Sumikin Chemical Co Ltd High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product

Also Published As

Publication number Publication date
JP2016155937A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6231031B2 (en) Thermally conductive particle composition, method for producing thermally conductive particle composition, thermally conductive resin composition, and thermally conductive resin cured body
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
JP6296568B2 (en) Boron nitride powder and resin composition containing the same
JP5969314B2 (en) Boron nitride powder and its use
JP5192812B2 (en) Resin composition and circuit board for hybrid integration using the same
JP5038007B2 (en) Composition, metal-based circuit board using the composition
KR101784196B1 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
JP2007149522A (en) Conductive resin paste composition containing silver and carbon nanotube, and semiconductor device using this
TW201013704A (en) Conductive inks and pastes
JP2008189818A (en) Heat-conductive resin composition, heat-conductive sheet and method for producing the same
JP2011012193A (en) Resin composition and use thereof
WO2015060245A1 (en) Silver paste and semiconductor device using same, and production method for silver paste
JP2011144234A (en) Thermally conductive resin composition
TW201405581A (en) Electroconductive composition
KR20210087026A (en) Boron nitride nanomaterial, and resin composition
JP2016192474A (en) Granulated powder, resin composition for heat dissipation, heat dissipation sheet, heat dissipation member, and semiconductor device
KR101294593B1 (en) Electrical conductive adhesives and fabrication method therof
JP2019131669A (en) Resin composition and insulation heat conductive sheet
JP6125282B2 (en) Boron nitride composite powder and thermosetting resin composition using the same
JPWO2019031458A1 (en) Low dielectric constant heat conductive heat dissipation member
JP2018030942A (en) Method for producing heat-conductive sheet
JP6923063B2 (en) Silver paste and its manufacturing method and joint manufacturing method
US20140048748A1 (en) Graphene nanoribbon composites and methods of making the same
JP6062974B2 (en) Conductive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171018

R150 Certificate of patent or registration of utility model

Ref document number: 6231031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250