JP6230945B2 - Two-stage heating type vertical graphitization furnace and method for producing graphite - Google Patents
Two-stage heating type vertical graphitization furnace and method for producing graphite Download PDFInfo
- Publication number
- JP6230945B2 JP6230945B2 JP2014069311A JP2014069311A JP6230945B2 JP 6230945 B2 JP6230945 B2 JP 6230945B2 JP 2014069311 A JP2014069311 A JP 2014069311A JP 2014069311 A JP2014069311 A JP 2014069311A JP 6230945 B2 JP6230945 B2 JP 6230945B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- carbon material
- graphite
- region
- heat source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 92
- 229910002804 graphite Inorganic materials 0.000 title claims description 75
- 239000010439 graphite Substances 0.000 title claims description 75
- 238000010438 heat treatment Methods 0.000 title claims description 72
- 238000005087 graphitization Methods 0.000 title claims description 55
- 238000004519 manufacturing process Methods 0.000 title description 10
- 239000003575 carbonaceous material Substances 0.000 claims description 113
- 238000001816 cooling Methods 0.000 claims description 37
- 239000011810 insulating material Substances 0.000 claims description 21
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 238000005485 electric heating Methods 0.000 claims description 11
- 230000005611 electricity Effects 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical group [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 239000002994 raw material Substances 0.000 description 24
- 239000003921 oil Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 19
- 229910052799 carbon Inorganic materials 0.000 description 15
- 239000000843 powder Substances 0.000 description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 14
- 239000000571 coke Substances 0.000 description 14
- 239000011593 sulfur Substances 0.000 description 14
- 229910052717 sulfur Inorganic materials 0.000 description 14
- 239000002006 petroleum coke Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 239000007770 graphite material Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000295 fuel oil Substances 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000011329 calcined coke Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000011335 coal coke Substances 0.000 description 3
- 238000004939 coking Methods 0.000 description 3
- 238000004231 fluid catalytic cracking Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- 239000000341 volatile oil Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 101000578774 Homo sapiens MAP kinase-activated protein kinase 5 Proteins 0.000 description 1
- 102100028396 MAP kinase-activated protein kinase 5 Human genes 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Description
本発明は、連続式の縦型黒鉛化炉に関する。 The present invention relates to a continuous vertical graphitization furnace.
黒鉛は、潤滑性、導電性、耐熱性、耐酸耐アルカリ性に優れており、電極用ペースト、鋳物塗料剤、乾電池、鉛筆、耐火物、製綱用保温材、ゴム樹脂用、固体潤滑剤、ルツボ、パッキング、耐熱、耐熱品、導電塗料、鉛筆、電気ブラシ、グリース、粉末治金、ブレーキパッド、ライニング、クラッチ、メカニカルシール、ゴム樹脂の添加剤等、様々な用途に使用されている。近年では、黒鉛の結晶の積層構造部分にLiイオンが入り込む現象を利用してリチウムイオン電池の電極材として使用されることもある。このように、黒鉛は様々な分野で使用されており、効率的な製造方法の確立は極めて重要といえる。 Graphite is excellent in lubricity, conductivity, heat resistance, acid resistance and alkali resistance, and is used for electrode pastes, casting paints, dry batteries, pencils, refractories, heat insulating materials for steel ropes, rubber resins, solid lubricants, crucibles. , Packing, heat-resistant, heat-resistant products, conductive paint, pencil, electric brush, grease, powder metallurgy, brake pads, linings, clutches, mechanical seals, rubber resin additives, etc. In recent years, it is sometimes used as an electrode material of a lithium ion battery by utilizing a phenomenon that Li ions enter a laminated structure portion of graphite crystals. Thus, graphite is used in various fields, and it can be said that establishment of an efficient manufacturing method is extremely important.
人造黒鉛を製造する際には、一般に、コークス等の炭素物質からなる原料材料を粉末化させて、おおむね2200℃以上で長時間加熱しなくてはならない。こうした2200℃以上の加熱に耐えられる材料として、炭素材(黒鉛材、等方性黒鉛)を用いることが一般的であり、炉本体およびその内壁、またはその他の炉を構成する各種部材(シャフト、ヒーター、断熱材)等に使用されている。 When producing artificial graphite, generally, a raw material made of a carbon material such as coke must be pulverized and heated at about 2200 ° C. or more for a long time. A carbon material (graphite material, isotropic graphite) is generally used as a material that can withstand such heating at 2200 ° C. or higher, and various members (shaft, Used in heaters and heat insulating materials).
工業的には、アチソン炉(例えば、特許文献1)を使用し、バッチ式で黒鉛化することが多いが、効率的に製造するために連続式で行うことも取り組まれている。連続式で黒鉛化を行うには、炉を横方向に設置し、黒鉛材製の炉の中で黒鉛化の原料を載せたトレーをコンベアーで横方向に移動して加熱する方法などがある。この方法は高温での作業を要するため、設備の部品材料の選択が必要であり、また、排ガスの対策や入り口と出口の熱の管理が困難な場合がある。このため、構造が複雑となり、設置や運用に手間がかかる。 Industrially, an Atchison furnace (for example, Patent Document 1) is used to perform graphitization in batch mode, but it is also attempted to perform it continuously in order to produce it efficiently. In order to perform graphitization in a continuous manner, there is a method in which a furnace is installed in a horizontal direction, and a tray on which a raw material for graphitization is placed is moved in a horizontal direction by a conveyor in a furnace made of graphite. Since this method requires work at a high temperature, it is necessary to select part materials for the equipment, and it may be difficult to take measures against exhaust gas and manage the heat at the entrance and exit. For this reason, the structure becomes complicated, and it takes time to install and operate.
近年、炉を縦におき、上部から原料を投入して内部で加熱し、下部から黒鉛を取り出す連続式の縦型黒鉛化炉が試みられている(特許文献2,3)。連続式の縦型黒鉛化炉は、炉の内部において、原料を下部から上部にかけて積み上げて加熱し、下方口から黒鉛を取り出しながら取り出した分に相当する原料を上部口から投入することによって、常に一定量の原料が炉の中に存在し、かつ、黒鉛化するものである。この方法は、加熱される部分が炉の内部のみであり、加熱に耐えるトレーやコンベアーが必要でないので、構造が比較的単純であり、かつ、移動のための設備や動力も必要がないため余分な配線も必要なく、操作も簡単である。 In recent years, a continuous vertical graphitization furnace in which a furnace is placed vertically, a raw material is charged from the upper part and heated inside, and graphite is taken out from the lower part has been tried (Patent Documents 2 and 3). In a continuous vertical graphitization furnace, the raw materials are stacked and heated from the bottom to the top inside the furnace, and the raw material corresponding to the amount taken out while taking out the graphite from the lower port is always charged from the upper port. A certain amount of raw material is present in the furnace and graphitizes. In this method, only the inside of the furnace is heated, and there is no need for trays or conveyors that can withstand heating, so the structure is relatively simple and there is no need for equipment or power for movement. Simple wiring is not required and operation is simple.
しかしながら、本発明者は、特許文献2に記載される連続式黒鉛化炉では、原料の炭素材料が徐々に加熱されていくため、炭素材料の中に存在する不純物が不適切な化合物となって脱離、蒸発していく場合があることを見出した。特に、炭素材料が石油に由来する石油コークスや石油コークスのカルサイン品(カルサインコークス)である場合、不純物として含む硫黄分が1500〜2200℃において、硫化水素または硫黄として脱離する。つまり、黒鉛化炉の内壁が炭素材(黒鉛材)である場合に、脱離した硫化水素等の硫黄分が、黒鉛化炉の内壁を構成する炭素と反応して、内壁を損耗させることを見出した。さらに、内壁を透過した硫化水素等の硫黄分が、炉を構成する各種部材(断熱材、ヒーター)の炭素とも反応して劣化損耗させることを見出した。 However, in the continuous graphitization furnace described in Patent Document 2, the present inventor gradually heats the carbon material as a raw material, so that impurities present in the carbon material become an inappropriate compound. It was found that desorption and evaporation may occur. In particular, when the carbon material is petroleum coke derived from petroleum or a calcine product (calcine coke) of petroleum coke, sulfur contained as impurities is desorbed as hydrogen sulfide or sulfur at 1500 to 2200 ° C. In other words, when the inner wall of the graphitization furnace is a carbon material (graphite material), the desorbed sulfur content such as hydrogen sulfide reacts with the carbon constituting the inner wall of the graphitization furnace and wears the inner wall. I found it. Furthermore, it discovered that sulfur content, such as hydrogen sulfide which permeate | transmitted the inner wall, also reacts with the carbon of the various members (heat insulating material, heater) which comprise a furnace, and carries out deterioration wear.
他方、特許文献3に記載される連続式黒鉛化炉は、通電加熱によって急速に加熱することが可能である。通電加熱では原料の炭素材料自体が発熱するため、先に記述した硫化水素等の硫黄分は原料の炭素材料と反応するので、炉の内壁、ヒーターおよび断熱材等の炉体を損耗劣化させることがない。しかしながら、本発明者は、通電加熱は、原料が5〜30μmの微粉末である場合、均一に加熱するには不十分であるため、得られる製品が不均一となることを見出した。また、特許文献1には、通電加熱による焼成体の黒鉛化する方法が記載されている。この方法は、炭化物をピッチ等のバインダーで混錬し、円筒状の固体にして黒鉛化材料を製造するものである。つまり、焼成体の黒鉛化を目的とした手法であって、粉末の黒鉛化には適してはいない。 On the other hand, the continuous graphitization furnace described in Patent Document 3 can be rapidly heated by energization heating. Since the raw material carbon material itself generates heat in electric heating, the sulfur content such as hydrogen sulfide described above reacts with the raw material carbon material, so that the furnace body such as the inner wall of the furnace, the heater, and the heat insulating material is worn out and deteriorated. There is no. However, the present inventor has found that when the raw material is a fine powder of 5 to 30 μm, the product obtained is not uniform because it is insufficient for uniform heating. Patent Document 1 describes a method of graphitizing a fired body by electric heating. In this method, a graphitized material is produced by kneading carbide with a binder such as pitch to form a cylindrical solid. In other words, it is a method aimed at graphitization of the fired body and is not suitable for graphitization of powder.
以上のことから、本発明の目的は、炉およびその内壁、各種部材(シャフト、ヒーター、断熱材)等を炭素材(黒鉛材)で構成した場合でも、これら部材の硫黄分を含むガスによる損耗および劣化が極めて少なく、また、原料である炭素材料に均一に熱を加えることができ、均質な黒鉛が得られる縦型黒鉛化炉を提供する。 From the above, the object of the present invention is to wear the furnace and its inner wall, various members (shaft, heater, heat insulating material), etc., with carbon materials (graphite materials), etc., due to gas containing sulfur content of these members. Further, the present invention provides a vertical graphitization furnace that is extremely little deteriorated and that can uniformly apply heat to a carbon material that is a raw material, thereby obtaining homogeneous graphite.
本発明は、一つの態様によれば、上部から投入された炭素材料を加熱して黒鉛化し、得られた黒鉛を下部から取り出す連続式の縦型黒鉛化炉であって、
炉本体と、前記炉本体の上端に接続された通電加熱筒を備え、
前記通電加熱筒が、前記炭素材料を上部から投入して充填させる筒状部材と、
前記炭素材料を介して対向して前記筒状部材の内壁に設置され、通電することにより前記炭素材料を加熱する通電領域を形成する、少なくとも2つの電極とを具備し、
前記炉本体が、前記炉本体の外周部に備えられ、前記炉本体の外側から前記炭素材料を加熱する外部熱源領域を形成する熱源と、
前記外部熱源領域の下で前記炉本体の外周部に備えられ、生成された黒鉛を冷却する冷却領域を形成する冷却用ジャケットと、
前記冷却領域の下に設けられた前記黒鉛を取り出す取り出し口と
を具備する縦型黒鉛化炉を提供することができる。
また、本発明の別の態様によると、炉本体と、前記炉本体の上端に接続された通電加熱筒を備える、縦型黒鉛化炉の前記通電加熱筒の内部に、上部から炭素材料を投入する工程と、前記投入された炭素材料を前記通電加熱筒の筒状部材の内壁に設置された少なくとも2つの電極を通電して1700〜2300℃に加熱する通電領域を通過させる工程と、さらに、前記炉本体の外周部に設けられた熱源で、2300〜3000℃に加熱する外部熱源領域を通過させて黒鉛に変換する工程と、前記黒鉛を冷却する工程と、前記冷却された黒鉛を前記炉の下部から取り出す工程とを少なくとも含む黒鉛の製造方法を提供することができる。
The present invention, according to one aspect, is a continuous vertical graphitization furnace in which a carbon material charged from the upper part is heated and graphitized, and the obtained graphite is taken out from the lower part.
A furnace body, and an electric heating cylinder connected to the upper end of the furnace body,
The energization heating cylinder is a cylindrical member that is charged by charging the carbon material from above,
At least two electrodes, which are placed on the inner wall of the cylindrical member opposite to each other via the carbon material and form an energization region for heating the carbon material by energization,
The furnace body is provided on the outer periphery of the furnace body, and a heat source that forms an external heat source region that heats the carbon material from the outside of the furnace body;
A cooling jacket provided on the outer periphery of the furnace main body under the external heat source region and forming a cooling region for cooling the generated graphite;
It is possible to provide a vertical graphitization furnace including a take-out port for taking out the graphite provided under the cooling region.
According to another aspect of the present invention, a carbon material is introduced from above into the inside of the current heating cylinder of the vertical graphitization furnace, which includes a furnace main body and a current heating cylinder connected to the upper end of the furnace main body. Passing the charged carbon material through an energized region in which at least two electrodes installed on the inner wall of the cylindrical member of the energization heating cylinder are energized and heated to 1700-2300 ° C., and A step of converting to graphite by passing through an external heat source region heated to 2300 to 3000 ° C. with a heat source provided on the outer periphery of the furnace body, a step of cooling the graphite, and the cooled graphite into the furnace And a method for producing graphite including at least a step of removing from the lower part of the steel.
本発明の縦型黒鉛化炉によれば、炉本体と、炉本体の上端に接続された通電加熱筒を備え、通電加熱筒内に少なくとも2つの電極に通電して炭素材料を加熱する通電領域を形成し、炉本体内に外側から炭素材料を加熱する外部熱源領域を形成することで、炭素材料に粉末を用いた場合でも、均一に熱を加えることができるため、均質な黒鉛を得ることが可能となる。具体的には、炉本体の上端に接続させた通電加熱筒内で炭素材料を直接通電することによって、炭素材料の温度を急速に上昇させ、炭素材料中にわずかに残存する不純物を脱離させる。このことによって、炉内に不純物由来の硫黄分を含むガスが、炉の内壁および炉を構成する各種部材、例えばシャフト、ヒーター、断熱材等の炭素材(黒鉛材)とではなく、原料の炭素材料と反応する。このため、炉本体やその内壁、各種部材(シャフト、ヒーター、断熱材)等を黒鉛材で構成した場合でも、これら部材が硫黄分を含むガスによって損耗および劣化することが極めて少なく、炉を傷めにくい。さらに、通電領域の後に外部熱源領域を設けることにより、微粉末である炭素材料中に反応の不十分な箇所が生じず、炭素材料の加熱ムラが極めて少なくなることから、所望の黒鉛を得ることができる。 According to the vertical graphitization furnace of the present invention, an energization region that includes a furnace body and an energization heating cylinder connected to the upper end of the furnace body, and energizes at least two electrodes in the energization heating cylinder to heat the carbon material. By forming an external heat source region that heats the carbon material from the outside in the furnace body, even when powder is used for the carbon material, heat can be applied uniformly, so that homogeneous graphite can be obtained. Is possible. Specifically, by directly energizing the carbon material in an energization heating cylinder connected to the upper end of the furnace body, the temperature of the carbon material is rapidly increased, and impurities remaining slightly in the carbon material are desorbed. . As a result, the gas containing sulfur derived from impurities in the furnace is not a carbon material (graphite material) such as a shaft, a heater, or a heat insulating material, but a raw material carbon. Reacts with materials. For this reason, even when the furnace body, its inner wall, and various members (shafts, heaters, heat insulating materials), etc. are made of graphite, these members are very unlikely to be worn out and deteriorated by the gas containing sulfur, and damage the furnace. Hateful. Furthermore, by providing an external heat source region after the energized region, there is no insufficient reaction in the fine carbon material, and the heating unevenness of the carbon material is extremely reduced. Can do.
また、炉本体を黒鉛材で構成した場合、炉本体の上端に接続させる通電加熱筒の筒状部材を絶縁性物質で構成することによって、炉本体に直接通電させたり、漏電させたりすることがなく、炉の損傷を極めて少なくすることが可能である。さらに、絶縁性物質は黒鉛材よりも放熱性に優れることから、電極材料に熱を溜まりにくくさせ、電極の劣化を妨げるので、電極の寿命をより長くさせる。 In addition, when the furnace body is made of a graphite material, the furnace body can be directly energized or grounded by constituting the cylindrical member of the current heating cylinder connected to the upper end of the furnace body with an insulating material. In addition, the damage to the furnace can be extremely reduced. Furthermore, since the insulating substance is more excellent in heat dissipation than the graphite material, it makes it difficult for heat to accumulate in the electrode material and prevents deterioration of the electrode, thereby extending the life of the electrode.
以下、本発明を実施するための一例である最良の形態を詳細に説明するが、本発明の範囲はこの形態に限定するものではない。 Hereinafter, the best mode which is an example for carrying out the present invention will be described in detail, but the scope of the present invention is not limited to this mode.
本発明は、一実施の形態によれば、連続式の縦型黒鉛化炉に関する。本発明の縦型黒鉛化炉は、上部から投入された炭素材料を加熱して黒鉛化し、得られた黒鉛を下部から取り出す連続式の縦型黒鉛化炉であって、炉本体と、炉本体の上端に接続された通電加熱筒を備え、通電加熱筒が、炭素材料を上部から投入して充填させる筒状部材と、炭素材料を介して対向して筒状部材の内壁に設置され、通電することにより炭素材料を加熱する通電領域を形成する、少なくとも2つの電極とを具備し、炉本体が、炉本体の外周部に備えられ、炉本体の外側から炭素材料を加熱する外部熱源領域を形成する熱源と、外部熱源領域の下で炉本体の外周部に備えられ、生成された黒鉛を冷却する冷却領域を形成する冷却用ジャケットと、冷却領域の下に設けられた黒鉛を取り出す取り出し口とを具備している。 The present invention, according to one embodiment, relates to a continuous vertical graphitization furnace. The vertical graphitization furnace of the present invention is a continuous vertical graphitization furnace in which a carbon material charged from the upper part is heated to be graphitized, and the obtained graphite is taken out from the lower part. An electric heating cylinder connected to the upper end of the cylinder, and the electric heating cylinder is installed on the inner wall of the cylindrical member opposite to the carbon member with the carbon material being charged from the top and charged. And at least two electrodes that form an energized region for heating the carbon material, and the furnace body is provided on the outer peripheral portion of the furnace body, and an external heat source region for heating the carbon material from the outside of the furnace body. A heat source to be formed, a cooling jacket provided on the outer periphery of the furnace body under the external heat source region and forming a cooling region for cooling the generated graphite, and an outlet for taking out the graphite provided under the cooling region It is equipped with.
図1に、本発明の一実施形態の縦型黒鉛化炉を用いる黒鉛製造システム1aの一例を示す。炭素材料Mは、計量フィーダー6から通電加熱筒を構成する筒状部材4aの上部に設けられたホッパー投入口7を経て、筒状部材4a内に一定量ずつ投入される。筒状部材4aは、炉本体2aの上端にキャップ状に設置されている。通電加熱筒において、筒状部材4aの内壁に少なくとも2つの電極3a−1、3a−2を、炭素材料Mを介して対向して備え、これらの電極3a−1、3a−2に通電することにより、炭素材料Mを加熱する通電領域を形成する。また、通電加熱筒の下の炉本体2aの外周部に熱源として加熱装置8を備え、炉本体2aの外側から炭素材料Mを加熱する外部熱源領域を形成する。炭素材料Mは、通電領域と外部熱源領域を通過させることにより、黒鉛Gに変換される。さらに、外部熱源領域の下の炉本体2aの外周部に冷却用ジャケット11を備え、生成された黒鉛Gを冷却する冷却領域を形成する。冷却された黒鉛Gは、冷却領域の下に設けられた取り出し口12を経て、回収部13で回収される。 FIG. 1 shows an example of a graphite production system 1a using a vertical graphitization furnace according to an embodiment of the present invention. The carbon material M is charged into the tubular member 4a by a certain amount from the measuring feeder 6 through the hopper loading port 7 provided on the upper part of the tubular member 4a constituting the energization heating cylinder. The cylindrical member 4a is installed in a cap shape at the upper end of the furnace body 2a. In the energization heating cylinder, at least two electrodes 3a-1, 3a-2 are provided on the inner wall of the cylindrical member 4a so as to face each other through the carbon material M, and the electrodes 3a-1, 3a-2 are energized. Thus, an energized region for heating the carbon material M is formed. Further, a heating device 8 is provided as a heat source on the outer peripheral portion of the furnace body 2a below the energization heating cylinder, and an external heat source region for heating the carbon material M from the outside of the furnace body 2a is formed. The carbon material M is converted into graphite G by passing through the energization region and the external heat source region. Furthermore, a cooling jacket 11 is provided on the outer peripheral portion of the furnace body 2a below the external heat source region, and a cooling region for cooling the generated graphite G is formed. The cooled graphite G is recovered by the recovery unit 13 through the takeout port 12 provided below the cooling region.
炉本体を構成する材料としては、炭素材(好ましくは黒鉛、さらに好ましくは等方性黒鉛)、アルミナ等のセラミックス材、タングステンおよびタンタル等の高融点金属または合金材等が挙げられる。特に、炉本体は、耐熱性が求められることから炭素材(好ましくは黒鉛、さらに好ましくは等方性黒鉛)が好ましく、少なくとも炉本体の内壁(シャフト炉のシャフトを含む)は、好ましくは黒鉛、さらに好ましくは等方性黒鉛で構成する。
炉本体の上端には通電加熱筒が接続されており、通電加熱筒の上部から炭素材料を投入する。通電加熱筒の上部にテーバー形状のホッパーを設置してもよい。さらに、ホッパーの上に計量フィーダーを設置し、炭素材料を一定量ずつ投入してもよい。投入された炭素材料は、通電加熱筒と炉本体内で、十分に充填された状態で加熱され黒鉛に変換される。また、通電加熱筒の上部および炉本体の下部で、シールガスとして不活性ガス(例えば、窒素、アルゴンまたはヘリウムなど)を流す。このガスは、通電加熱筒の上部および炉本体の下部で空気等の混入を防ぐためである。不活性ガスの流量は、例えば、通電加熱筒の上部では、5〜40L/分、好ましくは10〜30L/分である。また、炉本体の下部では、0.5〜10L/分、好ましくは1〜5L/分である。
Examples of the material constituting the furnace main body include a carbon material (preferably graphite, more preferably isotropic graphite), a ceramic material such as alumina, a refractory metal such as tungsten and tantalum, or an alloy material. In particular, since the furnace body is required to have heat resistance, a carbon material (preferably graphite, more preferably isotropic graphite) is preferable, and at least the inner wall of the furnace body (including the shaft of the shaft furnace) is preferably graphite, More preferably, it is made of isotropic graphite.
An electric heating cylinder is connected to the upper end of the furnace body, and a carbon material is introduced from the upper part of the electric heating cylinder. A Taber-shaped hopper may be installed on the upper part of the electric heating cylinder. Furthermore, a weighing feeder may be installed on the hopper, and a certain amount of carbon material may be charged. The charged carbon material is heated and converted into graphite in a sufficiently charged state in the energization heating cylinder and the furnace body. In addition, an inert gas (for example, nitrogen, argon, helium, or the like) is allowed to flow as a sealing gas at the upper part of the energization heating cylinder and the lower part of the furnace body. This gas is for preventing air and the like from being mixed in the upper part of the energization heating cylinder and the lower part of the furnace body. The flow rate of the inert gas is, for example, 5 to 40 L / min, preferably 10 to 30 L / min at the upper part of the energization heating cylinder. Moreover, in the lower part of a furnace main body, it is 0.5-10L / min, Preferably it is 1-5L / min.
通電加熱筒は、炭素材料を上部から投入して充填させる筒状部材と、炭素材料を介して対向して筒状部材の内壁に設置され、通電することにより炭素材料を加熱する通電領域を形成する、少なくとも2つの電極を具備する。少なくとも2つの電極に通電することによって通電領域を形成し、炭素材料を加熱する。通電によって、電極間の炭素材料において、炭素材料の持つ固有抵抗に応じたジュール熱が発生し、これにより加熱が行われる。電極への通電は、直流もしくは交流を用いて行ってよい。炭素材料が粉末の場合、一般に熱伝導率が小さく、炭素材料自体が断熱材の機能を果たすため、炭素材料から熱が逃げにくく、その結果、高温に保持することが可能である。 The energization heating cylinder is installed on the inner wall of the cylindrical member opposite to the carbon material through which the carbon material is charged from above and filled with the carbon material, and forms an energized region for heating the carbon material by energization. At least two electrodes. An energized region is formed by energizing at least two electrodes, and the carbon material is heated. By energization, Joule heat corresponding to the specific resistance of the carbon material is generated in the carbon material between the electrodes, thereby heating the carbon material. The electrodes may be energized using direct current or alternating current. When the carbon material is a powder, the heat conductivity is generally small and the carbon material itself functions as a heat insulating material, so that heat is difficult to escape from the carbon material, and as a result, it can be kept at a high temperature.
通電領域において、炭素材料が1700〜2300℃となるように加熱することが好ましい。1700℃より低いと、原料の炭素材料から硫黄等の不純物が脱離せず、2300℃より高いと、原料の炭素材料が粉末である場合、加熱するための電力量が多くなり、コストが高くなる。また、2300℃より高いと、温度制御が困難となり、所望の均一な黒鉛を得られない。通電による加熱は、電極間の中央部が最も高温となる。このため、筒状部材内において炭素材料を効率的に加熱し得るように電極を配置することが好ましい。通電することにより電極間に発現する炭素材料の高温部は、通電に投入する電力を調節することによって、温度および範囲を設定することが可能である。高温部は、2300℃の最高温度とすることが好ましい。具体的には、電圧を30〜3000V、電流を30〜3000Aで調節することで達成される。この範囲とすることにより、短時間、例えば5分以内、好ましくは3分以内に、高温部を所望の温度まで上昇させることが可能となる。 In the energized region, it is preferable to heat the carbon material so that the temperature becomes 1700 to 2300 ° C. When the temperature is lower than 1700 ° C., impurities such as sulfur are not desorbed from the raw material carbon material. When the temperature is higher than 2300 ° C., when the raw material carbon material is a powder, the amount of electric power for heating increases and the cost increases. . On the other hand, when the temperature is higher than 2300 ° C., temperature control becomes difficult, and desired uniform graphite cannot be obtained. In the heating by energization, the center part between the electrodes becomes the highest temperature. For this reason, it is preferable to arrange | position an electrode so that a carbon material can be heated efficiently in a cylindrical member. The temperature and range of the high temperature portion of the carbon material that appears between the electrodes when energized can be set by adjusting the power supplied to the energization. The high temperature part is preferably a maximum temperature of 2300 ° C. Specifically, it is achieved by adjusting the voltage at 30 to 3000 V and the current at 30 to 3000 A. By setting it as this range, it becomes possible to raise a high temperature part to a desired temperature within a short time, for example, within 5 minutes, preferably within 3 minutes.
筒状部材は、2000〜2500℃程度の耐熱性を有する絶縁性物質で構成させることが好ましい。耐熱性の絶縁性物質としては、セラミック等が挙げられ、特に炭化ケイ素が好ましい。セラミックは、一般に、耐熱温度として2000℃位が限界であるが、この手法による加熱は電極間の中央部が最も高温に加熱される。このため、電極近傍においては放熱がある程度行われればよく、セラミックでも十分に耐熱性を有する。 The cylindrical member is preferably made of an insulating material having heat resistance of about 2000 to 2500 ° C. Examples of the heat-resistant insulating material include ceramics, and silicon carbide is particularly preferable. Ceramics generally have a limit of about 2000 ° C. as a heat-resistant temperature, but heating by this method heats the central part between electrodes to the highest temperature. For this reason, heat should be dissipated to some extent in the vicinity of the electrodes, and even ceramics have sufficient heat resistance.
筒状部材は、通電領域を形成するために、その内壁に電極を備えられる。このため、筒状部材は、電極を設置するための貫通孔を有している。貫通孔の数および大きさは、電極の数および大きさに合わせて設計されるが、好ましくは少なくとも2つの貫通孔を有する。場合によって、電極をより安定して保持するために、貫通孔の輪郭部または外周部に保持部材を備えてもよい。保持部材を用いる場合、貫通孔の大きさは、保持部材を設置するための空間も考慮して設計する必要がある。貫通孔の位置については、特に限定されないが、少なくとも2つの貫通孔を有する場合、一方の貫通孔を、筒状部材の上端から一定の距離となる位置に作製し、もう一方の貫通孔を、筒状部材の内部を上下に延び筒状部材の横断面の中心を通る中心軸を隔てて、先に作製した貫通孔と対向する位置に作製することができる。 The cylindrical member is provided with an electrode on its inner wall in order to form an energization region. For this reason, the cylindrical member has a through-hole for installing an electrode. The number and size of the through holes are designed according to the number and size of the electrodes, but preferably have at least two through holes. In some cases, in order to hold the electrode more stably, a holding member may be provided on the contour portion or the outer peripheral portion of the through hole. When the holding member is used, the size of the through hole needs to be designed in consideration of a space for installing the holding member. The position of the through hole is not particularly limited, but when it has at least two through holes, one through hole is made at a certain distance from the upper end of the cylindrical member, and the other through hole is The cylindrical member can be manufactured at a position facing the previously formed through hole with a central axis extending vertically and passing through the center of the cross section of the cylindrical member.
保持部材は、耐熱性の絶縁物質で構成されることが好ましい。耐熱性の絶縁性物質としては、セラミック等が挙げられ、特に炭化ケイ素が好ましい。保持部材は、筒状部材と電極の間、若しくは貫通孔の輪郭部または外周部に配置することができ、筒状部材の貫通孔と接する電極の全ての面に対して配置してもよいが、少なくとも筒状部材の貫通孔部分と電極の底面との間に配置することが好ましい。保持部材の形状は、特に限定されないが、筒状部材の貫通孔に電極を差し込んだ際に、隙間を作らないように設計することが好ましい。保持部材は、電極を安定して保持するのに適した厚みであることが望ましい。また、保持部材の長さは、特に限定されないが、筒状部材の厚みから、電極の貫通孔へ差し込む方向の長さまでの範囲であることが好ましい。保持部材を用いることにより、電極をより安定して設置することができる。このように、筒状部材および保持部材を絶縁性物質(セラミック)とすることにより、筒状部材の貫通孔に設置する電極からの電流の漏れが少なく、また、原料である炭素材料の加熱時に発生する硫黄分を含むガスによる浸食が生じにくい。 The holding member is preferably made of a heat-resistant insulating material. Examples of the heat-resistant insulating material include ceramics, and silicon carbide is particularly preferable. The holding member can be disposed between the cylindrical member and the electrode, or in the contour portion or the outer peripheral portion of the through hole, and may be disposed on all surfaces of the electrode in contact with the through hole of the cylindrical member. It is preferable to arrange at least between the through-hole portion of the cylindrical member and the bottom surface of the electrode. The shape of the holding member is not particularly limited, but it is preferable to design the holding member so as not to create a gap when the electrode is inserted into the through hole of the cylindrical member. The holding member desirably has a thickness suitable for stably holding the electrode. The length of the holding member is not particularly limited, but is preferably in the range from the thickness of the cylindrical member to the length in the direction of insertion into the through hole of the electrode. By using the holding member, the electrode can be installed more stably. Thus, by making the cylindrical member and the holding member into an insulating substance (ceramic), there is little leakage of current from the electrode installed in the through hole of the cylindrical member, and when the carbon material as a raw material is heated Erosion due to generated sulfur-containing gas is difficult to occur.
電極は、少なくとも1対を形成するために、少なくとも1つの正極と少なくとも1つの負極を用いる。電極の材料としては、炭素材(等方性黒鉛)等が挙げられる。電極の形状は、特に限定されるものではなく、円柱状または直方体としてもよく、2つとも同じ形状であっても異なる形状であってもよい。電極の大きさは、特に限定されるものではないが、所望の高温部の範囲を得るのに適した大きさを使用することが好ましく、2つとも同じ大きさでも異なる大きさでもよいが、正極若しくは負極として作用をもたらす電極の面積が同等であることが好ましい。電極は、筒状部材の貫通孔に、筒状部材の外側から内側に差し込むようにして設置する。筒状部材内において、炭素材料をより均一に加熱させると同時に、炭素材料を一定量ずつ通過させることが可能となるように、電極の内側(筒状部材の中心軸に向く面)を、筒状部材の内壁に沿わせて、例えば内壁面の位置に合わせて、または内壁面からわずかに中心軸側に入り込んだ位置で、固定することが好ましい。 The electrodes use at least one positive electrode and at least one negative electrode to form at least one pair. Examples of the material for the electrode include carbon materials (isotropic graphite). The shape of the electrode is not particularly limited, and may be a cylindrical shape or a rectangular parallelepiped, and both may be the same shape or different shapes. Although the size of the electrode is not particularly limited, it is preferable to use a size suitable for obtaining a desired high temperature range, and both of them may be the same size or different sizes. It is preferable that the area of the electrode which acts as a positive electrode or a negative electrode is equal. The electrode is installed in the through hole of the tubular member so as to be inserted from the outside to the inside of the tubular member. Inside the cylindrical member, the inner side of the electrode (the surface facing the central axis of the cylindrical member) is connected to the cylinder so that the carbon material can be heated more uniformly and at the same time the carbon material can be passed through by a certain amount. It is preferable to fix along the inner wall of the shaped member, for example, in accordance with the position of the inner wall surface or at a position slightly entering the central axis side from the inner wall surface.
電極の配置の一つの態様としては、少なくとも1対の電極を、炭素材料を介して対向させて筒状部材の内壁に配置する。例えば、1対の各電極を、筒状部材内に充填した炭素材料を介して、筒状部材の壁面に予め電極の大きさに合わせてくり貫かれた(貫通孔)部分にはめ込むように配置する。この場合、1対の電極を結ぶ線の中心が筒状部材の内部の中心軸に合致又は並ぶように、筒状部材を設計することが好ましい。また、筒状部材の貫通孔部分に、電極を保持するための保持部材を設置してもよい。場合によって、静電気を避けるために、必要に応じてアースをとるなどの静電気対策をしてもよい。 As one aspect of the arrangement of the electrodes, at least one pair of electrodes are arranged on the inner wall of the cylindrical member so as to face each other with a carbon material interposed therebetween. For example, each pair of electrodes is arranged so as to be fitted into a portion (through-hole) that has been punched into the wall surface of the cylindrical member in advance according to the size of the electrode via a carbon material filled in the cylindrical member. To do. In this case, it is preferable that the cylindrical member is designed so that the center of the line connecting the pair of electrodes matches or is aligned with the central axis inside the cylindrical member. Moreover, you may install the holding member for hold | maintaining an electrode in the through-hole part of a cylindrical member. In some cases, in order to avoid static electricity, measures against static electricity such as grounding may be taken as necessary.
図2(a)、(b)は、2つの直方形状の電極3a−1、3a−2を、筒状部材4a内に充填した炭素材料Mを介して、筒状部材4aの予め電極の大きさに合わせてくり貫かれた(貫通孔)部分4h−1、4h−2にはめ込む配置の例を示す。この場合、電極3a−1と3a−2を結ぶ線の中心は、筒状部材4aの内部の中心軸と合致する配置をしている。図3は、2対(4つ)の電極3a−1、3a−2、3a−3、3a−4を、筒状部材4b内に充填した炭素材料Mを介して、筒状部材4bの予め電極の大きさに合わせた貫通孔部分4h−1、4h−2、4h−3、4h−4にはめ込む配置の例を示す。1対の電極3a−1、3a−2間を結ぶ直線と、もう1対の電極3a−3、3a−4間を結ぶ直線が、筒状部材4bの内部の中心軸上で垂直に交わるように、筒状部材4bの貫通孔を設計する。なお、電極3a−1、3a−2、3a−3、3a−4は、電極3a−1、3a−3が正極の場合、電極3a−2、3a−4は負極である。また、図4(a)、(b)、(c)は、筒状部材4cの貫通孔部分4h−11、4h−12に、電極3a−1、3a−2を保持するための保持部材14を設置した配置の例を示す。 2A and 2B show the size of the electrode of the cylindrical member 4a in advance through the carbon material M in which the two rectangular electrodes 3a-1 and 3a-2 are filled in the cylindrical member 4a. The example of arrangement | positioning which fits into the part 4h-1, 4h-2 cut through according to the thickness (through-hole) is shown. In this case, the center of the line connecting the electrodes 3a-1 and 3a-2 is arranged to coincide with the central axis inside the cylindrical member 4a. FIG. 3 shows the cylindrical member 4b in advance through a carbon material M in which two pairs (four) of electrodes 3a-1, 3a-2, 3a-3, 3a-4 are filled in the cylindrical member 4b. The example of arrangement | positioning fitted to the through-hole parts 4h-1, 4h-2, 4h-3, 4h-4 according to the magnitude | size of the electrode is shown. A straight line connecting the pair of electrodes 3a-1, 3a-2 and a straight line connecting the other pair of electrodes 3a-3, 3a-4 are perpendicular to each other on the central axis inside the cylindrical member 4b. Next, the through hole of the cylindrical member 4b is designed. When the electrodes 3a-1, 3a-2, 3a-3, 3a-4 are positive electrodes, the electrodes 3a-2, 3a-4 are negative electrodes. 4A, 4B, and 4C show a holding member 14 for holding the electrodes 3a-1 and 3a-2 in the through-hole portions 4h-11 and 4h-12 of the cylindrical member 4c. An example of an arrangement in which is installed.
別の一態様としては、少なくとも1対の電極の一方が、筒状部材の内壁の一部又は全部に配置され、少なくとも1対の電極の他方が、筒状部材の内部の中心軸上に配置される。例えば、外部から電気を伝達させる配線を付した1つの電極を筒状部材の内部の中心軸上に配置し、筒状部材内に充填した炭素材料を介して、対極となる他の電極を、筒状部材の壁面の予め電極の大きさに合わせた貫通孔部分にはめ込むように配置する。 As another aspect, at least one of the pair of electrodes is disposed on a part or all of the inner wall of the cylindrical member, and the other of the at least one pair of electrodes is disposed on the central axis inside the cylindrical member. Is done. For example, one electrode with wiring for transmitting electricity from the outside is arranged on the central axis inside the cylindrical member, and another electrode serving as a counter electrode is inserted through a carbon material filled in the cylindrical member. It arrange | positions so that it may fit in the through-hole part match | combined with the magnitude | size of the electrode of the wall surface of a cylindrical member previously.
図5(a)、(b)は、外部から電気を伝達させる配線5を付した1つの電極3a−5を筒状部材4aの内部の中心軸上に配置し、筒状部材4a内に充填した炭素材料Mを介して、他の電極3a−1、3a−2を筒状部材4aの壁面の予め電極の大きさに合わせた貫通孔部分4h−1、4h−2にはめ込む配置を示す。この場合、電極3a−1、3a−2は、筒状部材4aの内部の中心軸上に配置される電極3a−5と対極である。また、図6は、筒状部材4bの壁面の貫通孔部分4h−1、4h−2、4h−3、4h−4に、4つの電極3a−1、3a−2、3a−3、3a−4をはめ込む配置を示す。この場合、電極3a−1、3a−2、3a−3、3a−4は、筒状部材4bの内部の中心軸上に配置される電極3a−5と対極である。 5 (a) and 5 (b), one electrode 3a-5 provided with wiring 5 for transmitting electricity from the outside is arranged on the central axis inside the cylindrical member 4a and filled into the cylindrical member 4a. An arrangement is shown in which the other electrodes 3a-1 and 3a-2 are fitted into the through-hole portions 4h-1 and 4h-2 that have been adjusted to the size of the electrode in advance on the wall surface of the cylindrical member 4a through the carbon material M. In this case, the electrodes 3a-1, 3a-2 are counter electrodes to the electrode 3a-5 disposed on the central axis inside the cylindrical member 4a. FIG. 6 shows four electrodes 3a-1, 3a-2, 3a-3, 3a- in the through-hole portions 4h-1, 4h-2, 4h-3, 4h-4 on the wall surface of the cylindrical member 4b. 4 shows an arrangement in which 4 is inserted. In this case, the electrodes 3a-1, 3a-2, 3a-3, 3a-4 are counter electrodes to the electrode 3a-5 arranged on the central axis inside the cylindrical member 4b.
炭素材料は、通電加熱筒で加熱された後、炉本体内へ移動する。炉本体は、円筒状の形状、例えば高さ4.5m、内径20cmの円筒状の形状であってもよく、好ましくは、上方から下方に向けて加熱ゾーンと冷却ゾーンに分かれる。加熱ゾーンは、炉本体の外周部に熱源を備え、炉本体の外側から炭素材料を加熱する外部熱源領域を含み、この領域の後に、1900〜2100℃となる中間領域を含んでいてもよい。加熱ゾーンで炭素材料を黒鉛に変換した後に、得られた黒鉛を例えば30〜200℃に冷却する冷却領域を冷却ゾーンとして設ける。加熱ゾーンと冷却ゾーンの長さの割合は、好ましくは加熱ゾーンを1とすると、冷却ゾーンは0.2〜0.5である。また、通電加熱筒での通電領域と外部熱源領域の長さの割合は、好ましくは通電領域を1とすると、外部熱源領域は2〜10である。また、この2つの領域の後に、中間領域を含む場合、好ましくは通電領域の長さを1とすると、外部熱源領域は2〜10であり、中間領域は1〜5である。 The carbon material moves into the furnace body after being heated by the electric heating cylinder. The furnace main body may have a cylindrical shape, for example, a cylindrical shape having a height of 4.5 m and an inner diameter of 20 cm, and is preferably divided into a heating zone and a cooling zone from the top to the bottom. The heating zone is provided with a heat source on the outer peripheral portion of the furnace body, includes an external heat source region for heating the carbon material from the outside of the furnace body, and may include an intermediate region at 1900 to 2100 ° C. after this region. After converting the carbon material to graphite in the heating zone, a cooling region for cooling the obtained graphite to, for example, 30 to 200 ° C. is provided as a cooling zone. The ratio of the length of the heating zone and the cooling zone is preferably 0.2 to 0.5, assuming that the heating zone is 1. Moreover, the ratio of the length of the energization region and the external heat source region in the energization heating cylinder is preferably 2 to 10 when the energization region is preferably 1. In addition, when an intermediate region is included after these two regions, preferably the length of the energizing region is 1, the external heat source region is 2 to 10, and the intermediate region is 1 to 5.
外部熱源領域は、炉本体の外周部に熱源を備え、炉本体の外側から加熱することによって形成し、炭素材料を加熱する。熱源としては、炭素材(等方性黒鉛)製のヒーター等が挙げられる。これらの熱源によって、炉本体の外周部から高温に加熱して、炭素材料を加熱することが可能である。また、別の熱源としては、炉本体の外周部にコイル備え、交流電流をかけて炭素材料を誘導加熱させる。この場合、印加する交流電流は、高周波であってもよい。必要に応じて、コイルである電熱線の外部を、断熱材等によって断熱される。この領域において、炭素材料を2300〜3000℃で加熱することが好ましい。2300℃より低いと、原料の炭素材料の黒鉛化が進まず、リチウムイオン電池の電極材として容量が小さくなる。3000℃より高いと、リチウムイオン電池の電極材としての特性(初期効率)が低くなってしまう。 The external heat source region includes a heat source on the outer peripheral portion of the furnace body, and is formed by heating from the outside of the furnace body to heat the carbon material. Examples of the heat source include a heater made of carbon material (isotropic graphite). With these heat sources, it is possible to heat the carbon material by heating from the outer periphery of the furnace body to a high temperature. As another heat source, a coil is provided on the outer peripheral portion of the furnace body, and an alternating current is applied to induce induction heating of the carbon material. In this case, the applied alternating current may be a high frequency. If necessary, the outside of the heating wire that is a coil is insulated by a heat insulating material or the like. In this region, the carbon material is preferably heated at 2300 to 3000 ° C. When the temperature is lower than 2300 ° C., graphitization of the raw material carbon material does not proceed, and the capacity as the electrode material of the lithium ion battery becomes small. When it is higher than 3000 ° C., the characteristics (initial efficiency) as an electrode material of the lithium ion battery are lowered.
炉本体の加熱ゾーンは、外部熱源領域の後に、さらに、炭素材料を1900〜2100℃となる中間領域を含んでいてもよい。この領域は、特に加熱されることなく、それまでの工程での加熱による熱量を保持させる。このため、炉本体の外周部に保温材を取り付けることが好ましい。この領域を設けることにより、炭素材料が粉末の場合でも、外部熱源領域との温度勾配を緩やかにして原料の流れをスムーズにすることができ、より均質な黒鉛を得ることが可能となる。 The heating zone of the furnace body may further include an intermediate region where the carbon material is 1900 to 2100 ° C. after the external heat source region. This region is not particularly heated, and retains the amount of heat generated by heating in the previous steps. For this reason, it is preferable to attach a heat insulating material to the outer peripheral part of a furnace main body. By providing this region, even when the carbon material is powder, the temperature gradient with respect to the external heat source region can be moderated, the flow of the raw material can be made smooth, and more homogeneous graphite can be obtained.
炉本体の加熱ゾーンで炭素材料を黒鉛に変換した後に、冷却ゾーンの冷却領域で、得られた黒鉛を例えば30〜200℃に冷却する。冷却するために、炉本体の外周部に冷却ジャケットを取り付ける。 After converting the carbon material into graphite in the heating zone of the furnace body, the obtained graphite is cooled to, for example, 30 to 200 ° C. in the cooling region of the cooling zone. A cooling jacket is attached to the outer periphery of the furnace body for cooling.
このようにして得られた黒鉛は、冷却領域の下に設けられた取り出し口を経て、回収部で回収される。回収された黒鉛の取り出し方法は区切りなく取り出してもよいし、一定の量ずつ取り出してもよい。 The graphite obtained in this way is recovered by the recovery unit through the take-out port provided under the cooling region. The recovered graphite may be taken out without any separation, or a certain amount may be taken out.
図7に、本発明の別の一実施態様である縦型黒鉛化炉を用いる黒鉛製造システム1bの一例を示す。炭素材料Mは、計量フィーダー6から通電加熱筒を構成する筒状部材4aの上部に設けられたホッパー投入口7を経て、筒状部材4a内に一定量ずつ投入される。筒状部材4aは、炉本体2bの上端にキャップ状に設置されている。通電加熱筒において、筒状部材4aの内壁に少なくとも2つの電極3a−1、3a−2を、炭素材料Mを介して対向して備え、これらの電極3a−1、3a−2に通電することにより、炭素材料Mを加熱する通電領域を形成する。また、通電加熱筒の下の炉本体2bの外周部に熱源として加熱装置8を備え、炉本体2bの外側から炭素材料Mを加熱する外部熱源領域を形成する。加えて、外部熱源領域の下の炉本体2bの外周部に保温材10を備え、1900〜2100℃とする。炭素材料Mは、通電領域、外部熱源領域および中間領域を通過させることで、黒鉛Gに変換される。さらに、外部熱源領域の下の炉本体2bの外周部に冷却用ジャケット11を備え、生成された黒鉛Gを冷却する冷却領域を形成する。冷却された黒鉛Gは、冷却領域の下に設けられた取り出し口12を経て、回収部13から取り出される。 FIG. 7 shows an example of a graphite production system 1b using a vertical graphitization furnace which is another embodiment of the present invention. The carbon material M is charged into the tubular member 4a by a certain amount from the measuring feeder 6 through the hopper loading port 7 provided on the upper part of the tubular member 4a constituting the energization heating cylinder. The cylindrical member 4a is installed in a cap shape at the upper end of the furnace body 2b. In the energization heating cylinder, at least two electrodes 3a-1, 3a-2 are provided on the inner wall of the cylindrical member 4a so as to face each other through the carbon material M, and the electrodes 3a-1, 3a-2 are energized. Thus, an energized region for heating the carbon material M is formed. Further, a heating device 8 is provided as a heat source on the outer peripheral portion of the furnace body 2b below the energization heating cylinder, and an external heat source region for heating the carbon material M from the outside of the furnace body 2b is formed. In addition, the heat insulating material 10 is provided on the outer peripheral portion of the furnace body 2b under the external heat source region, and the temperature is set to 1900 to 2100 ° C. The carbon material M is converted into graphite G by passing through the energization region, the external heat source region, and the intermediate region. Furthermore, a cooling jacket 11 is provided on the outer peripheral portion of the furnace body 2b below the external heat source region, and a cooling region for cooling the generated graphite G is formed. The cooled graphite G is taken out from the collection unit 13 through the take-out port 12 provided below the cooling region.
本発明の縦型黒鉛化炉によれば、炉本体の上端に接続させた通電加熱筒で炭素材料を直接通電することによって、炭素材料の温度を急速に上昇させ、炭素材料中にわずかに残存する不純物を蒸発させる。このことによって、炉内に不純物由来の硫黄分を含むガスを停滞させることなく排出することができるため、炉本体やその内壁、各種部材(シャフト、ヒーター、断熱材)等を黒鉛で構成した場合でも、これら部材の硫黄分を含むガスによる劣化が極めて少なく、炉を傷めにくい。さらに、通電領域の後に外部熱源領域を設けることにより、炭素材料中に反応の不十分な箇所が生じず、炭素材料の加熱ムラが極めて少なくなることから、所望の黒鉛を得ることができる。
また、炉本体を黒鉛材で構成した場合、炉本体の上端に接続させる通電加熱筒の筒状部材を絶縁性物質で構成することによって、炉本体に直接通電させたり、漏電させたりすることがなく、炉の損傷を極めて少なくすることが可能である。さらに、絶縁性物質は黒鉛よりも放熱性に優れることから、電極材料に熱が溜まりにくいので、電極の劣化を妨げることができ、結果として電極の寿命をより長くさせる。
According to the vertical graphitization furnace of the present invention, by directly energizing the carbon material with an energization heating cylinder connected to the upper end of the furnace body, the temperature of the carbon material is rapidly increased and slightly left in the carbon material. The impurities to be evaporated are evaporated. As a result, the gas containing sulfur derived from impurities can be discharged without stagnation in the furnace, so the furnace body, its inner wall, various members (shaft, heater, heat insulating material), etc. are composed of graphite. However, the deterioration of these members due to the gas containing sulfur is extremely small, and the furnace is hardly damaged. Furthermore, by providing the external heat source region after the energized region, an insufficiently reactive portion does not occur in the carbon material, and the heating unevenness of the carbon material is extremely reduced, so that desired graphite can be obtained.
In addition, when the furnace body is made of a graphite material, the furnace body can be directly energized or grounded by constituting the cylindrical member of the current heating cylinder connected to the upper end of the furnace body with an insulating material. In addition, the damage to the furnace can be extremely reduced. Furthermore, since the insulating material is more excellent in heat dissipation than graphite, it is difficult for heat to accumulate in the electrode material, so that deterioration of the electrode can be prevented, resulting in a longer life of the electrode.
原料材料である炭素材料は、炭化水素を主とする物質であり、加熱すれば黒鉛化する。具体的には、石油コークス、石油コークスのカルサイン品(カルサインコークス)、石炭コークス及びピッチなどが挙げられる。好ましくは、原油の処理の際の減圧蒸留油又は残油流動接触装置(RFCC)のボトム油などから得た原料油で、特に初留点300℃以上、アスファルテン成分及びレジン成分の合計含量が25質量%以下、飽和成分の含量が40質量%以上の重油と芳香族指数fa0.3以上かつ初留点が150℃以上の重油を混合したものをディレードコーキングさせた石油コークスであり、これらは、鱗片状の黒鉛粉が得られるものである。また、この石油コークスのカルサイン品であるカルサインコークス(か焼コークス)も好ましい。このような石油コークスは、石炭コークスや他の炭素源に比べ多くの硫黄が含まれるが、均質で、結晶化に優れ、また、簡単に手に入るなどの点から、リチウムイオン蓄電池の負極材に用いる黒鉛とするのに大変好ましいものである。 The carbon material that is a raw material is a substance mainly composed of hydrocarbons, and graphitizes when heated. Specific examples include petroleum coke, petroleum coke calcine (calcine coke), coal coke, and pitch. Preferably, it is a raw material oil obtained from a vacuum distillation oil or bottom oil of a residue fluidized fluid contact device (RFCC) at the time of crude oil processing, and has an initial boiling point of 300 ° C. or more and a total content of asphaltene component and resin component of 25 It is petroleum coke obtained by delay coking a mixture of heavy oil having a mass content of 40% by mass or less and a heavy oil having an aromatic index fa of 0.3 or more and an initial boiling point of 150 ° C. or more. A scaly graphite powder is obtained. Further, calcine coke (calcined coke) which is a calcine product of this petroleum coke is also preferred. Such petroleum coke contains more sulfur than coal coke and other carbon sources, but it is homogeneous, excellent in crystallization, and easily available. It is very preferable for use in graphite.
減圧蒸留油は、原油を常圧蒸留装置にかけて、ガス・軽質油・常圧残油を得た後、この常圧残油を、例えば、10〜30Torrの減圧下、加熱炉出口温度320〜360℃の範囲で変化させて得られる減圧蒸留装置の蒸留油である。残油流動接触分解装置(RFCC)は、原料油として残油(常圧残油等)を使用し、触媒を使用して分解反応を選択的に行わせ、高オクタン価のFCCガソリンを得る流動床式の流動接触分解する装置である。残油流動接触分解装置のボトム油としては、例えば、常圧残油等の残油をリアクター反応温度(ROT)510〜540℃の範囲で、触媒/油質量比率を6〜8の範囲で変化させて製造したボトム油が挙げられる。ここで、残油流動接触装置(RFCC)の運転条件としては、1例を挙げれば、密度0.9293g/cm3、残留炭素5.5質量%の常圧蒸留残油を反応温度530℃、全圧0.21MPa、触媒/油比6で流動接触分解し得られる。初留点は、JIS K 2254に従って、凝縮管の下端から留出油の最初の1滴が落下したときの温度計の読み(℃)である。 The vacuum distilled oil is obtained by subjecting crude oil to an atmospheric distillation apparatus to obtain gas, light oil, and atmospheric residual oil. Then, the atmospheric residual oil is heated at a furnace outlet temperature of 320 to 360 under a reduced pressure of 10 to 30 Torr, for example. It is a distilled oil of a vacuum distillation apparatus obtained by changing in the range of ° C. The residual oil fluid catalytic cracking unit (RFCC) uses residual oil (normal pressure residual oil, etc.) as a raw material oil and selectively performs a cracking reaction using a catalyst to obtain a high-octane FCC gasoline. Is a fluid catalytic cracking device of the type. As the bottom oil of the residual oil fluid catalytic cracker, for example, the residual oil such as atmospheric residual oil is changed in the reactor reaction temperature (ROT) range of 510 to 540 ° C., and the catalyst / oil mass ratio is changed in the range of 6 to 8. The bottom oil manufactured by letting it be mentioned is mentioned. Here, as an operating condition of the residual oil fluid contact device (RFCC), for example, an atmospheric distillation residual oil having a density of 0.9293 g / cm 3 and a residual carbon of 5.5% by mass is reacted at 530 ° C., Fluid catalytic cracking can be achieved at a total pressure of 0.21 MPa and a catalyst / oil ratio of 6. The initial boiling point is a thermometer reading (° C.) when the first drop of distilled oil falls from the lower end of the condensing tube according to JIS K 2254.
飽和成分、レジン成分及びアスファルテン成分の含有率は、TLC−FID法により測定できる。TLC−FID法とは、薄層クロマトグラフィー(TLC)により試料を飽和成分、アロマ成分、レジン成分及びアスファルテン成分に4分割し、その後、水素炎イオン化検出器(Flame Ionization Detector:FID)にて各成分を検出し、各成分量の全成分量に対する百分率をもって組成成分値としたものである。まず、試料0.2g±0.01gをトルエン10mlに溶解して、試料溶液を調整する。予め空焼きしたシリカゲル棒状薄層(クロマロッド)の下端(ロッドホルダーの0.5cmの位置)にマイクロシリンジを用いて1μlスポットし、ドライヤー等により乾燥させる。次に、このマイクロロッド10本を1セットとして、展開溶媒にて試料の展開を行う。展開溶媒としては、第1展開槽にヘキサン、第2展開槽にヘキサン/トルエン(体積比20:80)、第3展開槽にジクロロメタン/メタノール(体積比95:5)を使用する。飽和成分については、ヘキサンを溶媒とする第1展開槽にて溶出して展開する。アロマ成分については、第1展開の後、第2展開槽にて溶出して展開する。アスファルテン成分については、第1展開、第2展開の後、ジクロロメタン/メタノールを溶媒とする第3展開槽にて溶出して展開する。展開後のクロマロッドを測定器(例えば、ダイアヤトロン社(現三菱化学ヤトロン社)製の「イアトロスキャンMK−5」(商品名))にセットし、水素炎イオン化検出器(FID)で各成分量を測定する。各成分量を合計すると全成分量が得られる。 The contents of the saturated component, the resin component, and the asphaltene component can be measured by the TLC-FID method. In the TLC-FID method, a sample is divided into four components by a thin layer chromatography (TLC) into a saturated component, an aroma component, a resin component, and an asphaltene component, and then each is detected by a flame ionization detector (FID). The component is detected, and the percentage of each component amount with respect to the total component amount is used as the composition component value. First, a sample solution is prepared by dissolving 0.2 g ± 0.01 g of a sample in 10 ml of toluene. Use a microsyringe to spot 1 μl at the lower end (0.5 cm position of the rod holder) of a silica gel rod-like thin layer (chroma rod) that has been baked in advance, and dry it with a dryer or the like. Next, 10 microrods are taken as one set, and the sample is developed with a developing solvent. As the developing solvent, hexane is used for the first developing tank, hexane / toluene (volume ratio 20:80) is used for the second developing tank, and dichloromethane / methanol (volume ratio 95: 5) is used for the third developing tank. The saturated component is eluted and developed in the first developing tank using hexane as a solvent. About an aroma component, it elutes and develops in the 2nd development tank after the 1st development. Asphaltene components are developed by elution in a third development tank using dichloromethane / methanol as a solvent after the first development and the second development. The developed chroma rod is set in a measuring instrument (for example, “Iatroscan MK-5” (trade name) manufactured by Diatron (currently Mitsubishi Chemical Yatron)), and each flame ionization detector (FID). Measure the amount of ingredients. The total amount of each component is obtained by summing the amounts of each component.
芳香指数faは、Knight法により求めることができる。Knight法では、炭素の分布を13C−NMR法による芳香族炭素のスペクトルとして3つの成分(A1,A2,A3)に分割する。ここで、A1は芳香族環内部炭素数、置換されている芳香族炭素と置換されていない芳香族炭素の半分(13C−NMRの約40〜60ppmのピークに相当)、A2は置換していない残りの半分の芳香族炭素(13C−NMRの約60〜80ppmのピークに相当)A3は脂肪族炭素数(13C−NMRの約130〜190ppmのピークに相当)であり、これらから、faは
fa=(A1+A2)/(A1+A2+A3)
により求められる。13C−NMR法が、ピッチ類の化学構造パラメータの最も基本的な量であるfaを定量的に求められる最良の方法であることは、文献(「ピッチのキャラクタリゼーション II. 化学構造」横野、真田、(炭素、1981(No.105)、p73〜81)に示されている。
The fragrance index fa can be determined by the Knight method. In the Knight method, the distribution of carbon is divided into three components (A1, A2, A3) as an aromatic carbon spectrum by the 13C-NMR method. Here, A1 is the aromatic ring internal carbon number, half of the aromatic carbon that is not substituted with the substituted aromatic carbon (corresponding to a peak of about 40-60 ppm of 13C-NMR), and A2 is not substituted. The remaining half of the aromatic carbon (corresponding to a peak of about 60 to 80 ppm of 13C-NMR) A3 is the number of aliphatic carbon (corresponding to a peak of about 130 to 190 ppm of 13C-NMR), from which fa is expressed as fa = (A1 + A2) / (A1 + A2 + A3)
Is required. The 13C-NMR method is the best method for quantitatively determining fa, which is the most basic amount of chemical structural parameters of pitches, as described in the literature ("Pitch Characterization II. Chemical Structure" Yokono, Sanada (Carbon, 1981 (No. 105), p73-81).
ディレードコーキング法は、加圧条件下、ディレードコーカーによって重質油を熱処理して生コークスを得る方法である。ディレードコーカーの条件として、圧力が0.5〜0.7MPa、温度が500〜530℃の範囲が好ましい。このディレードコーカープロセスの生コークスは、水分を多量に含むため、乾燥した後、粉砕、分級に供する。 The delayed coking method is a method of obtaining raw coke by heat-treating heavy oil with a delayed coker under pressurized conditions. As conditions for the delayed coker, a pressure is preferably in a range of 0.5 to 0.7 MPa and a temperature in a range of 500 to 530 ° C. The raw coke of this delayed coker process contains a large amount of moisture, so it is dried and then crushed and classified.
原料材料である炭素材料は、黒鉛化炉に導入される前に必要に応じて粉末化される。炭素材料の粉末の平均径は、好ましくは5〜50μmとする。5μmより小さいと、流動性が悪くなり、炉内をスムーズに流れなくなり連続処理が困難となる場合がある。50μmより大きいと、リチウムイオン電池電極材としてシートとしたとき十分な薄さが得られなくなる場合がある。平均粒径は、レーザ回折・散乱法を用いて測定できる。粉末化の方法は任意であるが、石油コークスを使用する場合、好ましくは、石油コークスを振動篩等で1mm〜5mm程度にし、その後、乾燥させる。一般的には、石油コークスは回収に揮発性の油成分と使用した際の水分とを含むので乾燥が必要であり、水分を好ましくは1質量%以下まで乾燥させるとよい。必要に応じ、好ましくは600℃程度の温度で1〜2時間加熱し、揮発性の油成分を除去させてもよい。この後、ジェットミル、ボールミル、ハンマーミルなどを使用して粉末にされる。炭素材料が石油コークス、石炭コークス等であれば、このまま黒鉛化することもよいが、そのあとの処理や出来上がる黒鉛粉の性状が良くなるため、一度好ましくは900〜1500℃程度の温度でか焼することがよい。かかるか焼はローターリーキルンを用いて行うことが一般的である。 The carbon material as the raw material is pulverized as necessary before being introduced into the graphitization furnace. The average diameter of the carbon material powder is preferably 5 to 50 μm. If it is smaller than 5 μm, the fluidity is deteriorated, and the continuous processing may be difficult because the fluid does not flow smoothly in the furnace. If it is larger than 50 μm, there may be a case where sufficient thickness cannot be obtained when a sheet is used as a lithium ion battery electrode material. The average particle diameter can be measured using a laser diffraction / scattering method. The method of pulverization is arbitrary, but when petroleum coke is used, the petroleum coke is preferably made to about 1 mm to 5 mm with a vibrating sieve or the like and then dried. In general, petroleum coke contains volatile oil components for recovery and moisture when used, and therefore needs to be dried, and the moisture is preferably dried to 1% by mass or less. If necessary, the volatile oil component may be removed by heating at a temperature of preferably about 600 ° C. for 1 to 2 hours. Thereafter, it is made into powder using a jet mill, a ball mill, a hammer mill or the like. If the carbon material is petroleum coke, coal coke, etc., it may be graphitized as it is. However, since the properties of the subsequent processing and the resulting graphite powder are improved, it is preferably calcined at a temperature of about 900 to 1500 ° C. once. It is good to do. Such calcination is generally performed using a rotary kiln.
本発明の別の一実施形態によれば、上記の縦型黒鉛化炉を用いた黒鉛の製造方法である。つまり、炉本体と、前記炉本体の上端に接続された通電加熱筒を備える、縦型黒鉛化炉の前記通電加熱筒の内部に、上部から炭素材料を投入する工程と、前記投入された炭素材料を前記通電加熱筒の筒状部材の内壁に設置された少なくとも2つの電極を通電して1700〜2300℃に加熱する通電領域を通過させる工程と、さらに、前記炉本体の外周部に設けられた熱源で、2300〜3000℃に加熱する外部熱源領域を通過させて黒鉛に変換する工程と、前記黒鉛を冷却する工程と、前記冷却された黒鉛を前記炉の下部から取り出す工程とを少なくとも含む黒鉛の製造方法である。 According to another embodiment of the present invention, a method for producing graphite using the above vertical graphitization furnace. That is, a step of charging a carbon material from above into the current heating cylinder of the vertical graphitization furnace, comprising a furnace main body and a current heating cylinder connected to the upper end of the furnace main body, and the charged carbon A step of passing the material through an energized region in which at least two electrodes installed on the inner wall of the cylindrical member of the energization heating cylinder are energized and heated to 1700-2300 ° C., and further provided on the outer periphery of the furnace body. At least a step of converting to graphite through an external heat source region heated to 2300 to 3000 ° C., a step of cooling the graphite, and a step of removing the cooled graphite from the lower part of the furnace This is a method for producing graphite.
この方法により、炭素材料に粉末を用いた場合でも、均一に熱を加えることができるため、均質な黒鉛を得ることが可能となる。 By this method, even when powder is used for the carbon material, heat can be applied uniformly, so that homogeneous graphite can be obtained.
以下、実施例および比較例によって本発明を説明するが、本発明は実施例に限定するものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention, this invention is not limited to an Example.
[実施例1〜2および比較例1]
(1)炭素材料の準備
使用した原料である炭素材料は、以下のとおりである。
<生コークスA>
初留点335℃、アスファルテン+レジン分の含量が27質量%、飽和分の含量が43質量%の重油と芳香族指数0.4以上かつ初留点が168℃の重油の混合物を平均温度450℃でディレードコーキングした生コークスを、振動篩で3mm以下に篩った。その後、150〜200℃で熱風循環炉を用いて水分が1質量%以下になるまで乾燥させ、ローターミルで平均粒径12μmの粉末とした。
<か焼コークスA>(実施例1で使用)
ローターリーキルンを用いて生コークスAを約1500℃でか焼して得られたか焼コークスを振動篩等で3mm以下に篩ったのち、ローターミルで平均粒径12μmの粉末とした。
<生コークスB>
市販の生コークスを、振動篩で3mm以下に篩ったのち、150〜200℃で熱風循環炉を用いて水分が1質量%以下になるまで乾燥させ、ローターミルで平均粒径12μmの粉末とした。
<か焼コークスB>(実施例2、比較例1で使用)
ローターリーキルンを用いて生コークスBを約1500℃でか焼して得られたか焼コークスを振動篩等で3mm以下に篩ったのち、ローターミルで平均粒径12μmの粉末とした。
[Examples 1 and 2 and Comparative Example 1]
(1) Preparation of carbon material The carbon material which is the used raw material is as follows.
<Raw coke A>
A mixture of heavy oil having an initial boiling point of 335 ° C., an asphaltene + resin content of 27% by mass and a saturated content of 43% by mass and a heavy oil having an aromatic index of 0.4 or more and an initial boiling point of 168 ° C. has an average temperature of 450 Raw coke subjected to delayed coking at 0 ° C. was sieved to 3 mm or less with a vibrating sieve. Then, it dried until the water | moisture content became 1 mass% or less using a hot-air circulation furnace at 150-200 degreeC, and it was set as the powder of the average particle diameter of 12 micrometers with the rotor mill.
<Calcined coke A> (used in Example 1)
After calcining coke A obtained by calcining raw coke A at about 1500 ° C. using a rotor kiln to a size of 3 mm or less with a vibrating sieve or the like, it was made into a powder having an average particle size of 12 μm with a rotor mill.
<Raw coke B>
After sieving commercially available coke to 3 mm or less with a vibration sieve, it is dried at 150 to 200 ° C. using a hot air circulating furnace until the water content becomes 1% by mass or less, and a powder with an average particle diameter of 12 μm is obtained with a rotor mill. did.
<Calcined coke B> (used in Example 2 and Comparative Example 1)
After calcining coke B obtained by calcining raw coke B at about 1500 ° C. using a rotary kiln to a size of 3 mm or less with a vibrating sieve or the like, a powder having an average particle size of 12 μm was obtained with a rotor mill.
(2)黒鉛化
得られた炭素材料を、縦型黒鉛化炉を用いて黒鉛に変換させた。黒鉛化炉は、黒鉛製の内壁を備えた内径20cm、全長4.5mの円筒形状の炉本体を有し、炉の下部に取り出し口が設置されている。炉本体の上部から投入された炭素材料を、加熱して黒鉛に変換させた。炉本体の底部から上方1mの間に冷却ジャケットを設置して、黒鉛に変換した材料を冷却させた。冷却した黒鉛を、炉本体の取り出し口を経て、回収部で回収した。実質上の黒鉛化時間が7〜10時間となるようにした。
(2) Graphitization The obtained carbon material was converted into graphite using a vertical graphitization furnace. The graphitization furnace has a cylindrical furnace body with an inner diameter of 20 cm and a total length of 4.5 m provided with an inner wall made of graphite, and a take-out port is provided at the lower part of the furnace. The carbon material charged from the top of the furnace body was heated to convert it into graphite. A cooling jacket was installed 1 m above the bottom of the furnace body to cool the material converted to graphite. The cooled graphite was recovered in the recovery section through the outlet of the furnace body. The substantial graphitization time was 7-10 hours.
実施例1〜2においては、図7のように、炉本体の上端に通電加熱筒を備えた炉で行った。通電加熱筒の筒状部材は、炭化ケイ素で構成し、内径20cm、厚さ5cm、高さ0.5mとした。筒状部材の上端から20cmのところに、10cm2の正方形形状の上辺が位置するように貫通孔を作製した。さらに、この貫通孔と、筒状部材の内部の中心軸を隔てて、対向するようにもう一つの貫通孔を作製した。作製した2つの貫通孔に、10cm3の直方体の電極を、筒状部材の外側から内側に向けてはめ込むようにして配置した。電極に2700Aの電流、30Vの電圧を印加して、炉本体に充填した炭素材料を介して通電させ、高温部が2200〜2300℃となるように加熱した(焼成部)。次に、通電領域を通過させた炭素材料を、炉本体で処理した。まずは、筒状部材の下の炉本体の外周部に、1.1mの範囲で発熱体を設置して外部熱源領域を形成し、これによって炭素材料を2500〜2600℃に加熱した(焼成部)。次に、外部熱源領域の下の炉本体の外周部に、1.1mの範囲で保温材を設置し、上記の2つの加熱で炭素材料に与えた熱を、1900〜2100℃とした(焼鈍部もしくは第1冷却部)。 In Examples 1-2, as shown in FIG. 7, the heating was performed in a furnace provided with an electrically heated cylinder at the upper end of the furnace body. The cylindrical member of the electric heating cylinder was made of silicon carbide, and had an inner diameter of 20 cm, a thickness of 5 cm, and a height of 0.5 m. A through hole was formed so that the upper side of a 10 cm 2 square shape was located 20 cm from the upper end of the cylindrical member. Furthermore, another through hole was produced so as to face this through hole with the central axis inside the cylindrical member being separated. A 10 cm 3 rectangular parallelepiped electrode was placed in the two through holes produced so as to be fitted from the outside to the inside of the cylindrical member. A current of 2700 A and a voltage of 30 V were applied to the electrode, and the current was passed through the carbon material filled in the furnace body, and the high temperature part was heated to 2200 to 2300 ° C. (baking part). Next, the carbon material passed through the energized region was processed in the furnace body. First, on the outer periphery of the furnace main body under the cylindrical member, a heating element was installed in a range of 1.1 m to form an external heat source region, thereby heating the carbon material to 2500 to 2600 ° C. (firing part). . Next, on the outer periphery of the furnace main body under the external heat source region, a heat insulating material was installed in a range of 1.1 m, and the heat given to the carbon material by the above two heatings was set to 1900 to 2100 ° C. (annealing) Part or first cooling part).
比較例1においては、実施例1で用いた通電加熱筒が設置されていない代わりに、外部熱源領域が1.1mとなる炉本体を用いた。外部熱源領域での条件は、実施例と同様にして実施した。この炉本体は、従来用いられるものと同様の使用である。 In Comparative Example 1, a furnace body having an external heat source area of 1.1 m was used instead of the current heating cylinder used in Example 1 being installed. The conditions in the external heat source region were the same as in the example. This furnace body is used in the same manner as conventionally used.
(3)黒鉛化炉の評価
使用した黒鉛化炉の内部を観察して損傷の有無を評価した。
(3) Evaluation of graphitization furnace The inside of the used graphitization furnace was observed to evaluate the presence or absence of damage.
実施例1〜2で用いた黒鉛化炉の内部を確認したところ、損傷は見られず、問題は見いだされなかった。 When the inside of the graphitization furnace used in Examples 1 and 2 was confirmed, no damage was found, and no problem was found.
比較例1で用いた黒鉛化炉の内部を確認したところ、損傷が見られ、実施例の通電領域に相当する位置である炉の上部でえぐれていた。 When the inside of the graphitization furnace used in Comparative Example 1 was confirmed, damage was observed, and it was scooped at the top of the furnace, which is a position corresponding to the energization region of the example.
上記結果が示すように、黒鉛製の従来の黒鉛化炉を用いて、粉末、もしくは微粉末に近い状態で石油コークス等を黒鉛に変換した結果、黒鉛化炉内の壁面(黒鉛製)がえぐれているという状況が発生していた。比較例においては、実施例で用いた黒鉛化炉と異なり、直接通電による加熱を用いないため、脱離した硫黄が炉の構成部材である炭素材(黒鉛材)と反応して、損耗が生じたと推定する。一方、実施例においては、原料の炭素材料が直接通電加熱されることにより、炉の構成部材よりも高温となるため、原料の炭素材料が硫黄分と反応し、炉の構成部材との反応を阻害することで、炉の損耗を防いだと推察する。 As shown in the above results, as a result of converting petroleum coke, etc. into graphite in a state close to powder or fine powder using a conventional graphite graphitization furnace, the wall surface (made of graphite) in the graphitization furnace is scooped out. The situation that has occurred. In the comparative example, unlike the graphitization furnace used in the examples, heating by direct energization is not used, so that the desorbed sulfur reacts with the carbon material (graphite material) that is a constituent member of the furnace and wear occurs. Estimated. On the other hand, in the embodiment, since the carbon material of the raw material is heated directly by energization, the temperature of the raw material carbon material becomes higher than that of the structural member of the furnace. It is presumed that the hindrance of the furnace was prevented by inhibiting it.
1a、1b:縦型黒鉛化炉を用いた黒鉛製造システム
2a、2b:炉本体
3a−1、3a−2、3a−3、3a−4、3a−5:電極
4a、4b、4c:筒状部材
4h−1、4h−2、4h−3、4h−4、4h−11、4h−12:筒状部材の貫通孔部分
5:配線
6:計量フィーダー
7:ホッパー投入口
8:加熱装置
10:保温材
11:冷却ジャケット
12:取り出し口
13:回収部
14: 保持部材
M:炭素材料
G:黒鉛
1a, 1b: Graphite production system using a vertical graphitization furnace 2a, 2b: Furnace body 3a-1, 3a-2, 3a-3, 3a-4, 3a-5: Electrodes 4a, 4b, 4c: Tubular 4h-1, 4h-2, 4h-3, 4h-4, 4h-11, 4h-12: Through-hole part of cylindrical member 5: Wiring 6: Weighing feeder 7: Hopper insertion port 8: Heating device 10: Thermal insulation material 11: Cooling jacket 12: Extraction port 13: Collection part 14: Holding member M: Carbon material G: Graphite
Claims (7)
炉本体と、前記炉本体の上端に接続された通電加熱筒を備え、
前記通電加熱筒が、前記炭素材料を上部から投入して充填させる筒状部材と、
前記炭素材料を介して対向して前記筒状部材の内壁に設置され、通電することにより前記炭素材料を加熱する通電領域を形成する、少なくとも2つの電極とを具備し、
前記炉本体が、前記炉本体の外周部に備えられ、前記炉本体の外側から前記炭素材料を加熱する外部熱源領域を形成する熱源と、
前記外部熱源領域の下で前記炉本体の外周部に備えられ、生成された黒鉛を冷却する冷却領域を形成する冷却用ジャケットと、
前記冷却領域の下に設けられた前記黒鉛を取り出す取り出し口と
を具備する縦型黒鉛化炉。 A continuous vertical graphitization furnace in which a carbon material charged from the upper part is heated and graphitized, and the obtained graphite is taken out from the lower part,
A furnace body, and an electric heating cylinder connected to the upper end of the furnace body,
The energization heating cylinder is a cylindrical member that is charged by charging the carbon material from above,
At least two electrodes, which are placed on the inner wall of the cylindrical member opposite to each other via the carbon material and form an energization region for heating the carbon material by energization,
The furnace body is provided on the outer periphery of the furnace body, and a heat source that forms an external heat source region that heats the carbon material from the outside of the furnace body;
A cooling jacket provided on the outer periphery of the furnace main body under the external heat source region and forming a cooling region for cooling the generated graphite;
A vertical graphitization furnace comprising a take-out port for taking out the graphite provided under the cooling region.
前記配線を付した1つの電極が、前記筒状部材の内部の中心軸上に設けられ、前記少なくとも2つの電極が、前記筒状部材の内壁の一部又は全部に設けられる請求項1に記載の縦型黒鉛化炉。 As a counter electrode of the at least two electrodes, further comprising one electrode with wiring for transmitting electricity from the outside,
One electrode marked with the wiring is provided on the central axis inside of said tubular member, said at least two power poles, claim 1 is part of or all the provided et the inner wall of the tubular member The vertical graphitization furnace described in 1.
前記投入された炭素材料を前記通電加熱筒の筒状部材の内壁に設置された少なくとも2つの電極を通電して、1700〜2300℃に加熱する通電領域を通過させる工程と、
さらに、前記炉本体の外周部に設けられた熱源で、2300〜3000℃に加熱する外部熱源領域を通過させて黒鉛に変換する工程と、
前記黒鉛を冷却する工程と、
前記冷却された黒鉛を前記炉の下部から取り出す工程と
を少なくとも含む黒鉛の製造方法。 A step of introducing a carbon material from above into the inside of the current heating cylinder of the vertical graphitization furnace, comprising a furnace main body, and a current heating cylinder connected to the upper end of the furnace main body,
Passing the charged carbon material through an energized region in which at least two electrodes installed on the inner wall of the cylindrical member of the energizing heating cylinder are energized and heated to 1700-2300 ° C .;
Furthermore, with a heat source provided at the outer peripheral portion of the furnace body, passing through an external heat source region heated to 2300 to 3000 ° C. and converting to graphite,
Cooling the graphite;
Removing the cooled graphite from the lower part of the furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014069311A JP6230945B2 (en) | 2014-03-28 | 2014-03-28 | Two-stage heating type vertical graphitization furnace and method for producing graphite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014069311A JP6230945B2 (en) | 2014-03-28 | 2014-03-28 | Two-stage heating type vertical graphitization furnace and method for producing graphite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015189645A JP2015189645A (en) | 2015-11-02 |
JP6230945B2 true JP6230945B2 (en) | 2017-11-15 |
Family
ID=54424475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014069311A Active JP6230945B2 (en) | 2014-03-28 | 2014-03-28 | Two-stage heating type vertical graphitization furnace and method for producing graphite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6230945B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108658068B (en) * | 2018-06-26 | 2023-07-28 | 百色皓海碳素有限公司 | Device for producing graphite fragments by using internal string graphite furnace |
DE102018115771A1 (en) * | 2018-06-29 | 2020-01-02 | Saint-Gobain Industriekeramik Rödental GmbH | Capsule-like receptacle, in particular capsule for burning powdered cathode material for lithium-ion batteries and mixture therefor |
DE102019126394A1 (en) * | 2019-09-30 | 2021-04-01 | Onejoon Gmbh | Process for the production of graphite and vertical graphitization furnace |
CN110790270A (en) * | 2019-11-13 | 2020-02-14 | 安徽科达新材料有限公司 | Novel carbonization process for graphite negative electrode material |
JP2021105492A (en) * | 2019-12-26 | 2021-07-26 | 日本電極株式会社 | Heat treatment device for carbonaceous grain and method therefor |
KR102315610B1 (en) * | 2021-06-10 | 2021-10-21 | 에스아이에스 주식회사 | Vertical graphitization furnace system |
CN114608308B (en) * | 2021-11-19 | 2023-05-02 | 四川金汇能新材料股份有限公司 | Graphitizing furnace |
CN114739176B (en) * | 2022-03-11 | 2024-01-23 | 中国铝业股份有限公司 | Graphitizing furnace |
WO2024178646A1 (en) * | 2023-02-28 | 2024-09-06 | 宁德烯铖科技有限公司 | Graphitization furnace and battery production system |
WO2024178617A1 (en) * | 2023-02-28 | 2024-09-06 | 宁德烯铖科技有限公司 | Graphitization furnace and battery production system |
CN118363418B (en) * | 2024-06-20 | 2024-08-16 | 湖南华夏特变股份有限公司 | Method, system and storage medium for controlling flow of liquid cooling clamp plate cooling liquid for power transmission |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1091895A (en) * | 1975-07-01 | 1980-12-23 | William M. Goldberger | Method and apparatus for heat treating carbonaceous material in a fluidized bed |
JP2801930B2 (en) * | 1989-08-29 | 1998-09-21 | 大阪瓦斯株式会社 | Graphite powder production equipment |
JPH11209114A (en) * | 1998-01-22 | 1999-08-03 | Hitachi Chem Co Ltd | Production of graphite, lithium secondary battery and its negative electrode |
JPH11335113A (en) * | 1998-05-22 | 1999-12-07 | Ishikawajima Harima Heavy Ind Co Ltd | Electric furnace for graphitization |
JP2001221573A (en) * | 2000-02-07 | 2001-08-17 | Chugai Ro Co Ltd | Method for supplying powered material into shaft furnace |
JP2002167208A (en) * | 2000-11-30 | 2002-06-11 | Ishikawajima Harima Heavy Ind Co Ltd | Continuous type graphitization furnace |
JP4677667B2 (en) * | 2000-12-04 | 2011-04-27 | 株式会社Ihi | Graphitization apparatus and graphitization method |
-
2014
- 2014-03-28 JP JP2014069311A patent/JP6230945B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015189645A (en) | 2015-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6230945B2 (en) | Two-stage heating type vertical graphitization furnace and method for producing graphite | |
JP6230944B2 (en) | Vertical graphitization furnace and method for producing graphite | |
JP6215112B2 (en) | Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite | |
US10967348B2 (en) | Heat treatment apparatus for carbonaceous grains and method therefor | |
US9732278B2 (en) | Petroleum coke and production method for same | |
KR20120092715A (en) | Electrode paste for electrodes in binder-free graphite with hydrocarbon base | |
JP6895982B2 (en) | Catalytic additive for coke derived from petroleum or coal | |
PL120001B1 (en) | Process for manufacturing carbon electrodes in the place of their usenaznachenija | |
JP2016155703A (en) | Continuous manufacturing method of graphite with vertical graphitizing furnace | |
US20160295645A1 (en) | A wire tray for a microwave oven or a cooking appliance with microwave heating function | |
US10683207B2 (en) | Method for sintering carbon bodies in a furnace | |
US6980580B2 (en) | Electrode arrangement as substitute bottom for an electrothermic slag smelting furnace | |
JP2008144189A (en) | Carbon-based contacting plate | |
EP1006080B1 (en) | Method for continuously burning powder carbon | |
US20080262258A1 (en) | Container For Forming Self-Baking Electrodes | |
RU2544833C1 (en) | Method of producing carbon-containing electroconductive material | |
JP7002170B2 (en) | Graphite powder manufacturing method | |
RU2710698C2 (en) | Method for heating furnace or other industrial process device | |
RU2264351C2 (en) | Method of heat treatment of carbonic raw material for production of electrodes | |
US319945A (en) | Electric smelting-furnace | |
JPH1197017A (en) | Manufacture of charcoal material for electrode | |
RU2136633C1 (en) | Raw mix for manufacturing refractory products | |
US1103309A (en) | Electric furnace. | |
Gasik et al. | Self-baking Electrodes | |
SU654846A1 (en) | Electric calcinator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6230945 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |