WO2015060245A1 - Silver paste and semiconductor device using same, and production method for silver paste - Google Patents

Silver paste and semiconductor device using same, and production method for silver paste Download PDF

Info

Publication number
WO2015060245A1
WO2015060245A1 PCT/JP2014/077830 JP2014077830W WO2015060245A1 WO 2015060245 A1 WO2015060245 A1 WO 2015060245A1 JP 2014077830 W JP2014077830 W JP 2014077830W WO 2015060245 A1 WO2015060245 A1 WO 2015060245A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
silver particles
silver paste
paste
protective agent
Prior art date
Application number
PCT/JP2014/077830
Other languages
French (fr)
Japanese (ja)
Inventor
石川 大
松本 博
名取 美智子
偉夫 中子
田中 俊明
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2015060245A1 publication Critical patent/WO2015060245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the semiconductor element is die-bonded and bonded by heat curing to obtain a semiconductor device.
  • a method is mentioned.
  • the characteristics required for the silver paste are broadly classified into the contents relating to the construction method at the time of bonding and the contents relating to the physical properties of the silver sintered body after bonding.
  • the silver particles having a particle diameter of 1 ⁇ m to 20 ⁇ m are desirably plate-like silver particles or a mixture of plate-like silver particles and spherical silver particles.
  • the present invention is also a method for producing a silver paste, wherein a silver paste is obtained by mixing silver particles and a solvent, wherein the silver particles have a particle diameter of 1 ⁇ m to 20 ⁇ m and a boiling point under atmospheric pressure.
  • a method for producing a silver paste using silver particles coated with a protective agent having a temperature of less than 130 ° C. and having a particle diameter of 1 nm to 300 nm.
  • 4 is a TG-DTA measurement result of the silver nanoparticles of Comparative Example 1.
  • 4 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 1.
  • 4 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 2.
  • 10 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 3.
  • the silver paste according to this embodiment is a silver paste containing silver particles and a solvent, and the silver particles are silver particles having a particle diameter of 1 ⁇ m to 20 ⁇ m, and a protective material having a boiling point of less than 130 ° C. under atmospheric pressure. And silver particles having a particle diameter of 1 nm to 300 nm coated with an agent.
  • the silver particles used in the present embodiment are particles coated with silver particles having a particle diameter of 1 ⁇ m to 20 ⁇ m (hereinafter “silver microparticles”) and a protective agent having a boiling point of less than 130 ° C. under atmospheric pressure. Silver particles having a diameter of 1 nm to 300 nm (hereinafter “silver nanoparticles”).
  • the shape of the silver microparticle and the silver nanoparticle is not particularly limited, and a shape that increases the filling property when the silver microparticle and the silver nanoparticle are mixed may be used as appropriate.
  • plate-like silver particles, spherical silver particles, a mixture thereof, and the like can be used as appropriate.
  • a silver microparticle and a silver nanoparticle both a single crystal and a polycrystal can be used.
  • the desorption temperature of the protective agent for silver microparticles and silver nanoparticles is preferably 300 ° C. or lower, and 250 ° C. The following is more desirable.
  • the protective agent for silver nanoparticles is an organic compound having a boiling point of less than 130 ° C., desirably an organic compound having a boiling point of 120 ° C. or less, more desirably an organic compound having a boiling point of 110 ° C. or less.
  • the lower limit of the boiling point of the protective agent is not particularly limited, but is, for example, 70 ° C. or higher.
  • the boiling point in this specification means the boiling point under atmospheric pressure (1013 hPa).
  • the mass ratio can be obtained from the mass change before and after the measurement by heating the silver nanoparticles or silver microparticles to a temperature at which the desorption of the protective agent is sufficiently performed.
  • Example 1 silver nanoparticles coated with N, N-dimethylethylenediamine (Tokyo Chemical Industry Co., Ltd., boiling point 107 ° C.) as a protective agent, and silver microparticles (AgC239 (AgC239) coated with dodecanoic acid as a protective agent Fukuda Metal Foil Co., Ltd.)) is used in combination.
  • TG-DTA measurement results of silver nanoparticles and silver microparticles are shown in FIGS. 1 and 2, respectively.
  • FIG. 1 shows that N, N-dimethylethylenediamine on the surface of the silver nanoparticles is desorbed at about 225.degree.
  • FIG. 2 shows that dodecanoic acid on the surface of the silver microparticles is desorbed at about 250 ° C.
  • FIG. 3 shows the results of TG-DTA measurement of a silver paste prepared by mixing these silver particles.
  • the temperature at which the desorption of the organic substance from the silver paste is completed is about 250 ° C., and the weight loss is about 9.5% by weight.
  • the desorption temperature of the organic substance in TG-DTA measurement is 250 ° C., but if it is heated to some degree even at about 200 ° C., the same weight loss (9.5% by weight) as when heated at 250 ° C. is obtained.
  • the silver paste of Example 1 can be sintered at about 200 ° C. with the organic matter completely removed. Also, since the difference in desorption temperature between the protective agent for silver nanoparticles and the protective agent for silver microparticles is as small as 25 ° C., the silver nanoparticles and the silver microparticles can be sintered almost simultaneously, and a dense silver sintered body Can be formed. As a result, the characteristics (die shear strength, volume resistivity and thermal conductivity) of the silver sintered body are also good.
  • the solvent in this embodiment is not particularly limited as long as it is liquid at normal temperature (20 ° C.), and a known solvent can be used.
  • Solvents can be selected from alcohols, aldehydes, carboxylic acids, ethers, esters, amines, monosaccharides, polysaccharides, linear hydrocarbons, fatty acids, aromatics, etc. It is also possible to use a combination of a plurality of the above solvents.
  • the boiling point of the solvent is not particularly limited, but is preferably 100 ° C to 350 ° C, more preferably 130 ° C to 300 ° C, and further preferably 150 ° C to 250 ° C.
  • the boiling point of the solvent is 100 ° C. or higher, it is possible to prevent the solvent from volatilizing at room temperature when the silver paste is used, and as a result, it is possible to ensure the viscosity stability, applicability, and the like of the silver paste.
  • the boiling point of the solvent is 350 ° C. or less, it is possible to suppress the solvent from being evaporated in the silver sintered body at a temperature at which the semiconductor element is connected to the support member. The characteristics can be kept better.
  • silver nanoparticles, silver microparticles, and a solvent are collectively or divided into a stirrer, a separator, What is necessary is just to combine dispersion
  • the method for heating and sintering the silver paste a known method can be used. In addition to external heating by a heater, an ultraviolet lamp, laser, microwave, or the like can be suitably used.
  • the heating temperature of the silver paste is preferably equal to or higher than the temperature at which the protective agent, solvent and additive are desorbed from the system. Specifically, the range of the heating temperature is desirably 150 ° C. or more and 300 ° C. or less, and more desirably 150 ° C. or more and 250 ° C. or less.
  • a general semiconductor member is connected by setting the heating temperature to 300 ° C. or lower, damage to the member can be avoided, and by setting the heating temperature to 150 ° C. or higher, Desorption is likely to occur.
  • the process for heating the silver paste can be appropriately determined.
  • sintering is performed at a temperature exceeding the boiling point of the solvent, pre-heating at a temperature lower than the boiling point of the solvent, and after performing the sintering after volatilizing the solvent to some extent, a denser silver sintered body Easy to get.
  • the rate of temperature increase when heating the silver paste is not particularly limited when sintering is performed below the boiling point of the solvent. In the case of sintering at a temperature exceeding the boiling point of the solvent, it is desirable to set the heating rate to 1 ° C./second or less, or to perform a preheating step.
  • AgC239 (Fukuda Metal Foil Co., Ltd.) was used as the silver microparticles.
  • the treatment for coating AgC239 with dodecanoic acid as a protective agent was performed as follows. That is, first, 100 g of AgC239, 10 g of dodecanoic acid (Wako Pure Chemical Industries, Ltd., boiling point 299 ° C.) and 500 mL of 1-propanol (Wako Pure Chemical Industries, Ltd., boiling point 97 ° C.) were added to the eggplant flask. did. The reaction solution was reacted by heating at 60 ° C. for 3 hours while stirring at about 200 rpm with a magnetic stirrer.

Abstract

The present invention provides a silver paste that is a silver paste that contains silver particles and a solvent. The silver particles contain silver particles that have a particle diameter of 1-20 μm and silver particles that have a particle diameter of 1-300 nm and that are covered by a protective agent that has a boiling point of less than 130℃ at atmospheric pressure.

Description

銀ペースト及びそれを用いた半導体装置、並びに銀ペーストの製造方法Silver paste, semiconductor device using the same, and method for producing silver paste
 本発明は、銀ペースト及びそれを用いた半導体装置、並びに銀ペーストの製造方法に関する。更に詳しくは、パワー半導体、LSI、発光ダイオード(LED)等の半導体素子をリードフレーム、セラミック配線板、ガラスエポキシ配線板、ポリイミド配線板等の支持部材に接着するのに使用される銀ペースト及びそれを用いた半導体装置、並びに銀ペーストの製造方法に関する。 The present invention relates to a silver paste, a semiconductor device using the same, and a method for producing the silver paste. More specifically, a silver paste used for bonding semiconductor elements such as power semiconductors, LSIs, and light emitting diodes (LEDs) to support members such as lead frames, ceramic wiring boards, glass epoxy wiring boards, polyimide wiring boards, and the like The present invention relates to a semiconductor device using silver and a method for producing a silver paste.
 半導体装置を製造する際、半導体素子と支持部材とを互いに接着させる方法としては、エポキシ樹脂、ポリイミド樹脂等のバインダ樹脂、銀粉等の充てん剤、溶剤組成物などを混合し、ペースト状として、これを接着剤として使用する方法がある。近年では半導体パッケージの高集積化に伴いパワー密度(W/cm)が高くなっており、半導体素子の動作安定性を確保するために、接着剤には高い放熱性が求められる。また、半導体素子の使用環境温度が高温となっているために、接着剤には耐熱性も求められる。さらに、環境負荷の低減のためにPbを含まない接着剤が求められている。以上のような経緯から、バインダ樹脂成分を含まない焼結タイプの銀ペーストが研究されている。 When manufacturing a semiconductor device, a semiconductor element and a support member are bonded to each other by mixing a binder resin such as an epoxy resin and a polyimide resin, a filler such as silver powder, a solvent composition, etc. Is used as an adhesive. In recent years, the power density (W / cm 3 ) has been increased along with the high integration of semiconductor packages, and in order to ensure the operational stability of the semiconductor elements, high heat dissipation is required for the adhesive. Moreover, since the use environment temperature of the semiconductor element is high, the adhesive is also required to have heat resistance. Furthermore, there is a need for an adhesive that does not contain Pb in order to reduce the environmental burden. From the above circumstances, a sintered type silver paste not containing a binder resin component has been studied.
 銀ペーストの使用方法としては、例えば、ディスペンサー、印刷機、スタンピングマシン等を用いて、銀ペーストを支持部材のダイパッドに塗布した後、半導体素子をダイボンディングし、加熱硬化により接着させ半導体装置とする方法が挙げられる。銀ペーストに要求される特性は、接着時の工法に関わる内容と、接着後の銀焼結体の物性に関わる内容とに大別される。 As a method of using the silver paste, for example, using a dispenser, a printing machine, a stamping machine, etc., after applying the silver paste to the die pad of the support member, the semiconductor element is die-bonded and bonded by heat curing to obtain a semiconductor device. A method is mentioned. The characteristics required for the silver paste are broadly classified into the contents relating to the construction method at the time of bonding and the contents relating to the physical properties of the silver sintered body after bonding.
 接着時の工法に関わる内容としては、半導体部材の損傷を防ぐために、低温(例えば300℃程度)、及び低加圧(例えば0.1MPa程度)又は無加圧で接着できることが要求される。また、スループット向上の観点から、接着に要する時間の短縮が求められる。一方、接着後の銀焼結体の物性に関わる内容としては、半導体部材との接着を確保するために高接着性(高いダイシェア強度)が要求される。また、銀焼結体の高放熱特性(高熱伝導性)も求められている。さらに、長期間にわたる接続信頼性を確保するために、銀焼結体の耐熱性及び高緻密性(硬化物中に空孔が少ないこと)が要求される。 The contents related to the construction method at the time of bonding are required to be able to bond at low temperature (for example, about 300 ° C.) and low pressure (for example, about 0.1 MPa) or no pressure in order to prevent damage to the semiconductor member. Further, from the viewpoint of improving the throughput, it is required to shorten the time required for adhesion. On the other hand, as the contents relating to the physical properties of the silver sintered body after bonding, high adhesion (high die shear strength) is required in order to ensure adhesion with the semiconductor member. Moreover, the high heat dissipation characteristic (high thermal conductivity) of a silver sintered compact is also calculated | required. Furthermore, in order to ensure the connection reliability over a long period of time, the heat resistance and high density of the sintered silver body (the number of pores in the cured product is small) are required.
 従来の銀ペーストとして、例えば特許文献1~2に開示されるような特殊な表面処理を施したマイクロサイズの銀粒子を用いることで、400℃以下の加熱により銀粒子同士が焼結するような銀ペーストが提案されている(従来技術1)。また、例えば特許文献3に開示されるような、ナノサイズの銀粒子を用いることで銀焼結体を形成する銀ペーストが提案されている(従来技術2)。また、例えば特許文献4に開示されるような、マイクロサイズ銀粒子と、沸点が130℃~250℃のアミノ基またはカルボキシル基を有する有機物で被覆したナノサイズの銀粒子とを混合した銀ペーストが提案されている(従来技術3)。 As conventional silver paste, for example, by using micro-sized silver particles that have been subjected to a special surface treatment as disclosed in Patent Documents 1 and 2, silver particles are sintered by heating at 400 ° C. or lower. A silver paste has been proposed (prior art 1). Further, for example, a silver paste that forms a silver sintered body by using nano-sized silver particles as disclosed in Patent Document 3 has been proposed (Prior Art 2). Further, for example, a silver paste prepared by mixing micro-sized silver particles as disclosed in Patent Document 4 and nano-sized silver particles coated with an organic substance having an amino group or a carboxyl group having a boiling point of 130 ° C. to 250 ° C. Proposed (prior art 3).
特許第4353380号公報Japanese Patent No. 4353380 特開2012-84514号公報JP 2012-84514 A 特許第4414145号公報Japanese Patent No. 4414145 特開2012-119132号公報JP 2012-119132 A
 従来技術1~3の銀ペーストに係る問題点は、形成される銀焼結体の緻密性が十分でないことであり、このような銀焼結体では、通電に伴う温度変化により割れが進展しやすい。その結果、半導体部材同士の接着を確保できずに、半導体部材同士が剥離するおそれがある。 The problem with the silver pastes of the prior arts 1 to 3 is that the formed silver sintered body is not dense enough, and in such a silver sintered body, cracks develop due to temperature changes accompanying energization. Cheap. As a result, there is a possibility that the semiconductor members may be peeled off without ensuring the adhesion between the semiconductor members.
 上記の従来技術に係る問題に鑑みて、本発明は、低温かつ低加圧(あるいは無加圧)で焼結した場合であっても、緻密度の高い銀焼結体を形成可能な銀ペースト及びそれを用いた半導体装置、並びに銀ペースの製造方法を提供することを目的とする。 In view of the problems related to the above prior art, the present invention is a silver paste capable of forming a high-density silver sintered body even when sintered at low temperature and low pressure (or no pressure). Another object of the present invention is to provide a semiconductor device using the same, and a silver pace manufacturing method.
 本発明は、銀粒子及び溶剤を含有する銀ペーストであって、上記銀粒子は、粒子径が1μm~20μmである銀粒子と、大気圧下における沸点が130℃未満である保護剤で被覆された、粒子径が1nm~300nmである銀粒子とを含む、銀ペーストを提供する。 The present invention is a silver paste containing silver particles and a solvent, wherein the silver particles are coated with silver particles having a particle diameter of 1 μm to 20 μm and a protective agent having a boiling point of less than 130 ° C. under atmospheric pressure. Also provided is a silver paste comprising silver particles having a particle diameter of 1 nm to 300 nm.
 上記銀ペーストは、大気圧下における沸点が400℃以下であり、かつ常温で固体であるカルボン酸を更に含有することが望ましい。 The silver paste preferably further contains a carboxylic acid having a boiling point of 400 ° C. or lower under atmospheric pressure and a solid at ordinary temperature.
 上記保護剤が、アミン化合物、カルボン酸化合物、アミノ酸化合物、アミノアルコール化合物、及びアミド化合物からなる群より選ばれる少なくとも1種であることが望ましい。 The protective agent is preferably at least one selected from the group consisting of an amine compound, a carboxylic acid compound, an amino acid compound, an amino alcohol compound, and an amide compound.
 上記保護剤が、1-アミノペンタン、2-アミノペンタン、3-アミノペンタン、2-メチルブチルアミン、3-メチルブチルアミン、1,2-ジメチルプロピルアミン、2,2-ジメチルプロピルアミン、N-メチルブチルアミン、N-メチルイソブチルアミン、エチルプロピルアミン、ピペリジン、メチルプロピルアミン、ジエチルアミン、モルホリン、トリエチルアミン、N,N-ジエチルメチルアミン、N,N-ジメチルイソプロピルアミン、N,N,N’-トリメチルエチレンジアミン、N,N-ジメチルエチレンジアミン、1,2-ビス(メチルアミノ)エタン、1,2-ジアミノプロパン、N-メチルエチレンジアミン、1,2-ジアミノエタン、及び酢酸からなる群より選ばれる少なくとも1種であることが望ましい。 The protective agent is 1-aminopentane, 2-aminopentane, 3-aminopentane, 2-methylbutylamine, 3-methylbutylamine, 1,2-dimethylpropylamine, 2,2-dimethylpropylamine, N-methylbutylamine. N-methylisobutylamine, ethylpropylamine, piperidine, methylpropylamine, diethylamine, morpholine, triethylamine, N, N-diethylmethylamine, N, N-dimethylisopropylamine, N, N, N′-trimethylethylenediamine, N , N-dimethylethylenediamine, 1,2-bis (methylamino) ethane, 1,2-diaminopropane, N-methylethylenediamine, 1,2-diaminoethane, and acetic acid. Is desirable.
 上記粒子径が1μm~20μmである銀粒子の表面が、炭素数2~20の脂肪族モノカルボン酸で被覆されていることが望ましい。 It is desirable that the surface of silver particles having a particle diameter of 1 μm to 20 μm is coated with an aliphatic monocarboxylic acid having 2 to 20 carbon atoms.
 上記粒子径が1μm~20μmである銀粒子が、板状の銀粒子、又は板状の銀粒子と球状の銀粒子との混合物であることが望ましい。 The silver particles having a particle diameter of 1 μm to 20 μm are desirably plate-like silver particles or a mixture of plate-like silver particles and spherical silver particles.
 本発明はまた、上記銀ペーストを焼結してなる焼結体を介して、半導体素子と半導体素子搭載用支持部材とが互いに接着した構造を有する半導体装置を提供する。 The present invention also provides a semiconductor device having a structure in which a semiconductor element and a semiconductor element mounting support member are bonded to each other through a sintered body obtained by sintering the silver paste.
 本発明はまた、銀粒子及び溶剤を混合して銀ペーストを得る、銀ペーストの製造方法であって、上記銀粒子として、粒子径が1μm~20μmである銀粒子と、大気圧下における沸点が130℃未満である保護剤で被覆された、粒子径が1nm~300nmである銀粒子とを用いる、銀ペーストの製造方法を提供する。 The present invention is also a method for producing a silver paste, wherein a silver paste is obtained by mixing silver particles and a solvent, wherein the silver particles have a particle diameter of 1 μm to 20 μm and a boiling point under atmospheric pressure. There is provided a method for producing a silver paste using silver particles coated with a protective agent having a temperature of less than 130 ° C. and having a particle diameter of 1 nm to 300 nm.
 本発明に係る銀ペーストでは、銀ペースト中に含まれるナノサイズの銀粒子とマイクロサイズの銀粒子とが同程度の低温で焼結されるため、形成される銀焼結体の緻密度が高くなる。その結果、半導体部材との接着性に優れ、接続信頼性の高い銀焼結体が得られる。また、銀焼結体の熱伝導性、電気伝導性等の物性も良好となる。 In the silver paste according to the present invention, the nano-sized silver particles and the micro-sized silver particles contained in the silver paste are sintered at the same low temperature, so the density of the formed silver sintered body is high. Become. As a result, a silver sintered body having excellent adhesion to the semiconductor member and high connection reliability can be obtained. Moreover, physical properties, such as thermal conductivity and electrical conductivity, of the silver sintered body are also improved.
実施例1の銀ナノ粒子のTG-DTA測定結果である。4 is a TG-DTA measurement result of the silver nanoparticles of Example 1. 実施例1の銀マイクロ粒子AgC239のTG-DTA測定結果である。3 is a TG-DTA measurement result of silver microparticles AgC239 of Example 1. FIG. 実施例1の銀ペーストのTG-DTA測定結果である。3 is a TG-DTA measurement result of the silver paste of Example 1. 本発明に係る半導体装置の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of a semiconductor device according to the present invention. 本発明に係る半導体装置の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the semiconductor device which concerns on this invention. 実施例1の銀ナノ粒子の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of silver nanoparticles of Example 1. FIG. 実施例1の銀ナノ粒子のSEM写真である。2 is a SEM photograph of silver nanoparticles of Example 1. 実施例1の半導体部材の接続断面のSEM写真である。4 is a SEM photograph of a connection cross section of the semiconductor member of Example 1. 比較例1の銀ナノ粒子のTG-DTA測定結果である。4 is a TG-DTA measurement result of the silver nanoparticles of Comparative Example 1. 比較例1の半導体部材の接続断面のSEM写真である。4 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 1. 比較例2の半導体部材の接続断面のSEM写真である。4 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 2. 比較例3の半導体部材の接続断面のSEM写真である。10 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 3.
 以下、本発明の一実施形態について詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail.
 本実施形態に係る銀ペーストは、銀粒子及び溶剤を含有する銀ペーストであって、銀粒子は、粒子径が1μm~20μmである銀粒子と、大気圧下における沸点が130℃未満である保護剤で被覆された、粒子径が1nm~300nmである銀粒子とを含むものである。 The silver paste according to this embodiment is a silver paste containing silver particles and a solvent, and the silver particles are silver particles having a particle diameter of 1 μm to 20 μm, and a protective material having a boiling point of less than 130 ° C. under atmospheric pressure. And silver particles having a particle diameter of 1 nm to 300 nm coated with an agent.
 本実施形態において用いられる銀粒子は、粒子径が1μm~20μmである銀粒子(以下、「銀マイクロ粒子」)と、大気圧下における沸点が130℃未満である保護剤で被覆された、粒子径が1nm~300nmである銀粒子(以下、「銀ナノ粒子」)とを含む。 The silver particles used in the present embodiment are particles coated with silver particles having a particle diameter of 1 μm to 20 μm (hereinafter “silver microparticles”) and a protective agent having a boiling point of less than 130 ° C. under atmospheric pressure. Silver particles having a diameter of 1 nm to 300 nm (hereinafter “silver nanoparticles”).
 銀マイクロ粒子の粒子径が1μm~20μmであると、銀粒子全体の充填性が良好になる。その結果、得られる銀焼結体の緻密度が向上し、接着性、熱伝導性、電気伝導性等の特性も向上することになる。銀マイクロ粒子の粒子径は、1μm~10μmであることが望ましく、1μm~5μmであることがより望ましい。上記と同様の理由で、銀ナノ粒子の粒子径は、1nm~300nmであり、10nm~200nmであることが望ましく、20nm~100nmであることがより望ましい。銀マイクロ粒子及び銀ナノ粒子のそれぞれの粒子径は、銀マイクロ粒子同士が接触してできる隙間に銀ナノ粒子が効率よく充填するように上記範囲内で決めればよいが、銀ナノ粒子の粒子径/銀マイクロ粒子の粒子径が1/10~1/100の範囲にあると、焼結体の緻密性がより良好となるため望ましい。なお、本明細書における銀粒子の粒子径は、SEMを用いて銀粒子を平面視したときの、銀粒子の面積の平方根とする。 When the particle diameter of the silver microparticles is 1 μm to 20 μm, the filling property of the whole silver particles becomes good. As a result, the density of the obtained silver sintered body is improved, and properties such as adhesiveness, thermal conductivity, and electrical conductivity are also improved. The particle diameter of the silver microparticles is preferably 1 μm to 10 μm, and more preferably 1 μm to 5 μm. For the same reason as described above, the particle diameter of the silver nanoparticles is 1 nm to 300 nm, preferably 10 nm to 200 nm, and more preferably 20 nm to 100 nm. The particle diameter of each of the silver microparticles and the silver nanoparticles may be determined within the above range so that the silver nanoparticles are efficiently filled in the gap formed by the contact between the silver microparticles. / Since the particle diameter of the silver microparticles is in the range of 1/10 to 1/100, it is desirable because the denseness of the sintered body becomes better. In addition, the particle diameter of the silver particle in this specification is taken as the square root of the area of a silver particle when silver particle is planarly viewed using SEM.
 銀マイクロ粒子及び銀ナノ粒子の形状としては、特に限定されず、銀マイクロ粒子と銀ナノ粒子とを混合した際の充填性が高くなるような形状を適宜使用すればよい。具体的には、板状銀粒子、球状銀粒子、これらの混合物等を適宜使用できる。また、銀マイクロ粒子及び銀ナノ粒子としては、単結晶及び多結晶のいずれも使用できる。特に銀マイクロ粒子に関しては、半導体素子及び支持部材に対する接着強度を高めるために、半導体素子及び支持部材との接着面積を大きくすることが可能な板状銀粒子、又は板状銀粒子と球状銀粒子との混合物を使用することが望ましい。なお、本明細書における「板状」とは、銀粒子のアスペクト比(粒子径/厚さ)が2~1000の範囲である形状を意味する。 The shape of the silver microparticle and the silver nanoparticle is not particularly limited, and a shape that increases the filling property when the silver microparticle and the silver nanoparticle are mixed may be used as appropriate. Specifically, plate-like silver particles, spherical silver particles, a mixture thereof, and the like can be used as appropriate. Moreover, as a silver microparticle and a silver nanoparticle, both a single crystal and a polycrystal can be used. In particular, regarding silver microparticles, plate-like silver particles, or plate-like silver particles and spherical silver particles that can increase the adhesion area between the semiconductor element and the support member in order to increase the adhesion strength to the semiconductor element and the support member. It is desirable to use a mixture of In the present specification, the “plate shape” means a shape in which the aspect ratio (particle diameter / thickness) of silver particles is in the range of 2 to 1000.
 銀粒子(銀マイクロ粒子及び銀ナノ粒子を含む)は、通常その表面が有機物によって被覆されている(本明細書では、この有機物を「保護剤」と記す。)。銀粒子を加熱すると、ある温度で保護剤が脱離し清浄な銀表面が露出する。この銀表面は非常に活性が高く、表面が露出した銀粒子同士が接触すると銀原子の拡散が起こってより大きな銀粒子に成長する。この銀粒子の成長現象を焼結という。つまり、銀粒子の焼結温度は保護剤の脱離温度と考えることができ、焼結温度を低下させるには保護剤の脱離温度を低下させる必要がある。保護剤の脱離温度は、銀粒子と保護剤との間に形成される化学結合の強さ、保護剤の熱的安定性等に依存する。本発明者らは、保護剤の熱的安定性に着目し、所定の沸点未満の保護剤を用いると、銀粒子からの保護剤の脱離温度も低くなるという事実を見出した。 The surface of silver particles (including silver microparticles and silver nanoparticles) is usually coated with an organic material (in this specification, this organic material is referred to as a “protecting agent”). When the silver particles are heated, the protective agent is detached at a certain temperature and a clean silver surface is exposed. This silver surface is very active, and when silver particles with exposed surfaces come into contact with each other, silver atoms diffuse and grow into larger silver particles. This silver particle growth phenomenon is called sintering. That is, the sintering temperature of the silver particles can be considered as the desorption temperature of the protective agent. In order to reduce the sintering temperature, it is necessary to decrease the desorption temperature of the protective agent. The desorption temperature of the protective agent depends on the strength of the chemical bond formed between the silver particles and the protective agent, the thermal stability of the protective agent, and the like. The present inventors paid attention to the thermal stability of the protective agent and found the fact that when a protective agent having a boiling point lower than a predetermined boiling point is used, the desorption temperature of the protective agent from the silver particles is lowered.
 半導体部材を接続する温度(一般に300℃以下)で銀ペーストを速やかに焼結するために、銀マイクロ粒子及び銀ナノ粒子の保護剤の脱離温度は300℃以下であることが望ましく、250℃以下であることがより望ましい。 In order to quickly sinter the silver paste at a temperature at which the semiconductor member is connected (generally 300 ° C. or lower), the desorption temperature of the protective agent for silver microparticles and silver nanoparticles is preferably 300 ° C. or lower, and 250 ° C. The following is more desirable.
 保護剤の脱離温度は、示差熱-熱重量同時測定(Thermogravimetry-Differential Thermal Analysis;TG-DTA)を大気中で行うことにより求めることができる。 The desorption temperature of the protective agent can be determined by performing differential thermal-thermogravimetric simultaneous measurement (Thermogravimetry-Differential Thermal Analysis; TG-DTA) in the atmosphere.
 本実施形態において、銀ナノ粒子の保護剤は、沸点が130℃未満である有機化合物であり、望ましくは沸点が120℃以下である有機化合物であり、より望ましくは沸点が110℃以下である有機化合物である。一方、保護剤の沸点の下限値は特に限定されないが、例えば70℃以上である。なお、本明細書における沸点とは、大気圧(1013hPa)下における沸点を意味する。 In the present embodiment, the protective agent for silver nanoparticles is an organic compound having a boiling point of less than 130 ° C., desirably an organic compound having a boiling point of 120 ° C. or less, more desirably an organic compound having a boiling point of 110 ° C. or less. A compound. On the other hand, the lower limit of the boiling point of the protective agent is not particularly limited, but is, for example, 70 ° C. or higher. In addition, the boiling point in this specification means the boiling point under atmospheric pressure (1013 hPa).
 銀ナノ粒子の保護剤は、上記のような有機化合物の中でも、アミン化合物、カルボン酸化合物、アミノ酸化合物、アミノアルコール化合物、及びアミド化合物から群より選択される少なくとも1種であることが望ましい。その中でも、1-アミノペンタン、2-アミノペンタン、3-アミノペンタン、2-メチルブチルアミン、3-メチルブチルアミン、1,2-ジメチルプロピルアミン、2,2-ジメチルプロピルアミン、N-メチルブチルアミン、N-メチルイソブチルアミン、エチルプロピルアミン、ピペリジン、メチルプロピルアミン、ジエチルアミン、モルホリン、トリエチルアミン、N,N-ジエチルメチルアミン、N,N-ジメチルイソプロピルアミン、N,N,N’-トリメチルエチレンジアミン、N,N-ジメチルエチレンジアミン、1,2-ビス(メチルアミノ)エタン、1,2-ジアミノプロパン、N-メチルエチレンジアミン、1,2-ジアミノエタン、及び酢酸からなる群より選ばれる少なくとも1種であることがより望ましい。これら保護剤は、1種単独で又は2種類以上を組み合わせて使用することができる。 The silver nanoparticle protective agent is preferably at least one selected from the group consisting of amine compounds, carboxylic acid compounds, amino acid compounds, amino alcohol compounds, and amide compounds among the organic compounds as described above. Among them, 1-aminopentane, 2-aminopentane, 3-aminopentane, 2-methylbutylamine, 3-methylbutylamine, 1,2-dimethylpropylamine, 2,2-dimethylpropylamine, N-methylbutylamine, N -Methylisobutylamine, ethylpropylamine, piperidine, methylpropylamine, diethylamine, morpholine, triethylamine, N, N-diethylmethylamine, N, N-dimethylisopropylamine, N, N, N'-trimethylethylenediamine, N, N More preferably at least one selected from the group consisting of dimethylethylenediamine, 1,2-bis (methylamino) ethane, 1,2-diaminopropane, N-methylethylenediamine, 1,2-diaminoethane, and acetic acid. desirable. These protective agents can be used alone or in combination of two or more.
 銀マイクロ粒子の保護剤としては、上記の銀ナノ粒子で使用される保護剤を利用することが望ましい。銀マイクロ粒子に用いる保護剤としては、より望ましくは炭素数2~20の脂肪族モノカルボン酸である。 As the protective agent for silver microparticles, it is desirable to use the protective agent used in the above silver nanoparticles. The protective agent used for the silver microparticles is more preferably an aliphatic monocarboxylic acid having 2 to 20 carbon atoms.
 また、銀ナノ粒子と銀マイクロ粒子とをほぼ同時に焼結させ緻密な銀焼結体を得るために、両粒子の保護剤の脱離温度は近いことが望ましい。具体的には、銀ナノ粒子の保護剤と銀マイクロ粒子の保護剤との脱離温度の差が、50℃以内であることが望ましく、30℃以内にあることがより望ましい。 In addition, in order to obtain a dense silver sintered body by sintering silver nanoparticles and silver microparticles almost simultaneously, it is desirable that the desorption temperatures of the protective agents of both particles are close. Specifically, the difference in desorption temperature between the protective agent for silver nanoparticles and the protective agent for silver microparticles is preferably within 50 ° C., more preferably within 30 ° C.
 銀ナノ粒子の保護剤の量は、保護剤:銀ナノ粒子の質量比で、0.1:99.9~20:80の範囲であることが望ましい。保護剤の量が上記下限値以上であると、銀ナノ粒子を良好に被覆でき、その結果、銀ナノ粒子同士の凝集を抑制でき、銀ナノ粒子の溶剤への分散性を確保できる。一方、保護剤の量が上記上限値以下であると、銀ナノ粒子が焼結する際に体積収縮するのを抑制でき、その結果、高緻密な銀焼結体を得られやすくなる。上記と同様の理由で、銀マイクロ粒子を被覆する保護剤の量は、保護剤:銀マイクロ粒子の質量比で、0.1:99.9~20:80の範囲であることが望ましい。 The amount of the silver nanoparticle protective agent is preferably in the range of 0.1: 99.9 to 20:80 as a mass ratio of the protective agent: silver nanoparticles. When the amount of the protective agent is not less than the above lower limit value, the silver nanoparticles can be satisfactorily coated. As a result, aggregation of the silver nanoparticles can be suppressed, and the dispersibility of the silver nanoparticles in the solvent can be ensured. On the other hand, when the amount of the protective agent is not more than the above upper limit value, it is possible to suppress volume shrinkage when the silver nanoparticles are sintered, and as a result, a highly dense silver sintered body is easily obtained. For the same reason as described above, the amount of the protective agent covering the silver microparticles is preferably in the range of 0.1: 99.9 to 20:80 in terms of the mass ratio of the protective agent: silver microparticles.
 なお、上記質量比は、銀ナノ粒子又は銀マイクロ粒子について、保護剤の脱離が十分に生じる温度まで加熱してTG-DTA測定を行い、測定前後での質量変化から求めることができる。 The mass ratio can be obtained from the mass change before and after the measurement by heating the silver nanoparticles or silver microparticles to a temperature at which the desorption of the protective agent is sufficiently performed.
 ここで、本実施形態に係る銀ペーストが焼結性に優れる理由を、実施例1(詳細は後述する。)に基づき具体的に説明する。実施例1では、保護剤であるN,N-ジメチルエチレンジアミン(東京化成株式会社、沸点107℃)で被覆された銀ナノ粒子と、保護剤であるドデカン酸で被覆された銀マイクロ粒子(AgC239(福田金属箔株式会社))とを混合して使用している。銀ナノ粒子及び銀マイクロ粒子のTG-DTA測定結果をそれぞれ図1及び図2に示す。図1から銀ナノ粒子表面のN,N-ジメチルエチレンジアミンは約225℃で脱離することが分かる。また、図2から銀マイクロ粒子表面のドデカン酸が約250℃で脱離することが分かる。これらの銀粒子を混合して作製した銀ペーストのTG-DTA測定の結果を図3に示す。銀ペーストから有機物の脱離が完了する温度は約250℃であり、重量減少は約9.5重量%である。TG-DTA測定における有機物の脱離温度は250℃であるが、200℃程度でもある程度時間をかけて加熱すれば250℃で加熱した場合と同様の重量減少量(9.5重量%)を得ることができる。つまり、実施例1の銀ペーストは、200℃程度で有機物を完全に脱離させて焼結することができる。また、銀ナノ粒子の保護剤と銀マイクロ粒子の保護剤との脱離温度の差が25℃と小さいので、銀ナノ粒子と銀マイクロ粒子とをほぼ同時に焼結でき、緻密な銀焼結体を形成できる。その結果、銀焼結体の特性(ダイシェア強度、体積抵抗率及び熱伝導率)も良好なものとなる。 Here, the reason why the silver paste according to this embodiment is excellent in sinterability will be specifically described based on Example 1 (details will be described later). In Example 1, silver nanoparticles coated with N, N-dimethylethylenediamine (Tokyo Chemical Industry Co., Ltd., boiling point 107 ° C.) as a protective agent, and silver microparticles (AgC239 (AgC239) coated with dodecanoic acid as a protective agent Fukuda Metal Foil Co., Ltd.)) is used in combination. TG-DTA measurement results of silver nanoparticles and silver microparticles are shown in FIGS. 1 and 2, respectively. FIG. 1 shows that N, N-dimethylethylenediamine on the surface of the silver nanoparticles is desorbed at about 225.degree. Further, FIG. 2 shows that dodecanoic acid on the surface of the silver microparticles is desorbed at about 250 ° C. FIG. 3 shows the results of TG-DTA measurement of a silver paste prepared by mixing these silver particles. The temperature at which the desorption of the organic substance from the silver paste is completed is about 250 ° C., and the weight loss is about 9.5% by weight. The desorption temperature of the organic substance in TG-DTA measurement is 250 ° C., but if it is heated to some degree even at about 200 ° C., the same weight loss (9.5% by weight) as when heated at 250 ° C. is obtained. be able to. That is, the silver paste of Example 1 can be sintered at about 200 ° C. with the organic matter completely removed. Also, since the difference in desorption temperature between the protective agent for silver nanoparticles and the protective agent for silver microparticles is as small as 25 ° C., the silver nanoparticles and the silver microparticles can be sintered almost simultaneously, and a dense silver sintered body Can be formed. As a result, the characteristics (die shear strength, volume resistivity and thermal conductivity) of the silver sintered body are also good.
 銀マイクロ粒子と銀ナノ粒子との混合割合は、銀マイクロ粒子:銀ナノ粒子の質量比で、60:40~95:5であることが望ましく、70:30~90:10であることがより望ましく、80:20~90:10であることが更に望ましい。銀ナノ粒子の混合割合が上記範囲内であると、銀マイクロ粒子同士の接触で形成される空隙を埋める量として適切な量となり、その結果、銀焼結体の緻密度はより向上させることが可能となる。 The mixing ratio of the silver microparticles and the silver nanoparticles is preferably 60:40 to 95: 5, more preferably 70:30 to 90:10 in terms of the mass ratio of silver microparticles: silver nanoparticles. Desirably, 80:20 to 90:10 is more desirable. When the mixing ratio of the silver nanoparticles is within the above range, it becomes an appropriate amount for filling the void formed by the contact between the silver microparticles, and as a result, the density of the silver sintered body can be further improved. It becomes possible.
 銀ペースト中の銀粒子(銀マイクロ粒子と銀ナノ粒子との合計)の量としては、目的とする銀ペーストの粘度又はチキソ性に合わせて、適宜決めることができる。銀焼結体の接着強度及び熱伝導性をより発現させやすくするには、銀ペースト100質量部中、銀粒子は80質量部以上であることが望ましい。また、銀ペーストは、銀粒子として、銀マイクロ粒子及び銀ナノ粒子以外の銀粒子を含んでいてもよいが、その含有量は、銀粒子全量を基準として、50質量%以下であることが望ましく、30質量%以下であることがより望ましく、10質量%以下であることが更に望ましい。 The amount of silver particles (total of silver microparticles and silver nanoparticles) in the silver paste can be appropriately determined according to the viscosity or thixotropy of the target silver paste. In order to make the adhesive strength and thermal conductivity of the silver sintered body easier to express, the silver particles are desirably 80 parts by mass or more in 100 parts by mass of the silver paste. Further, the silver paste may contain silver particles other than silver microparticles and silver nanoparticles as silver particles, but the content is desirably 50% by mass or less based on the total amount of silver particles. More preferably, it is 30% by mass or less, and further preferably 10% by mass or less.
 本実施形態における溶剤としては、常温(20℃)で液体であるものであれば特に限定されず、公知の溶剤を使用できる。溶剤としては、アルコール類、アルデヒド類、カルボン酸類、エーテル類、エステル類、アミン類、単糖類、多糖類、直鎖の炭化水素類、脂肪酸類、芳香族類等から選択することが可能であり、上記溶剤を複数組み合わせて使用することも可能である。 The solvent in this embodiment is not particularly limited as long as it is liquid at normal temperature (20 ° C.), and a known solvent can be used. Solvents can be selected from alcohols, aldehydes, carboxylic acids, ethers, esters, amines, monosaccharides, polysaccharides, linear hydrocarbons, fatty acids, aromatics, etc. It is also possible to use a combination of a plurality of the above solvents.
 溶剤の沸点は特に限定されないが、100℃~350℃であることが望ましく、130℃~300℃であることがより望ましく、150℃~250℃であることが更に望ましい。溶剤の沸点が100℃以上であると、銀ペーストの使用時に室温で溶剤が揮発することを抑制でき、その結果、銀ペーストの粘度安定性、塗布性等を確保できる。また、溶剤の沸点が350℃以下であると、半導体素子を支持部材に接続する温度で、溶剤が蒸発せずに銀焼結体に残存するのを抑制でき、その結果、銀焼結体の特性をより良好に保つことができる。 The boiling point of the solvent is not particularly limited, but is preferably 100 ° C to 350 ° C, more preferably 130 ° C to 300 ° C, and further preferably 150 ° C to 250 ° C. When the boiling point of the solvent is 100 ° C. or higher, it is possible to prevent the solvent from volatilizing at room temperature when the silver paste is used, and as a result, it is possible to ensure the viscosity stability, applicability, and the like of the silver paste. Further, when the boiling point of the solvent is 350 ° C. or less, it is possible to suppress the solvent from being evaporated in the silver sintered body at a temperature at which the semiconductor element is connected to the support member. The characteristics can be kept better.
 溶剤としては、上記のような溶剤の中から銀粒子の分散に適した溶剤を選択することが望ましく、具体的には、銀焼結体の熱伝導性、電気伝導性、及び接着強度が良好になる点から、アルコール構造、エーテル構造、又はエステル構造を有する溶剤を選択することが望ましい。本実施形態における溶剤としては、例えば、ブチルセロソルブ、カルビトール、酢酸ブチルセロソルブ、酢酸カルビトール、エチレングリコールジエチルエーテル、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノ-n-メチルエーテル、イソボニルシクロヘキサノール、トリブチリン、テルピネオール等が挙げられる。 As the solvent, it is desirable to select a solvent suitable for the dispersion of silver particles from among the above-mentioned solvents. Specifically, the thermal conductivity, electrical conductivity, and adhesive strength of the silver sintered body are good. Therefore, it is desirable to select a solvent having an alcohol structure, an ether structure, or an ester structure. Examples of the solvent in this embodiment include butyl cellosolve, carbitol, butyl cellosolve acetate, carbitol acetate, ethylene glycol diethyl ether, dipropylene glycol methyl ether acetate, dipropylene glycol mono-n-butyl ether, dipropylene glycol mono-n- Examples include methyl ether, isobornylcyclohexanol, tributyrin, and terpineol.
 銀ペースト中の溶剤の量は、銀ペースト100質量部中、20質量部未満であることが望ましい。溶剤が20質量部未満であると、銀ペーストを焼結した際の溶剤の揮発に伴う体積収縮を抑制でき、形成される銀焼結体の緻密性をより向上させやすくなる。 The amount of the solvent in the silver paste is desirably less than 20 parts by mass in 100 parts by mass of the silver paste. When the solvent is less than 20 parts by mass, volume shrinkage accompanying the volatilization of the solvent when the silver paste is sintered can be suppressed, and the denseness of the formed silver sintered body can be further improved.
 本実施形態に係る銀ペーストは、添加剤を更に含有していてもよい。添加剤は、大気圧下における沸点が400℃以下であり、かつ常温(20℃)で固体であるカルボン酸であることが好ましい。添加剤の具体例としては、ステアリン酸、ラウリン酸、ドコサン酸、セバシン酸、1,16-オクタデカン二酸等が挙げられる。添加剤の量は、銀ペースト100質量部中、2質量部以下であることが望ましく、1質量部以下であることがより望ましく、0質量部であることが更に望ましい。 The silver paste according to this embodiment may further contain an additive. The additive is preferably a carboxylic acid having a boiling point of 400 ° C. or lower under atmospheric pressure and a solid at ordinary temperature (20 ° C.). Specific examples of the additive include stearic acid, lauric acid, docosanoic acid, sebacic acid, 1,16-octadecanedioic acid and the like. The amount of the additive is preferably 2 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0 part by mass in 100 parts by mass of the silver paste.
 また、本実施形態に係る銀ペーストは、本発明の効果を阻害しない範囲で銀粒子、溶剤及び添加剤以外の成分を更に含有していてもよい。銀粒子、溶剤及び添加剤以外の成分としては、銀以外の金属粒子、銀ペースト中の銀粒子の沈降防止剤、銀粒子の焼結促進のためのフラックス剤等が挙げられる。当該成分が有機化合物である場合には、当該有機化合物は、溶剤と同様に、銀ペーストを焼結させる温度で系外に脱離するものが望ましい。銀粒子、溶剤及び添加剤以外の成分の量は、銀ペースト100質量部中、2質量部以下であることが望ましく、1質量部以下であることがより望ましく、0質量部であることが更に望ましい。 In addition, the silver paste according to the present embodiment may further contain components other than silver particles, a solvent, and an additive as long as the effects of the present invention are not impaired. Examples of components other than silver particles, solvents, and additives include metal particles other than silver, anti-settling agents for silver particles in silver paste, and flux agents for promoting the sintering of silver particles. When the component is an organic compound, it is desirable that the organic compound is detached from the system at a temperature at which the silver paste is sintered, like the solvent. The amount of components other than the silver particles, the solvent and the additive is preferably 2 parts by mass or less, more preferably 1 part by mass or less, and further 0 part by mass in 100 parts by mass of the silver paste. desirable.
 本実施形態に係る銀ペーストにおいては、大気中、室温から昇温速度10℃/分の条件で該銀ペーストを示差-熱重量測定した際に、該銀ペースト中の有機物の脱離に伴う重量減少が起こり、該重量減少の停止する温度が270℃未満であることが好ましい。 In the silver paste according to this embodiment, when the silver paste is subjected to differential-thermogravimetric measurement in the atmosphere at room temperature to a heating rate of 10 ° C./min, the weight associated with desorption of organic substances in the silver paste. It is preferred that the temperature at which the decrease occurs and the weight loss stops is less than 270 ° C.
 また、本実施形態に係る銀ペーストにおいては、銀マイクロ粒子と銀ナノ粒子とを、大気中、室温から昇温速度10℃/分の条件でそれぞれ示差-熱重量測定した際に、銀粒子表面の有機物の脱離に伴う重量減少が起こり、銀マイクロ粒子と銀ナノ粒子とで該重量減少の停止する温度の差が50℃以内であることが好ましい。 Further, in the silver paste according to the present embodiment, the surface of the silver particles was measured when the silver microparticles and the silver nanoparticles were subjected to differential-thermogravimetric measurement in the atmosphere at room temperature to a heating rate of 10 ° C./min. It is preferable that the weight reduction accompanying the desorption of the organic substance occurs, and the difference in temperature at which the weight reduction stops between the silver microparticles and the silver nanoparticles is within 50 ° C.
 本実施形態に係る銀ペーストを製造するには、例えば、銀ナノ粒子と、銀マイクロ粒子と、溶剤と(場合によっては更に添加剤と)を、一括又は分割して撹拌器、らいかい器、3本ロール、プラネタリーミキサー等の分散・溶解装置を適宜組み合わせ、必要に応じて加熱して混合、溶解、解粒混練又は分散して均一なペースト状とすればよい。 In order to produce the silver paste according to the present embodiment, for example, silver nanoparticles, silver microparticles, and a solvent (and, in some cases, an additive) are collectively or divided into a stirrer, a separator, What is necessary is just to combine dispersion | distribution / dissolution apparatuses, such as a 3 roll, a planetary mixer, etc. suitably, and just to heat and mix, melt | dissolve, pulverize knead | mix, or disperse | distribute as needed, and you may make a uniform paste form.
 本実施形態に係る銀ペーストを加熱して焼結させる方法としては、公知の方法を利用できる。ヒーターによる外部加熱以外にも、紫外線ランプ、レーザー、マイクロ波等を好適に用いることができる。銀ペーストの加熱温度は、保護剤、溶剤及び添加剤が系外へ脱離する温度以上であることが望ましい。具体的には、加熱温度の範囲は、150℃以上300℃以下であることが望ましく、150℃以上250℃以下であることがより望ましい。加熱温度を300℃以下とすることで、一般的な半導体部材を接続する場合は、当該部材へのダメージを回避することができ、また、加熱温度を150℃以上とすることで、保護剤の脱離が起こりやすくなる。 As the method for heating and sintering the silver paste according to this embodiment, a known method can be used. In addition to external heating by a heater, an ultraviolet lamp, laser, microwave, or the like can be suitably used. The heating temperature of the silver paste is preferably equal to or higher than the temperature at which the protective agent, solvent and additive are desorbed from the system. Specifically, the range of the heating temperature is desirably 150 ° C. or more and 300 ° C. or less, and more desirably 150 ° C. or more and 250 ° C. or less. When a general semiconductor member is connected by setting the heating temperature to 300 ° C. or lower, damage to the member can be avoided, and by setting the heating temperature to 150 ° C. or higher, Desorption is likely to occur.
 銀ペーストの加熱時間は、設定した温度において、保護剤、溶剤等の有機物の脱離が完了する時間とすればよい。適切な加熱温度及び加熱時間の範囲は、銀ペーストのTG-DTA測定を行うことで見積もることができる。 The heating time of the silver paste may be a time at which desorption of organic substances such as a protective agent and a solvent is completed at a set temperature. An appropriate range of heating temperature and heating time can be estimated by performing TG-DTA measurement of the silver paste.
 また、銀ペーストを加熱する際の工程は適宜決めることができる。特に、溶剤の沸点を超える温度で焼結を行う場合には、溶剤の沸点以下の温度で予熱を行い、予め溶剤をある程度揮発させた上で焼結を行うと、より緻密な銀焼結体を得やすい。銀ペーストを加熱する際の昇温速度は、溶剤の沸点未満で焼結する場合には特に制限されない。溶剤の沸点を超える温度で焼結する場合には、昇温速度を1℃/秒以下とするか、予熱工程を行うことが望ましい。 Also, the process for heating the silver paste can be appropriately determined. In particular, when sintering is performed at a temperature exceeding the boiling point of the solvent, pre-heating at a temperature lower than the boiling point of the solvent, and after performing the sintering after volatilizing the solvent to some extent, a denser silver sintered body Easy to get. The rate of temperature increase when heating the silver paste is not particularly limited when sintering is performed below the boiling point of the solvent. In the case of sintering at a temperature exceeding the boiling point of the solvent, it is desirable to set the heating rate to 1 ° C./second or less, or to perform a preheating step.
 上記のように銀ペーストを焼結させることにより得られる銀焼結体としては、体積抵抗率、熱伝導率、接着強度、及び緻密度が、それぞれ1×10-5Ω・cm以下、30W/m・K以上、10MPa、及び60%以上である銀焼結体であることが望ましい。なお、銀焼結体の緻密度は下記式に基づいて算出される。
 緻密度[%]=銀焼結体の密度[g/cm]×100/銀の理論密度[10.49g/cm
The silver sintered body obtained by sintering the silver paste as described above has a volume resistivity, thermal conductivity, adhesive strength, and density of 1 × 10 −5 Ω · cm or less, 30 W / cm, respectively. A silver sintered body having m · K or more, 10 MPa, or 60% or more is desirable. The density of the silver sintered body is calculated based on the following formula.
Density [%] = density of sintered silver [g / cm 3 ] × 100 / theoretical density of silver [10.49 g / cm 3 ]
 本実施形態に係る半導体装置は、本実施形態に係る銀ペーストを焼結してなる焼結体を介して、半導体素子と半導体素子搭載用支持部材とが互いに接着したものである。 The semiconductor device according to this embodiment is obtained by bonding a semiconductor element and a semiconductor element mounting support member to each other through a sintered body obtained by sintering the silver paste according to this embodiment.
 図4は、本実施形態に係る半導体装置の一例を示す模式断面図である。図4に示すように、半導体装置10は、半導体素子搭載用支持部材であるとリードフレーム2aと、リードフレーム(放熱体)2b,2cと、本実施形態に係る銀ペーストの焼結体3を介してリードフレーム2aに接続された半導体素子1と、これらをモールドするモールドレジン5とを備えている。半導体素子1は、2本のワイヤ4を介してリードフレーム2b,2cにそれぞれ接続されている。 FIG. 4 is a schematic cross-sectional view showing an example of the semiconductor device according to the present embodiment. As shown in FIG. 4, the semiconductor device 10 includes a lead frame 2a, lead frames (heat radiating bodies) 2b and 2c, and a silver paste sintered body 3 according to the present embodiment as a semiconductor element mounting support member. And a semiconductor element 1 connected to the lead frame 2a, and a mold resin 5 for molding them. The semiconductor element 1 is connected to lead frames 2b and 2c through two wires 4, respectively.
 図5は、本実施形態に係る半導体装置の別の例を示す模式断面図である。図5に示すように、半導体装置20は、基板6と、基板6を囲むように形成された半導体素子搭載用支持部材であるリードフレーム7と、本実施形態に係る銀ペーストの焼結体3を介してリードフレーム7上に接続された半導体素子であるLEDチップ8と、これらを封止する透光性樹脂9とを備えている。LEDチップ8は、ワイヤ4を介してリードフレーム7に接続されている。 FIG. 5 is a schematic cross-sectional view showing another example of the semiconductor device according to the present embodiment. As shown in FIG. 5, the semiconductor device 20 includes a substrate 6, a lead frame 7 which is a semiconductor element mounting support member formed so as to surround the substrate 6, and the silver paste sintered body 3 according to the present embodiment. LED chip 8 which is a semiconductor element connected on lead frame 7 via, and translucent resin 9 which seals these. The LED chip 8 is connected to the lead frame 7 via the wire 4.
 これらの半導体装置では、例えば、半導体素子搭載用支持部材上に銀ペーストをディスペンス法、スクリーン印刷法、スタンピング法等により塗布し、銀ペーストが塗布された部分に半導体素子を搭載し、加熱装置を用いて銀ペーストを焼結することによって、半導体素子と半導体素子搭載用支持部材とを互いに接着させることができる。また、銀ペーストの焼結後、ワイヤボンド工程及び封止工程を行うことにより、半導体装置が得られる。 In these semiconductor devices, for example, a silver paste is applied onto a semiconductor element mounting support member by a dispensing method, a screen printing method, a stamping method, etc., the semiconductor element is mounted on the portion where the silver paste is applied, and a heating device is installed. By using and sintering the silver paste, the semiconductor element and the semiconductor element mounting support member can be bonded to each other. Moreover, a semiconductor device is obtained by performing a wire bonding process and a sealing process after sintering the silver paste.
 半導体素子搭載用支持部材としては、例えば、42アロイリードフレーム、銅リードフレーム、パラジウムPPFリードフレーム等のリードフレーム、ガラスエポキシ基板(ガラス繊維強化エポキシ樹脂からなる基板)、BT基板(シアネートモノマー及びそのオリゴマーとビスマレイミドからなるBTレジン使用基板)等の有機基板が挙げられる。 As the support member for mounting a semiconductor element, for example, a lead frame such as a 42 alloy lead frame, a copper lead frame, a palladium PPF lead frame, a glass epoxy substrate (a substrate made of glass fiber reinforced epoxy resin), a BT substrate (cyanate monomer and its component) And an organic substrate such as a BT resin-containing substrate made of an oligomer and bismaleimide.
 半導体素子搭載用支持部材における半導体との接着表面には、銀ペーストとの接着性を高めるために凹凸を設ける(粗化処理する)ことが望ましい。微細な間隔の凹凸面(例えば、凹凸面における凸部同士の間隔が1μm未満である)を有する半導体素子搭載用支持部材を用いると、本実施形態に係る銀ペースト中の銀ナノ粒子が半導体素子搭載用支持部材表面の凹部に捕捉されるため、より高い接着性を得ることができる。 It is desirable to provide unevenness (roughening treatment) on the surface of the semiconductor element mounting support member to be bonded to the semiconductor in order to enhance the adhesion to the silver paste. When a support member for mounting a semiconductor element having a finely-spaced uneven surface (for example, the distance between protrusions on the uneven surface is less than 1 μm), the silver nanoparticles in the silver paste according to this embodiment are converted into a semiconductor element. Since it is captured by the recesses on the surface of the mounting support member, higher adhesion can be obtained.
 以下に実施例を示し、本発明をより具体的に説明する。本発明はこれらの実施例により限定を受けるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by these examples.
 各実施例及び比較例における各特性の測定は、次のようにして実施した。 The measurement of each characteristic in each example and comparative example was performed as follows.
(1)銀ナノ粒子の相同定(XRD測定)
 約100mgの銀ナノ粒子をXRD測定用のガラスセルに乗せ、これを粉末X線回折装置(Rigaku CN4036)の試料ホルダーにセットした。加速電圧40kV、電流20mAでCuKα線を発生させ、グラファイトモノクロメータにより単色光化し、測定線源とした。2θ=5°~85°の範囲で銀粒子の回折パターンを測定した。
(1) Phase identification of silver nanoparticles (XRD measurement)
About 100 mg of silver nanoparticles were placed on a glass cell for XRD measurement, and this was set on a sample holder of a powder X-ray diffractometer (Rigaku CN4036). CuKα rays were generated at an acceleration voltage of 40 kV and a current of 20 mA, and were converted to monochromatic light using a graphite monochromator to obtain a measurement source. The diffraction pattern of silver particles was measured in the range of 2θ = 5 ° to 85 °.
(2)有機物の脱離温度(TG-DTA測定)
 銀粒子あるいは銀ペーストをTG-DTA測定用のAlサンプルパンに10mg乗せ、これをTG-DTA測定装置(エスアイアイ・ナノテクノロジー EXSTAR6000 TG/DTA6300)の試料ホルダーにセットした。ドライエアを流量約400mL/分で流しながら、昇温速度10℃/分で室温から約500℃までサンプルを加熱し、その際の重量変化と熱挙動を測定した。重量変化の停止点を有機物脱離の完了温度とした。
(2) Desorption temperature of organic matter (TG-DTA measurement)
10 mg of silver particles or silver paste was placed on an Al sample pan for TG-DTA measurement, and this was set in a sample holder of a TG-DTA measurement apparatus (SII Nanotechnology EXSTAR6000 TG / DTA6300). The sample was heated from room temperature to about 500 ° C. at a heating rate of 10 ° C./min while flowing dry air at a flow rate of about 400 mL / min, and the weight change and thermal behavior at that time were measured. The stop point of weight change was defined as the completion temperature of organic substance elimination.
(3)銀焼結体の密度及び緻密度
 銀ペーストをホットプレート(井内盛栄堂 SHAMAL HOTPLATE HHP-401)により110℃で10分間予熱し、さらに200℃で1時間加熱することで銀焼結体(約10mm×10mm×1mm)を得た。作製した銀焼結体を紙やすり(800番)で研磨し、研磨後の銀焼結体の体積及び質量を測定した。これらの値から銀焼結体の密度を算出し、更に下記の式に従い緻密度を算出した。
 緻密度[%]=銀焼結体の密度[g/cm]×100/銀の理論密度[10.49g/cm
(3) Density and density of the silver sintered body The silver paste is preheated at 110 ° C. for 10 minutes with a hot plate (SHIMAL HOTPLATE HHP-401) and further heated at 200 ° C. for 1 hour. (About 10 mm × 10 mm × 1 mm) was obtained. The produced silver sintered compact was grind | polished with sandpaper (# 800), and the volume and mass of the silver sintered compact after grinding | polishing were measured. The density of the silver sintered body was calculated from these values, and the density was further calculated according to the following formula.
Density [%] = density of sintered silver [g / cm 3 ] × 100 / theoretical density of silver [10.49 g / cm 3 ]
(4)ダイシェア強度
 銀ペーストをAgめっきCuリードフレーム(ランド部:10×5mm)上に0.1mg塗布し、その上に1mm×1mmのAuめっきSiチップ(Auめっき厚:0.1μm、チップ厚:400μm)を接着した。これをホットプレート(井内盛栄堂 SHAMAL HOTPLATE HHP-401)で、200℃で1時間加熱した。得られた銀焼結体の接着強度を、ダイシェア強度[MPa]により評価した。万能型ボンドテスタ(デイジ社製 4000シリーズ)を用い、測定スピード500μm/s、測定高さ100μmでAuめっきSiチップを水平方向に押し、銀焼結体のダイシェア強度[MPa]を測定した。
(4) Die shear strength 0.1 mg of silver paste is applied onto an Ag-plated Cu lead frame (land part: 10 × 5 mm), and 1 mm × 1 mm Au-plated Si chip (Au plating thickness: 0.1 μm, chip) (Thickness: 400 μm) was adhered. This was heated at 200 ° C. for 1 hour with a hot plate (SHIMAL HOTPLATE HHP-401). The adhesive strength of the obtained silver sintered body was evaluated by die shear strength [MPa]. Using a universal bond tester (4000 series, manufactured by Daisy), an Au-plated Si chip was pressed in the horizontal direction at a measurement speed of 500 μm / s and a measurement height of 100 μm, and the die shear strength [MPa] of the silver sintered body was measured.
(5)熱伝導率
 銀ペーストをホットプレート(井内盛栄堂 SHAMAL HOTPLATE HHP-401)により110℃で10分間予熱し、さらに200℃で1時間加熱することで銀焼結体(約10mm×10mm×1mm)を得た。この銀焼結体の熱拡散率をレーザーフラッシュ法(ネッチ社製 LFA 447、25℃)で測定し、さらにこの熱拡散率と、示差走査熱量測定装置(パーキンエルマー社製 Pyris1)で得られた比熱容量と焼結密度の積より、25℃における銀焼結体の熱伝導率[W/m・K]を算出した。
(5) Thermal conductivity The silver paste was preheated at 110 ° C. for 10 minutes with a hot plate (SHIMAL HOTPLATE HHP-401) and further heated at 200 ° C. for 1 hour to obtain a silver sintered body (about 10 mm × 10 mm × 1 mm). The thermal diffusivity of this silver sintered body was measured by a laser flash method (LFA 447 manufactured by Netch Co., Ltd., 25 ° C.), and further obtained with this thermal diffusivity and a differential scanning calorimeter (Pyris 1 manufactured by Perkin Elmer Co.). From the product of specific heat capacity and sintering density, the thermal conductivity [W / m · K] of the silver sintered body at 25 ° C. was calculated.
(6)体積抵抗率
 銀ペーストをガラス板上に塗布し、ホットプレート(井内盛栄堂 SHAMAL HOTPLATE HHP-401)により110℃で10分間予熱し、さらに200℃で1時間加熱することで、ガラス板上に1mm×50mm×0.03mmの銀焼結体を得た。この銀焼結体を4端子法(アドバンテスト(株)製 R687E DIGTAL MULTIMETER)にて体積抵抗率[μΩ・cm]を測定した。
(6) Volume resistivity A silver paste is applied on a glass plate, pre-heated at 110 ° C. for 10 minutes by a hot plate (SHAMAL HOTPLATE HHP-401), and further heated at 200 ° C. for 1 hour. A silver sintered body of 1 mm × 50 mm × 0.03 mm was obtained on the top. The volume resistivity [μΩ · cm] of this silver sintered body was measured by a four-terminal method (R687E DIGTAL MULTITIMER manufactured by Advantest Corporation).
(7)銀焼結体の断面観察
 銀ペーストをAgめっきCuリードフレーム(ランド部:10×5mm、Agめっき厚:約4μm)上に0.1mgを塗布し、この上に1mm×1mmのAuめっきSiチップ(Auめっき厚:0.1μm、チップ厚:400μm)を接着した。これをホットプレート(井内盛栄堂 SHAMAL HOTPLATE HHP-401)を用い200℃で1時間加熱した。接続したサンプルをエポキシ樹脂中に埋め込み、AuめっきSiチップ/銀焼結体/AgめっきCuリードフレームの断面が確認できるまで研磨した。研磨後のサンプルにイオンスパッター装置(日立ハイテクノロジーズ株式会社 E1045)で白金を蒸着し、これを卓上走査電子顕微鏡(日本電子株式会社 NeoScope JCM-5000)により、電子加速電圧10kV、倍率5000倍で観察し、SEM写真を撮影した。
(7) Cross-sectional observation of silver sintered body Apply 0.1 mg of silver paste on Ag-plated Cu lead frame (land part: 10 × 5 mm, Ag plating thickness: about 4 μm), and 1 mm × 1 mm Au A plated Si chip (Au plating thickness: 0.1 μm, chip thickness: 400 μm) was adhered. This was heated at 200 ° C. for 1 hour using a hot plate (SHIMAL HOTPLATE HHP-401). The connected sample was embedded in an epoxy resin and polished until the cross section of the Au plated Si chip / silver sintered body / Ag plated Cu lead frame could be confirmed. Platinum was deposited on the polished sample with an ion sputtering device (Hitachi High-Technologies Corporation E1045), and this was observed with a desktop scanning electron microscope (JEOL Ltd. NeoScope JCM-5000) at an electron acceleration voltage of 10 kV and a magnification of 5000 times. Then, SEM photographs were taken.
(実施例1)
 銀ナノ粒子を次の手順で合成した。銀源としてAgO(和光純薬株式会社)、還元剤としてジエチレングリコール(和光純薬株式会社、沸点244℃)、銀ナノ粒子の保護剤としてN,N-ジメチルエチレンジアミン(東京化成株式会社、沸点107℃)を使用した。これらの試薬を表1に示す配合割合でナスフラスコに加えた。反応溶液をマグネチックスターラーで約700rpmで攪拌しながら、110℃で3時間、加熱還流した。反応後の溶液にアセトンを約300mL加え、上澄み液を取り除き、沈殿した銀ナノ粒子を回収した。この銀ナノ粒子を40℃で3時間加熱し、乾燥させた。この銀ナノ粒子のXRD測定を行ったところ、図6に示すXRDパターンが得られ、金属銀であることを確認した。また、銀ナノ粒子は球状であり、銀ナノ粒子の粒子径は50~200nmであることを確認した(図7)。この銀ナノ粒子のTG-DTA測定を行い、図1のチャートを得た。これより、銀ナノ粒子表面を被覆しているN,N-ジメチルエチレンジアミンが約225℃で脱離することが分かる。
Example 1
Silver nanoparticles were synthesized by the following procedure. Ag 2 O (Wako Pure Chemical Industries, Ltd.) as a silver source, diethylene glycol (Wako Pure Chemical Industries, Ltd., boiling point 244 ° C.) as a reducing agent, N, N-dimethylethylenediamine (Tokyo Chemical Industry Co., Ltd., boiling point) as a protective agent for silver nanoparticles 107 ° C.) was used. These reagents were added to the eggplant flask at the mixing ratio shown in Table 1. The reaction solution was heated to reflux at 110 ° C. for 3 hours while stirring at about 700 rpm with a magnetic stirrer. About 300 mL of acetone was added to the solution after the reaction, the supernatant was removed, and the precipitated silver nanoparticles were collected. The silver nanoparticles were heated at 40 ° C. for 3 hours and dried. When the XRD measurement of this silver nanoparticle was performed, the XRD pattern shown in FIG. 6 was obtained, and it confirmed that it was metallic silver. Further, it was confirmed that the silver nanoparticles were spherical and the particle diameter of the silver nanoparticles was 50 to 200 nm (FIG. 7). TG-DTA measurement of the silver nanoparticles was performed to obtain the chart of FIG. This shows that N, N-dimethylethylenediamine covering the surface of the silver nanoparticles is desorbed at about 225 ° C.
 一方、銀マイクロ粒子としてAgC239(福田金属箔株式会社)を使用した。AgC239を保護剤であるドデカン酸で被覆するための処理を以下のように行った。すなわち、まず、ナスフラスコに、AgC239を100g、ドデカン酸(和光純薬株式会社、沸点299℃)を10g、1-プロパノール(和光純薬株式会社、沸点97℃)を500mLそれぞれ加えて反応溶液とした。反応溶液をマグネチックスターラーで約200rpmで攪拌しながら、60℃で3時間加熱することによって反応させた。反応後の溶液について、アセトンを約1000mL加えた後に上澄み液を取り除く、という操作を3回繰り返すことで過剰なドデカン酸を除去し、ドデカン酸で被覆されたAgC239を回収した。これを40℃で3時間加熱し、評価試料とした。 Meanwhile, AgC239 (Fukuda Metal Foil Co., Ltd.) was used as the silver microparticles. The treatment for coating AgC239 with dodecanoic acid as a protective agent was performed as follows. That is, first, 100 g of AgC239, 10 g of dodecanoic acid (Wako Pure Chemical Industries, Ltd., boiling point 299 ° C.) and 500 mL of 1-propanol (Wako Pure Chemical Industries, Ltd., boiling point 97 ° C.) were added to the eggplant flask. did. The reaction solution was reacted by heating at 60 ° C. for 3 hours while stirring at about 200 rpm with a magnetic stirrer. With respect to the solution after the reaction, excess dodecanoic acid was removed by repeating the operation of adding about 1000 mL of acetone and then removing the supernatant three times to collect AgC239 coated with dodecanoic acid. This was heated at 40 ° C. for 3 hours to obtain an evaluation sample.
 ドデカン酸で被覆されたAgC239のTG-DTA測定を行い、図2のチャートを得た。これより、銀マイクロ粒子を被覆しているドデカン酸が約250℃で脱離することが分かる。また、銀マイクロ粒子は板状であり、銀マイクロ粒子の粒子径は2~10μmであることを確認した。 TG-DTA measurement of AgC239 coated with dodecanoic acid was performed to obtain the chart of FIG. This shows that dodecanoic acid covering the silver microparticles is desorbed at about 250 ° C. Further, it was confirmed that the silver microparticles were plate-like and the particle diameter of the silver microparticles was 2 to 10 μm.
 溶剤としてテルピネオール(和光純薬製、異性体混合物、沸点約217℃)、添加剤としてステアリン酸(新日本理化株式会社)を使用した。表2に示す配合割合にて、銀ナノ粒子、銀マイクロ粒子、溶剤、及び添加剤をらいかい機にて15分間混練し銀ペーストを作製した。この銀ペーストのTG-DTA測定を行い、図3のチャートを得た。ペースト中に含まれる有機物の脱離が約250℃で完了することが分かる。この銀ペーストの特性を表3に示す。上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図8に示す。 Terpineol (manufactured by Wako Pure Chemicals, isomer mixture, boiling point: about 217 ° C.) was used as a solvent, and stearic acid (Shin Nihon Rika Co., Ltd.) was used as an additive. Silver nanoparticles, silver microparticles, a solvent, and an additive were kneaded for 15 minutes with a screening machine at a blending ratio shown in Table 2 to prepare a silver paste. TG-DTA measurement of this silver paste was performed to obtain the chart of FIG. It can be seen that the desorption of the organic substances contained in the paste is completed at about 250 ° C. The properties of this silver paste are shown in Table 3. FIG. 8 shows an SEM photograph of the cross section of the connection portion between the Au-plated Si chip / silver sintered body / Ag-plated Cu lead frame produced according to the above (7) and the silver-sintered body.
(実施例2)
 銀ナノ粒子の保護剤としてN-メチルブチルアミン(東京化成株式会社、沸点91℃)を使用した以外は、実施例1と同様の手順で銀ナノ粒子を合成した。この銀ナノ粒子を使用して、実施例1と同様の手順で銀ペーストを作製した。銀ペーストの配合は表2のとおりである。この銀ペーストの特性を表3に示す。また、銀ナノ粒子は球状であり、銀ナノ粒子の粒子径は50~200nmであることを確認した。
(Example 2)
Silver nanoparticles were synthesized by the same procedure as in Example 1 except that N-methylbutylamine (Tokyo Kasei Co., Ltd., boiling point: 91 ° C.) was used as a protective agent for silver nanoparticles. Using these silver nanoparticles, a silver paste was prepared in the same procedure as in Example 1. The composition of the silver paste is as shown in Table 2. The properties of this silver paste are shown in Table 3. Further, it was confirmed that the silver nanoparticles were spherical and the particle diameter of the silver nanoparticles was 50 to 200 nm.
(実施例3)
 銀ナノ粒子の保護剤として1,2-ジメチルプロピルアミン(東京化成株式会社、沸点86℃)を使用した以外は、実施例1と同様の手順で銀ナノ粒子を合成した。この銀ナノ粒子を使用して、実施例1と同様の手順で銀ペーストを作製した。銀ペーストの配合は表2のとおりである。この銀ペーストの特性を表3に示す。また、銀ナノ粒子は球状であり、銀ナノ粒子の粒子径は200~250nmであることを確認した。
Example 3
Silver nanoparticles were synthesized by the same procedure as in Example 1, except that 1,2-dimethylpropylamine (Tokyo Kasei Co., Ltd., boiling point: 86 ° C.) was used as a protective agent for silver nanoparticles. Using these silver nanoparticles, a silver paste was prepared in the same procedure as in Example 1. The composition of the silver paste is as shown in Table 2. The properties of this silver paste are shown in Table 3. Further, it was confirmed that the silver nanoparticles were spherical and the particle diameter of the silver nanoparticles was 200 to 250 nm.
(実施例4)
 銀ナノ粒子の保護剤としてトリエチルアミン(東京化成株式会社、沸点89.7℃)を使用した以外は、実施例1と同様の手順で銀ナノ粒子を合成した。この銀ナノ粒子を使用して、実施例1と同様の手順で銀ペーストを作製した。銀ペーストの配合は表2のとおりである。この銀ペーストの特性を表3に示す。また、銀ナノ粒子は球状であり、銀ナノ粒子の粒子径は35~100nmであることを確認した。
Example 4
Silver nanoparticles were synthesized in the same procedure as in Example 1 except that triethylamine (Tokyo Chemical Industry Co., Ltd., boiling point 89.7 ° C.) was used as a protective agent for silver nanoparticles. Using these silver nanoparticles, a silver paste was prepared in the same procedure as in Example 1. The composition of the silver paste is as shown in Table 2. The properties of this silver paste are shown in Table 3. Further, it was confirmed that the silver nanoparticles were spherical and the particle diameter of the silver nanoparticles was 35 to 100 nm.
(実施例5)
 銀ナノ粒子の保護剤として酢酸(東京化成株式会社、沸点118℃)を使用した以外は、実施例1と同様の手順で銀ナノ粒子を合成した。この銀ナノ粒子を使用して、実施例1と同様の手順で銀ペーストを作製した。銀ペーストの配合は表2のとおりである。この銀ペーストの特性を表3に示す。また、銀ナノ粒子は球状であり、銀ナノ粒子の粒子径は100~280nmであることを確認した。
(Example 5)
Silver nanoparticles were synthesized in the same procedure as in Example 1 except that acetic acid (Tokyo Chemical Industry Co., Ltd., boiling point 118 ° C.) was used as a protective agent for silver nanoparticles. Using these silver nanoparticles, a silver paste was prepared in the same procedure as in Example 1. The composition of the silver paste is as shown in Table 2. The properties of this silver paste are shown in Table 3. Further, it was confirmed that the silver nanoparticles were spherical and the particle diameter of the silver nanoparticles was 100 to 280 nm.
(比較例1)
 銀ナノ粒子の保護剤としてジエタノールアミン(和光純薬株式会社、沸点217℃)を使用した以外は、実施例1と同様の手順で銀ナノ粒子を合成した。銀ナノ粒子のTG-DTA測定を行い、図9のチャートを得た。これより、銀ナノ粒子表面からジエタノールアミンが約335℃で脱離することが分かる。この銀ナノ粒子を使用して、実施例1と同様の手順で銀ペーストを作製した。銀ペーストの配合は表2のとおりである。この銀ペーストの特性を表3に示す。また、銀ナノ粒子は球状であり、銀ナノ粒子の粒子径は100~280nmであることを確認した。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図10に示す。比較例1の銀焼結体は、銀ナノ粒子の保護剤の脱離温度が高いために200℃では十分焼結が進まず、銀焼結体の緻密度、ダイシェア強度、体積抵抗率、及び熱伝導率の点で実施例1の銀焼結体よりも劣っていた。
(Comparative Example 1)
Silver nanoparticles were synthesized in the same procedure as in Example 1 except that diethanolamine (Wako Pure Chemical Industries, Ltd., boiling point 217 ° C.) was used as a protective agent for silver nanoparticles. TG-DTA measurement of silver nanoparticles was performed to obtain the chart of FIG. This shows that diethanolamine is desorbed from the surface of the silver nanoparticles at about 335 ° C. Using these silver nanoparticles, a silver paste was prepared in the same procedure as in Example 1. The composition of the silver paste is as shown in Table 2. The properties of this silver paste are shown in Table 3. Further, it was confirmed that the silver nanoparticles were spherical and the particle diameter of the silver nanoparticles was 100 to 280 nm. Moreover, the SEM photograph which image | photographed the cross section of the connection part of the Au plating Si chip and silver sintered compact in Au plating Si chip / silver sintered compact / Ag plating Cu lead frame produced according to said (7) is shown in FIG. . Since the silver sintered body of Comparative Example 1 has a high desorption temperature of the silver nanoparticle protective agent, the sintering does not sufficiently proceed at 200 ° C., and the density, die shear strength, volume resistivity, and It was inferior to the silver sintered body of Example 1 in terms of thermal conductivity.
(比較例2)
 実施例1と同様の手順で銀ナノ粒子を合成した。この銀ナノ粒子を使用して、銀マイクロ粒子を添加せずに、実施例1と同様の手順で銀ペーストを作製した。銀ペーストの配合は表2のとおりである。この銀ペーストの特性を表3に示す。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図11に示す。銀ナノ粒子の焼結時の体積収縮が大きく、AuめっきSiから焼結体が剥離した箇所が観察された。
(Comparative Example 2)
Silver nanoparticles were synthesized by the same procedure as in Example 1. Using these silver nanoparticles, a silver paste was prepared in the same procedure as in Example 1 without adding silver microparticles. The composition of the silver paste is as shown in Table 2. The properties of this silver paste are shown in Table 3. Moreover, the SEM photograph which image | photographed the cross section of the connection part of the Au plating Si chip and silver sintered compact in Au plating Si chip / silver sintered compact / Ag plating Cu lead frame produced according to said (7) is shown in FIG. . The volume shrinkage at the time of sintering of the silver nanoparticles was large, and a portion where the sintered body was peeled off from the Au-plated Si was observed.
(比較例3)
 銀ナノ粒子を添加せずに、銀マイクロ粒子だけを用いて、実施例1と同様の手順で銀ペーストを作製した。銀ペーストの配合は表2のとおりである。この銀ペーストの特性を表3に示す。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図12に示す。比較例3の銀焼結体の各特性は、実施例1の銀焼結体の各特性よりも劣っていた。
(Comparative Example 3)
A silver paste was prepared in the same procedure as in Example 1 using only silver microparticles without adding silver nanoparticles. The composition of the silver paste is as shown in Table 2. The properties of this silver paste are shown in Table 3. Further, FIG. 12 shows an SEM photograph taken of a cross section of the connection portion between the Au-plated Si chip and the silver-sintered body in the Au-plated Si chip / silver-sintered body / Ag-plated Cu lead frame manufactured according to (7) above. . Each characteristic of the silver sintered compact of the comparative example 3 was inferior to each characteristic of the silver sintered compact of Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1…半導体素子、2a,2b,2c…リードフレーム、3…銀ペーストの焼結体、4…ワイヤ、5…モールドレジン、6…基板、7…リードフレーム、8…LEDチップ、9…透光性樹脂、10,20…半導体装置。 DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 2a, 2b, 2c ... Lead frame, 3 ... Silver paste sintered body, 4 ... Wire, 5 ... Mold resin, 6 ... Substrate, 7 ... Lead frame, 8 ... LED chip, 9 ... Translucent Resin, 10, 20... Semiconductor device.

Claims (8)

  1.  銀粒子及び溶剤を含有する銀ペーストであって、
     前記銀粒子は、粒子径が1μm~20μmである銀粒子と、大気圧下における沸点が130℃未満である保護剤で被覆された、粒子径が1nm~300nmである銀粒子とを含む、銀ペースト。
    A silver paste containing silver particles and a solvent,
    The silver particles include silver particles having a particle diameter of 1 μm to 20 μm, and silver particles having a particle diameter of 1 nm to 300 nm coated with a protective agent having a boiling point of less than 130 ° C. under atmospheric pressure. paste.
  2.  大気圧下における沸点が400℃以下であり、かつ常温で固体であるカルボン酸を更に含有する、請求項1に記載の銀ペースト。 The silver paste according to claim 1, further comprising a carboxylic acid having a boiling point under atmospheric pressure of 400 ° C or lower and a solid at ordinary temperature.
  3.  前記保護剤が、アミン化合物、カルボン酸化合物、アミノ酸化合物、アミノアルコール化合物、及びアミド化合物からなる群より選ばれる少なくとも1種である、請求項1又は2に記載の銀ペースト。 The silver paste according to claim 1 or 2, wherein the protective agent is at least one selected from the group consisting of an amine compound, a carboxylic acid compound, an amino acid compound, an amino alcohol compound, and an amide compound.
  4.  前記保護剤が、1-アミノペンタン、2-アミノペンタン、3-アミノペンタン、2-メチルブチルアミン、3-メチルブチルアミン、1,2-ジメチルプロピルアミン、2,2-ジメチルプロピルアミン、N-メチルブチルアミン、N-メチルイソブチルアミン、エチルプロピルアミン、ピペリジン、メチルプロピルアミン、ジエチルアミン、モルホリン、トリエチルアミン、N,N-ジエチルメチルアミン、N,N-ジメチルイソプロピルアミン、N,N,N’-トリメチルエチレンジアミン、N,N-ジメチルエチレンジアミン、1,2-ビス(メチルアミノ)エタン、1,2-ジアミノプロパン、N-メチルエチレンジアミン、1,2-ジアミノエタン、及び酢酸からなる群より選ばれる少なくとも1種である、請求項1~3のいずれか一項に記載の銀ペースト。 The protective agent is 1-aminopentane, 2-aminopentane, 3-aminopentane, 2-methylbutylamine, 3-methylbutylamine, 1,2-dimethylpropylamine, 2,2-dimethylpropylamine, N-methylbutylamine. N-methylisobutylamine, ethylpropylamine, piperidine, methylpropylamine, diethylamine, morpholine, triethylamine, N, N-diethylmethylamine, N, N-dimethylisopropylamine, N, N, N′-trimethylethylenediamine, N , N-dimethylethylenediamine, 1,2-bis (methylamino) ethane, 1,2-diaminopropane, N-methylethylenediamine, 1,2-diaminoethane, and acetic acid. Claims 1 to 3 Re or silver paste according to one paragraph.
  5.  前記粒子径が1μm~20μmである銀粒子の表面が、炭素数2~20の脂肪族モノカルボン酸で被覆されている、請求項1~4のいずれか一項に記載の銀ペースト。 The silver paste according to any one of claims 1 to 4, wherein the surface of silver particles having a particle diameter of 1 µm to 20 µm is coated with an aliphatic monocarboxylic acid having 2 to 20 carbon atoms.
  6.  前記粒子径が1μm~20μmである銀粒子が、板状の銀粒子、又は板状の銀粒子と球状の銀粒子との混合物である、請求項1~5のいずれか一項に記載の銀ペースト。 6. The silver according to claim 1, wherein the silver particles having a particle diameter of 1 μm to 20 μm are plate-like silver particles, or a mixture of plate-like silver particles and spherical silver particles. paste.
  7.  請求項1~6のいずれか一項に記載の銀ペーストを焼結してなる焼結体を介して、半導体素子と半導体素子搭載用支持部材とが互いに接着した構造を有する半導体装置。 A semiconductor device having a structure in which a semiconductor element and a semiconductor element mounting support member are bonded to each other through a sintered body obtained by sintering the silver paste according to any one of claims 1 to 6.
  8.  銀粒子及び溶剤を混合して銀ペーストを得る、銀ペーストの製造方法であって、
     前記銀粒子として、粒子径が1μm~20μmである銀粒子と、大気圧下における沸点が130℃未満である保護剤で被覆された、粒子径が1nm~300nmである銀粒子とを用いる、銀ペーストの製造方法。
    A method for producing a silver paste, comprising mixing silver particles and a solvent to obtain a silver paste,
    As the silver particles, silver particles having a particle diameter of 1 μm to 20 μm and silver particles having a particle diameter of 1 nm to 300 nm coated with a protective agent having a boiling point of less than 130 ° C. under atmospheric pressure are used. Manufacturing method of paste.
PCT/JP2014/077830 2013-10-22 2014-10-20 Silver paste and semiconductor device using same, and production method for silver paste WO2015060245A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-219283 2013-10-22
JP2013219283A JP6303392B2 (en) 2013-10-22 2013-10-22 Silver paste, semiconductor device using the same, and method for producing silver paste

Publications (1)

Publication Number Publication Date
WO2015060245A1 true WO2015060245A1 (en) 2015-04-30

Family

ID=52992840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077830 WO2015060245A1 (en) 2013-10-22 2014-10-20 Silver paste and semiconductor device using same, and production method for silver paste

Country Status (3)

Country Link
JP (1) JP6303392B2 (en)
TW (1) TWI636514B (en)
WO (1) WO2015060245A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055848A1 (en) * 2016-09-21 2018-03-29 矢崎総業株式会社 Electrically conductive paste, and wiring board using same
CN110213883A (en) * 2019-06-28 2019-09-06 智玻蓝新科技(武汉)有限公司 A kind of glass base circuit board conducting wire preparation process
CN111360270A (en) * 2015-09-07 2020-07-03 日立化成株式会社 Bonded body and semiconductor device
CN114206526A (en) * 2019-09-02 2022-03-18 株式会社大阪曹達 Silver particles
US11515280B2 (en) * 2018-04-12 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Mounting structure and nanoparticle mounting material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043545A1 (en) * 2015-09-07 2017-03-16 日立化成株式会社 Copper paste for joining, method for producing joined body, and method for producing semiconductor device
EP3702072A1 (en) * 2015-09-07 2020-09-02 Hitachi Chemical Company, Ltd. Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
JP6509770B2 (en) * 2016-03-31 2019-05-08 Jx金属株式会社 Conductive metal powder paste
KR20190105610A (en) * 2017-01-11 2019-09-17 히타치가세이가부시끼가이샤 Copper pastes, assemblies and semiconductor devices for pressureless bonding
JP6624620B1 (en) * 2018-12-03 2019-12-25 ニホンハンダ株式会社 Paste-like silver particle composition, method for producing metal member joined body, and metal member joined body
CN112935240A (en) * 2021-01-20 2021-06-11 深圳市先进连接科技有限公司 Micro-nano composite silver paste, preparation method thereof and packaging method of airtight device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035554A1 (en) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
JP2008091250A (en) * 2006-10-03 2008-04-17 Mitsuboshi Belting Ltd Low-temperature calcination type silver paste
JP2012052198A (en) * 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6001861B2 (en) * 2012-01-11 2016-10-05 株式会社ダイセル Silver nanoparticle production method, silver nanoparticle, and silver coating composition
JP6081231B2 (en) * 2012-03-05 2017-02-15 ナミックス株式会社 Thermally conductive paste and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035554A1 (en) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
JP2008091250A (en) * 2006-10-03 2008-04-17 Mitsuboshi Belting Ltd Low-temperature calcination type silver paste
JP2012052198A (en) * 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111360270A (en) * 2015-09-07 2020-07-03 日立化成株式会社 Bonded body and semiconductor device
WO2018055848A1 (en) * 2016-09-21 2018-03-29 矢崎総業株式会社 Electrically conductive paste, and wiring board using same
JP2018049735A (en) * 2016-09-21 2018-03-29 矢崎総業株式会社 Conductive paste and wiring board using the same
US11515280B2 (en) * 2018-04-12 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Mounting structure and nanoparticle mounting material
CN110213883A (en) * 2019-06-28 2019-09-06 智玻蓝新科技(武汉)有限公司 A kind of glass base circuit board conducting wire preparation process
CN114206526A (en) * 2019-09-02 2022-03-18 株式会社大阪曹達 Silver particles

Also Published As

Publication number Publication date
TWI636514B (en) 2018-09-21
TW201528388A (en) 2015-07-16
JP6303392B2 (en) 2018-04-04
JP2015082385A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6303392B2 (en) Silver paste, semiconductor device using the same, and method for producing silver paste
JP6380792B2 (en) Silver paste, semiconductor device using the same, and method for producing silver paste
JP4928639B2 (en) Bonding material and bonding method using the same
KR102158290B1 (en) Binding material, binding body, and binding method
TWI669722B (en) Silver paste and semiconductor device using the same
JP6884285B2 (en) Bonding composition, bonding structure of conductor and method for manufacturing the same
WO2002035554A1 (en) Electroconductive metal paste and method for production thereof
CN109070206A (en) The engagement manufacturing method of copper thickener, the manufacturing method of conjugant and semiconductor device
JP5567636B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device
JP2010018832A (en) Material for joining metallic members, manufacturing method of the material for joining metallic members, joined product of metallic members and manufacturing method of bump for electric circuit connection
JP2014225350A (en) Silver paste composition
JP7210842B2 (en) Method for manufacturing joined body, copper paste for forming sintered copper pillars, and joining member with pillars
WO2019021637A1 (en) Method for producing metal bonded laminate
JP7064482B2 (en) Manufacturing method of semiconductor device
JP6609979B2 (en) Copper particle manufacturing method, copper particle, copper paste, and semiconductor device
JP2020013768A (en) Pasty silver particle composition, manufacturing method of metal-made member conjugate, and manufacturing method of silver particle sintered article and composite of resin cured article
JP6603989B2 (en) COMPOSITE PARTICLE AND ITS MANUFACTURING METHOD, ELECTRIC CONDUCTIVE PASTE, SINTERED BODY AND SEMICONDUCTOR DEVICE
JP6669420B2 (en) Bonding composition
JP2015224263A (en) Adhesive composition, semiconductor device using the same and production method of semiconductor device
KR102397224B1 (en) Conductive adhesive composition, conductive adhesive cured product and electronic device
JP2017128782A (en) Nickel fine particle-containing composition and joining material
WO2021125336A1 (en) Silver paste and method for producing same, and method for producing joined article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855706

Country of ref document: EP

Kind code of ref document: A1