JPH11209114A - Production of graphite, lithium secondary battery and its negative electrode - Google Patents

Production of graphite, lithium secondary battery and its negative electrode

Info

Publication number
JPH11209114A
JPH11209114A JP10010398A JP1039898A JPH11209114A JP H11209114 A JPH11209114 A JP H11209114A JP 10010398 A JP10010398 A JP 10010398A JP 1039898 A JP1039898 A JP 1039898A JP H11209114 A JPH11209114 A JP H11209114A
Authority
JP
Japan
Prior art keywords
graphite
graphitization
secondary battery
lithium secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10010398A
Other languages
Japanese (ja)
Inventor
Koichi Takei
康一 武井
Yoshito Ishii
義人 石井
Tatsuya Nishida
達也 西田
Atsushi Fujita
藤田  淳
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10010398A priority Critical patent/JPH11209114A/en
Publication of JPH11209114A publication Critical patent/JPH11209114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a graphite production method permitting the production with a simple process, by which high graphitization degree is obtd. even if addition of a graphitized catalyst is reduced, and graphite suitable for a lithium secondary battery which has high charging and discharging characteristics and is excellent in quick charging and discharging characteristics, cycle characteristics, irreversible volume of the first cycle, etc., is produced at a reduced cost and at reduced number of stages as well, a negative electrode for the lithium secondary battery which has high charging and discharging characteristics and is excellent in quick charging and discharging characteristics, cycle characteristics, irreversible volume of the first cycle, etc., and the lithium secondary battery which has high charging and discharging characteristics and is excellent in quick charging and discharging characteristics, cycle characteristics, irreversible volume of the first cycle, etc. SOLUTION: Volatile components of the graphited catalyst generated at the graphitization stage are brought into contact with a mixture of materials before graphitization in the graphite production method incorporating a stage for obtaining the mixture of materials by mixing graphitizable aggregate or graphite, graphtizable binder and the graphitized catalyst together, a calcining stage and the graphitization stage. The negative electrode for the lithium secondary battery formed by incorporating the graphite produced by this production method and the lithium secondary battery have this negative electrode 13 and a position electrode 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポータブル機器、
電気自動車、電力貯蔵用等に用いるのに好適な、サイク
ル特性、急速充放電特性、安全性等に優れ、かつ高容量
のリチウム二次電池を実現する負極用材料として好適な
黒鉛の製造法、前記黒鉛を用いたリチウム二次電池及び
その負極に関する。
The present invention relates to a portable device,
Electric vehicles, suitable for use in power storage, etc., excellent cycle characteristics, rapid charge and discharge characteristics, excellent safety, etc., and a method for producing graphite suitable as a negative electrode material for realizing a high capacity lithium secondary battery, The present invention relates to a lithium secondary battery using the graphite and a negative electrode thereof.

【0002】[0002]

【従来の技術】従来黒鉛粒子は、例えば天然黒鉛粒子、
コークスを黒鉛化した人造黒鉛粒子、有機系高分子材
料、ピッチ等を黒鉛化した人造黒鉛粒子、これらを粉砕
した黒鉛粒子などがある。これらの粒子は、有機系結着
剤及び有機溶剤と混合して黒鉛ペーストとし、この黒鉛
ペーストを銅箔の表面に塗布し、溶剤を乾燥させてリチ
ウムイオン二次電池用負極として使用されている。例え
ば、特公昭62−23433号公報に示されるように、
負極に黒鉛を使用することでリチウムのデンドライトに
よる内部短絡の問題を解消し、サイクル特性の改良を図
っている。
2. Description of the Related Art Conventional graphite particles include, for example, natural graphite particles,
Examples include artificial graphite particles obtained by graphitizing coke, organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, and graphite particles obtained by pulverizing these. These particles are mixed with an organic binder and an organic solvent to form a graphite paste, the graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium ion secondary battery. . For example, as shown in JP-B-62-23433,
By using graphite for the negative electrode, the problem of internal short circuit due to lithium dendrite is eliminated, and the cycle characteristics are improved.

【0003】しかしながら、黒鉛結晶が発達している天
然黒鉛粒子及びコークスを黒鉛化した人造黒鉛粒子は、
c軸芳香の結晶の層間の結合力が、結晶の面方向の結合
に比べて弱いため、粉砕により黒鉛層間の結合が切れ、
アスペクト比の大きい、いわゆる鱗状の黒鉛粒子とな
る。この鱗状の黒鉛粒子は、アスペクト比が大きいた
め、バインダと混練して集電体に塗布して電極を作製し
た時に、鱗状の黒鉛粒子が集電体の面方向に配向し、そ
の結果、黒鉛粒子へのリチウムの吸蔵・放出の繰り返し
によって発生するc軸方向の歪みにより電極内部の破壊
が生じ、サイクル特性が低下する問題があるばかりでな
く、急速充放電特性が悪くなる傾向がある。さらに、ア
スペクト比の大きな鱗状の黒鉛粒子は、比表面積が大き
いため、集電体との密着性が悪く、多くのバインダが必
要となる問題点がある。集電体との密着性が悪いと、集
電効果が低下し、放電容量、急速充放電特性、サイクル
特性等が低下する問題がある。また、比表面積が大きな
鱗状黒鉛粒子は、これを用いたリチウム二次電池の第一
回サイクル目の不可逆容量が大きいという問題がある。
さらに、比表面積の大きな鱗状黒鉛粒子は、リチウムを
吸蔵した状態での熱安定性が低く、リチウム二次電池用
負極材料として用いた場合、安全性に問題がある。そこ
で、急速充放電特性、サイクル特性、第一回サイクル目
の不可逆容量に優れ、低比表面積であって、安全性を改
善できる黒鉛粒子が要求されている。
[0003] However, natural graphite particles in which graphite crystals are developed and artificial graphite particles obtained by graphitizing coke are:
Since the bonding force between the layers of the c-axis aromatic crystal is weaker than the bonding in the plane direction of the crystal, the bonding between the graphite layers is broken by pulverization,
So-called graphite particles having a large aspect ratio are obtained. Since the scale-like graphite particles have a large aspect ratio, the scale-like graphite particles are oriented in the surface direction of the current collector when kneaded with a binder and applied to a current collector to produce an electrode. Distortion in the c-axis direction caused by the repeated insertion and extraction of lithium into and from the particles causes the destruction of the inside of the electrode, which causes not only the problem of reduced cycle characteristics but also the tendency of rapid charge / discharge characteristics to deteriorate. Further, the scale-like graphite particles having a large aspect ratio have a large specific surface area, so that they have poor adhesion to a current collector and require a large amount of binder. If the adhesion to the current collector is poor, there is a problem that the current collecting effect is reduced and the discharge capacity, rapid charge / discharge characteristics, cycle characteristics, and the like are reduced. Further, scale-like graphite particles having a large specific surface area have a problem that the irreversible capacity in the first cycle of a lithium secondary battery using the particles is large.
Furthermore, scale-like graphite particles having a large specific surface area have low thermal stability in a state where lithium is stored, and have a problem in safety when used as a negative electrode material for a lithium secondary battery. Therefore, there is a demand for graphite particles which are excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, have a low specific surface area, and can improve safety.

【0004】また、リチウム二次電池の市場拡大に伴
い、使用する材料に付いて大きなコスト低減が求めら
れ、製造工程の改善が必要となっていた。特に黒鉛化工
程は、高い充放電容量を実現するためには黒鉛粒子の黒
鉛化度を高める必要が有り、2500℃以上の極めて高
い温度で試料を処理する工程であるため、エネルギー費
が高い、炉の昇温・冷却に長時間を要する、炉詰め、炉
出しなどの手作業が必要などの理由から製品のコストを
大きく上昇させる工程となっている。また、黒鉛化工程
では、高温で添加した黒鉛化触媒が揮発し、この揮発成
分が系内の炭素と結合・分解を繰り返す過程で黒鉛化が
進行するとされている。黒鉛化触媒は最終的には系外に
飛散してしまうため、炭素の十分な黒鉛化を達成するた
めには高価な黒鉛化触媒を多く添加しておく必要性が生
じている。
[0004] Further, with the market expansion of lithium secondary batteries, there has been a demand for a large cost reduction in the materials used, and it has been necessary to improve the manufacturing process. In particular, the graphitization step requires increasing the degree of graphitization of the graphite particles in order to realize a high charge / discharge capacity, and is a step of processing the sample at an extremely high temperature of 2500 ° C. or more, so that the energy cost is high. This is a process that greatly increases the cost of the product because it takes a long time to heat and cool the furnace, and manual work such as filling and unloading the furnace is required. Further, in the graphitization step, the graphitization catalyst added at a high temperature is volatilized, and graphitization proceeds in a process in which this volatile component repeatedly bonds and decomposes with carbon in the system. Since the graphitization catalyst eventually scatters outside the system, it is necessary to add a large amount of expensive graphitization catalyst in order to achieve sufficient graphitization of carbon.

【0005】[0005]

【発明が解決しようとする課題】請求項1及び2記載の
発明は、黒鉛化触媒の添加量を少なくしても高い黒鉛化
度が得られ、高い充放電特性を有し、急速充放電特性、
サイクル特性、第一回サイクル目の不可逆容量等に優れ
るリチウム二次電池に好適な黒鉛を工数低減と併せて低
コストで製造が可能となる簡略な工程で作製可能な黒鉛
の製造法を提供するものである。請求項3及び4記載の
発明は、高い充放電特性を有し、急速充放電特性、サイ
クル特性、第一回サイクル目の不可逆容量等に優れたリ
チウム二次電池用負極を提供するものである。請求項5
記載の発明は、高い充放電特性を有し、急速充放電特
性、サイクル特性、第一回サイクル目の不可逆容量等に
優れたリチウム二次電池を提供するものである。
According to the first and second aspects of the present invention, a high degree of graphitization can be obtained even with a small amount of a graphitization catalyst, high charge / discharge characteristics, and rapid charge / discharge characteristics. ,
Provided is a method for manufacturing graphite that can be manufactured in a simple process that can be manufactured at low cost together with a reduction in man-hours, in addition to a reduction in man-hours, a graphite suitable for a lithium secondary battery having excellent cycle characteristics and irreversible capacity in the first cycle. Things. The invention according to claims 3 and 4 provides a negative electrode for a lithium secondary battery having high charge / discharge characteristics, and excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, and the like. . Claim 5
The described invention is to provide a lithium secondary battery having high charge / discharge characteristics, and excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, and the like.

【0006】[0006]

【課題を解決するための手段】本発明は、黒鉛化可能な
骨材又は黒鉛、黒鉛化可能なバインダ及び黒鉛化触媒を
混合して材料混合物を得る工程、焼成工程並びに黒鉛化
工程を含む黒鉛の製造法において、前記黒鉛化工程で発
生する黒鉛化触媒の揮発成分を、黒鉛化前の材料混合物
に接触させることを特徴とする黒鉛の製造法に関する。
また本発明は、前記黒鉛化工程が、連続黒鉛化炉を用い
て行われ、その高温領域で発生する黒鉛化触媒の揮発成
分を、黒鉛化前の低温領域にある材料混合物と接触させ
ることを特徴とする黒鉛の製造法に関する。また本発明
は、前記の製造法で製造された黒鉛を含有してなるリチ
ウム二次電池用負極に関する。また本発明は、黒鉛と有
機系結着剤の混合物を、集電体と一体化してなる前記リ
チウム二次電池用負極に関する。また本発明は、前記負
極と正極を有してなるリチウム二次電池に関する。
SUMMARY OF THE INVENTION The present invention provides a process comprising the steps of mixing a graphitizable aggregate or graphite, a graphitizable binder, and a graphitizing catalyst to obtain a material mixture, a calcination step, and a graphitizing step. The present invention relates to a method for producing graphite, wherein a volatile component of a graphitization catalyst generated in the graphitization step is brought into contact with a material mixture before graphitization.
Further, the present invention provides that the graphitization step is performed using a continuous graphitization furnace, and the volatile component of the graphitization catalyst generated in the high temperature region is brought into contact with the material mixture in the low temperature region before graphitization. The present invention relates to a method for producing graphite. Further, the present invention relates to a negative electrode for a lithium secondary battery containing graphite produced by the above-mentioned production method. The present invention also relates to the negative electrode for a lithium secondary battery, wherein the mixture of graphite and an organic binder is integrated with a current collector. Further, the present invention relates to a lithium secondary battery having the negative electrode and the positive electrode.

【0007】[0007]

【発明の実施の形態】本発明は、黒鉛化可能な骨材又は
黒鉛、黒鉛化可能なバインダ及び黒鉛化触媒を混合して
混合物を得る工程、焼成工程並びに黒鉛化工程を含んで
なり、前記黒鉛化工程が、黒鉛化工程で発生する黒鉛化
触媒の揮発成分を、黒鉛化前の材料混合物に接触させる
ことを特徴とする。上記黒鉛化可能な骨材としては、フ
ルードコークス、ニードルコークス等の各種コークス類
が好ましい。また、上記黒鉛としては、天然黒鉛や人造
黒鉛などが挙げられる。黒鉛化可能なバインダとして
は、例えば、石炭系、石油系、人造等の各種ピッチ、タ
ール、熱硬化性樹脂、熱可塑性樹脂等の有機系材料が挙
げられる。バインダの配合量は、黒鉛化可能な骨材又は
黒鉛に対し、5〜80重量%添加することが好ましく、
10〜80重量%添加することがより好ましく、15〜
80重量%添加することがさらに好ましい。バインダの
量が多すぎたり少なすぎると、作製する黒鉛粒子のアス
ペクト比及び比表面積が大きくなり易いという傾向があ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a step of mixing a graphitizable aggregate or graphite, a graphitizable binder and a graphitizing catalyst to obtain a mixture, a firing step and a graphitizing step. The graphitization step is characterized in that a volatile component of the graphitization catalyst generated in the graphitization step is brought into contact with a material mixture before graphitization. As the graphitizable aggregate, various cokes such as fluid coke and needle coke are preferable. Examples of the graphite include natural graphite and artificial graphite. Examples of the binder which can be graphitized include various pitches such as coal-based, petroleum-based, and artificial, tar, thermosetting resin, and organic materials such as thermoplastic resins. The compounding amount of the binder is preferably 5 to 80% by weight based on the graphitizable aggregate or graphite,
It is more preferable to add 10 to 80% by weight,
More preferably, 80% by weight is added. If the amount of the binder is too large or too small, the graphite particles to be produced tend to have an increased aspect ratio and specific surface area.

【0008】黒鉛化可能な骨材又は黒鉛とバインダの混
合方法は、特に制限はなく、ニーダー等を用いて行われ
るが、バインダの軟化点以上の温度で混合することが好
ましい。具体的にはバインダがピッチ、タール等の際に
は、50〜300℃が好ましく、熱硬化性樹脂の場合に
は、20〜100℃が好ましい。黒鉛化触媒としては、
例えば鉄、ニッケル、チタン、ケイ素、硼素等の金属、
これらの炭化物、酸化物などの黒鉛化触媒が使用でき
る。これらの中で、ケイ素または硼素の、炭化物又は酸
化物が好ましい。黒鉛化触媒は、黒鉛化可能な骨材又は
黒鉛と黒鉛化可能なバインダとの混合物に対して0.1
〜50重量%添加することが好ましく、0.5〜30重
量%添加することがより好ましく、0.5〜20重量%
添加することがさらに好ましい。0.1重量%未満であ
ると黒鉛粒子の結晶の発達が悪くなり、充放電容量が低
下する傾向にある。一方、50重量%を超えると、均一
に混合することが困難となり、作業性が低下する傾向に
ある。
[0008] The method of mixing the graphitizable aggregate or graphite and the binder is not particularly limited, and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, the temperature is preferably 50 to 300 ° C, and when the binder is a thermosetting resin, the temperature is preferably 20 to 100 ° C. As a graphitization catalyst,
For example, metals such as iron, nickel, titanium, silicon, and boron,
Graphitization catalysts such as these carbides and oxides can be used. Of these, carbides or oxides of silicon or boron are preferred. The graphitization catalyst is 0.1% based on the graphitizable aggregate or the mixture of graphite and the graphitizable binder.
-50% by weight, preferably 0.5-30% by weight, more preferably 0.5-20% by weight.
More preferably, it is added. If it is less than 0.1% by weight, the development of graphite particles becomes poor, and the charge / discharge capacity tends to decrease. On the other hand, if it exceeds 50% by weight, it becomes difficult to mix uniformly, and the workability tends to decrease.

【0009】以上のようにして得た混合物は、これを焼
成する。焼成は前記混合物が酸化し難い雰囲気で行うこ
とが好ましく、例えば窒素雰囲気中、アルゴンガス中、
真空中で焼成する方法が挙げられる。焼成温度は、60
0〜1100℃が好ましく、焼成時間は1分〜10時間
であることが好ましい。焼成に供される混合物の形態
は、ブロック状、ペレット状、顆粒状に成形されたもの
や、粉末状に粉砕工程で粉砕されたもののいずれも採用
できる。焼成を行う炉は、バッチ式の炉でもよいし連続
式の炉でもよい。
The mixture obtained as described above is fired. The firing is preferably performed in an atmosphere in which the mixture is hardly oxidized, for example, in a nitrogen atmosphere, in an argon gas,
A method of firing in a vacuum is given. The firing temperature is 60
The temperature is preferably from 0 to 1100 ° C, and the firing time is preferably from 1 minute to 10 hours. As the form of the mixture to be fired, any of a block, a pellet, a granule, and a powder that has been pulverized in a pulverizing step can be employed. The furnace for firing may be a batch type furnace or a continuous type furnace.

【0010】本発明における黒鉛化工程は、前記黒鉛化
工程で発生する黒鉛化触媒の揮発成分を、黒鉛化前の材
料混合物に接触させることが必要であるが、具体的に
は、連続黒鉛化炉を用いて行うことが好ましく、その黒
鉛化炉の高温領域で材料混合物の黒鉛化とともに発生す
る黒鉛化触媒の揮発成分を、黒鉛化前の低温領域にある
材料混合物と接触させる機構を有することが好ましい。
ここで、連続黒鉛化炉とは、黒鉛化を行う炉において試
料の挿入及び排出の際に炉全体の温度を上昇、冷却する
ことがない黒鉛化炉であり、例えば、挿入口から試料を
炉内に挿入し、材料混合物を移動し、高温領域で黒鉛化
を行わせ、次いで排出口から黒鉛化された材料を取り出
す方式の炉が挙げられる。一般には、黒鉛化に必要な高
温領域を挟んでその挿入口側及び排出口側に、より低い
温度領域を有する炉がある。炉内の材料混合物の移動
は、材料混合物を連続的に押し入れること等により行う
ことができる。
[0010] In the graphitization step of the present invention, it is necessary to bring the volatile component of the graphitization catalyst generated in the graphitization step into contact with the material mixture before graphitization. It is preferable to use a furnace, and to have a mechanism for bringing the volatile components of the graphitization catalyst generated together with the graphitization of the material mixture in the high temperature region of the graphitization furnace into contact with the material mixture in the low temperature region before graphitization. Is preferred.
Here, a continuous graphitization furnace is a graphitization furnace that does not raise and cool the temperature of the entire furnace when inserting and discharging a sample in a furnace for performing graphitization. And a furnace in which the material mixture is moved, graphitized in a high-temperature region, and then the graphitized material is removed from an outlet. In general, there is a furnace having a lower temperature region on the insertion port side and the discharge port side with a high temperature region required for graphitization interposed therebetween. The movement of the material mixture in the furnace can be performed, for example, by continuously pushing the material mixture.

【0011】黒鉛化を行う高温領域の温度については、
2000℃以上が好ましく、2500℃以上であること
が好ましく、2800〜3200℃であることが好まし
い。この温度が低いと、黒鉛の結晶の発達が悪くなると
共に、黒鉛化触媒が作製した黒鉛粒子に残存し易くな
り、いずれの場合も充放電容量が低下する傾向がある。
また、高温領域を挟む、より低い温度領域についての温
度については、高温領域より温度が低ければ特に制限は
ないが、挿入口及び排出口において試料混合物及び黒鉛
化された試料の挿入・取り出しが可能な温度であればよ
い。
Regarding the temperature in the high temperature region where the graphitization is performed,
2000 ° C. or higher is preferable, 2500 ° C. or higher is preferable, and 2800 to 3200 ° C. is preferable. When this temperature is low, the development of graphite crystals becomes worse, and the graphitization catalyst tends to remain in the produced graphite particles, and in any case, the charge / discharge capacity tends to decrease.
In addition, the temperature of the lower temperature region sandwiching the high temperature region is not particularly limited as long as the temperature is lower than the high temperature region, but it is possible to insert and remove the sample mixture and the graphitized sample at the insertion port and the discharge port Any temperature is acceptable.

【0012】連続黒鉛化炉を用いた黒鉛化工程において
は、連続黒鉛化炉内の高温領域で発生する黒鉛化触媒の
揮発成分を、黒鉛化前の低温領域にある材料混合物、即
ち挿入口側の低温領域にある混合物と接触させるように
する。これにより、黒鉛化触媒の添加量を少なくして高
い黒鉛化度の黒鉛を得ることができる。黒鉛化触媒の揮
発成分を低温領域にある材料混合物に接触させる具体的
な方法としては、ガスを材料混合物の移動方向と逆向き
に流通させる方法が挙げられる。使用されるガスとして
は窒素ガス、アルゴンガス等が使用できる。連続黒鉛化
炉の形態としては、ガスによる黒鉛化触媒の揮発成分の
移動を実現するため、試料混合物が移動する部分は外気
と遮断できる構造となっていることが好ましい。
[0012] In the graphitization step using the continuous graphitization furnace, the volatile components of the graphitization catalyst generated in the high-temperature region in the continuous graphitization furnace are converted into a material mixture in the low-temperature region before graphitization, that is, the insertion side. Contact with the mixture in the low temperature range of Thereby, graphite having a high degree of graphitization can be obtained by reducing the amount of the graphitization catalyst. As a specific method of bringing the volatile component of the graphitization catalyst into contact with the material mixture in the low-temperature region, a method of flowing a gas in a direction opposite to the moving direction of the material mixture can be mentioned. As a gas to be used, a nitrogen gas, an argon gas or the like can be used. As a form of the continuous graphitization furnace, it is preferable that a portion in which the sample mixture moves is configured to be shielded from the outside air in order to realize the movement of the volatile component of the graphitization catalyst by gas.

【0013】試料混合物が移動する方向は水平方向、垂
直方向、斜め方向等のいずれも採用できる。また、炉内
に挿入する材料混合物の形態は、ブロック状、ペレット
状、顆粒状、粉末状等のいずれも採用できるが、材料混
合物の挿入、黒鉛の取出が容易であり、また、材料混合
物と黒鉛化触媒の揮発成分との接触が容易であり、且つ
材料混合物内での黒鉛化触媒の揮発成分の流通経路を確
保できる等の理由から、ペレット状または顆粒状のもの
が好適である。なお、ここで粉末状とは混合物を粉砕工
程で粉砕して得られたものを指し、顆粒状とは、この粉
末を用いてタブレット法、直接顆粒法、噴霧乾燥法等の
手法を用いて0.1〜3mm程度の大きさに造粒されたも
のを指す。
The direction in which the sample mixture moves can be any of a horizontal direction, a vertical direction, an oblique direction and the like. The form of the material mixture to be inserted into the furnace may be any of block, pellet, granule, powder, etc., but the material mixture can be easily inserted and graphite can be easily removed. Pellets or granules are preferred because they can easily contact the volatile components of the graphitization catalyst and can secure a flow path for the volatile components of the graphitization catalyst in the material mixture. Here, the term "powder" refers to a product obtained by pulverizing a mixture in a pulverizing step, and the term "granular" refers to a powder obtained by using a powder method such as a tablet method, a direct granulation method, or a spray drying method. It refers to one granulated to a size of about 1 to 3 mm.

【0014】本発明において使用する連続黒鉛化炉の一
例を図面を用いて説明する。図1は、縦型連続黒鉛化炉
の概略図である。この連続黒鉛化炉は、材料の挿入口
1、その排出口7を有し、材料の流れ方向と反対向きに
非酸化性ガスを流すことができるガス流入口11及びガ
ス排出口2が設けられている。炉芯管8は高温領域であ
る黒鉛化帯5、その両側に低温領域である予熱帯3及び
冷却帯6が設けられる。予熱帯3と黒鉛化帯5の間に
は、低温領域で、揮発した黒鉛化触媒が冷却され析出す
る部分である揮発黒鉛化触媒析出帯4が存在する。炉心
管8の周囲には炉を加熱させるための誘導コイル9及び
測温孔10が設けられている。
An example of a continuous graphitizing furnace used in the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a vertical continuous graphitizing furnace. This continuous graphitization furnace has a material inlet 1 and a material outlet 7, and is provided with a gas inlet 11 and a gas outlet 2 through which a non-oxidizing gas can flow in a direction opposite to the flow direction of the material. ing. The furnace core tube 8 is provided with a graphitized zone 5 which is a high temperature region, and a pre-tropical zone 3 and a cooling zone 6 which are low temperature regions on both sides thereof. Between the pre-tropical zone 3 and the graphitization zone 5, there is a volatile graphitization catalyst deposition zone 4 which is a portion where the volatilized graphitization catalyst is cooled and deposited in a low temperature region. An induction coil 9 and a temperature measuring hole 10 for heating the furnace are provided around the furnace tube 8.

【0015】本発明においては、必要に応じて黒鉛又は
材料混合物の粉砕工程を設けることができる。粉砕工程
は、焼成前に行ってもよいが、黒鉛化物を得た後に行う
と、焼成前に粉砕を行う場合のように焼成工程や黒鉛化
工程で粒子が融着することを避ける処理を予め施す必要
がないので好ましい。粉砕方法については特に制限を設
けないが、ジェットミル、振動ミル、ピンミル、ハンマ
ーミル等の既知の方法を用いることができる。粉砕後の
平均粒子径は1〜100μmが好ましく、10〜50μ
mがより好ましい。平均粒子径は大きすぎる場合、作製
した電極表面に凸凹ができ易くなる。
In the present invention, a step of pulverizing graphite or a mixture of materials can be provided if necessary. The pulverizing step may be performed before firing, but if it is performed after obtaining the graphitized material, a process for avoiding fusion of particles in the firing step or graphitizing step as in the case of performing pulverization before firing is performed in advance. It is preferable because there is no need to perform the application. Although there is no particular limitation on the pulverizing method, a known method such as a jet mill, a vibration mill, a pin mill, a hammer mill, or the like can be used. The average particle size after pulverization is preferably 1 to 100 μm, and 10 to 50 μm.
m is more preferred. If the average particle size is too large, the surface of the prepared electrode tends to be uneven.

【0016】前記の製造法により得られる黒鉛は、本発
明のリチウム二次電池用負極の材料とすることができ
る。例えば、有機系結着剤、さらに必要に応じて溶剤と
混合し、得られるペーストを集電体と一体化してリチウ
ム二次電池用負極とすることができる。得られるペース
トは、シート状、ペレット状等の形状に成形することが
できる。有機系結着剤としては、例えばポリエチレン、
ポリプロピレン、エチレンプロピレンポリマー、ブタジ
エンゴム、スチレンブタジエンゴム、ブチルゴム、イオ
ン導電性の大きな高分子化合物が使用できる。前記イオ
ン導電率の大きな高分子化合物としては、ポリ弗化ビニ
リデン、ポリエチレンオキサイド、ポリエピクロヒドリ
ン、ポリフォスファゼン、ポリアクリロニトリル等が使
用できる。有機系結着剤の中では、イオン伝導率の大き
な高分子化合物が好ましく、ポリフッ化ビニリデンが特
に好ましい。
The graphite obtained by the above-mentioned production method can be used as a material for a negative electrode for a lithium secondary battery of the present invention. For example, an organic binder and, if necessary, a solvent are mixed, and the obtained paste is integrated with a current collector to form a negative electrode for a lithium secondary battery. The obtained paste can be formed into a shape such as a sheet or a pellet. As the organic binder, for example, polyethylene,
Polypropylene, ethylene propylene polymer, butadiene rubber, styrene butadiene rubber, butyl rubber, and high ion conductive polymer compounds can be used. Examples of the polymer compound having a high ionic conductivity include polyvinylidene fluoride, polyethylene oxide, polyepihydrin, polyphosphazene, polyacrylonitrile, and the like. Among the organic binders, a polymer compound having a large ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.

【0017】有機系結着剤の含有量は、黒鉛粒子と有機
結着剤との混合物に対して3〜20重量%含有すること
が好ましい。溶剤としては特に制限はなく、N−メチル
2−ピロリドン、ジメチルホルムアミド、イソプロパノ
ール等が用いられる。溶剤の量に特に制限はなく、所望
の粘度に調整できればよいが、通常ペーストに対して、
30〜70重量%用いられることが好ましい。
The content of the organic binder is preferably 3 to 20% by weight based on the mixture of the graphite particles and the organic binder. The solvent is not particularly limited, and N-methyl 2-pyrrolidone, dimethylformamide, isopropanol and the like are used. The amount of the solvent is not particularly limited, as long as it can be adjusted to a desired viscosity.
It is preferable to use 30 to 70% by weight.

【0018】上記ペーストを集電体と一体化し、リチウ
ム二次電池用負極とするには、粘度を調整したペースト
を、例えば集電体に塗布し乾燥する方法がある。集電体
としては、例えばニッケル、銅等の箔、メッシュなどが
使用できる。また一体化は、例えばロール、プレス等の
加圧成形法で行うことができる。
In order to integrate the paste with a current collector to form a negative electrode for a lithium secondary battery, there is a method in which a paste whose viscosity is adjusted is applied to, for example, a current collector and dried. As the current collector, for example, a foil or mesh of nickel, copper, or the like can be used. Further, the integration can be performed by a pressure molding method such as a roll or a press.

【0019】このようにして得られたリチウム二次電池
用負極は、リチウムイオン二次電池、リチウムポリマ二
次電池等のリチウム二次電池に使用できる。リチウムイ
オン二次電池においては、通常、上記負極を、セパレー
タを介して正極を対向して配置し、電解液を注入する。
またリチウムポリマ二次電池においては、通常、正極と
高分子固体電解質を組み合わせて製造される。本発明の
リチウム二次電池は、従来の炭素材料を用いたリチウム
二次電池と比較して、急速充放電特性、サイクル特性に
優れ、不可逆容量が小さく、特に安全性に優れる。
The negative electrode for a lithium secondary battery thus obtained can be used for lithium secondary batteries such as lithium ion secondary batteries and lithium polymer secondary batteries. In a lithium ion secondary battery, usually, the above-mentioned negative electrode is arranged with a positive electrode facing the other with a separator interposed therebetween, and an electrolyte is injected.
Further, a lithium polymer secondary battery is usually manufactured by combining a positive electrode and a solid polymer electrolyte. The lithium secondary battery of the present invention is excellent in rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity, and is particularly excellent in safety, as compared with a lithium secondary battery using a conventional carbon material.

【0020】本発明におけるリチウム二次電池の正極に
用いられる材料については特に制限はなく、LiNiO
2、LiCoO2、LiMn24等を単独又は混合して使
用することができる。電解液としては、LiClO4
LiPF6、LiAsF6、LiBF4、LiSO3CF3
等のリチウム塩を、例えばエチレンカーボネート、ジエ
チルカーボネート、ジメトキシエタン、ジメチルカーボ
ネート、テトラヒドロフラン、プロピレンカーボネート
等の非水系溶剤に溶解したいわゆる有機電解液、ポリフ
ッ化ビニリデン等の高分子固体電解質に含ませた固体有
機電解液を使用することができる。
The material used for the positive electrode of the lithium secondary battery in the present invention is not particularly limited.
2 , LiCoO 2 , LiMn 2 O 4, etc. can be used alone or as a mixture. LiClO 4 ,
LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3
A lithium salt such as, for example, ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, so-called organic electrolyte dissolved in a non-aqueous solvent such as propylene carbonate, a solid contained in a polymer solid electrolyte such as polyvinylidene fluoride Organic electrolytes can be used.

【0021】セパレータとしては、例えばポリエチレ
ン、ポリプロピレン等のポリオレフィンを主成分とした
不織布、クロス、微孔フィルム又はこれらを組み合わせ
たものを使用することができる。なお、図3に円筒型リ
チウムイオン二次電池の一例の一部断面正面図を示す。
図3において、12は正極、13は負極、14はセパレ
ータ、15は正極タブ、16は負極タブ、17は正極
蓋、18は電池缶及び19はガスケットである。
As the separator, for example, a nonwoven fabric, a cloth, a microporous film or a combination of these, which contains a polyolefin such as polyethylene or polypropylene as a main component, can be used. FIG. 3 shows a partial cross-sectional front view of an example of a cylindrical lithium ion secondary battery.
In FIG. 3, 12 is a positive electrode, 13 is a negative electrode, 14 is a separator, 15 is a positive electrode tab, 16 is a negative electrode tab, 17 is a positive electrode cover, 18 is a battery can, and 19 is a gasket.

【0022】[0022]

【実施例】以下、本発明の実施例を説明する。 (縦型連続黒鉛化炉)実施例で用いた連続黒鉛化炉は前
述の図1に示すものである。設定された炉内の温度条件
を図2に示した。炉心管は黒鉛製である。最高温度領域
は3000℃とした。炉芯管出口より窒素を流し、入り
口より排出される構造とした。焼成されたペレットは炉
芯管入り口から連続的に投入され、炉芯管内部を移動
し、出口より排出される。高温でペレットより揮発した
黒鉛化触媒は窒素によって入り口側方向に移動し、低温
領域でペレットに析出し再利用が実現される。
Embodiments of the present invention will be described below. (Vertical Continuous Graphitizing Furnace) The continuous graphitizing furnace used in the embodiment is shown in FIG. 1 described above. FIG. 2 shows the set temperature conditions in the furnace. The core tube is made of graphite. The maximum temperature range was 3000 ° C. The structure was such that nitrogen was flowed from the furnace core tube outlet and discharged from the inlet. The fired pellets are continuously introduced from the inlet of the furnace core tube, move inside the furnace core tube, and are discharged from the outlet. The graphitization catalyst volatilized from the pellets at a high temperature moves toward the entrance side by nitrogen, and is deposited on the pellets in a low temperature region to be reused.

【0023】実施例1 (黒鉛粒子の作製)平均粒径が5μmのコークス粉末5
0重量部、タールピッチ20重量部、平均粒径48μm
の炭化珪素5重量部及びコールタール10重量部を混合
し、200℃で1時間混合した、得られた混合物を粉砕
し、φ17mm×8mmのペレット状に加圧成形した。得ら
れたペレットを電気炉を用いて窒素雰囲気中で900℃
まで昇温して焼成した。次いで、焼成したペレットを前
記連続黒鉛炉を用いて黒鉛化を行った。黒鉛化帯5の通
過時間は1時間に設定した。次いで黒鉛化したペレット
を粉砕し、平均粒径20μmの黒鉛粒子を得た。得られ
た黒鉛粒子のX線回折によって求められた格子面間隔
(d002)は0.336nm、結晶子サイズLcの値は
100nm以上であった。
Example 1 (Preparation of graphite particles) Coke powder 5 having an average particle size of 5 μm
0 parts by weight, tar pitch 20 parts by weight, average particle size 48 μm
Of silicon carbide and 10 parts by weight of coal tar were mixed at 200 ° C. for 1 hour. The resulting mixture was pulverized and pressed into a pellet of φ17 mm × 8 mm. The obtained pellets were heated at 900 ° C. in a nitrogen atmosphere using an electric furnace.
The temperature was raised to calcination. Next, the fired pellets were graphitized using the continuous graphite furnace. The passage time of the graphitized zone 5 was set to one hour. Next, the graphitized pellets were pulverized to obtain graphite particles having an average particle size of 20 μm. The lattice spacing (d002) determined by X-ray diffraction of the obtained graphite particles was 0.336 nm, and the value of the crystallite size Lc was 100 nm or more.

【0024】(リチウム二次電池用負極の作製)得られ
た黒鉛粒子90重量%に、N−メチル−2−ピロリドン
に溶解したポリ弗化ビニリデン(PVDF)を固形分で
10重量%加えて混練して黒鉛ペーストを作製した。作
製した黒鉛ぺーストを厚さ10μmの圧延銅箔に塗布
し、さらに乾燥し、面圧490Mpa(0.5トン/cm2
の圧力で圧縮成形し、試料電極とした。黒鉛粒子層の厚
さは90μm及び密度は1.6g/cm3とした。
(Preparation of negative electrode for lithium secondary battery) To 90% by weight of the obtained graphite particles, 10% by weight of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone in solid content was added and kneaded. Thus, a graphite paste was prepared. The produced graphite paste was applied to a rolled copper foil having a thickness of 10 μm, dried, and subjected to a surface pressure of 490 MPa (0.5 ton / cm 2 ).
The sample was compression-molded under the following pressure to obtain a sample electrode. The thickness of the graphite particle layer was 90 μm and the density was 1.6 g / cm 3 .

【0025】(黒鉛粒子の負極特性)作製した試料電極
を3端子法による定電流充放電を行い、リチウム二次電
池用負極としての評価を行った。図4は実験に用いたリ
チウム二次電池の概略図である。ガラスセル20に電解
液21としてLiPF6をエチレンカーボネート(E
C)及びジメチルカーボネート(DMC)(EC:DM
C=1:1(体積比))の混合溶媒に1モル/リットル
の濃度となるように溶解した溶液を入れ、試料電極2
2、セパレータ23及び対極24を積層して配置し、き
らに参照電極25を上部から吊した。対極24及び参照
電極25には金属リチウムを使用し、セパレータ23に
はポリエチレン微孔膜を使用した、0.5mA/cm2の定電
流で、5mV(V vs Li/Li+)まで充電し、1
V(V vs Li/Li+)まで放電させた。1サイ
クル目の充電容量は390mAh/g、放電容量は360mAh
/gであった。
(Negative Electrode Characteristics of Graphite Particles) The prepared sample electrode was subjected to constant current charging and discharging by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 4 is a schematic diagram of a lithium secondary battery used in the experiment. LiPF 6 is used as an electrolyte 21 in a glass cell 20 by ethylene carbonate (E).
C) and dimethyl carbonate (DMC) (EC: DM
C = 1: 1 (volume ratio)), and a solution dissolved at a concentration of 1 mol / liter in a mixed solvent was added thereto.
2. The separator 23 and the counter electrode 24 were stacked and arranged, and the reference electrode 25 was hung from above on the surface. Lithium metal was used for the counter electrode 24 and the reference electrode 25, and a polyethylene microporous membrane was used for the separator 23. The battery was charged to 5 mV (V vs Li / Li + ) at a constant current of 0.5 mA / cm 2 . 1
V (V vs Li / Li + ). The charge capacity in the first cycle is 390 mAh / g, and the discharge capacity is 360 mAh
/ g.

【0026】比較例1 実施例1と同様にしてコークス、タールピッチ、コール
タールを混合し、200℃で1時間混合した。得られた
混合物を粉砕し、φ17×8mmのペレット状に加圧成形
した。得られたペレットを窒素雰囲気中で900℃まで
昇温した。次いでペレットを黒鉛製るつぼに入れ、抵抗
加熱式炉を用いて窒素中で3000℃まで加熱し、1時
間保持して黒鉛化を行った。以下、実施例1と同様にし
て、黒鉛化したペレットを粉砕し、黒鉛粒子を得た。得
られた黒鉛粒子の格子面問隔(d002)は0.340
mm、結晶子サイズLcは600nmであり、実施例より黒
鉛化度が低下していた。次いで、実施例1と同様にして
負極特性を評価した。その結果、1サイクル目の充電容
量は370mAh/g、放電容量は330mAh/gであり、実施
例1と比較して放電容量が低下した。
Comparative Example 1 Coke, tar pitch and coal tar were mixed in the same manner as in Example 1, and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized and pressed into a pellet of φ17 × 8 mm. The temperature of the obtained pellet was increased to 900 ° C. in a nitrogen atmosphere. Next, the pellets were placed in a graphite crucible, heated to 3000 ° C. in nitrogen using a resistance heating furnace, and held for 1 hour to graphitize. Thereafter, in the same manner as in Example 1, the graphitized pellets were pulverized to obtain graphite particles. The lattice spacing (d002) of the obtained graphite particles is 0.340.
mm and the crystallite size Lc were 600 nm, and the degree of graphitization was lower than that of the example. Next, the negative electrode characteristics were evaluated in the same manner as in Example 1. As a result, the charge capacity in the first cycle was 370 mAh / g, and the discharge capacity was 330 mAh / g, and the discharge capacity was lower than in Example 1.

【0027】実施例2 平均粒径が5μmのコークス粉末50重量部、タールピ
ッチ20重量部、平均粒径48μmの炭化珪素2重量部
及びコールタール10重量部を混合し、200℃で1時
間混合した。得られた混合物を粉砕し、φ17mm×8mm
のペレット状に加圧成形した。以下、実施例1と同様に
して黒鉛粒子を得た。得られた黒鉛粒子の格子面間隔
(d002)は0.337nm、結晶子サイズLcは80
0nmであった。次いで、実施例1と同様にして負極特性
を評価した。その結果、1サイクル目の充電容量は38
0mAh/g、放電容量は345mAh/gであった。
Example 2 50 parts by weight of coke powder having an average particle diameter of 5 μm, 20 parts by weight of tar pitch, 2 parts by weight of silicon carbide having an average particle diameter of 48 μm and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. did. The obtained mixture is pulverized, and φ17 mm × 8 mm
Under pressure into pellets. Thereafter, graphite particles were obtained in the same manner as in Example 1. The lattice spacing (d002) of the obtained graphite particles is 0.337 nm, and the crystallite size Lc is 80.
It was 0 nm. Next, the negative electrode characteristics were evaluated in the same manner as in Example 1. As a result, the charge capacity in the first cycle is 38
The discharge capacity was 0 mAh / g and the discharge capacity was 345 mAh / g.

【0028】比較例2 実施例2と同様にしてコークス、タールピッチ、コール
タールを混合し、200度で1時間混合した。得られた
混合物を粉砕し、φ17mm×8mmのペレット状に加圧成
形した。得られたペレットを窒素雰囲気中で900℃ま
で昇温した次いでペレットを黒鉛製るつぼに入れ、抵抗
加熱式炉を用いて窒素中で3000℃まで加熱し、1時
間保持して黒鉛化を行った。以下、実施例1と同様にし
て黒鉛化したペレットを粉砕し、黒鉛粒子を得た。得ら
れた黒鉛粒子の格子面間隔(d002)は0.339n
m、結晶子サイズLcは650nmで、実施例より黒鉛化
度が低下していた。次いで、実施例1と同様にして負極
特性を評価した。その結果、1サイクル目の充電容量は
355mAh/g、放電容量は310mAh/gであり、実施例2
と比較して放電容量が低下した。
Comparative Example 2 Coke, tar pitch and coal tar were mixed in the same manner as in Example 2 and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized and pressure-formed into a pellet of φ17 mm × 8 mm. The temperature of the obtained pellet was raised to 900 ° C. in a nitrogen atmosphere, and then the pellet was placed in a graphite crucible, heated to 3000 ° C. in nitrogen using a resistance heating furnace, and held for 1 hour to graphitize. . Thereafter, the graphitized pellets were pulverized in the same manner as in Example 1 to obtain graphite particles. The lattice spacing (d002) of the obtained graphite particles is 0.339 n
m, the crystallite size Lc was 650 nm, and the degree of graphitization was lower than in the examples. Next, the negative electrode characteristics were evaluated in the same manner as in Example 1. As a result, the charge capacity in the first cycle was 355 mAh / g and the discharge capacity was 310 mAh / g.
The discharge capacity was lower than that of.

【0029】実施例3 平均粒径が5μmのコークス粉末50重量部、タールピ
ッチ20重量部、平均粒径48μmの炭化珪素1重量部
及びコールタール10重量部を混合し、200℃で1時
間混合した。得られた混合物を粉砕し、φ17mm×8mm
のペレット状に加圧成形した。以下、実施例1と同様に
して黒鉛粒子を得た。得られた黒鉛粒子の格子面間隔
(d002)は0.335nm、結晶子サイズLcは70
0nmであった。次いで、実施例1と同様にして負極特性
を評価した。その結果、1サイクル目の充電容量は37
0mAh/g、放電容量は325mAh/gであった。
Example 3 50 parts by weight of coke powder having an average particle diameter of 5 μm, 20 parts by weight of tar pitch, 1 part by weight of silicon carbide having an average particle diameter of 48 μm and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. did. The obtained mixture is pulverized, and φ17 mm × 8 mm
Under pressure into pellets. Thereafter, graphite particles were obtained in the same manner as in Example 1. The lattice spacing (d002) of the obtained graphite particles is 0.335 nm, and the crystallite size Lc is 70.
It was 0 nm. Next, the negative electrode characteristics were evaluated in the same manner as in Example 1. As a result, the charge capacity in the first cycle is 37
The discharge capacity was 0 mAh / g and the discharge capacity was 325 mAh / g.

【0030】比較例3 実施例3と同様にしてコークス、タールピッチ、コール
タールを混合し、200℃で1時間混合した。得られた
混合物を粉砕し、φ17mm×8mmのペレット状に加圧成
形した。得られたペレットを窒素雰囲気中で900℃ま
で昇温した。次いでペレットを黒鉛製るつぼに入れ、抵
抗加熱式炉を用いて窒素中で3000℃まで加熱し、1
時間保持して黒鉛化を行った。以下、実施例1と同様に
して黒鉛化したペレットを粉砕し、黒鉛粒子を得た。得
られた黒鉛拉子の格子面間隔(d002)は0.340
nm、結晶子サイズLcは450nmであり、実施例3より
黒鉛化度が低下していた。次いで、実施例1と同様にし
て負極特性を評価した。その結果、1サイクル目の充電
容量は335mAh/g、放電容量は290mAh/gであり、実
施例3と比較して放電容量が低下した。
Comparative Example 3 Coke, tar pitch and coal tar were mixed in the same manner as in Example 3 and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized and pressure-formed into a pellet of φ17 mm × 8 mm. The temperature of the obtained pellet was increased to 900 ° C. in a nitrogen atmosphere. The pellets were then placed in a graphite crucible and heated to 3000 ° C. in nitrogen using a resistance heating furnace.
Graphitization was performed by holding for a time. Thereafter, the graphitized pellets were pulverized in the same manner as in Example 1 to obtain graphite particles. The lattice spacing (d002) of the obtained graphite particles was 0.340.
nm and the crystallite size Lc were 450 nm, and the degree of graphitization was lower than that in Example 3. Next, the negative electrode characteristics were evaluated in the same manner as in Example 1. As a result, the charge capacity in the first cycle was 335 mAh / g, and the discharge capacity was 290 mAh / g, and the discharge capacity was lower than that in Example 3.

【0031】[0031]

【発明の効果】請求項1及び2記載の製造法によれば、
黒鉛化触媒の添加量を少なくしても高い黒鉛化度が得ら
れ、高い充放電特性を有し、急速充放電特性、サイクル
特性、第一回サイクル目の不可逆容量等に優れるリチウ
ム二次電池に好適な黒鉛粒子を工数低減と併せて低コス
トで製造が可能となる簡略な工程で作製することができ
る。請求項3及び4記載のリチウム二次電池用負極は、
高い充放電特性を有し、急速充放電特性、サイクル特
性、第一回サイクル目の不可逆容量等に優れるものであ
る。請求項5記載のリチウム二次電池は、高い充放電特
性を有し、急速充放電特性、サイクル特性、第一回サイ
クル目の不可逆容量等に優れるものである。
According to the production method according to claims 1 and 2,
Lithium secondary battery with high degree of graphitization, high charge / discharge characteristics, excellent rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, etc. Graphite particles suitable for use can be manufactured by a simple process that can be manufactured at low cost together with a reduction in man-hours. The negative electrode for a lithium secondary battery according to claims 3 and 4,
It has high charge / discharge characteristics, and is excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, and the like. The lithium secondary battery according to claim 5 has high charge / discharge characteristics, and is excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いる縦型連続黒鉛化炉の一例を示す
概略図である。
FIG. 1 is a schematic view showing an example of a vertical continuous graphitizing furnace used in the present invention.

【図2】本発明の実施例で使用した縦型連続黒鉛化炉内
の温度分布を示すグラフである。
FIG. 2 is a graph showing a temperature distribution in a vertical continuous graphitizing furnace used in an example of the present invention.

【図3】円筒型リチウム二次電池の一部断面正面図であ
る。
FIG. 3 is a partial cross-sectional front view of a cylindrical lithium secondary battery.

【図4】実施例及び比較例で充放電特性の測定に用いた
リチウム二次電池の概略図である。
FIG. 4 is a schematic view of a lithium secondary battery used for measuring charge / discharge characteristics in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 挿入口 2 排出口 3 予熱帯 4 揮発黒鉛化触媒析出帯 5 黒鉛化帯 6 冷却帯 7 排出口 8 炉心管 9 誘導コイル 10 測温孔 11 ガス流入口 12 正極 13 負極 14 セパレータ 15 正極タブ 16 負極タブ 17 正極蓋 18 電池缶 19 ガスケット 20 ガラスセル 21 電解液 22 試料電極(負極) 23 セパレータ 24 対極(正極) 25 参照極 DESCRIPTION OF SYMBOLS 1 Insertion port 2 Discharge port 3 Preliminary zone 4 Precipitation zone for volatile graphitization catalyst 5 Graphitization zone 6 Cooling zone 7 Discharge port 8 Reactor core tube 9 Induction coil 10 Temperature measurement hole 11 Gas inlet 12 Positive electrode 13 Negative electrode 14 Separator 15 Positive electrode tab 16 Negative electrode tab 17 Positive electrode cover 18 Battery can 19 Gasket 20 Glass cell 21 Electrolyte 22 Sample electrode (negative electrode) 23 Separator 24 Counter electrode (positive electrode) 25 Reference electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 C04B 35/54 A (72)発明者 藤田 淳 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 (72)発明者 山田 和夫 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/40 C04B 35/54 A (72) Inventor Jun Fujita 3-3-1 Ayukawacho, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. (72) Inventor Kazuo Yamada 3-1-1 Ayukawacho, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Yamazaki Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛化可能な骨材又は黒鉛、黒鉛化可能
なバインダ及び黒鉛化触媒を混合して材料混合物を得る
工程、焼成工程並びに黒鉛化工程を含む黒鉛の製造法に
おいて、前記黒鉛化工程で発生する黒鉛化触媒の揮発成
分を、黒鉛化前の材料混合物に接触させることを特徴と
する黒鉛の製造法。
1. A method for producing graphite, comprising the steps of mixing a graphitizable aggregate or graphite, a graphitizable binder and a graphitization catalyst to obtain a material mixture, a firing step and a graphitization step. A method for producing graphite, comprising: bringing a volatile component of a graphitization catalyst generated in a process into contact with a material mixture before graphitization.
【請求項2】 黒鉛化工程が、連続黒鉛化炉を用いて行
われ、その高温領域で発生する黒鉛化触媒の揮発成分
を、黒鉛化前の低温領域にある材料混合物と接触させる
ことを特徴とする請求項1記載の黒鉛の製造法。
2. The graphitization step is performed using a continuous graphitization furnace, and a volatile component of the graphitization catalyst generated in the high temperature region is brought into contact with a material mixture in a low temperature region before graphitization. The method for producing graphite according to claim 1, wherein
【請求項3】 請求項1又は2記載の製造法で製造され
た黒鉛を含有してなるリチウム二次電池用負極。
3. A negative electrode for a lithium secondary battery comprising graphite produced by the production method according to claim 1.
【請求項4】 黒鉛と有機系結着剤の混合物を、集電体
と一体化してなる請求項3記載のリチウム二次電池用負
極。
4. The negative electrode for a lithium secondary battery according to claim 3, wherein a mixture of graphite and an organic binder is integrated with a current collector.
【請求項5】 請求項3又は4記載の負極と正極を有し
てなるリチウム二次電池。
5. A lithium secondary battery comprising the negative electrode according to claim 3 or 4 and a positive electrode.
JP10010398A 1998-01-22 1998-01-22 Production of graphite, lithium secondary battery and its negative electrode Pending JPH11209114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10010398A JPH11209114A (en) 1998-01-22 1998-01-22 Production of graphite, lithium secondary battery and its negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10010398A JPH11209114A (en) 1998-01-22 1998-01-22 Production of graphite, lithium secondary battery and its negative electrode

Publications (1)

Publication Number Publication Date
JPH11209114A true JPH11209114A (en) 1999-08-03

Family

ID=11749040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10010398A Pending JPH11209114A (en) 1998-01-22 1998-01-22 Production of graphite, lithium secondary battery and its negative electrode

Country Status (1)

Country Link
JP (1) JPH11209114A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157509A1 (en) 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Method for producing graphite and particles for graphite production
JP2015117175A (en) * 2013-12-20 2015-06-25 日本電極株式会社 Manufacturing apparatus and method of graphite powder
JP2015189645A (en) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 Two-stage heating type vertical graphitization furnace and method for producing graphite
JP2015189646A (en) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite
JP2015189644A (en) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 Vertical graphitization furnace and method for producing graphite
CN114824233A (en) * 2022-05-31 2022-07-29 深圳市翔丰华科技股份有限公司 Preparation method of high-energy-density quick-charging graphite negative electrode material of lithium battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157509A1 (en) 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Method for producing graphite and particles for graphite production
JP2014196211A (en) * 2013-03-29 2014-10-16 Jx日鉱日石エネルギー株式会社 Production method of graphite and particle for producing graphite
CN105073637A (en) * 2013-03-29 2015-11-18 吉坤日矿日石能源株式会社 Method for producing graphite and particles for graphite production
KR20150134351A (en) 2013-03-29 2015-12-01 제이엑스 닛코닛세키 에네루기 가부시키가이샤 Method for producing graphite and particles for graphite production
EP2980017A4 (en) * 2013-03-29 2016-12-07 Jx Nippon Oil & Energy Corp Method for producing graphite and particles for graphite production
US9725323B2 (en) 2013-03-29 2017-08-08 Jx Nippon Oil & Energy Corporation Method for producing graphite and particulates for graphite production
JP2015117175A (en) * 2013-12-20 2015-06-25 日本電極株式会社 Manufacturing apparatus and method of graphite powder
WO2015093570A1 (en) * 2013-12-20 2015-06-25 日本電極株式会社 Device and method for manufacturing graphite powder
JP2015189645A (en) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 Two-stage heating type vertical graphitization furnace and method for producing graphite
JP2015189646A (en) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 Two-stage heating type vertical graphitization furnace using high frequency and method for producing graphite
JP2015189644A (en) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 Vertical graphitization furnace and method for producing graphite
CN114824233A (en) * 2022-05-31 2022-07-29 深圳市翔丰华科技股份有限公司 Preparation method of high-energy-density quick-charging graphite negative electrode material of lithium battery

Similar Documents

Publication Publication Date Title
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3361510B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP3213575B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JP4232404B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JPH11209114A (en) Production of graphite, lithium secondary battery and its negative electrode
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
KR19990030823A (en) Anode active material for lithium ion secondary battery, negative electrode plate and lithium ion secondary battery manufactured using same
JP2002198036A (en) Negative electrode, nonaqueous electrolyte cell and their manufacturing method
JP4224731B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
KR20220064385A (en) Composite graphite material and manufacturing method thereof, secondary battery and device
JP3582336B2 (en) Manufacturing method of graphite powder
JP7471738B2 (en) Negative electrode active material, negative electrode containing the same, and secondary battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP2002343341A (en) Negative electrode for lithium secondary battery
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP2005281099A (en) Carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode, and rechargeable lithium-ion battery
JP2001006669A (en) Graphite particles for lithium secondary battery negative electrode, manufacture of the particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP5704473B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4628007B2 (en) Carbon material manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4687661B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040713

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120723

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350