JP6215112B2 - Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite - Google Patents

Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite Download PDF

Info

Publication number
JP6215112B2
JP6215112B2 JP2014069312A JP2014069312A JP6215112B2 JP 6215112 B2 JP6215112 B2 JP 6215112B2 JP 2014069312 A JP2014069312 A JP 2014069312A JP 2014069312 A JP2014069312 A JP 2014069312A JP 6215112 B2 JP6215112 B2 JP 6215112B2
Authority
JP
Japan
Prior art keywords
furnace
region
graphite
carbon material
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014069312A
Other languages
Japanese (ja)
Other versions
JP2015189646A (en
Inventor
崇志 前田
崇志 前田
邦彦 佐藤
邦彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2014069312A priority Critical patent/JP6215112B2/en
Publication of JP2015189646A publication Critical patent/JP2015189646A/en
Application granted granted Critical
Publication of JP6215112B2 publication Critical patent/JP6215112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furnace Details (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Tunnel Furnaces (AREA)

Description

本発明は、連続式の縦型黒鉛化炉に関する。   The present invention relates to a continuous vertical graphitization furnace.

黒鉛は、潤滑性、導電性、耐熱性、耐酸耐アルカリ性に優れており、電極用ペースト、鋳物塗料剤、乾電池、鉛筆、耐火物、製綱用保温材、ゴム樹脂用、固体潤滑剤、ルツボ、パッキング、耐熱、耐熱品、導電塗料、鉛筆、電気ブラシ、グリース、粉末治金、ブレーキパッド、ライニング、クラッチ、メカニカルシール、ゴム樹脂の添加剤等、様々な用途に使用されている。近年では、黒鉛の結晶の積層構造部分にLiイオンが入り込む現象を利用してリチウムイオン電池の電極材として使用されることもある。このように、黒鉛は様々な分野で使用されており、効率的な製造方法の確立は極めて重要といえる。   Graphite is excellent in lubricity, conductivity, heat resistance, acid resistance and alkali resistance, and is used for electrode pastes, casting paints, dry batteries, pencils, refractories, heat insulating materials for steel ropes, rubber resins, solid lubricants, crucibles. , Packing, heat-resistant, heat-resistant products, conductive paint, pencil, electric brush, grease, powder metallurgy, brake pads, linings, clutches, mechanical seals, rubber resin additives, etc. In recent years, it is sometimes used as an electrode material of a lithium ion battery by utilizing a phenomenon that Li ions enter a laminated structure portion of graphite crystals. Thus, graphite is used in various fields, and it can be said that establishment of an efficient manufacturing method is extremely important.

人造黒鉛を製造する際には、一般に、コークス等の炭素物質からなる原料材料を粉末化させて、おおむね2200℃以上で長時間加熱しなくてはならない。こうした2200℃以上の加熱に耐えられる材料として、炭素材(黒鉛材)を用いることが一般的であり、炉およびその内壁、または炉を構成する各種部材(シャフト、ヒーター、断熱材)等に使用されている。   When producing artificial graphite, generally, a raw material made of a carbon material such as coke must be pulverized and heated at about 2200 ° C. or more for a long time. A carbon material (graphite material) is generally used as a material that can withstand such heating at 2200 ° C. or higher, and is used for a furnace and its inner wall, or various members (shaft, heater, heat insulating material) constituting the furnace. Has been.

工業的には、アチソン炉のようにバッチ式(例えば、特許文献1、2)で黒鉛化することも多いが、効率的に製造するために連続式で行うことも取り組まれている(例えば、特許文献3)。連続式で黒鉛化を行うには、炉を横方向に設置し、黒鉛材製の炉の中で黒鉛化の原料を載せたトレーをコンベアーで横方向に移動して加熱する方法などがある。この方法は高温での作業を要するため、その設備について部品の材料の選択が必要であり、また、排ガスの対策や入り口と出口の熱の管理が困難な場合がある。その結果、構造が複雑となり、設置や運用に手間がかかる。   Industrially, it is often graphitized batchwise (for example, Patent Documents 1 and 2) like the Atchison furnace, but it is also being attempted to perform it continuously for efficient production (for example, Patent Document 3). In order to perform graphitization in a continuous manner, there is a method in which a furnace is installed in a horizontal direction, and a tray on which a raw material for graphitization is placed is moved in a horizontal direction by a conveyor in a furnace made of graphite. Since this method requires work at a high temperature, it is necessary to select the material of parts for the equipment, and it may be difficult to take measures against exhaust gas and manage the heat at the entrance and exit. As a result, the structure becomes complicated and it takes time and effort to install and operate.

このため、最近では、炉を縦におき、上部から原料を投入して内部で加熱し、下部から黒鉛を取り出す連続式の縦型黒鉛化炉が試みられている(特許文献4、5)。連続式の縦型黒鉛化炉は、炉の内部において、原料を下部から上部にかけて積み上げて加熱し、下方口から黒鉛を取り出しながら取り出した分に相当する原料を上部口から投入することによって、常に一定量の原料が炉の中に存在し、かつ、黒鉛化するものである。この方法は、加熱される部分が炉の内部のみであり、加熱に耐えるトレーやコンベアーが必要でないので、構造が比較的単純であり、かつ、移動のための設備や動力も必要がないため余分な配線も必要ないため操作も簡単である。   For this reason, recently, a continuous vertical graphitization furnace in which a furnace is placed vertically, a raw material is charged from the upper part and heated inside, and graphite is taken out from the lower part has been tried (Patent Documents 4 and 5). In a continuous vertical graphitization furnace, the raw materials are stacked and heated from the bottom to the top inside the furnace, and the raw material corresponding to the amount taken out while taking out the graphite from the lower port is always charged from the upper port. A certain amount of raw material is present in the furnace and graphitizes. In this method, only the inside of the furnace is heated, and there is no need for trays or conveyors that can withstand heating, so the structure is relatively simple and there is no need for equipment or power for movement. Operation is also simple because no extra wiring is required.

特開平5−78111号公報JP-A-5-78111 特開平5−294725号公報JP-A-5-294725 国際公開2012/043402号公報International Publication No. 2012/043402 特開平11−209114号公報Japanese Patent Laid-Open No. 11-209114 特開2002−167208号公報JP 2002-167208 A

特許文献2に記載される連続黒鉛化炉は、誘導加熱のみで加熱されるため、加温速度が速く効率もよい。しかしながら、本発明者は、特許文献2に記載される連続黒鉛化炉では、電磁波の影響が強い箇所と弱い箇所が生じて加熱ムラを発生させる場合があることを見出した。また、誘導加熱のみで炭素材料を黒鉛化すると、他の手法よりも高コストとなり、効率が悪くなってしまうことを見出した。さらには、炉を構成する各種部材、例えばシャフトの黒鉛材が熱を保持し劣化してしまうことを見出した。   Since the continuous graphitization furnace described in Patent Document 2 is heated only by induction heating, the heating rate is fast and the efficiency is good. However, the present inventor has found that in the continuous graphitization furnace described in Patent Document 2, there are places where the influence of electromagnetic waves is strong and weak where heat unevenness is generated. Further, it has been found that if a carbon material is graphitized only by induction heating, the cost becomes higher than other methods and the efficiency becomes worse. Furthermore, it has been found that various members constituting the furnace, for example, the graphite material of the shaft, retain heat and deteriorate.

他方、特許文献5に記載される連続式黒鉛化炉は、通電加熱によって急速に加熱することが可能である。しかしながら、本発明者は、この方法では加熱される部分とごく少量であるが加熱が不十分である部分が生じてしまう場合があり、得られる製品が不均一となることを見出した。   On the other hand, the continuous graphitization furnace described in Patent Document 5 can be rapidly heated by energization heating. However, the present inventor has found that in this method, a part to be heated and a part which is very little but not sufficiently heated may be produced, resulting in a non-uniform product.

また、黒鉛化に用いられる加熱手法として、特許文献1には、通電加熱による焼成体の黒鉛化する方法が記載されている。この方法は、炭化物をピッチ等のバインダーで混錬し、円筒状の固体にして黒鉛化材料を製造するものであり、焼成体の黒鉛化を目的とした手法であって、粉末の黒鉛化には適してはいない。特許文献2および特許文献3には、高周波加熱による黒鉛の製造装置が記載されている。本発明者は、特許文献2に記載の装置は、バッチ式の容器内を真空条件下で高周波加熱するため、容器内の黒鉛化材料の加熱が部分的に不均一となったり、高周波だけで加熱することにより経済的に不利益となる場合があることを見出した。また、特許文献3に記載の装置は、るつぼの上面を副次的に加熱する手段にすぎないため、炭素材料を高温に加熱することができない場合があることを見出した。このように、従来の加熱方法では、原料全体を均一に加熱することが困難であり、このため均質な黒鉛が得られ難かった。   As a heating method used for graphitization, Patent Document 1 describes a method of graphitizing a fired body by energization heating. This method kneads carbide with a binder such as pitch to produce a graphitized material by converting it into a cylindrical solid, and is a method for the graphitization of a fired body. Is not suitable. Patent Document 2 and Patent Document 3 describe an apparatus for producing graphite by high-frequency heating. The inventor described in Patent Document 2 uses high-frequency heating in a batch-type container under vacuum conditions, so that the heating of the graphitized material in the container is partially uneven or only high-frequency is used. It has been found that heating may be economically disadvantageous. Moreover, since the apparatus of patent document 3 is only a means to heat the upper surface of a crucible secondary, it discovered that a carbon material might not be heated to high temperature. Thus, with the conventional heating method, it is difficult to uniformly heat the entire raw material, and thus it was difficult to obtain homogeneous graphite.

上記の課題に鑑みて、発明者らは、鋭意検討した結果、炉の上部において、原料である炭素材料を急速に加熱させて、これらに含まれる硫黄を含む揮発性の不純物を蒸発させ取り除くことにより、炉の内壁の損傷を妨げ、均質な黒鉛を得られることを見出した。   In view of the above problems, as a result of intensive studies, the inventors rapidly heated the carbon material as a raw material in the upper part of the furnace to evaporate and remove volatile impurities including sulfur contained therein. Thus, it was found that homogeneous graphite can be obtained by preventing damage to the inner wall of the furnace.

すなわち、本発明は、一つの態様によれば、上部から投入された炭素材料を加熱して黒鉛化し、得られた黒鉛を下部から取り出す連続式の縦型黒鉛化炉であって、
前記炭素材料を投入するために前記炉の上部に設けられた投入口と、
前記投入口の下で前記炉の外周部にらせん状に巻かれ、交流電流を通すことにより前記炭素材料を加熱する誘導加熱領域を形成するコイルと、
前記誘導加熱領域の下で前記炉の外周部に設けられた、前記誘導加熱領域を形成するコイルではない、ヒーターから成る熱源であって、前記炉の外側から前記炭素材料を加熱する外部熱源領域を形成する熱源と、
前記外部熱源領域の下で前記炉の外周部に設けられた冷却用ジャケットであって、生成された黒鉛を冷却する冷却領域を形成する冷却用ジャケットと、
前記冷却領域の下に設けられた前記黒鉛を取り出す取り出し口と
を備える縦型黒鉛化炉を提供することができる。
また、本発明の別の態様によると、炭素材料を、縦型黒鉛化炉に投入する工程と、前記投入された炭素材料を、前記炉の外側から誘導加熱によって1700〜2300℃に加熱する誘導加熱領域を通過させる工程と、さらに、前記炉の外周部に設けられた、前記誘導加熱領域を形成するものではない、ヒーターから成る熱源で、2300〜3000℃に加熱する外部熱源領域を通過させて黒鉛に変換する工程と、前記黒鉛を冷却する工程と、前記冷却された黒鉛を前記炉の下部から取り出す工程とを少なくとも含む黒鉛の製造方法を提供することができる。
That is, according to one aspect of the present invention, there is provided a continuous vertical graphitization furnace in which a carbon material charged from the upper part is heated and graphitized, and the obtained graphite is taken out from the lower part.
A charging port provided at the top of the furnace for charging the carbon material;
A coil that is spirally wound around the outer periphery of the furnace under the inlet and forms an induction heating region that heats the carbon material by passing an alternating current;
An external heat source region that is provided on the outer periphery of the furnace below the induction heating region and is a heat source that is not a coil that forms the induction heating region, but is a heater , and heats the carbon material from the outside of the furnace A heat source to form,
A cooling jacket provided on the outer periphery of the furnace under the external heat source region, and forming a cooling region for cooling the generated graphite;
It is possible to provide a vertical graphitization furnace including a take-out port for taking out the graphite provided under the cooling region.
According to another aspect of the present invention, a step of charging a carbon material into a vertical graphitization furnace, and an induction of heating the charged carbon material to 1700-2300 ° C. by induction heating from the outside of the furnace. A step of passing through the heating region, and further, a heat source comprising a heater provided on the outer periphery of the furnace that does not form the induction heating region and passes through an external heat source region that is heated to 2300 to 3000 ° C. There is provided a method for producing graphite including at least a step of converting into graphite, a step of cooling the graphite, and a step of taking out the cooled graphite from the lower part of the furnace.

本発明の縦型黒鉛化炉によれば、炉に、炉の外周部にらせん状に巻かれたコイルに交流電流を通して炭素材料を加熱する誘導加熱領域と、炉の外側から炭素材料を加熱する外部熱源領域を備えることで、炭素材料に粉末を用いた場合でも、均一に熱を加えることができるため、均質な黒鉛を得ることが可能となる。具体的には、炉の上部に設置された誘導加熱領域で炭素材料の温度を急速に上昇させ、誘導加熱領域の後に外部熱源領域を設けることにより、炭素材料中に反応の不十分な箇所が生じず、炭素材料の加熱ムラが極めて少なくなることから、効率よく所望の黒鉛を得ることができる。
また、高周波による誘導加熱と外部熱源加熱とを組み合わせて行うことにより、黒鉛の結晶成長を促進させることが可能となる。さらに、高周波による誘導加熱は、用いる高周波用コイル自体は高温になりにくいため、炉を構成する各種部材や周辺部材の劣化を招くことなく、炉の寿命を向上させ得る。
According to the vertical graphitization furnace of the present invention, in the furnace, the carbon material is heated from the outside of the furnace, and the induction heating region in which the carbon material is heated by passing an alternating current through a coil spirally wound around the outer periphery of the furnace. By providing the external heat source region, even when powder is used for the carbon material, heat can be applied uniformly, so that homogeneous graphite can be obtained. Specifically, by rapidly raising the temperature of the carbon material in the induction heating region installed at the top of the furnace and providing an external heat source region after the induction heating region, there are insufficiently reacted parts in the carbon material. It does not occur and the heating unevenness of the carbon material is extremely reduced, so that desired graphite can be obtained efficiently.
Moreover, it becomes possible to promote the crystal growth of graphite by combining induction heating by high frequency and external heat source heating. Furthermore, high-frequency induction heating is not likely to cause the high-frequency coil itself to reach a high temperature, so that the life of the furnace can be improved without causing deterioration of various members and peripheral members constituting the furnace.

本発明に係る縦型黒鉛化炉を用いる黒鉛製造システムの一例である。1 is an example of a graphite production system using a vertical graphitization furnace according to the present invention. 本発明に係る縦型黒鉛化炉に備えられる誘導加熱領域でのコイルの一例(a)と別の一例(b)である。It is an example (a) and another example (b) of the coil in the induction heating area | region with which the vertical graphitization furnace which concerns on this invention is equipped. 本発明に係る縦型黒鉛化炉を用いる黒鉛製造システムの別の一例である。It is another example of the graphite manufacturing system using the vertical graphitization furnace which concerns on this invention.

以下、本発明を実施するための一例である最良の形態を詳細に説明するが、本発明の範囲はこの形態に限定するものではない。   Hereinafter, the best mode which is an example for carrying out the present invention will be described in detail, but the scope of the present invention is not limited to this mode.

本発明は、一実施の形態によれば、連続式の縦型黒鉛化炉に関する。本発明の縦型黒鉛化炉は、上部から投入された炭素材料を加熱して黒鉛化し、得られた黒鉛を下部から取り出す連続式の縦型黒鉛化炉であって、炭素材料を投入するために炉の上部に設けられた投入口と、投入口の下で炉の外周部にらせん状に巻かれ、交流電流を通すことにより炭素材料を加熱する誘導加熱領域を形成するコイルと、誘導加熱領域の下で炉の外周部に設けられた熱源であって、炉の外側から炭素材料を加熱する外部熱源領域を形成する熱源と、外部熱源領域の下で炉の外周部に設けられた冷却用ジャケットであって、生成された黒鉛を冷却する冷却領域を形成する冷却用ジャケットと、冷却領域の下に設けられた黒鉛を取り出す取り出し口とを備えている。   The present invention, according to one embodiment, relates to a continuous vertical graphitization furnace. The vertical graphitization furnace of the present invention is a continuous vertical graphitization furnace in which a carbon material charged from the upper part is heated to be graphitized, and the obtained graphite is taken out from the lower part. An induction port provided at the top of the furnace, a coil that is spirally wound around the outer periphery of the furnace under the injection port, and forms an induction heating region for heating the carbon material by passing an alternating current, and induction heating A heat source provided on the outer periphery of the furnace under the region, forming a heat source region for heating the carbon material from the outside of the furnace, and cooling provided on the outer periphery of the furnace under the external heat source region A cooling jacket for forming a cooling region for cooling the generated graphite, and a take-out port for taking out the graphite provided under the cooling region.

図1に、本発明の一実施形態の縦型黒鉛化炉2aを用いる黒鉛製造システム1aの一例を示す。炭素材料Mは、計量フィーダー6から炉2aの上部に設けられたホッパー7を備えた投入口2a−1を経て、炉2a内に一定量ずつ投入される。炉2aにおいて、炉2aの外周部にらせん状に巻かれたコイル3に交流電流を通して炭素材料を加熱する誘導加熱領域を形成する。また、誘導加熱領域の下の炉2aの外周部に熱源として加熱装置8を備え、炉2aの外側から炭素材料Mを加熱する外部熱源領域を形成する。炭素材料Mは、誘導加熱領域と外部熱源領域を通過させることにより、黒鉛Gに変換される。さらに、外部熱源領域の下の炉2aの外周部に冷却用ジャケット11を備え、生成された黒鉛Gを冷却する冷却領域を形成する。冷却された黒鉛Gは、冷却領域の下に設けられた取り出し口12を経て、回収部13で回収される。   FIG. 1 shows an example of a graphite production system 1a using a vertical graphitization furnace 2a according to an embodiment of the present invention. The carbon material M is charged into the furnace 2a by a certain amount from the measuring feeder 6 through the charging port 2a-1 provided with the hopper 7 provided in the upper part of the furnace 2a. In the furnace 2a, an induction heating region for heating the carbon material through an alternating current is formed in the coil 3 spirally wound around the outer periphery of the furnace 2a. In addition, a heating device 8 is provided as a heat source on the outer periphery of the furnace 2a below the induction heating area, and an external heat source area for heating the carbon material M from the outside of the furnace 2a is formed. The carbon material M is converted into graphite G by passing through the induction heating region and the external heat source region. Furthermore, a cooling jacket 11 is provided on the outer peripheral portion of the furnace 2a below the external heat source region, and a cooling region for cooling the generated graphite G is formed. The cooled graphite G is recovered by the recovery unit 13 through the takeout port 12 provided below the cooling region.

炉を構成する材料としては、炭素材(好ましくは黒鉛、より好ましくは等方性黒鉛)等が挙げられる。特に、炉は、耐熱性が求められることから炭素材(好ましくは黒鉛、より好ましくは等方性黒鉛)が好ましく、少なくとも炉の内壁(シャフト炉のシャフトを含む)は、好ましくは黒鉛、さらに好ましくは等方性黒鉛で構成する。
投入口は、炉の上部に設けられており、その上部にテーバー形状のホッパーを設置してもよい。さらに、ホッパーの上に計量フィーダーを設置し、炭素材料を一定量ずつ炉に投入してもよい。投入口から投入された炭素材料は、炉内で十分に充填された状態で加熱され、黒鉛に変換される。
Examples of the material constituting the furnace include carbon materials (preferably graphite, more preferably isotropic graphite). In particular, the furnace is preferably a carbon material (preferably graphite, more preferably isotropic graphite) because heat resistance is required, and at least the inner wall of the furnace (including the shaft of the shaft furnace) is preferably graphite, and more preferably Is made of isotropic graphite.
The charging port is provided in the upper part of the furnace, and a Taber-shaped hopper may be installed on the upper part. Furthermore, a weighing feeder may be installed on the hopper, and a certain amount of carbon material may be put into the furnace. The carbon material charged from the charging port is heated in a sufficiently filled state in the furnace and converted into graphite.

炉は、円筒状の形状、例えば高さ4.5m、内径20cmの円筒状の形状であってもよく、好ましくは、上方から下方に向けて加熱ゾーンと冷却ゾーンに分かれる。必要に応じて、加熱ゾーンの上に予熱ゾーンを設けることもある。加熱ゾーンは、炉の外周部にらせん状に巻かれるコイルを備え、コイルに交流電流を通して炭素材料を加熱する誘導加熱領域と、炉の外周部に熱源を備え、炉の外側から炭素材料を加熱する外部熱源領域を含んでいる。さらに、この2つの領域の後に、1900〜2100℃となる中間領域を含んでいてもよい。加熱ゾーンで炭素材料を黒鉛に変換した後に、得られた黒鉛を例えば30〜200℃に冷却する冷却領域を冷却ゾーンとして設ける。加熱ゾーンと冷却ゾーンの長さの割合は、好ましくは加熱ゾーンを1とすると冷却ゾーンは0.2〜0.5である。誘導加熱領域と外部熱源領域の長さの割合は、好ましくは誘導加熱領域を1とすると、外部熱源領域は1〜2である。また、この2つの領域の後に、中間領域を含む場合、好ましくは誘導加熱領域の長さを1とすると、外部熱源領域は1〜2であり、中間領域は0.5〜1である。   The furnace may have a cylindrical shape, for example, a cylindrical shape having a height of 4.5 m and an inner diameter of 20 cm, and is preferably divided into a heating zone and a cooling zone from the top to the bottom. If necessary, a preheating zone may be provided above the heating zone. The heating zone has a coil wound in a spiral around the outer periphery of the furnace, an induction heating region that heats the carbon material through an alternating current through the coil, and a heat source on the outer periphery of the furnace to heat the carbon material from the outside of the furnace Including an external heat source area. Furthermore, you may include the intermediate area | region which becomes 1900-2100 degreeC after these two area | regions. After converting the carbon material to graphite in the heating zone, a cooling region for cooling the obtained graphite to, for example, 30 to 200 ° C. is provided as a cooling zone. The ratio of the length of the heating zone and the cooling zone is preferably 0.2 to 0.5 when the heating zone is 1. The ratio of the length of the induction heating area and the external heat source area is preferably 1 to 2 when the induction heating area is preferably 1. Further, when an intermediate region is included after these two regions, preferably, the length of the induction heating region is 1, the external heat source region is 1-2, and the intermediate region is 0.5-1.

炉は、また、炉の上部および底部で、シールガスとして不活性ガス(例えば、窒素、アルゴンまたはヘリウムなど)を流す。このガスは、炉の上部および下部で空気等の混入を防ぐためである、不活性ガスの流量は、例えば炉の上部では、好ましくは5〜40L/分、さらに好ましくは10〜30L/分である。また炉の下部では、好ましくは0.5〜10L/分、さらに好ましくは1〜5L/分である。   The furnace also flows an inert gas (such as nitrogen, argon or helium) as a sealing gas at the top and bottom of the furnace. This gas is for preventing air and the like from being mixed in the upper and lower parts of the furnace. The flow rate of the inert gas is preferably 5 to 40 L / min, more preferably 10 to 30 L / min, for example, in the upper part of the furnace. is there. In the lower part of the furnace, it is preferably 0.5 to 10 L / min, more preferably 1 to 5 L / min.

誘導加熱領域は、炉の外周部にらせん状に巻かれたコイルに交流電流を通すことによって形成し、炭素材料を加熱する。誘導加熱は、非接触の加熱方式である。コイルに交流電流を流すことで、時間的に変化する交番磁界が発生し、これにより炭素材料の持つ固有抵抗に応じたジュール熱を発生させて加熱を行う。炭素材料が粉末の場合、一般に熱伝導率が小さく、炭素材料自体が断熱材の機能を果たすため、炭素材料から熱が逃げにくく、その結果、高温に保持することが可能である。   The induction heating region is formed by passing an alternating current through a coil spirally wound around the outer periphery of the furnace to heat the carbon material. Induction heating is a non-contact heating method. By passing an alternating current through the coil, an alternating magnetic field that changes with time is generated, thereby generating Joule heat according to the specific resistance of the carbon material to perform heating. When the carbon material is a powder, the heat conductivity is generally small and the carbon material itself functions as a heat insulating material, so that heat is difficult to escape from the carbon material, and as a result, it can be kept at a high temperature.

誘導加熱領域は、炉の外周部にらせん状に巻かれるコイルを備えている。さらに、炉の外部には、コイルに交流電流を供給する電源および交流電流の周波数制御装置が備えられる。電源から供給された交流電流を、周波数制御装置で所望の周波数の電流とし、配線を用いてコイルに供給する。   The induction heating region is provided with a coil that is spirally wound around the outer periphery of the furnace. Furthermore, a power source for supplying an alternating current to the coil and a frequency control device for the alternating current are provided outside the furnace. The alternating current supplied from the power source is converted to a current having a desired frequency by the frequency control device, and supplied to the coil using the wiring.

用いられるコイルとしては、銅線等の導体で構成されることが好ましい。コイルの断面形状は、真円形、楕円形等が挙げられる。炉に備えられた時のコイルの厚みは、特に限定されないが、同じ位置に2回以上巻かれていてもよい。   The coil used is preferably composed of a conductor such as a copper wire. Examples of the cross-sectional shape of the coil include a perfect circle and an ellipse. The thickness of the coil when provided in the furnace is not particularly limited, but may be wound twice or more at the same position.

炉の外周部に備え付けられるコイルの配置は、特に限定されないが、例えば、炉が円筒の場合、炉の外周部に巻きつけるように配置してもよい。場合によっては、コイルの中心軸が炉の中心軸と一致するように、炉の内部にもコイルを設置してもよい。この場合、誘導加熱領域となる炉の部分全てをコイルで覆ってもよいし、一定の間隔でコイルを配置してもよい。炉に一定の間隔でコイルを配置する場合、コイルの間隔は、誘導加熱領域を所望の温度となるように加熱できれば特に限定されないが、例えば、コイルの外径分ずつ離して配置してもよい。また、炉から発する熱でコイルを熱しないように、炉とコイルの間に断熱材または空間を設けてもよい。   Although arrangement | positioning of the coil with which the outer peripheral part of a furnace is equipped is not specifically limited, For example, when a furnace is a cylinder, you may arrange | position so that it may wind around the outer peripheral part of a furnace. In some cases, the coil may be installed inside the furnace so that the central axis of the coil coincides with the central axis of the furnace. In this case, all of the furnace portion that becomes the induction heating region may be covered with the coil, or the coil may be arranged at a constant interval. When the coils are arranged in the furnace at regular intervals, the coil intervals are not particularly limited as long as the induction heating region can be heated to a desired temperature. For example, the coils may be arranged apart from each other by the outer diameter of the coil. . Moreover, you may provide a heat insulating material or a space between a furnace and a coil so that a coil may not be heated with the heat | fever emitted from a furnace.

図2(a)、(b)に、縦型黒鉛化炉における誘導加熱領域でのコイルの配置の例を示す。図2(a)は、炉2aの誘導加熱領域となる範囲を全て覆うようにコイル3を配置している。一方、図2(b)は、炉2aの誘導加熱領域となる範囲において、一定の間隔でコイル3を配置している。   FIGS. 2A and 2B show examples of the arrangement of the coils in the induction heating region in the vertical graphitization furnace. In FIG. 2 (a), the coil 3 is arranged so as to cover the entire range of the induction heating region of the furnace 2a. On the other hand, in FIG. 2B, the coils 3 are arranged at regular intervals in a range that becomes an induction heating region of the furnace 2a.

誘導加熱領域において、炭素材料が、好ましくは1500〜2300℃、より好ましくは1700〜2300℃となるように加熱する。1500℃より低いと、硫黄等の不純物が原料の炭素材料から十分には脱離しない。2300℃より高いと、原料の炭素材料が粉末である場合、加熱するための電力量が多くなりコストが高くなる。また、2300℃より高いと、温度制御が困難となり、所望の均一な黒鉛を得られない。加熱温度は、印加する交流電流の周波数によって調節することが可能である。印加する電流の周波数は、特に限定されるものではなく、広範囲の周波数の交流電流を使用することができるが、高周波が好ましい。具体的には、周波数は、30〜1000Hzが好ましく、35〜500Hzがより好ましい。30Hz以下だと、加熱が十分ではなく、1000Hzを超えると、コストが高くなる。印加する電流の周波数を調節することにより、短時間、例えば5分以内、好ましくは3分以内に、炭素材料を所望の温度まで上昇させることが可能となる。コイルに特定の周波数の電流をかけることによって、炉内の炭素材料の温度を急速に上昇させ、炭素材料中にわずかに残存する不純物(S、Nなど)を蒸発させる。このことによって、炉内に不純物由来の硫黄分を含むガスを停滞させることなく排出することができるため、炉やその内壁、各種部材(シャフト、ヒーター、断熱材)等を黒鉛材で構成した場合でも、これら部材の硫黄分を含むガスによる劣化が極めて少なく、炉を傷めにくい。   In the induction heating region, heating is performed so that the carbon material is preferably 1500 to 2300 ° C, more preferably 1700 to 2300 ° C. When the temperature is lower than 1500 ° C., impurities such as sulfur are not sufficiently desorbed from the raw carbon material. When the temperature is higher than 2300 ° C., when the raw carbon material is powder, the amount of electric power for heating increases and the cost increases. On the other hand, when the temperature is higher than 2300 ° C., temperature control becomes difficult, and desired uniform graphite cannot be obtained. The heating temperature can be adjusted by the frequency of the alternating current applied. The frequency of the applied current is not particularly limited, and an alternating current having a wide range of frequencies can be used, but a high frequency is preferable. Specifically, the frequency is preferably 30 to 1000 Hz, and more preferably 35 to 500 Hz. If it is 30 Hz or less, heating is not sufficient, and if it exceeds 1000 Hz, the cost increases. By adjusting the frequency of the applied current, the carbon material can be raised to a desired temperature within a short time, for example, within 5 minutes, preferably within 3 minutes. By applying a current of a specific frequency to the coil, the temperature of the carbon material in the furnace is rapidly increased, and impurities (S, N, etc.) remaining in the carbon material are evaporated. This makes it possible to discharge the gas containing sulfur derived from impurities in the furnace without stagnation, so when the furnace, its inner wall, various members (shaft, heater, heat insulating material), etc. are made of graphite material However, the deterioration of these members due to the gas containing sulfur is extremely small, and the furnace is hardly damaged.

外部熱源領域は、炉の外周部に熱源を備え、炉の外側から加熱することによって形成し、炭素材料を加熱する。熱源としては、カーボン(等方性黒鉛)製のヒーター等が挙げられる。これらの熱源によって炉の外周部を高温に加熱して、炭素材料を加熱することが可能である。この領域において、炭素材料を2300〜3000℃で加熱することが好ましい。2300℃より低いと、原料の炭素材料の黒鉛化が進まず、リチウムイオン電池の電極材として容量が小さくなる。3000℃より高いと、リチウムイオン電池の電極材としての特性(初期効率)が低くなってしまう。   The external heat source region includes a heat source on the outer peripheral portion of the furnace and is formed by heating from the outside of the furnace to heat the carbon material. Examples of the heat source include a heater made of carbon (isotropic graphite). It is possible to heat the carbon material by heating the outer periphery of the furnace to a high temperature with these heat sources. In this region, the carbon material is preferably heated at 2300 to 3000 ° C. When the temperature is lower than 2300 ° C., graphitization of the raw material carbon material does not proceed, and the capacity as the electrode material of the lithium ion battery becomes small. When it is higher than 3000 ° C., the characteristics (initial efficiency) as an electrode material of the lithium ion battery are lowered.

炉の加熱ゾーンは、誘導加熱領域と外部熱源領域の後に、さらに、炭素材料を1900〜2100℃となる中間領域を含んでいてもよい。この領域は、特に加熱されることなく、それまでの工程での加熱による熱量を保持させる。このため、炉の外周部に保温材を取り付けることが好ましい。この領域を設けることにより、炭素材料が粉末の場合でも、外部熱源領域との温度勾配を緩やかにして原料の流れをスムーズとすることができ、より均質な黒鉛を得ることが可能となる。   The heating zone of the furnace may further include an intermediate region where the carbon material is 1900 to 2100 ° C. after the induction heating region and the external heat source region. This region is not particularly heated, and retains the amount of heat generated by heating in the previous steps. For this reason, it is preferable to attach a heat insulating material to the outer peripheral part of a furnace. By providing this region, even when the carbon material is powder, the temperature gradient with respect to the external heat source region can be moderated, the flow of the raw material can be made smooth, and more uniform graphite can be obtained.

炉の加熱ゾーンで炭素材料を黒鉛に変換した後に、冷却ゾーンの冷却領域で、得られた黒鉛を例えば30〜200℃に冷却する。冷却するために、炉の外周部に冷却ジャケットを取り付ける。   After converting the carbon material into graphite in the heating zone of the furnace, the obtained graphite is cooled to, for example, 30 to 200 ° C. in the cooling region of the cooling zone. A cooling jacket is attached to the outer periphery of the furnace for cooling.

このようにして得られた黒鉛は、冷却領域の下に設けられた取り出し口を経て、回収部で回収される。回収された黒鉛の取り出し方法は、区切りなく取り出してもよいし、一定の量ずつ取り出してもよい。   The graphite obtained in this way is recovered by the recovery unit through the take-out port provided under the cooling region. The recovered graphite may be taken out without any separation or may be taken out by a certain amount.

また、図3に、本発明の一実施態様の縦型黒鉛化炉2bを用いる黒鉛製造システム1bを示す。炭素材料Mは、計量フィーダー6から炉2bの上部に設けられたホッパー7を備えた投入口2b−1を経て、炉2b内に一定量ずつ投入される。炉2bにおいて、炉2bの外周部にらせん状に巻かれたコイル3に交流電流を通して炭素材料を加熱する誘導加熱領域を形成する。また、誘導加熱領域の下の炉2bの外周部に熱源として加熱装置8を備え、炉2bの外側から炭素材料Mを加熱する外部熱源領域を形成する。加えて、外部熱源領域の下の炉2dの外周部に保温材10を備え、1900〜2100℃となる中間領域を形成する。炭素材料Mは、誘導加熱領域、外部熱源領域および中間領域を通過させることにより、黒鉛Gに変換される。さらに、この中間領域の下の炉2bの外周部に冷却用ジャケット11を備え、生成された黒鉛Gを冷却する冷却領域を形成する。冷却された黒鉛Gは、冷却領域の下に設けられた取り出し口12を経て、回収部13で回収される。   FIG. 3 shows a graphite production system 1b using the vertical graphitization furnace 2b of one embodiment of the present invention. The carbon material M is charged into the furnace 2b by a certain amount from the measuring feeder 6 through the charging port 2b-1 provided with the hopper 7 provided in the upper part of the furnace 2b. In the furnace 2b, an induction heating region for heating the carbon material through an alternating current is formed in the coil 3 spirally wound around the outer periphery of the furnace 2b. In addition, a heating device 8 is provided as a heat source on the outer periphery of the furnace 2b below the induction heating area, and an external heat source area for heating the carbon material M from the outside of the furnace 2b is formed. In addition, the heat insulating material 10 is provided on the outer peripheral portion of the furnace 2d below the external heat source region, and an intermediate region of 1900 to 2100 ° C. is formed. The carbon material M is converted into graphite G by passing through the induction heating region, the external heat source region, and the intermediate region. Further, a cooling jacket 11 is provided on the outer peripheral portion of the furnace 2b below the intermediate region to form a cooling region for cooling the generated graphite G. The cooled graphite G is recovered by the recovery unit 13 through the takeout port 12 provided below the cooling region.

本発明の縦型黒鉛化炉によれば、炉の上部に設置された誘導加熱領域で炭素材料の温度を急速に上昇させ、炭素材料中にわずかに残存する不純物(S、Nなど)を蒸発させる。このことによって、炉内に不純物由来の硫黄分を含むガスを停滞させることなく排出することができるため、炉やその内壁、各種部材(シャフト、ヒーター、断熱材)等を黒鉛材で構成した場合でも、これら部材の硫黄分を含むガスによる劣化が極めて少なく、炉を傷めにくい。さらに、誘導加熱領域の後に外部熱源領域を設けることにより、炭素材料中に反応の不十分な箇所が生じず、炭素材料の加熱ムラが極めて少なくなることから、所望の黒鉛を得ることができる。   According to the vertical graphitization furnace of the present invention, the temperature of the carbon material is rapidly increased in the induction heating region installed in the upper part of the furnace, and impurities (S, N, etc.) slightly remaining in the carbon material are evaporated. Let This makes it possible to discharge the gas containing sulfur derived from impurities in the furnace without stagnation, so when the furnace, its inner wall, various members (shaft, heater, heat insulating material), etc. are made of graphite material However, the deterioration of these members due to the gas containing sulfur is extremely small, and the furnace is hardly damaged. Furthermore, by providing the external heat source region after the induction heating region, an insufficiently reacted portion does not occur in the carbon material, and the heating unevenness of the carbon material is extremely reduced, so that desired graphite can be obtained.

原料材料である炭素材料は、炭化水素を主とする物質であり、加熱すれば黒鉛化する。具体的には、石油コークス、石油コークスのカルサイン品(カルサインコークス)、石炭コークス及びピッチなどが挙げられる。好ましくは、原油の処理の際の減圧蒸留油又は残油流動接触装置(RFCC)のボトム油などから得た原料油で、特に初留点300℃以上、アスファルテン成分及びレジン成分の合計含量が25質量%以下、飽和成分の含量が40質量%以上の重油と芳香族指数fa0.3以上かつ初留点が150℃以上の重油を混合したものをディレードコーキングさせた石油コークスであり、これらは、鱗片状の黒鉛粉が得られるものである。また、この石油コークスのカルサイン品であるカルサインコークス(か焼コークス)も好ましい。このような石油コークスは、石炭コークスや他の炭素源に比べ多くの硫黄が含まれるが、均質で、結晶化に優れ、また、簡単に手に入るなどの点から、リチウムイオン蓄電池の負極材に用いる黒鉛とするのに大変好ましいものである。   The carbon material that is a raw material is a substance mainly composed of hydrocarbons, and graphitizes when heated. Specific examples include petroleum coke, petroleum coke calcine (calcine coke), coal coke, and pitch. Preferably, it is a raw material oil obtained from a vacuum distillation oil or bottom oil of a residue fluidized fluid contact device (RFCC) at the time of crude oil processing, and has an initial boiling point of 300 ° C. or more and a total content of asphaltene component and resin component of 25 It is petroleum coke obtained by delay coking a mixture of heavy oil having a mass content of 40% by mass or less and a heavy oil having an aromatic index fa of 0.3 or more and an initial boiling point of 150 ° C. or more. A scaly graphite powder is obtained. Further, calcine coke (calcined coke) which is a calcine product of this petroleum coke is also preferred. Such petroleum coke contains more sulfur than coal coke and other carbon sources, but it is homogeneous, excellent in crystallization, and easily available. It is very preferable for use in graphite.

減圧蒸留油は、原油を常圧蒸留装置にかけて、ガス・軽質油・常圧残油を得た後、この常圧残油を、例えば、10〜30Torrの減圧下、加熱炉出口温度320〜360℃の範囲で変化させて得られる減圧蒸留装置の蒸留油である。残油流動接触分解装置(RFCC)は、原料油として残油(常圧残油等)を使用し、触媒を使用して分解反応を選択的に行わせ、高オクタン価のFCCガソリンを得る流動床式の流動接触分解する装置である。残油流動接触分解装置のボトム油としては、例えば、常圧残油等の残油をリアクター反応温度(ROT)510〜540℃の範囲で、触媒/油質量比率を6〜8の範囲で変化させて製造したボトム油が挙げられる。ここで、残油流動接触装置(RFCC)の運転条件としては、1例を挙げれば、密度0.9293g/cm、残留炭素5.5質量%の常圧蒸留残油を反応温度530℃、全圧0.21MPa、触媒/油比6で流動接触分解し得られる。初留点は、JIS K 2254に従って、凝縮管の下端から留出油の最初の1滴が落下したときの温度計の読み(℃)である。 The vacuum distilled oil is obtained by subjecting crude oil to an atmospheric distillation apparatus to obtain gas, light oil, and atmospheric residual oil. Then, the atmospheric residual oil is heated at a furnace outlet temperature of 320 to 360 under a reduced pressure of 10 to 30 Torr, for example. It is a distilled oil of a vacuum distillation apparatus obtained by changing in the range of ° C. The residual oil fluid catalytic cracking unit (RFCC) uses residual oil (normal pressure residual oil, etc.) as a raw material oil and selectively performs a cracking reaction using a catalyst to obtain a high-octane FCC gasoline. Is a fluid catalytic cracking device of the type. As the bottom oil of the residual oil fluid catalytic cracker, for example, the residual oil such as atmospheric residual oil is changed in the reactor reaction temperature (ROT) range of 510 to 540 ° C., and the catalyst / oil mass ratio is changed in the range of 6 to 8. The bottom oil manufactured by letting it be mentioned is mentioned. Here, as an operating condition of the residual oil fluid contact device (RFCC), for example, an atmospheric distillation residual oil having a density of 0.9293 g / cm 3 and a residual carbon of 5.5% by mass is reacted at 530 ° C., Fluid catalytic cracking can be achieved at a total pressure of 0.21 MPa and a catalyst / oil ratio of 6. The initial boiling point is a thermometer reading (° C.) when the first drop of distilled oil falls from the lower end of the condensing tube according to JIS K 2254.

飽和成分、レジン成分及びアスファルテン成分の含有率は、TLC−FID法により測定できる。TLC−FID法とは、薄層クロマトグラフィー(TLC)により試料を飽和成分、アロマ成分、レジン成分及びアスファルテン成分に4分割し、その後、水素炎イオン化検出器(Flame Ionization Detector:FID)にて各成分を検出し、各成分量の全成分量に対する百分率をもって組成成分値としたものである。まず、試料0.2g±0.01gをトルエン10mlに溶解して、試料溶液を調整する。予め空焼きしたシリカゲル棒状薄層(クロマロッド)の下端(ロッドホルダーの0.5cmの位置)にマイクロシリンジを用いて1μlスポットし、ドライヤー等により乾燥させる。次に、このマイクロロッド10本を1セットとして、展開溶媒にて試料の展開を行う。展開溶媒としては、第1展開槽にヘキサン、第2展開槽にヘキサン/トルエン(体積比20:80)、第3展開槽にジクロロメタン/メタノール(体積比95:5)を使用する。飽和成分については、ヘキサンを溶媒とする第1展開槽にて溶出して展開する。アロマ成分については、第1展開の後、第2展開槽にて溶出して展開する。アスファルテン成分については、第1展開、第2展開の後、ジクロロメタン/メタノールを溶媒とする第3展開槽にて溶出して展開する。展開後のクロマロッドを測定器(例えば、ダイアヤトロン社(現三菱化学ヤトロン社)製の「イアトロスキャンMK−5」(商品名))にセットし、水素炎イオン化検出器(FID)で各成分量を測定する。各成分量を合計すると全成分量が得られる。   The contents of the saturated component, the resin component, and the asphaltene component can be measured by the TLC-FID method. In the TLC-FID method, a sample is divided into four components by a thin layer chromatography (TLC) into a saturated component, an aroma component, a resin component, and an asphaltene component, and then each is detected by a flame ionization detector (FID). The component is detected, and the percentage of each component amount with respect to the total component amount is used as the composition component value. First, a sample solution is prepared by dissolving 0.2 g ± 0.01 g of a sample in 10 ml of toluene. Use a microsyringe to spot 1 μl at the lower end (0.5 cm position of the rod holder) of a silica gel rod-like thin layer (chroma rod) that has been baked in advance, and dry it with a dryer or the like. Next, 10 microrods are taken as one set, and the sample is developed with a developing solvent. As the developing solvent, hexane is used for the first developing tank, hexane / toluene (volume ratio 20:80) is used for the second developing tank, and dichloromethane / methanol (volume ratio 95: 5) is used for the third developing tank. The saturated component is eluted and developed in the first developing tank using hexane as a solvent. About an aroma component, it elutes and develops in the 2nd development tank after the 1st development. Asphaltene components are developed by elution in a third development tank using dichloromethane / methanol as a solvent after the first development and the second development. The developed chroma rod is set in a measuring instrument (for example, “Iatroscan MK-5” (trade name) manufactured by Diatron (currently Mitsubishi Chemical Yatron)), and each flame ionization detector (FID). Measure the amount of ingredients. The total amount of each component is obtained by summing the amounts of each component.

芳香指数faは、Knight法により求めることができる。Knight法では、炭素の分布を13C−NMR法による芳香族炭素のスペクトルとして3つの成分(A1,A2,A3)に分割する。ここで、A1は芳香族環内部炭素数、置換されている芳香族炭素と置換されていない芳香族炭素の半分(13C−NMRの約40〜60ppmのピークに相当)、A2は置換していない残りの半分の芳香族炭素(13C−NMRの約60〜80ppmのピークに相当)A3は脂肪族炭素数(13C−NMRの約130〜190ppmのピークに相当)であり、これらから、faは
fa=(A1+A2)/(A1+A2+A3)
により求められる。13C−NMR法が、ピッチ類の化学構造パラメータの最も基本的な量であるfaを定量的に求められる最良の方法であることは、文献(「ピッチのキャラクタリゼーション II. 化学構造」横野、真田、(炭素、1981(No.105)、p73〜81)に示されている。
The fragrance index fa can be determined by the Knight method. In the Knight method, the distribution of carbon is divided into three components (A1, A2, A3) as an aromatic carbon spectrum by the 13C-NMR method. Here, A1 is the aromatic ring internal carbon number, half of the aromatic carbon that is not substituted with the substituted aromatic carbon (corresponding to a peak of about 40-60 ppm of 13C-NMR), and A2 is not substituted. The remaining half of the aromatic carbon (corresponding to a peak of about 60 to 80 ppm of 13C-NMR) A3 is the number of aliphatic carbon (corresponding to a peak of about 130 to 190 ppm of 13C-NMR), from which fa is expressed as fa = (A1 + A2) / (A1 + A2 + A3)
Is required. The 13C-NMR method is the best method for quantitatively determining fa, which is the most basic amount of chemical structural parameters of pitches, as described in the literature ("Pitch Characterization II. Chemical Structure" Yokono, Sanada (Carbon, 1981 (No. 105), p73-81).

ディレードコーキング法は、加圧条件下、ディレードコーカーによって重質油を熱処理して生コークスを得る方法である。ディレードコーカーの条件として、圧力が0.5〜0.7MPa、温度が500〜530℃の範囲が好ましい。このディレードコーカープロセスの生コークスは、水分を多量に含むため、乾燥した後、粉砕、分級に供する。   The delayed coking method is a method of obtaining raw coke by heat-treating heavy oil with a delayed coker under pressurized conditions. As conditions for the delayed coker, a pressure is preferably in a range of 0.5 to 0.7 MPa and a temperature in a range of 500 to 530 ° C. The raw coke of this delayed coker process contains a large amount of moisture, so it is dried and then crushed and classified.

原料材料である炭素材料は、黒鉛化炉に導入される前に必要に応じて粉末化される。炭素材料の粉末の平均径は、好ましくは5〜50μmとする。5μmより小さいと、流動性が悪くなり、炉内をスムーズに流れなくなり連続処理が困難となる場合がある。50μmより大きいと、リチウムイオン電池電極材としてシートとしたとき十分な薄さが得られなくなる場合がある。平均粒径は、レーザ回折・散乱法を用いて測定できる。粉末化の方法は任意であるが、石油コークスを使用する場合、好ましくは、石油コークスを振動篩等で1mm〜5mm程度にし、その後、乾燥させる。一般的には、石油コークスは回収に揮発性の油成分と使用した際の水分とを含むので乾燥が必要であり、水分を好ましくは1質量%以下まで乾燥させるとよい。必要に応じ、好ましくは600℃程度の温度で1〜2時間加熱し、揮発性の油成分を除去させてもよい。この後、ジェットミル、ボールミル、ハンマーミルなどを使用して粉末にされる。炭素材料が石油コークス、石炭コークス等であれば、このまま黒鉛化することもよいが、そのあとの処理や出来上がる黒鉛粉の性状が良くなるため、一度好ましくは900〜1500℃程度の温度でか焼することがよい。かかるか焼はローターリーキルンを用いて行うことが一般的である。   The carbon material as the raw material is pulverized as necessary before being introduced into the graphitization furnace. The average diameter of the carbon material powder is preferably 5 to 50 μm. If it is smaller than 5 μm, the fluidity is deteriorated, and the continuous processing may be difficult because the fluid does not flow smoothly in the furnace. If it is larger than 50 μm, there may be a case where sufficient thickness cannot be obtained when a sheet is used as a lithium ion battery electrode material. The average particle diameter can be measured using a laser diffraction / scattering method. The method of pulverization is arbitrary, but when petroleum coke is used, the petroleum coke is preferably made to about 1 mm to 5 mm with a vibrating sieve or the like and then dried. In general, petroleum coke contains volatile oil components for recovery and moisture when used, and therefore needs to be dried, and the moisture is preferably dried to 1% by mass or less. If necessary, the volatile oil component may be removed by heating at a temperature of preferably about 600 ° C. for 1 to 2 hours. Thereafter, it is made into powder using a jet mill, a ball mill, a hammer mill or the like. If the carbon material is petroleum coke, coal coke, etc., it may be graphitized as it is. However, since the properties of the subsequent processing and the resulting graphite powder are improved, it is preferably calcined at a temperature of about 900 to 1500 ° C. once. It is good to do. Such calcination is generally performed using a rotary kiln.

本発明の別の一実施形態によれば、上記の縦型黒鉛化炉を用いた黒鉛の製造方法である。つまり、炭素材料を、縦型黒鉛化炉に投入する工程と、前記投入された炭素材料を、前記炉の外側から誘導加熱によって1700〜2300℃に加熱する誘導加熱領域を通過させる工程と、さらに、前記炉の外周部に設けられた熱源で、2300〜3000℃に加熱する外部熱源領域を通過させて黒鉛に変換する工程と、前記黒鉛を冷却する工程と、前記冷却された黒鉛を前記炉の下部から取り出す工程とを少なくとも含む黒鉛の製造方法である。   According to another embodiment of the present invention, a method for producing graphite using the above vertical graphitization furnace. That is, a step of charging a carbon material into a vertical graphitization furnace, a step of passing the charged carbon material through an induction heating region where the carbon material is heated to 1700-2300 ° C. by induction heating from the outside of the furnace, and A step of converting to an external heat source region heated to 2300 to 3000 ° C. with a heat source provided on the outer periphery of the furnace, converting the graphite, a step of cooling the graphite, and a step of cooling the cooled graphite into the furnace A method for producing graphite including at least a step of removing from the lower part of the graphite.

この方法により、炭素材料に粉体を用いた場合でも、均一に熱を加えることができるため、均質な黒鉛を得ることが可能となる。   By this method, even when powder is used for the carbon material, heat can be applied uniformly, so that homogeneous graphite can be obtained.

以下、実施例および比較例によって本発明を説明するが、本発明は実施例に限定するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention, this invention is not limited to an Example.

[実施例1〜2および比較例1]
(1)炭素材料の準備
使用した原料である炭素材料は、以下のとおりである。
<生コークスA>
初留点335℃、アスファルテン+レジン分の含量が27質量%、飽和分の含量が43質量%の重油と芳香族指数0.4以上かつ初留点が168℃の重油の混合物を平均温度450℃でディレードコーキングした生コークスを、振動篩で3mm以下に篩った。その後、150〜200℃で熱風循環炉を用いて水分が1質量%以下になるまで乾燥させたのち、ローターミルで平均粒径12μmの粉末とした。
<か焼コークスA>(実施例1で使用)
ローターリーキルンを用いて生コークスAを約1500℃でか焼し、得られたか焼コークスを振動篩等で3mm以下に篩ったのち、ローターミルで平均粒径12μmの粉末とした。
<生コークスB>
市販の生コークスを、振動篩で3mm以下に篩ったのち、150〜200℃で熱風循環炉を用いて水分が1質量%以下になるまで乾燥させた。その後、ローターミルで平均粒径12μmの粉末とした。
<か焼コークスB>(実施例2、比較例1で使用)
ローターリーキルンを用いて生コークスBを約1500℃でか焼し、得られたか焼コークスを振動篩等で3mm以下に篩ったのち、ローターミルで平均粒径12μmの粉末とした。
[Examples 1 and 2 and Comparative Example 1]
(1) Preparation of carbon material The carbon material which is the used raw material is as follows.
<Raw coke A>
A mixture of heavy oil having an initial boiling point of 335 ° C., an asphaltene + resin content of 27% by mass and a saturated content of 43% by mass and a heavy oil having an aromatic index of 0.4 or more and an initial boiling point of 168 ° C. has an average temperature of 450 Raw coke subjected to delayed coking at 0 ° C. was sieved to 3 mm or less with a vibrating sieve. Thereafter, it was dried at 150 to 200 ° C. using a hot air circulating furnace until the water content became 1% by mass or less, and then a powder having an average particle diameter of 12 μm was obtained by a rotor mill.
<Calcined coke A> (used in Example 1)
Raw coke A was calcined at about 1500 ° C. using a rotary kiln, and the obtained calcined coke was sieved to 3 mm or less with a vibration sieve or the like, and then powdered with an average particle size of 12 μm with a rotor mill.
<Raw coke B>
Commercially available raw coke was sieved to 3 mm or less with a vibrating sieve, and then dried at 150 to 200 ° C. using a hot air circulating furnace until the water content became 1% by mass or less. Then, it was set as the powder with an average particle diameter of 12 micrometers with the rotor mill.
<Calcined coke B> (used in Example 2 and Comparative Example 1)
Raw coke B was calcined at about 1500 ° C. using a rotary kiln, and the obtained calcined coke was sieved to 3 mm or less with a vibrating sieve or the like, and then powdered with an average particle size of 12 μm by a rotor mill.

(2)黒鉛化
得られた炭素材料を、縦型黒鉛化炉を用いて黒鉛化させた。黒鉛化炉は、黒鉛製の内壁を備えた高さ4.5m、内径20cmの円筒形状の炉を有し、炉の上部に投入口、炉の下部に取り出し口が設置されている。投入口から炉に投入した炭素材料を、炉内で加熱し黒鉛に変換させた。炉の底部から上方1mの間に冷却ジャケットを設置して、黒鉛に変換した材料を冷却させ、取り出し口を経て回収部で回収した。実質上の黒鉛化時間が7〜10時間となるようにした。
(2) Graphitization The obtained carbon material was graphitized using a vertical graphitization furnace. The graphitization furnace has a cylindrical furnace having a height of 4.5 m and an inner diameter of 20 cm with an inner wall made of graphite, and a charging port is installed at the upper part of the furnace and an outlet is installed at the lower part of the furnace. The carbon material charged into the furnace from the charging port was heated in the furnace and converted into graphite. A cooling jacket was installed 1 m above the bottom of the furnace to cool the material converted to graphite, and the material was recovered at the recovery part via the outlet. The substantial graphitization time was 7-10 hours.

実施例1および2においては、図3の縦型黒鉛化炉2bのように、加熱ゾーンが3領域に区分された炉を用いる。各領域は1.1mである。1つ目の領域は誘導加熱領域であり、炉の外周部に図2(b)のようにコイルを設置した。印加する交流電流の周波数を50Hzとして、炭素材料を2000〜2100℃となるように加熱した(焼成部)。2つ目の領域は外部熱源領域であり、炉の外周部にヒーターを設置し、これによって炭素材料を2500〜2600℃に加熱した(焼成部)。3つ目の領域は中間領域であり、外部熱源領域の下の炉の外周部に保温材を設置し、上記の2つの領域で炭素材料に与えた熱を用いて、1900〜2100℃とした(焼鈍部もしくは第1冷却部)。   In Examples 1 and 2, a furnace in which the heating zone is divided into three regions is used like the vertical graphitization furnace 2b of FIG. Each area is 1.1 m. The first region was an induction heating region, and a coil was installed on the outer periphery of the furnace as shown in FIG. The frequency of the alternating current to be applied was set to 50 Hz, and the carbon material was heated to 2000 to 2100 ° C. (baking part). The second region was an external heat source region, and a heater was installed on the outer periphery of the furnace, thereby heating the carbon material to 2500 to 2600 ° C. (firing part). The third region is an intermediate region, and a heat insulating material is installed on the outer periphery of the furnace below the external heat source region, and the heat applied to the carbon material in the above two regions is set to 1900 to 2100 ° C. (Annealed part or first cooling part).

比較例1においては、実施例1で用いた炉の誘電加熱領域が設置されていない代わりに、外部熱源領域が2.4mとなる炉を用いた。外部熱源領域での条件は、実施例と同様にして実施した。この炉は、従来用いられるものと同様の使用である。   In Comparative Example 1, a furnace having an external heat source area of 2.4 m was used in place of the dielectric heating area of the furnace used in Example 1 being installed. The conditions in the external heat source region were the same as in the example. This furnace is used in the same manner as conventionally used.

(3)黒鉛及び黒鉛化炉の評価
得られた黒鉛粉末の性状を観察し、その硫黄分を蛍光X線分析装置を用いて測定した。また、使用した黒鉛化炉の内部を観察して損傷の有無を評価し、および排ガス中の二酸化炭素濃度を、ガスクロマトグラフを用いて測定した。
(3) Evaluation of graphite and graphitization furnace The properties of the obtained graphite powder were observed, and the sulfur content thereof was measured using a fluorescent X-ray analyzer. Further, the inside of the used graphitization furnace was observed to evaluate the presence or absence of damage, and the carbon dioxide concentration in the exhaust gas was measured using a gas chromatograph.

実施例1および2で得られた黒鉛粉末は、硫黄分を測定すると、各々1.0ppm、0.90ppmであった。実施例1および2ともに、炉の排ガス中の二硫化炭素濃度は50ppmであり、黒鉛化炉の内部を確認したところ、損傷は見られず、問題は見いだされなかった。   The graphite powders obtained in Examples 1 and 2 were 1.0 ppm and 0.90 ppm, respectively, when the sulfur content was measured. In both Examples 1 and 2, the concentration of carbon disulfide in the exhaust gas from the furnace was 50 ppm, and when the inside of the graphitization furnace was confirmed, no damage was found and no problem was found.

比較例1で得られた黒鉛粉末は、硫黄分を測定すると、3.0ppmであった。また、実施例1および2に比べて、比較例1は、黒鉛化に1.2〜1.5倍程度の時間がかかった。   The graphite powder obtained in Comparative Example 1 was 3.0 ppm when the sulfur content was measured. In addition, compared with Examples 1 and 2, Comparative Example 1 took about 1.2 to 1.5 times longer to graphitize.

1a、1b:縦型黒鉛化炉を用いた黒鉛製造システム
2a、2b:炉
2a−1、2b−1:投入口
3:コイル
6:計量フィーダー
7:ホッパー
8:加熱装置
10:保温材
11:冷却ジャケット
12:取り出し口
13:回収部
M:炭素材料
G:黒鉛
DESCRIPTION OF SYMBOLS 1a, 1b: Graphite manufacturing system using vertical graphitization furnace 2a, 2b: Furnace 2a-1, 2b-1: Input port 3: Coil 6: Weighing feeder 7: Hopper 8: Heating device 10: Insulating material 11: Cooling jacket 12: Extraction port 13: Collection part M: Carbon material G: Graphite

Claims (5)

上部から投入された炭素材料を加熱して黒鉛化し、得られた黒鉛を下部から取り出す連続式の縦型黒鉛化炉であって、
前記炭素材料を投入するために前記炉の上部に設けられた投入口と、
前記投入口の下で前記炉の外周部にらせん状に巻かれ、交流電流を通すことにより前記炭素材料を加熱する誘導加熱領域を形成するコイルと、
前記誘導加熱領域の下で前記炉の外周部に設けられた、前記誘導加熱領域を形成するコイルではない、ヒーターから成る熱源であって、前記炉の外側から前記炭素材料を加熱する外部熱源領域を形成する熱源と、
前記外部熱源領域の下で前記炉の外周部に設けられた冷却用ジャケットであって、生成された黒鉛を冷却する冷却領域を形成する冷却用ジャケットと、
前記冷却領域の下に設けられた前記黒鉛を取り出す取り出し口と
を備える縦型黒鉛化炉。
A continuous vertical graphitization furnace in which a carbon material charged from the upper part is heated and graphitized, and the obtained graphite is taken out from the lower part,
A charging port provided at the top of the furnace for charging the carbon material;
A coil that is spirally wound around the outer periphery of the furnace under the inlet and forms an induction heating region that heats the carbon material by passing an alternating current;
An external heat source region that is provided on the outer periphery of the furnace below the induction heating region and is a heat source that is not a coil that forms the induction heating region, but is a heater , and heats the carbon material from the outside of the furnace A heat source to form,
A cooling jacket provided on the outer periphery of the furnace under the external heat source region, and forming a cooling region for cooling the generated graphite;
A vertical graphitization furnace comprising a take-out port for taking out the graphite provided under the cooling region.
前記交流電流が、30〜1000Hzである請求項1に記載の縦型黒鉛化炉。   The vertical graphitization furnace according to claim 1, wherein the alternating current is 30 to 1000 Hz. 前記コイルが、1700〜2300℃の前記誘導加熱領域を形成し、前記熱源が、2300〜3000℃の前記外部熱源領域を形成する請求項1または請求項2に記載の縦型黒鉛化炉。   The vertical graphitization furnace according to claim 1 or 2, wherein the coil forms the induction heating region of 1700 to 2300 ° C, and the heat source forms the external heat source region of 2300 to 3000 ° C. 前記外部熱源領域と前記冷却領域の間に、1900〜2100℃となる中間領域が形成される、請求項1〜3のいずれか1項に記載の縦型黒鉛化炉。   The vertical graphitization furnace according to any one of claims 1 to 3, wherein an intermediate region of 1900 to 2100 ° C is formed between the external heat source region and the cooling region. 炭素材料を、縦型黒鉛化炉に投入する工程と、
前記投入された炭素材料を、前記炉の外側から誘導加熱によって1700〜2300℃に加熱する誘導加熱領域を通過させる工程と、
さらに、前記炉の外周部に設けられた、前記誘導加熱領域を形成するものではない、ヒーターから成る熱源で、2300〜3000℃に加熱する外部熱源領域を通過させて黒鉛に変換する工程と、
前記黒鉛を冷却する工程と、
前記冷却された黒鉛を前記炉の下部から取り出す工程と
を少なくとも含む黒鉛の製造方法。
A step of introducing a carbon material into a vertical graphitization furnace;
Passing the charged carbon material through an induction heating region for heating to 1700-2300 ° C. by induction heating from the outside of the furnace;
Furthermore, the step of converting to graphite by passing through an external heat source region heated to 2300 to 3000 ° C. with a heat source comprising a heater provided on the outer peripheral portion of the furnace, which does not form the induction heating region ;
Cooling the graphite;
Removing the cooled graphite from the lower part of the furnace.
JP2014069312A 2014-03-28 2014-03-28 Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite Active JP6215112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069312A JP6215112B2 (en) 2014-03-28 2014-03-28 Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069312A JP6215112B2 (en) 2014-03-28 2014-03-28 Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite

Publications (2)

Publication Number Publication Date
JP2015189646A JP2015189646A (en) 2015-11-02
JP6215112B2 true JP6215112B2 (en) 2017-10-18

Family

ID=54424476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069312A Active JP6215112B2 (en) 2014-03-28 2014-03-28 Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite

Country Status (1)

Country Link
JP (1) JP6215112B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107986269A (en) * 2017-12-22 2018-05-04 中国平煤神马集团开封炭素有限公司 A kind of internal thermal serial graphitized technique of ultrahigh power graphite electrode joint
KR102315610B1 (en) 2021-06-10 2021-10-21 에스아이에스 주식회사 Vertical graphitization furnace system
KR102577347B1 (en) * 2023-06-06 2023-09-12 에스아이에스 주식회사 Multistage vertical graphitization furnace system
KR102595314B1 (en) * 2023-06-06 2023-10-26 에스아이에스 주식회사 Separation type vertical graphitization furnace system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108253783B (en) * 2018-03-07 2023-10-31 扬州伟达机械有限公司 Small mesh belt presintering furnace
CN109553097B (en) * 2019-02-15 2024-06-07 湖南烯瑞自动化设备有限公司 Graphite production line and continuous graphitizing furnace thereof
DE102019126394A1 (en) * 2019-09-30 2021-04-01 Onejoon Gmbh Process for the production of graphite and vertical graphitization furnace
KR102325756B1 (en) * 2019-12-20 2021-11-11 주식회사 포스코 Graphitization apparatus
AU2021327037A1 (en) * 2020-08-18 2023-04-20 Metal Drilling Pty Ltd Copper recovery method and apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176180A (en) * 1982-04-12 1983-10-15 イビデン株式会社 Manufacture of carbon material
JPH0635325B2 (en) * 1986-09-22 1994-05-11 東洋炭素株式会社 Method for producing high-purity graphite material
JPH02267108A (en) * 1989-04-07 1990-10-31 Toyo Tanso Kk Desulfurization of graphite sheet and desulfurizer therefor
JP2801930B2 (en) * 1989-08-29 1998-09-21 大阪瓦斯株式会社 Graphite powder production equipment
JPH11209114A (en) * 1998-01-22 1999-08-03 Hitachi Chem Co Ltd Production of graphite, lithium secondary battery and its negative electrode
EP1481572A4 (en) * 2002-02-06 2008-07-30 Touchstone Res Lab Ltd Microwave assisted treatment of carbon foam
JP4877862B1 (en) * 2010-10-29 2012-02-15 中外炉工業株式会社 Powder heat treatment equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107986269A (en) * 2017-12-22 2018-05-04 中国平煤神马集团开封炭素有限公司 A kind of internal thermal serial graphitized technique of ultrahigh power graphite electrode joint
KR102315610B1 (en) 2021-06-10 2021-10-21 에스아이에스 주식회사 Vertical graphitization furnace system
KR102577347B1 (en) * 2023-06-06 2023-09-12 에스아이에스 주식회사 Multistage vertical graphitization furnace system
KR102595314B1 (en) * 2023-06-06 2023-10-26 에스아이에스 주식회사 Separation type vertical graphitization furnace system

Also Published As

Publication number Publication date
JP2015189646A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6215112B2 (en) Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite
JP6230944B2 (en) Vertical graphitization furnace and method for producing graphite
JP6230945B2 (en) Two-stage heating type vertical graphitization furnace and method for producing graphite
US9725323B2 (en) Method for producing graphite and particulates for graphite production
CN102203007B (en) Process for the production and treatment of graphite powders
US9732278B2 (en) Petroleum coke and production method for same
CN106278266A (en) Preparation method for the needle coke of low cte graphite electrodes
US10967348B2 (en) Heat treatment apparatus for carbonaceous grains and method therefor
CN1014152B (en) Process for mfg. moulded coke by electrical heating in tank furnace and tank furnace for mfg. same
US4100265A (en) Process for preparation of high quality coke
JP2016155703A (en) Continuous manufacturing method of graphite with vertical graphitizing furnace
JP6895982B2 (en) Catalytic additive for coke derived from petroleum or coal
RU2396498C1 (en) Device for high-temperature treatment of carbon materials (electro-calcinator)
US6375918B1 (en) Method and device for continuously burning powder carbon
EA024358B1 (en) Process for manufacturing silicon carbide
Boenigk et al. Property profile of lab-scale anodes produced with 180° C Mettler coal tar pitch
RU2544833C1 (en) Method of producing carbon-containing electroconductive material
US1993756A (en) Method of processing coal
US319945A (en) Electric smelting-furnace
Maier et al. Design of Induction Heatable Carbon‐Based Foams for Catalysis
JP5714165B1 (en) Method for producing coking coal and method for producing coke
SU1161462A1 (en) Method of roasting carbon-containing moulded workpieces
USRE12964E (en) A corpo
JP2000256005A (en) Furnace and method for firing powdered carbon
NO144053B (en) CLOCK RING MACHINE.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6215112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250